2020年六年级数学易错题难题题
2020年小学六年级数学易错题难题专题训练
2020年小学六年级数学易错题难题专题训练一、培优题易错题1.如果,那么我们规定 .例如:因为,所以 .(1)根据上述规定,填空:________, ________, ________.(2)若记,, .求证: .【答案】(1)3;0;-2(2)解:依题意则∵∴【解析】【解答】解:(1)(3,27)=3,(4,1)=0,(2,0.25)=-2,故答案为:3;0;-2【分析】根据新定义的算法计算出根指数即可;由新定义的算法,得到同底数幂的乘法,底数不变,指数相加;证明出结论.2.学校举行“创客节”,明明的创客作品模型中需要用到一种花瓣图案(如下图),花瓣图案的各个小圆半径都是1cm。
明明打算从一块长10cm,宽8cm的长方形纸板上剪花瓣图案。
(注:花瓣图案不能使用胶水、胶带等剪拼)(1)这块长方形纸板的面积是多大?(2)这个花瓣图案的面积是多大?(π取3.14)(3)明明还能从这块长方形纸板的剩余部分再剪出1个花瓣图案吗?如果能,如何剪?请你画一画、写一写;如果不能,请说明理由。
【答案】(1)10×8=80(平方厘米)答:这块长方形纸板的面积是80平方厘米。
(2)如图:1×1×16+3.14×12=16+3.14=19.14(平方厘米)答:花瓣图案的面积是19.14平方厘米。
(3)【解析】【分析】(1)用长乘宽求出长方形纸板的面积;(2)花瓣中间是4个正方形,每个花瓣处组合后刚好是3个正方形和1个圆,这样总面积就是16个正方形和1个圆的面积;(3)在纸板的右上角剪下同样的花瓣图案。
3.、、三个试管中各盛有克、克、克水.把某种浓度的盐水克倒入中,充分混合后从中取出克倒入中,再充分混合后从中取出克倒入中,最后得到的盐水的浓度是.问开始倒入试管中的盐水浓度是百分之几?【答案】解:0.5%÷÷÷=0.5%×2×3×4=12%答:一开始倒入A中盐水的浓度是12%。
2020年六年级数学易错题难题试题
2020年六年级数学易错题难题试题一、培优题易错题1.如图,用相同的小正方形按照某种规律进行摆放,则第6个图形中小正方形的个数是________,第n(n为正整数)个图形中小正方形的个数是________(用含n的代数式表示).【答案】55;(n+1)2+n【解析】【解答】第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;第3个图形共有小正方形的个数为4×4+3;…;则第n个图形共有小正方形的个数为(n+1)2+n,所以第6个图形共有小正方形的个数为:7×7+6=55.故答案为:55;(n+1)2+n【分析】观察图形规律,第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;则第n个图形共有小正方形的个数为(n+1)2+n,找出一般规律.2.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22-02,12=42-22,20=62-42,因此4,12,20这三个数都是神秘数.(1)28和2012这两个数是神秘数吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(取正数)是神秘数吗?为什么?【答案】(1)解:找规律:4=4×1=22-02, 12=4×3=42-22, 20=4×5=62-42, 28=4×7=82-62,…,2012=4×503=5042-5022,所以28和2012都是神秘数(2)解:(2k+2) 2-(2 k) 2=4(2k +1),因此由这两个连续偶数构造的神秘数是4的倍数(3)解:由(2)知,神秘数可以表示成4(2k+1),因为2 k +1是奇数,因此神秘数是4的倍数,但一定不是8的倍数.另一方面,设两个连续奇数为2 n +1和2 n -1,则(2 n +1) 2-(2n-1)2=8n,即两个连续奇数的平方差是8的倍数.因此,两个连续奇数的平方差不是神秘数.【解析】【分析】(1)根据规律得到28=4×7=82-62, 2012=4×503=5042-5022,得到28和2012这两个数是神秘数;(2)由(2k+2)2-(2k)2=(2k+2+2k)(2k+2-2k)=4(2k +1),因此由这两个连续偶数构造的神秘数是4的倍数;(3)神秘数可以表示成4(2k+1),因为2k +1是奇数,因此神秘数是4的倍数,但一定不是8的倍数;两个连续奇数的平方差是8的倍数,因此这两个连续奇数的平方差不是神秘数.3.如图,半径为1个单位的圆片上有一点A与数轴上的原点重合,AB是圆片的直径.(结果保留π)(1)把圆片沿数轴向左滚动1周,点A到达数轴上点C的位置,点C表示的数是________数(填“无理”或“有理”),这个数是________;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是________;(3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3①第几次滚动后,A点距离原点最近?第几次滚动后,A点距离原点最远?②当圆片结束运动时,A点运动的路程共有多少?此时点A所表示的数是多少?【答案】(1)无理;﹣2π(2)4π或﹣4π(3)解:①∵圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3,∴第4次滚动后,A点距离原点最近;第3次滚动后,A点距离原点最远;②∵|+2|+|﹣1|+|+3|+|﹣4|+|﹣3|=13,∴13×2π×1=26π,∴A点运动的路程共有26π;∵(+2)+(﹣1)+(+3)+(﹣4)+(﹣3)=﹣3,(﹣3)×2π=﹣6π,∴此时点A所表示的数是:﹣6π【解析】【解答】解:(1)把圆片沿数轴向左滚动1周,点A到达数轴上点C的位置,点C表示的数是无理数,这个数是﹣2π;故答案为:无理,﹣2π;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是4π或﹣4π;故答案为:4π或﹣4π;【分析】(1)利用圆的半径以及滚动周数即可得出滚动距离;(2)利用圆的半径以及滚动周数即可得出滚动距离;(3)①利用滚动的方向以及滚动的周数即可得出A点移动距离变化;②利用绝对值的性质以及有理数的加减运算得出移动距离和A表示的数即可.4.服装厂买来一批布料,如果全部用来做上衣,刚好可以做60件。
小学六年级数学易错题难题专题训练含详细答案
小学六年级数学易错题难题专题训练含详细答案一、培优题易错题1.观察下列一组图形:它们是按照一定规律排列的,依照此规律,第个图形中共有________个“★”.【答案】(3n+1)【解析】【解答】解:①为4个★,②为7个★,③ 为10个★,④为13个★,通过观察,可得第n个图形为(3n+1)个★.故答案为:(3n+1)【分析】观察图形,先写出①②③④的★的个数,通过找规律,写出第n个图形中的★个数。
2.有这样一个数字游戏,将1,2,3,4,5,6,7,8,9这九个数字分别填在如图所示的九个空格中,要求每一行从左到右的数字逐渐增大,每一列从上到下的数字也逐渐增大.当数字3和4固定在图中所示的位置时,x代表的数字是________,此时按游戏规则填写空格,所有可能出现的结果共有________种.【答案】2;6【解析】【解答】根据题意知,x<4且x≠3,则x=2或x=1,∵x前面的数要比x小,∴x=2,∵每一行从左到右、每一列从上到下分别依次增大,∴9只能填在右下角,5只能填右上角或左下角,5之后与之相邻的空格可填6、7、8任意一个,余下的两个数字按从小到大只有一种方法,∴共有2×3=6种结果,故答案为:2,6【分析】根据题意得到x=2或x=1,由每一行从左到右、每一列从上到下分别依次增大,得到x只能=2,9只能填在右下角,5只能填右上角或左下角,得到结果.3.甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费.设小红在同一商场累计购物x元,其中x>100.(1)根据题意,填写下表(单位:元):(2)当x取何值时,小红在甲、乙两商场的实际花费相同?(3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少?【答案】(1)271;0.9x+10;278;0.95x+2.5(2)解:根据题意,有0.9x+10=0.95x+2.5,解得x=150,∴当x=150时,小红在甲、乙两商场的实际花费相同。
小学六年级数学易错题难题专题训练含详细答案
小学六年级数学易错题难题专题训练含详细答案一、培优题易错题1.有这样一个数字游戏,将1,2,3,4,5,6,7,8,9这九个数字分别填在如图所示的九个空格中,要求每一行从左到右的数字逐渐增大,每一列从上到下的数字也逐渐增大.当数字3和4固定在图中所示的位置时,x代表的数字是________,此时按游戏规则填写空格,所有可能出现的结果共有________种.【答案】2;6【解析】【解答】根据题意知,x<4且x≠3,则x=2或x=1,∵x前面的数要比x小,∴x=2,∵每一行从左到右、每一列从上到下分别依次增大,∴9只能填在右下角,5只能填右上角或左下角,5之后与之相邻的空格可填6、7、8任意一个,余下的两个数字按从小到大只有一种方法,∴共有2×3=6种结果,故答案为:2,6【分析】根据题意得到x=2或x=1,由每一行从左到右、每一列从上到下分别依次增大,得到x只能=2,9只能填在右下角,5只能填右上角或左下角,得到结果.2.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走均为正,向下向左走均为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(________,________),B→C(________,________),C→________(+1,﹣2);(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.(4)若图中另有两个格点M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则N→A应记为什么?【答案】(1)+3;+4;+2;0;D(2)解:P点位置如图1所示;(3)解:如图2,根据已知条件可知:A→B表示为:(1,4),B→C记为(2,0)C→D记为(1,﹣2);则该甲虫走过的路线长为:1+4+2+1+2=10(4)解:由M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),所以,5﹣a﹣(3﹣a)=2,b﹣2﹣(b﹣4)=2,所以,点A向右走2个格点,向上走2个格点到点N,所以,N→A应记为(﹣2,﹣2)【解析】【解答】解:(1)图中A→C(+3,+4),B→C(+2,0),C→D(+1,﹣2);故答案为:(+3,+4),(+2,0),D;【分析】(1)根据向上向右走均为正,向下向左走均为负确定数据即可;(2)根据所给的路线确定点的位置即可;(3)根据表示的路线确定长度相加可得结果;(4)观察点的变化情况,根据(1)即可确定点走了格数,从而确定结论.3.如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数是多少?(3)应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.【答案】(1)解:由题意得前4个台阶上数的和是-5-2+1+9=3(2)解:由题意得-2+1+9+x=3,解得:x=-5,则第5个台阶上的数x是-5(3)解:应用:由题意知台阶上的数字是每4个一循环,∵31÷4=7…3,∴7×3+1-2-5=15,即从下到上前31个台阶上数的和为15;发现:数“1”所在的台阶数为4k-1【解析】【分析】(1)由台阶上的数求出台阶上数的和即可;(2)根据题意和(1)的值,求出第5个台阶上的数x的值;(3)根据题意知台阶上的数字是每4个一循环,得到从下到上前31个台阶上数的和,得到数“1”所在的台阶数为4k-1.4.用火柴棒按下图中的方式搭图形.(1)按图示规律填空:图形符号①②③④⑤火柴棒根数________________________________________【答案】(1)4;6;8;10;12(2)2n+2【解析】【解答】解:(1)填表如下:图形符号①②③④⑤【分析】(1)由已知的图形中的火柴的根数可知,相邻的图形依次增加两根火柴,所以①火柴根数为4;②火柴根数为6;③火柴根数为8;④火柴根数为10;⑤火柴根数为12;(2)由(1)可得规律:2+2n.5.规定一种新的运算:a★b=a×b-a-b2+1,例如3★(-4)=3×(-4)-3-(-4)2+1.请计算下列各式的值。
2020年六年级下册数学思维易错题难题训练及答案
2020年六年级下册数学思维易错题难题训练及答案一、培优题易错题1.“△”表示一种新的运算符号,已知:2△3=2﹣3+4,7△2=7﹣8,3△5=3﹣4+5﹣6+7,…;按此规则,计算:(1)10△3=________.(2)若x△7=2003,则x=________.【答案】(1)11(2)2000【解析】【解答】(1)10△3=10-11+12=11;(2)∵x△7=2003,∴x-(x+1)+(x+2)-(x+3)+(x+4)-(x+5)+(x+6)=2003,解得x=2000.【分析】(1)首先弄清楚定义新运算的计算法则,从题目中给出的例子来看,第一个数表示从整数几开始,后面的数表示几个连续整数相加减,根据发现的运算规则,即可由10△3列出算式,再根据有理数加减法法则,即可算出答案;(2)根据定义新运算的计算方法,由x△7=2003,列出方程,求解即可。
2.如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数是多少?(3)应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.【答案】(1)解:由题意得前4个台阶上数的和是-5-2+1+9=3(2)解:由题意得-2+1+9+x=3,解得:x=-5,则第5个台阶上的数x是-5(3)解:应用:由题意知台阶上的数字是每4个一循环,∵31÷4=7…3,∴7×3+1-2-5=15,即从下到上前31个台阶上数的和为15;发现:数“1”所在的台阶数为4k-1【解析】【分析】(1)由台阶上的数求出台阶上数的和即可;(2)根据题意和(1)的值,求出第5个台阶上的数x的值;(3)根据题意知台阶上的数字是每4个一循环,得到从下到上前31个台阶上数的和,得到数“1”所在的台阶数为4k-1.3.某工厂一周计划每天生产电动车80辆,由于工人实行轮休,每天上班人数不同,实际每天生产量与计划量相比情况如表(增加的为正数,减少的为负数):日期一二三四五六日增减数/辆+4-1+2-2+6-3-5(2)本周总生产量是多少辆?比原计划增加了还是减少了?增加或减少多少辆?【答案】(1)解:生产量最多的一天比生产量最少的一天多生产6-(-5)=6+5=11辆;(2)解:总产量4+(-1)+2+(-2)+6+(-3)+(-5)+80×7=561辆,比原计划增加了,增加了561-560=1辆.【解析】【分析】(1)根据列表得到生产量最多的一天是星期五,是(80+6)辆,产量最少的一天是星期日是(80-5)辆,生产量最多的一天比生产量最少的一天多生产6-(-5)辆;(2)根据题意总产量是80×7+4+(-1)+2+(-2)+6+(-3)+(-5),找出相反数,再由减去一个数等于加上这个数的相反数,求出本周总生产量,得到比原计划增加或减少了的值.4.某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下。
小学数学六年级易错题难题题库 - 易错题难题题库含答案
小学数学六年级易错题难题题库 - 易错题难题题库含答案一、培优题易错题1.“△”表示一种新的运算符号,已知:2△3=2﹣3+4,7△2=7﹣8,3△5=3﹣4+5﹣6+7,…;按此规则,计算:(1)10△3=________.(2)若x△7=2003,则x=________.【答案】(1)11(2)2000【解析】【解答】(1)10△3=10-11+12=11;(2)∵x△7=2003,∴x-(x+1)+(x+2)-(x+3)+(x+4)-(x+5)+(x+6)=2003,解得x=2000.【分析】(1)首先弄清楚定义新运算的计算法则,从题目中给出的例子来看,第一个数表示从整数几开始,后面的数表示几个连续整数相加减,根据发现的运算规则,即可由10△3列出算式,再根据有理数加减法法则,即可算出答案;(2)根据定义新运算的计算方法,由x△7=2003,列出方程,求解即可。
2.如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数是多少?(3)应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.【答案】(1)解:由题意得前4个台阶上数的和是-5-2+1+9=3(2)解:由题意得-2+1+9+x=3,解得:x=-5,则第5个台阶上的数x是-5(3)解:应用:由题意知台阶上的数字是每4个一循环,∵31÷4=7…3,∴7×3+1-2-5=15,即从下到上前31个台阶上数的和为15;发现:数“1”所在的台阶数为4k-1【解析】【分析】(1)由台阶上的数求出台阶上数的和即可;(2)根据题意和(1)的值,求出第5个台阶上的数x的值;(3)根据题意知台阶上的数字是每4个一循环,得到从下到上前31个台阶上数的和,得到数“1”所在的台阶数为4k-1.3.已知三种混合物由三种成分、、组成,第一种仅含成分和,重量比为;第二种只含成分和,重量比为;第三种只含成分和,重量之比为 .以什么比例取这些混合物,才能使所得的混合物中、和,这三种成分的重量比为?【答案】解:D:C=(3+5):2=4:1;第二种混合物不含,的含量为,第三种混合物不含,的含量为,所以倍第三种混合物含为,倍第二种混合物含为,即第二种、第三种混合物的重量比为;于是此时含有,,即,而最终混合物中,所以第一种混合物的质量与后两种混合质量和之比为,所以三种混合物的重量比为。
六年级数学易错题难题综合训练题含答案
六年级数学易错题难题综合训练题含答案一、培优题易错题1.列方程解应用题:(1)一个箱子,如果装橙子可以装18个,如果装梨可以装16个,现共有橙子、梨400个,而且装梨的箱子是装橙子箱子的2倍.请算一下,装橙子和装梨的箱子各多少个?(2)一群小孩分一堆苹果,每人3个多7个,每人4个少3个,求有几个小孩?几个苹果?(3)一架飞机在两城之间飞行,风速为24千米/时.顺风飞行需要2小时50分,逆风飞行需要3小时,求无风时飞机的速度和两城之间的航程.【答案】(1)解:设装橙子的箱子x个,则装梨的箱子2x个,依题意有18x+16×2x=400,解得x=8,2x=2×8=16.答:装橙子的箱子8个,则装梨的箱子16个(2)解:设有x个小孩,依题意得:3x+7=4x﹣3,解得x=10,则3x+7=37.答:有10个小孩,37个苹果(3)解:设无风时飞机的航速为x千米/小时.根据题意,列出方程得:(x+24)× =(x﹣24)×3,解这个方程,得x=840.航程为(x﹣24)×3=2448(千米).答:无风时飞机的航速为840千米/小时,两城之间的航程2448千米【解析】【分析】(1)根据梨和橙子与各自箱数分别相乘,相加为两者的总数,求出装梨和橙子的箱子数。
(2)利用两种分法的苹果数是相同的,列出方程求解出小孩数和苹果数。
(3)利用逆风和顺风的路程是相同的,列出方程求出速度,再利用速度和时间求出航程。
2.规定两数a,b之间的一种运算,记作(a,b):如果,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(3,27)=________,(5,1)=________,(2,)=________.(2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4)小明给出了如下的证明:设(3n, 4n)=x,则(3n)x=4n,即(3x)n=4n,所以3x=4,即(3,4)=x,所以(3n, 4n)=(3,4).请你尝试运用这种方法证明下面这个等式:(3,4)+(3,5)=(3,20)【答案】(1)3;0;-2(2)解:设(3,4)=x,(3,5)=y,则, =5,∴,∴(3,20)=x+y ,∴(3,4)+(3,5)=(3,20)【解析】(1)∵33=27,50=1,2-2= ,∴(3,27)=3,(5,1)=0,(2,)=-2.故答案依次为:3,0,-2【分析】根据新定义的运算得到幂的运算规律,由幂的运算规律得到相等的等式.3.如图,半径为1的小圆与半径为2的大圆上有一点与数轴上原点重合,两圆在数轴上做无滑动的滚动,小圆的运动速度为每秒π个单位,大圆的运动速度为每秒2π个单位.(1)若大圆沿数轴向左滚动1周,则该圆与数轴重合的点所表示的数是________;(2)若大圆不动,小圆沿数轴来回滚动,规定小圆向右滚动时间记为正数,向左滚动时间记为负数,依次滚动的情况记录如下(单位:秒):﹣1,+2,﹣4,﹣2,+3,﹣8①第几次滚动后,小圆离原点最远?②当小圆结束运动时,小圆运动的路程共有多少?此时两圆与数轴重合的点之间的距离是多少?(结果保留π)(3)若两圆同时在数轴上各自沿着某一方向连续滚动,滚动一段时间后两圆与数轴重合的点之间相距6π,求此时两圆与数轴重合的点所表示的数.【答案】(1)-4π(2)解:①第1次滚动后,|﹣1|=1,第2次滚动后,|﹣1+2|=1,第3次滚动后,|﹣1+2﹣4|=3,第4次滚动后,|﹣1+2﹣4﹣2|=5,第5次滚动后,|﹣1+2﹣4﹣2+3|=2,第6次滚动后,|﹣1+2﹣4﹣2+3﹣8|=10,则第6次滚动后,小圆离原点最远;②1+2+4+3+2+8=20,20×π=20π,﹣1+2﹣4﹣2+3﹣8=﹣10,∴当小圆结束运动时,小圆运动的路程共有20π,此时两圆与数轴重合的点之间的距离是10π(3)解:设时间为t秒,分四种情况讨论:i)当两圆同向右滚动,由题意得:t秒时,大圆与数轴重合的点所表示的数:2πt,小圆与数轴重合的点所表示的数为:πt,2πt﹣πt=6π,2t﹣t=6,t=6,2πt=12π,πt=6π,则此时两圆与数轴重合的点所表示的数分别为12π、6π.ii)当两圆同向左滚动,由题意得:t秒时,大圆与数轴重合的点所表示的数:﹣2πt,小圆与数轴重合的点所表示的数:﹣πt,﹣πt+2πt=6π,﹣t+2t=6,t=6,﹣2πt=﹣12π,﹣πt=﹣6π,则此时两圆与数轴重合的点所表示的数分别为﹣12π、﹣6π.iii)当大圆向右滚动,小圆向左滚动时,同理得:2πt﹣(﹣πt)=6π,3t=6,t=2,2πt=4π,﹣πt=﹣2π,则此时两圆与数轴重合的点所表示的数分别为4π、﹣2π.iiii)当大圆向左滚动,小圆向右滚动时,同理得:πt﹣(﹣2πt)=6π,t=2,πt=2π,﹣2πt=﹣4π,则此时两圆与数轴重合的点所表示的数分别为﹣4π、2π【解析】【解答】解:(1)若大圆沿数轴向左滚动1周,则该圆与数轴重合的点所表示的数是﹣2π•2=﹣4π,故答案为:﹣4π;【分析】(1)该圆与数轴重合的点所表示的数,就是大圆的周长;(2)①分别计算出第几次滚动后,小圆离原点的距离,比较作答;②先计算总路程,因为大圆不动,计算各数之和为﹣10,即小圆最后的落点为原点左侧,向左滚动10秒,距离为10π;(3)分四种情况进行讨论:大圆和小圆分别在同侧,异侧时,表示出各自与数轴重合的点所表示的数.根据两圆与数轴重合的点之间相距6π列等式,求出即可.4.服装厂买来一批布料,如果全部用来做上衣,刚好可以做60件。
2020年六年级数学-六年级数学易错综合训练题(1)
2020年六年级数学-六年级数学易错综合训练题(1)一、培优题易错题1.某检修小组乘一辆汽车沿东西走向的公路检修线路,约定向东走为正,某天从A地出发到收工时,行走记录如下(单位:km):+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6(1)收工时,检修小组在A地的哪一边,距A地多远?(2)若汽车每千米耗油3升,已知汽车出发时油箱里有180升汽油,问收工前是否需要中途加油?若加,应加多少升?若不加,还剩多少升汽油?【答案】(1)解:+15+(-2)+5+(-1)+(-10)+(-3)+(-2)+12+4+(-5)+6 =19(km),答:检修小组在A地东边,距A地19千米(2)解:(+15+|-2|+5+|-1|+|-10|+|-3|+|-2|+12+4+|-5|+6)×3=65×3=195(升),∵195>180,∴收工前需要中途加油,195-180=15(升),答:应加15升.【解析】【分析】(1)先求出这组数的和,如为正则在A的东边,为负则在A的西边,为0则在A处;(2)先求出这组数的绝对值的和与3的乘积,再与180比较,若大于180就需要中途加油,否则不用.2.已知x、y为有理数,现规定一种新运算“※”,满足x※y=xy+1.(1)求3※4的值;(2)求(2※4)※(﹣3)的值;(3)探索a※(b﹣c)与(a※c)的关系,并用等式表示它们.【答案】(1)解:3※4=3×4+1=13(2)解:(2※4)※(﹣3)=(2×4+1)※(﹣3)=9※(﹣3)=9×(﹣3)+1=﹣26(3)解:∵a※(b﹣c)=a•(b﹣c)+1=ab﹣ac+1=ab+1﹣ac﹣1+1,a※c=ac+1.∴a※(b﹣c)=a※b﹣a※c+1【解析】【分析】根据新运算的规律,求出计算式的值,求出探索的式子之间的关系.3.学校举行“创客节”,明明的创客作品模型中需要用到一种花瓣图案(如下图),花瓣图案的各个小圆半径都是1cm。
2020年六年级数学-六年级数学易错题难题综合训练题
2020年六年级数学-六年级数学易错题难题综合训练题一、培优题易错题1.纽约、悉尼与上海的时差如下表(正数表示同一时刻比上海时间早的时数,负数表示同一时刻比上海晚的时数):城市悉尼纽约时差/时+2-121日上午10时,悉尼时间是________.(2)上海、纽约与悉尼的时差分别为________(正数表示同一时刻比悉尼时间早的时数,负数表示同一时刻比悉尼晚的时数).(3)王老师2018年9月1日,从纽约Newwark机场,搭乘当地时间上午10:45的班机,前往上海浦东国际机场,飞机飞行的时间为14小时55分钟,问飞机降落上海浦东国际机场的时间.【答案】(1)12(2)-2,-14(3)解:10时45分+14时55分+12时=37时40分.故飞机降落上海浦东国际机场的时间为2018年9月2日下午1:40【解析】【解答】(1)10+(+2)=12时,即当上海是10月1日上午10时,悉尼时间是12时.( 2 )12-10=2;-12-2=-14;故上海、纽约与悉尼的时差分别为-2,-14.【分析】(1)根据表格得到悉尼时间是10+(+2);(2 )由表格得到上海与悉尼的时差是2,纽约与悉尼的时差-12-2;(3)根据题意得到10时45分+14时55分+12时,得到飞机降落上海浦东国际机场的时间.2.某手机经销商购进甲,乙两种品牌手机共 100 部.(1)已知甲种手机每部进价1500 元,售价2000 元;乙种手机每部进价3500 元,售价4500 元;采购这两种手机恰好用了 27 万元 .把这两种手机全部售完后,经销商共获利多少元?(2)已经购进甲,乙两种手机各一部共用了5000 元,经销商把甲种手机加价50%作为标价,乙种手机加价 40%作为标价.从 A,B 两种中任选一题作答:A:在实际出售时,若同时购买甲,乙手机各一部打九折销售,此时经销商可获利1570 元.求甲,乙两种手机每部的进价.B:经销商采购甲种手机的数量是乙种手机数量的 1.5 倍.由于性能良好,因此在按标价进行销售的情况下,乙种手机很快售完,接着甲种手机的最后10 部按标价的八折全部售完.在这次销售中,经销商获得的利润率为 42.5%.求甲,乙两种手机每部的进价.【答案】(1)解:设购进甲种手机部,乙种手机部,根据题意,得解得:元.答:销商共获利元.(2)解:A: 设每部甲种手机的进价为元,每部乙种手机的进价元,根据题意,得解得:答:求甲,乙两种手机每部的进价分别为:3000元,2000元.B:乙种手机:部,甲种手机部,设每部甲种手机的进价为元,每部乙种手机的进价元,根据题意,得解得:答:求甲,乙两种手机每部的进价分别为:2000元,3000元.【解析】【分析】(1)甲的单价乘以部数加上乙的单价乘以部数等于总数,根据题意列出,然后解方程得到结果。
2020年六年级上册数学易错题难题材料
2020年六年级上册数学易错题难题材料一、培优题易错题1.观察下列一组图形:它们是按照一定规律排列的,依照此规律,第个图形中共有________个“★”.【答案】(3n+1)【解析】【解答】解:①为4个★,②为7个★,③ 为10个★,④为13个★,通过观察,可得第n个图形为(3n+1)个★.故答案为:(3n+1)【分析】观察图形,先写出①②③④的★的个数,通过找规律,写出第n个图形中的★个数。
2.对于实数a、b,定义运算:a▲b= ;如:2▲3=2﹣3= ,4▲2=42=16.照此定义的运算方式计算[2▲(﹣4)]×[(﹣4)▲(﹣2)]=________.【答案】1【解析】【解答】解:根据题意得:2▲(﹣4)=2﹣4= ,(﹣4)▲(﹣2)=(﹣4)2=16,则[2▲(﹣4)]×[(﹣4)▲(﹣2)]= ×16=1,故答案为:1【分析】先利用定义计算括号中的值,再进行计算即可.在利用新运算的时候需要先判断两个数的大小关系,根据其选择算式.3.某儿童服装店老板以32元的价格买进30件连衣裙,针对不同的顾客,30件连衣裙的售价不完全相同,若以45元为标准,将超过的钱数记为正,不足的钱数记为负,记录结果如下表:售出件数763545售价(元)+2+2+10﹣1﹣2【答案】解:由题意可得,该服装店在售完这30件连衣裙后,赚的钱数为:(45-32)×30+[7×2+6×2+3×1+5×0+4×(-1)+5×(-2)]=13×30+[14+12+3+(-4)+(-10)]=390+15=405(元),即该服装店在售完这30件连衣裙后,赚了405元【解析】【分析】根据表格计算售出件数与售价积的和,再以45元为标准32元的价格买进30件,求出差价,计算即可.4.如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数是多少?(3)应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.【答案】(1)解:由题意得前4个台阶上数的和是-5-2+1+9=3(2)解:由题意得-2+1+9+x=3,解得:x=-5,则第5个台阶上的数x是-5(3)解:应用:由题意知台阶上的数字是每4个一循环,∵31÷4=7…3,∴7×3+1-2-5=15,即从下到上前31个台阶上数的和为15;发现:数“1”所在的台阶数为4k-1【解析】【分析】(1)由台阶上的数求出台阶上数的和即可;(2)根据题意和(1)的值,求出第5个台阶上的数x的值;(3)根据题意知台阶上的数字是每4个一循环,得到从下到上前31个台阶上数的和,得到数“1”所在的台阶数为4k-1.5.某工艺品厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入.下表是某周的生产情况 (超产记为正,减产记为负):(1)写出该厂星期一生产工艺品的数量.:(2)本周产量最多的一天比最少的一天多生产多少个工艺品?(3)请求出该工艺品厂在本周实际生产工艺品的数量.(4)已知该厂实行每周计件工资制,每生产一个工艺品可得60元,若超额完成任务,则超过部分每个可得50元,少生产一个扣80元.试求该工艺厂在这一周应付出的工资总额.【答案】(1)解:由表格可得周一生产的工艺品的数量是:300+5=305(个),答:该厂星期一生产工艺品的数量是305个.(2)解:本周产量最多的一天是星期六,最少的一天是星期五,∴(16+300)-【(-10)+300】=26(个),答:本周产量最多的一天比最少的一天多生产26个工艺品.(3)解:2100+【5+(-2)+(-5)+15+(-10)+16+(-9)】=2100+10=2110(个).答:该工艺品厂在本周实际生产工艺品的数量是2110个.(4)解:(+5)+(-2)+(-5)+(15)+(-10)+(+16)+(-9)=10(个).根据题意得该厂工人一周的工资总额为:2100×60+50×10=126500(元).答:该工艺厂在这一周应付出的工资总额是126500元.【解析】【分析】(1)根据表格中将300与5相加可求得周一的产量.(2)由表格中的数字可知星期六产量最高,星期五产量最低,用星期六对应的数字与300相加求出产量最高的量;同理用星期五对应的数字与300相加求出产量最低的量,两者相减即可求出所求的个数.(3)由表格中的增减情况,把每天对应的数字相加,利用互为相反数的两数和为0,且根据同号及异号两数相加的法则计算后,再加上2100即可得到工艺品一周的生产个数.(4)用计划的2100乘以单价60元,加超额的个数乘以50元,即为一周工人工资的总额.6.如图,半径为1的小圆与半径为2的大圆上有一点与数轴上原点重合,两圆在数轴上做无滑动的滚动,小圆的运动速度为每秒π个单位,大圆的运动速度为每秒2π个单位.(1)若大圆沿数轴向左滚动1周,则该圆与数轴重合的点所表示的数是________;(2)若大圆不动,小圆沿数轴来回滚动,规定小圆向右滚动时间记为正数,向左滚动时间记为负数,依次滚动的情况记录如下(单位:秒):﹣1,+2,﹣4,﹣2,+3,﹣8①第几次滚动后,小圆离原点最远?②当小圆结束运动时,小圆运动的路程共有多少?此时两圆与数轴重合的点之间的距离是多少?(结果保留π)(3)若两圆同时在数轴上各自沿着某一方向连续滚动,滚动一段时间后两圆与数轴重合的点之间相距6π,求此时两圆与数轴重合的点所表示的数.【答案】(1)-4π(2)解:①第1次滚动后,|﹣1|=1,第2次滚动后,|﹣1+2|=1,第3次滚动后,|﹣1+2﹣4|=3,第4次滚动后,|﹣1+2﹣4﹣2|=5,第5次滚动后,|﹣1+2﹣4﹣2+3|=2,第6次滚动后,|﹣1+2﹣4﹣2+3﹣8|=10,则第6次滚动后,小圆离原点最远;②1+2+4+3+2+8=20,20×π=20π,﹣1+2﹣4﹣2+3﹣8=﹣10,∴当小圆结束运动时,小圆运动的路程共有20π,此时两圆与数轴重合的点之间的距离是10π(3)解:设时间为t秒,分四种情况讨论:i)当两圆同向右滚动,由题意得:t秒时,大圆与数轴重合的点所表示的数:2πt,小圆与数轴重合的点所表示的数为:πt,2πt﹣πt=6π,2t﹣t=6,t=6,2πt=12π,πt=6π,则此时两圆与数轴重合的点所表示的数分别为12π、6π.ii)当两圆同向左滚动,由题意得:t秒时,大圆与数轴重合的点所表示的数:﹣2πt,小圆与数轴重合的点所表示的数:﹣πt,﹣πt+2πt=6π,﹣t+2t=6,t=6,﹣2πt=﹣12π,﹣πt=﹣6π,则此时两圆与数轴重合的点所表示的数分别为﹣12π、﹣6π.iii)当大圆向右滚动,小圆向左滚动时,同理得:2πt﹣(﹣πt)=6π,3t=6,t=2,2πt=4π,﹣πt=﹣2π,则此时两圆与数轴重合的点所表示的数分别为4π、﹣2π.iiii)当大圆向左滚动,小圆向右滚动时,同理得:πt﹣(﹣2πt)=6π,t=2,πt=2π,﹣2πt=﹣4π,则此时两圆与数轴重合的点所表示的数分别为﹣4π、2π【解析】【解答】解:(1)若大圆沿数轴向左滚动1周,则该圆与数轴重合的点所表示的数是﹣2π•2=﹣4π,故答案为:﹣4π;【分析】(1)该圆与数轴重合的点所表示的数,就是大圆的周长;(2)①分别计算出第几次滚动后,小圆离原点的距离,比较作答;②先计算总路程,因为大圆不动,计算各数之和为﹣10,即小圆最后的落点为原点左侧,向左滚动10秒,距离为10π;(3)分四种情况进行讨论:大圆和小圆分别在同侧,异侧时,表示出各自与数轴重合的点所表示的数.根据两圆与数轴重合的点之间相距6π列等式,求出即可.7.有两种溶液,甲溶液的酒精浓度为,盐浓度为,乙溶液中的酒精浓度为,盐浓度为.现在有甲溶液千克,那么需要多少千克乙溶液,将它与甲溶液混和后所得的溶液的酒精浓度和盐浓度相等?【答案】解:甲中酒精:1×10%=0.1(千克),盐:1×30%=0.3(千克);1千克乙中酒精:1×50%=0.5(千克),盐:1×10%=0.1(千克);0.5÷2=0.25(千克),0.1÷2=0.05(千克),0.1+0.25=0.35(千克),0.3+0.05=0.35(千克)答:需要0.5千克乙溶液,将它与甲溶液混和后所得的溶液的酒精浓度和盐浓度相等。
2020年六年级数学易错题难题作业
2020年六年级数学易错题难题作业一、培优题易错题1.列方程解应用题:(1)一个箱子,如果装橙子可以装18个,如果装梨可以装16个,现共有橙子、梨400个,而且装梨的箱子是装橙子箱子的2倍.请算一下,装橙子和装梨的箱子各多少个?(2)一群小孩分一堆苹果,每人3个多7个,每人4个少3个,求有几个小孩?几个苹果?(3)一架飞机在两城之间飞行,风速为24千米/时.顺风飞行需要2小时50分,逆风飞行需要3小时,求无风时飞机的速度和两城之间的航程.【答案】(1)解:设装橙子的箱子x个,则装梨的箱子2x个,依题意有18x+16×2x=400,解得x=8,2x=2×8=16.答:装橙子的箱子8个,则装梨的箱子16个(2)解:设有x个小孩,依题意得:3x+7=4x﹣3,解得x=10,则3x+7=37.答:有10个小孩,37个苹果(3)解:设无风时飞机的航速为x千米/小时.根据题意,列出方程得:(x+24)× =(x﹣24)×3,解这个方程,得x=840.航程为(x﹣24)×3=2448(千米).答:无风时飞机的航速为840千米/小时,两城之间的航程2448千米【解析】【分析】(1)根据梨和橙子与各自箱数分别相乘,相加为两者的总数,求出装梨和橙子的箱子数。
(2)利用两种分法的苹果数是相同的,列出方程求解出小孩数和苹果数。
(3)利用逆风和顺风的路程是相同的,列出方程求出速度,再利用速度和时间求出航程。
2.股民老黄上星期五买进某股票1000股,每股35元,下表为本周内每日该股票的涨跌情况(单位:元)(注:用正数记股价比前一日上升数,用负数记股价比前一日下降数)星期一二三四五每股涨跌+2.4﹣0.8﹣2.9+0.5+2.1(1)星期四收盘时,每股是多少元?(2)本周内最高价是每股多少元?最低价每股多少元?(3)根据交易规则,老黄买进股票时需付0.15%的手续费,卖出时需付成交额0.15%的手续费和0.1%的交易税,如果老黄在星期五收盘前将全部股票卖出,他的收益情况如何?【答案】(1)解:星期一二三四五每股涨跌+2.4﹣0.8﹣2.9+0.5+2.1实际股价37.436.633.734.236.3(2)解:本周内最高价是每股37.4元,最低价每股33.7元(3)解:买入总金额=1000×35=35000元;买入手续费=35000×0.15%=52.5元;卖出总金额=1000×36.3=36300元;卖出手续费=36300×0.15%=54.45元;卖出交易税=36300×0.1%=36.3元;收益=36300﹣(35000+52.5+54.45+36.3)=1156.75元【解析】【分析】(1)根据表中的数据,列式计算,就可求出星期四收盘时每股的价格。
2020年六年级数学易错题难题题(1)
2020年六年级数学易错题难题题(1)一、培优题易错题1.如图,用相同的小正方形按照某种规律进行摆放,则第6个图形中小正方形的个数是________,第n(n为正整数)个图形中小正方形的个数是________(用含n的代数式表示).【答案】55;(n+1)2+n【解析】【解答】第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;第3个图形共有小正方形的个数为4×4+3;…;则第n个图形共有小正方形的个数为(n+1)2+n,所以第6个图形共有小正方形的个数为:7×7+6=55.故答案为:55;(n+1)2+n【分析】观察图形规律,第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;则第n个图形共有小正方形的个数为(n+1)2+n,找出一般规律.2.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走均为正,向下向左走均为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(________,________),B→C(________,________),C→________(+1,﹣2);(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.(4)若图中另有两个格点M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则N→A应记为什么?【答案】(1)+3;+4;+2;0;D(2)解:P点位置如图1所示;(3)解:如图2,根据已知条件可知:A→B表示为:(1,4),B→C记为(2,0)C→D记为(1,﹣2);则该甲虫走过的路线长为:1+4+2+1+2=10(4)解:由M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),所以,5﹣a﹣(3﹣a)=2,b﹣2﹣(b﹣4)=2,所以,点A向右走2个格点,向上走2个格点到点N,所以,N→A应记为(﹣2,﹣2)【解析】【解答】解:(1)图中A→C(+3,+4),B→C(+2,0),C→D(+1,﹣2);故答案为:(+3,+4),(+2,0),D;【分析】(1)根据向上向右走均为正,向下向左走均为负确定数据即可;(2)根据所给的路线确定点的位置即可;(3)根据表示的路线确定长度相加可得结果;(4)观察点的变化情况,根据(1)即可确定点走了格数,从而确定结论.3.小李到某城市行政中心大楼办事,假定乘电梯向上一楼记为+1,向下一楼记为–1.小李从1楼出发,电梯上下楼层依次记录如下(单位:层):+5,–3,+10,–8,+12,–6,–10.(1)请你通过计算说明小李最后是否回到出发点1楼;(2)该中心大楼每层高2.8m,电梯每上或下1m需要耗电0.1度.根据小李现在所处的位置,请你算一算,当他办事时电梯需要耗电多少度?【答案】(1)解:(+5)+(–3)+(+10)+(–8)+(+12)+(–6)+(–10)=0所以小李最后回到出发点1楼.(2)解:54×2.8×0.1=15.12(度)所以小李办事时电梯需要耗电15.12度.【解析】【分析】(1)根据有理数的加法列出算式并进行计算即可得出结果;(2)利用所给数据的绝对值的和计算总的层数,然后根据每层高2.8m,电梯每上或下1m 需要耗电0.1度利用乘法可得结果.4.某工艺品厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入.下表是某周的生产情况 (超产记为正,减产记为负):(1)写出该厂星期一生产工艺品的数量.:(2)本周产量最多的一天比最少的一天多生产多少个工艺品?(3)请求出该工艺品厂在本周实际生产工艺品的数量.(4)已知该厂实行每周计件工资制,每生产一个工艺品可得60元,若超额完成任务,则超过部分每个可得50元,少生产一个扣80元.试求该工艺厂在这一周应付出的工资总额.【答案】(1)解:由表格可得周一生产的工艺品的数量是:300+5=305(个),答:该厂星期一生产工艺品的数量是305个.(2)解:本周产量最多的一天是星期六,最少的一天是星期五,∴(16+300)-【(-10)+300】=26(个),答:本周产量最多的一天比最少的一天多生产26个工艺品.(3)解:2100+【5+(-2)+(-5)+15+(-10)+16+(-9)】=2100+10=2110(个).答:该工艺品厂在本周实际生产工艺品的数量是2110个.(4)解:(+5)+(-2)+(-5)+(15)+(-10)+(+16)+(-9)=10(个).根据题意得该厂工人一周的工资总额为:2100×60+50×10=126500(元).答:该工艺厂在这一周应付出的工资总额是126500元.【解析】【分析】(1)根据表格中将300与5相加可求得周一的产量.(2)由表格中的数字可知星期六产量最高,星期五产量最低,用星期六对应的数字与300相加求出产量最高的量;同理用星期五对应的数字与300相加求出产量最低的量,两者相减即可求出所求的个数.(3)由表格中的增减情况,把每天对应的数字相加,利用互为相反数的两数和为0,且根据同号及异号两数相加的法则计算后,再加上2100即可得到工艺品一周的生产个数.(4)用计划的2100乘以单价60元,加超额的个数乘以50元,即为一周工人工资的总额.5.某手机经销商购进甲,乙两种品牌手机共 100 部.(1)已知甲种手机每部进价1500 元,售价2000 元;乙种手机每部进价3500 元,售价4500 元;采购这两种手机恰好用了 27 万元 .把这两种手机全部售完后,经销商共获利多少元?(2)已经购进甲,乙两种手机各一部共用了5000 元,经销商把甲种手机加价50%作为标价,乙种手机加价 40%作为标价.从 A,B 两种中任选一题作答:A:在实际出售时,若同时购买甲,乙手机各一部打九折销售,此时经销商可获利1570 元.求甲,乙两种手机每部的进价.B:经销商采购甲种手机的数量是乙种手机数量的 1.5 倍.由于性能良好,因此在按标价进行销售的情况下,乙种手机很快售完,接着甲种手机的最后10 部按标价的八折全部售完.在这次销售中,经销商获得的利润率为 42.5%.求甲,乙两种手机每部的进价.【答案】(1)解:设购进甲种手机部,乙种手机部,根据题意,得解得:元.答:销商共获利元.(2)解:A: 设每部甲种手机的进价为元,每部乙种手机的进价元,根据题意,得解得:答:求甲,乙两种手机每部的进价分别为:3000元,2000元.B:乙种手机:部,甲种手机部,设每部甲种手机的进价为元,每部乙种手机的进价元,根据题意,得解得:答:求甲,乙两种手机每部的进价分别为:2000元,3000元.【解析】【分析】(1)甲的单价乘以部数加上乙的单价乘以部数等于总数,根据题意列出,然后解方程得到结果。
小学六年级数学易错题难题专题训练含详细答案
小学六年级数学易错题难题专题训练含详细答案一、培优题易错题1.观察下列一组图形:它们是按照一定规律排列的,依照此规律,第个图形中共有________个“★”.【答案】(3n+1)【解析】【解答】解:①为4个★,②为7个★,③ 为10个★,④为13个★,通过观察,可得第n个图形为(3n+1)个★.故答案为:(3n+1)【分析】观察图形,先写出①②③④的★的个数,通过找规律,写出第n个图形中的★个数。
2.某儿童服装店老板以32元的价格买进30件连衣裙,针对不同的顾客,30件连衣裙的售价不完全相同,若以45元为标准,将超过的钱数记为正,不足的钱数记为负,记录结果如下表:售出件数763545售价(元)+2+2+10﹣1﹣2【答案】解:由题意可得,该服装店在售完这30件连衣裙后,赚的钱数为:(45-32)×30+[7×2+6×2+3×1+5×0+4×(-1)+5×(-2)]=13×30+[14+12+3+(-4)+(-10)]=390+15=405(元),即该服装店在售完这30件连衣裙后,赚了405元【解析】【分析】根据表格计算售出件数与售价积的和,再以45元为标准32元的价格买进30件,求出差价,计算即可.3.股民老黄上星期五买进某股票1000股,每股35元,下表为本周内每日该股票的涨跌情况(单位:元)(注:用正数记股价比前一日上升数,用负数记股价比前一日下降数)星期一二三四五每股涨跌+2.4﹣0.8﹣2.9+0.5+2.1(2)本周内最高价是每股多少元?最低价每股多少元?(3)根据交易规则,老黄买进股票时需付0.15%的手续费,卖出时需付成交额0.15%的手续费和0.1%的交易税,如果老黄在星期五收盘前将全部股票卖出,他的收益情况如何?【答案】(1)解:(2)解:本周内最高价是每股37.4元,最低价每股33.7元(3)解:买入总金额=1000×35=35000元;买入手续费=35000×0.15%=52.5元;卖出总金额=1000×36.3=36300元;卖出手续费=36300×0.15%=54.45元;卖出交易税=36300×0.1%=36.3元;收益=36300﹣(35000+52.5+54.45+36.3)=1156.75元【解析】【分析】(1)根据表中的数据,列式计算,就可求出星期四收盘时每股的价格。
2020年六年级数学易错题难题题
2020年六年级数学易错题难题题一、培优题易错题1.甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费.设小红在同一商场累计购物x元,其中x>100.(1)根据题意,填写下表(单位:元):(2)当x取何值时,小红在甲、乙两商场的实际花费相同?(3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少?【答案】(1)271;0.9x+10;278;0.95x+2.5(2)解:根据题意,有0.9x+10=0.95x+2.5,解得x=150,∴当x=150时,小红在甲、乙两商场的实际花费相同。
(3)解:由0.9x+10<0.95x+2.5,解得x>150,由0.9x+10>0.95x+2.5,解得x<150.∴当小红累计购物超过150元时,在甲商场的实际花费少.当小红累计购物超过100元而不到150元时,在乙商场的实际花费少.当小红累计购物150元时,甲、乙商场花费一样【解析】【解答】解:(1)在甲商场:271,0.9x+10;在乙商场:278,0.95x+2.5.【分析】(1)根据提供的方案列出代数式;(2)根据(1)中的代数式利用费用相同可得关于x的方程,解方程即可;(3)列不等式得出x的范围,可选择商场.2.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走均为正,向下向左走均为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(________,________),B→C(________,________),C→________(+1,﹣2);(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.(4)若图中另有两个格点M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则N→A应记为什么?【答案】(1)+3;+4;+2;0;D(2)解:P点位置如图1所示;(3)解:如图2,根据已知条件可知:A→B表示为:(1,4),B→C记为(2,0)C→D记为(1,﹣2);则该甲虫走过的路线长为:1+4+2+1+2=10(4)解:由M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),所以,5﹣a﹣(3﹣a)=2,b﹣2﹣(b﹣4)=2,所以,点A向右走2个格点,向上走2个格点到点N,所以,N→A应记为(﹣2,﹣2)【解析】【解答】解:(1)图中A→C(+3,+4),B→C(+2,0),C→D(+1,﹣2);故答案为:(+3,+4),(+2,0),D;【分析】(1)根据向上向右走均为正,向下向左走均为负确定数据即可;(2)根据所给的路线确定点的位置即可;(3)根据表示的路线确定长度相加可得结果;(4)观察点的变化情况,根据(1)即可确定点走了格数,从而确定结论.3.用火柴棒按下图中的方式搭图形.(1)按图示规律填空:图形符号①②③④⑤火柴棒根数________________________________________【答案】(1)4;6;8;10;12(2)2n+2【解析】【解答】解:(1)填表如下:图形符号①②③④⑤火柴棒根数4681012【分析】(1)由已知的图形中的火柴的根数可知,相邻的图形依次增加两根火柴,所以①火柴根数为4;②火柴根数为6;③火柴根数为8;④火柴根数为10;⑤火柴根数为12;(2)由(1)可得规律:2+2n.4.某手机经销商购进甲,乙两种品牌手机共 100 部.(1)已知甲种手机每部进价1500 元,售价2000 元;乙种手机每部进价3500 元,售价4500 元;采购这两种手机恰好用了 27 万元 .把这两种手机全部售完后,经销商共获利多少元?(2)已经购进甲,乙两种手机各一部共用了5000 元,经销商把甲种手机加价50%作为标价,乙种手机加价 40%作为标价.从 A,B 两种中任选一题作答:A:在实际出售时,若同时购买甲,乙手机各一部打九折销售,此时经销商可获利1570 元.求甲,乙两种手机每部的进价.B:经销商采购甲种手机的数量是乙种手机数量的 1.5 倍.由于性能良好,因此在按标价进行销售的情况下,乙种手机很快售完,接着甲种手机的最后10 部按标价的八折全部售完.在这次销售中,经销商获得的利润率为 42.5%.求甲,乙两种手机每部的进价.【答案】(1)解:设购进甲种手机部,乙种手机部,根据题意,得解得:元.答:销商共获利元.(2)解:A: 设每部甲种手机的进价为元,每部乙种手机的进价元,根据题意,得解得:答:求甲,乙两种手机每部的进价分别为:3000元,2000元.B:乙种手机:部,甲种手机部,设每部甲种手机的进价为元,每部乙种手机的进价元,根据题意,得解得:答:求甲,乙两种手机每部的进价分别为:2000元,3000元.【解析】【分析】(1)甲的单价乘以部数加上乙的单价乘以部数等于总数,根据题意列出,然后解方程得到结果。
2020年六年级下册数学思维易错题难题训练及答案
2020年六年级下册数学思维易错题难题训练及答案一、培优题易错题1.甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费.设小红在同一商场累计购物x元,其中x>100.(1)根据题意,填写下表(单位:元):(2)当x取何值时,小红在甲、乙两商场的实际花费相同?(3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少?【答案】(1)271;0.9x+10;278;0.95x+2.5(2)解:根据题意,有0.9x+10=0.95x+2.5,解得x=150,∴当x=150时,小红在甲、乙两商场的实际花费相同。
(3)解:由0.9x+10<0.95x+2.5,解得x>150,由0.9x+10>0.95x+2.5,解得x<150.∴当小红累计购物超过150元时,在甲商场的实际花费少.当小红累计购物超过100元而不到150元时,在乙商场的实际花费少.当小红累计购物150元时,甲、乙商场花费一样【解析】【解答】解:(1)在甲商场:271,0.9x+10;在乙商场:278,0.95x+2.5.【分析】(1)根据提供的方案列出代数式;(2)根据(1)中的代数式利用费用相同可得关于x的方程,解方程即可;(3)列不等式得出x的范围,可选择商场.2.在一条东西走向的马路旁,有青少年宫、学校、商场、医院四家公共场所.已知青少年宫在学校东300m处. 商场在学校西200m处,医院在学校东500m处.若将马路近似地看做一条直线,以学校为原点,向东方向为正方向,用1个单位长度表示100m.(1)在数轴上表示出四家公共场所的位置.(2)列式计算青少年宫与商场之间的距离.【答案】(1)解:如图所示:(2)解:由题意可得:300-(-200)=500或︱-200-300︱=500.答:青少年宫与商场之间的距离是500 m【解析】【分析】(1)根据题意画出学校为原点的数轴,在数轴上表示出四家公共场所的位置;(2)根据题意青少年宫与商场之间的距离是300-(-200),再根据减去一个数等于加上这个数的相反数,求出青少年宫与商场之间的距离.3.如图,半径为1的小圆与半径为2的大圆上有一点与数轴上原点重合,两圆在数轴上做无滑动的滚动,小圆的运动速度为每秒π个单位,大圆的运动速度为每秒2π个单位.(1)若大圆沿数轴向左滚动1周,则该圆与数轴重合的点所表示的数是________;(2)若大圆不动,小圆沿数轴来回滚动,规定小圆向右滚动时间记为正数,向左滚动时间记为负数,依次滚动的情况记录如下(单位:秒):﹣1,+2,﹣4,﹣2,+3,﹣8①第几次滚动后,小圆离原点最远?②当小圆结束运动时,小圆运动的路程共有多少?此时两圆与数轴重合的点之间的距离是多少?(结果保留π)(3)若两圆同时在数轴上各自沿着某一方向连续滚动,滚动一段时间后两圆与数轴重合的点之间相距6π,求此时两圆与数轴重合的点所表示的数.【答案】(1)-4π(2)解:①第1次滚动后,|﹣1|=1,第2次滚动后,|﹣1+2|=1,第3次滚动后,|﹣1+2﹣4|=3,第4次滚动后,|﹣1+2﹣4﹣2|=5,第5次滚动后,|﹣1+2﹣4﹣2+3|=2,第6次滚动后,|﹣1+2﹣4﹣2+3﹣8|=10,则第6次滚动后,小圆离原点最远;②1+2+4+3+2+8=20,20×π=20π,﹣1+2﹣4﹣2+3﹣8=﹣10,∴当小圆结束运动时,小圆运动的路程共有20π,此时两圆与数轴重合的点之间的距离是10π(3)解:设时间为t秒,分四种情况讨论:i)当两圆同向右滚动,由题意得:t秒时,大圆与数轴重合的点所表示的数:2πt,小圆与数轴重合的点所表示的数为:πt,2πt﹣πt=6π,2t﹣t=6,t=6,2πt=12π,πt=6π,则此时两圆与数轴重合的点所表示的数分别为12π、6π.ii)当两圆同向左滚动,由题意得:t秒时,大圆与数轴重合的点所表示的数:﹣2πt,小圆与数轴重合的点所表示的数:﹣πt,﹣πt+2πt=6π,﹣t+2t=6,t=6,﹣2πt=﹣12π,﹣πt=﹣6π,则此时两圆与数轴重合的点所表示的数分别为﹣12π、﹣6π.iii)当大圆向右滚动,小圆向左滚动时,同理得:2πt﹣(﹣πt)=6π,3t=6,t=2,2πt=4π,﹣πt=﹣2π,则此时两圆与数轴重合的点所表示的数分别为4π、﹣2π.iiii)当大圆向左滚动,小圆向右滚动时,同理得:πt﹣(﹣2πt)=6π,t=2,πt=2π,﹣2πt=﹣4π,则此时两圆与数轴重合的点所表示的数分别为﹣4π、2π【解析】【解答】解:(1)若大圆沿数轴向左滚动1周,则该圆与数轴重合的点所表示的数是﹣2π•2=﹣4π,故答案为:﹣4π;【分析】(1)该圆与数轴重合的点所表示的数,就是大圆的周长;(2)①分别计算出第几次滚动后,小圆离原点的距离,比较作答;②先计算总路程,因为大圆不动,计算各数之和为﹣10,即小圆最后的落点为原点左侧,向左滚动10秒,距离为10π;(3)分四种情况进行讨论:大圆和小圆分别在同侧,异侧时,表示出各自与数轴重合的点所表示的数.根据两圆与数轴重合的点之间相距6π列等式,求出即可.4.在平面直角坐标系中,若点P(x,y)的坐标x、y均为整数,则称点P为格点.若一个多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L.例如图中△ABC 是格点三角形,对应的S=1,N=0,L=4.(1)写出图中格点四边形DEFG对应的S,N,L.(2)已知任意格点多边形的面积公式为S=N+aL+b,其中a,b为常数.当某格点多边形对应的N=82,L=38,求S的值.【答案】(1)解:根据图形可得:S=3,N=1,L=6(2)解:根据格点三角形ABC及格点四边形DEFG中的S、N、L的值可得,,解得a ,∴S=N+ L﹣1,将N=82,L=38代入可得S=82+ ×38﹣1=100【解析】【分析】(1)按照所给定义在图中输出S,N,L的值即可;(2)先根据(1)中三角形与四边形中的S,N,L的值列出关于a,b的二元一次方程组,解方程组求得a,b的值,从而求得任意格点多边形的面积公式,代入所给N,L的值即可求得相应的S的值.5.数轴上有、、三点,分别表示有理数、、,动点从出发,以每秒个单位的速度向右移动,当点运动到点时运动停止,设点移动时间为秒.(1)用含的代数式表示点对应的数:________;(2)当点运动到点时,点从点出发,以每秒个单位的速度向点运动,点到达点后,再立即以同样的速度返回点.①用含的代数式表示点在由到过程中对应的数:________ ;②当 t=________ 时,动点 P、 Q到达同一位置(即相遇);③当PQ=3 时,求 t的值.________【答案】(1)(2)2t-58;当时,t=32 ;当时,t=;t=3,29,35,,【解析】(1)点所对应的数为:( 2 )①② 点从运动到点所花的时间为秒,点从运动到点所花的时间为秒当时,:,:,解之得当时,:,:,解之得【分析】(1)向右移动,左边的数加上移动的距离就得移动后的数;(2)需分类讨论,16≤t≤39 和39 ≤ t ≤ 46两类分别计算.6.甲、乙两只装满硫酸溶液的容器,甲容器中装有浓度为的硫酸溶液600千克,乙容器中装有浓度为的硫酸溶液400千克.各取多少千克分别放入对方容器中,才能使这两个容器中的硫酸溶液的浓度一样?【答案】解:甲容器硫酸:600×8%=48(千克),乙容器硫酸:400×40%=160(千克),混合后浓度:(48+160)÷(600+400)=20.8%,应交换溶液的量:600×(20.8%-8%)÷(40%-85)=600×0.128÷0.32=240(千克)答:各取240千克放入对方容器中,才能使这两个容器中的硫酸溶液的浓度一样。
六年级数学易错题难题作业含答案
六年级数学易错题难题作业含答案一、培优题易错题1.“△”表示一种新的运算符号,已知:2△3=2﹣3+4,7△2=7﹣8,3△5=3﹣4+5﹣6+7,…;按此规则,计算:(1)10△3=________.(2)若x△7=2003,则x=________.【答案】(1)11(2)2000【解析】【解答】(1)10△3=10-11+12=11;(2)∵x△7=2003,∴x-(x+1)+(x+2)-(x+3)+(x+4)-(x+5)+(x+6)=2003,解得x=2000.【分析】(1)首先弄清楚定义新运算的计算法则,从题目中给出的例子来看,第一个数表示从整数几开始,后面的数表示几个连续整数相加减,根据发现的运算规则,即可由10△3列出算式,再根据有理数加减法法则,即可算出答案;(2)根据定义新运算的计算方法,由x△7=2003,列出方程,求解即可。
2.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走均为正,向下向左走均为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(________,________),B→C(________,________),C→________(+1,﹣2);(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.(4)若图中另有两个格点M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则N→A应记为什么?【答案】(1)+3;+4;+2;0;D(2)解:P点位置如图1所示;(3)解:如图2,根据已知条件可知:A→B表示为:(1,4),B→C记为(2,0)C→D记为(1,﹣2);则该甲虫走过的路线长为:1+4+2+1+2=10(4)解:由M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),所以,5﹣a﹣(3﹣a)=2,b﹣2﹣(b﹣4)=2,所以,点A向右走2个格点,向上走2个格点到点N,所以,N→A应记为(﹣2,﹣2)【解析】【解答】解:(1)图中A→C(+3,+4),B→C(+2,0),C→D(+1,﹣2);故答案为:(+3,+4),(+2,0),D;【分析】(1)根据向上向右走均为正,向下向左走均为负确定数据即可;(2)根据所给的路线确定点的位置即可;(3)根据表示的路线确定长度相加可得结果;(4)观察点的变化情况,根据(1)即可确定点走了格数,从而确定结论.3.列方程解应用题:(1)一个箱子,如果装橙子可以装18个,如果装梨可以装16个,现共有橙子、梨400个,而且装梨的箱子是装橙子箱子的2倍.请算一下,装橙子和装梨的箱子各多少个?(2)一群小孩分一堆苹果,每人3个多7个,每人4个少3个,求有几个小孩?几个苹果?(3)一架飞机在两城之间飞行,风速为24千米/时.顺风飞行需要2小时50分,逆风飞行需要3小时,求无风时飞机的速度和两城之间的航程.【答案】(1)解:设装橙子的箱子x个,则装梨的箱子2x个,依题意有18x+16×2x=400,解得x=8,2x=2×8=16.答:装橙子的箱子8个,则装梨的箱子16个(2)解:设有x个小孩,依题意得:3x+7=4x﹣3,解得x=10,则3x+7=37.答:有10个小孩,37个苹果(3)解:设无风时飞机的航速为x千米/小时.根据题意,列出方程得:(x+24)× =(x﹣24)×3,解这个方程,得x=840.航程为(x﹣24)×3=2448(千米).答:无风时飞机的航速为840千米/小时,两城之间的航程2448千米【解析】【分析】(1)根据梨和橙子与各自箱数分别相乘,相加为两者的总数,求出装梨和橙子的箱子数。
六年级数学易错题难题作业含答案
六年级数学易错题难题作业含答案一、培优题易错题1.观察下列一组图形:它们是按照一定规律排列的,依照此规律,第个图形中共有________个“★”.【答案】(3n+1)【解析】【解答】解:①为4个★,②为7个★,③ 为10个★,④为13个★,通过观察,可得第n个图形为(3n+1)个★.故答案为:(3n+1)【分析】观察图形,先写出①②③④的★的个数,通过找规律,写出第n个图形中的★个数。
2.有这样一个数字游戏,将1,2,3,4,5,6,7,8,9这九个数字分别填在如图所示的九个空格中,要求每一行从左到右的数字逐渐增大,每一列从上到下的数字也逐渐增大.当数字3和4固定在图中所示的位置时,x代表的数字是________,此时按游戏规则填写空格,所有可能出现的结果共有________种.【答案】2;6【解析】【解答】根据题意知,x<4且x≠3,则x=2或x=1,∵x前面的数要比x小,∴x=2,∵每一行从左到右、每一列从上到下分别依次增大,∴9只能填在右下角,5只能填右上角或左下角,5之后与之相邻的空格可填6、7、8任意一个,余下的两个数字按从小到大只有一种方法,∴共有2×3=6种结果,故答案为:2,6【分析】根据题意得到x=2或x=1,由每一行从左到右、每一列从上到下分别依次增大,得到x只能=2,9只能填在右下角,5只能填右上角或左下角,得到结果.3.已知:如图,这是一种数值转换机的运算程序.(1)若第1次输入的数为2,则第1次输出的数为1,那么第2次输出的数为;若第1次输入的数为12,则第5次输出的数为________.(2)若输入的数为5,求第2016次输出的数是多少.(3)是否存在输入的数x,使第3次输出的数是x?若存在,求出所有x的值;若不存在,请说明理由.【答案】(1)4、6(2)解:5+3=8,8× =4,4× =2,2× =1,1+3=4,∴若输入的数为5,则每次输出的数分别是8、4、2、1、4、2、1,…,(2016−1)÷3=2015÷3=671 (2)∴第2016次输出的数是2(3)解:当x为奇数时,有 (x+3)+3=x,解得x=9(舍去),× (x+3)=x,解得x=1,当x为偶数时,有 × × x=x,解得x=0,× x+3=x,解得x=4,×( x+3)=x,解得x=2,综上所述,x=0或1或2或4【解析】【解答】解:(1)∵1+3=4,∴第1次输出的数为1,则第2次输出的数为4.×12=6,6× =3,3+3=6,6× =3,3+3=6,∴第1次输入的数为12,则第5次输出的数为6.【分析】(1)根据运算程序得到第1次输出的数为1,第2次输出的数为3+1,第1次输入的数为12,则第5次输出的数(12÷2÷2+3)÷2+3;(2)根据题意由输入的数为5,每次输出的数分别是8、4、2、1、4、2、1···,得到3次一循环,求出第2016次输出的数;(3)根据运算程序得到当x为奇数时和为偶数时,求出所有x的值.4.如图,半径为1的小圆与半径为2的大圆上有一点与数轴上原点重合,两圆在数轴上做无滑动的滚动,小圆的运动速度为每秒π个单位,大圆的运动速度为每秒2π个单位.(1)若大圆沿数轴向左滚动1周,则该圆与数轴重合的点所表示的数是________;(2)若大圆不动,小圆沿数轴来回滚动,规定小圆向右滚动时间记为正数,向左滚动时间记为负数,依次滚动的情况记录如下(单位:秒):﹣1,+2,﹣4,﹣2,+3,﹣8①第几次滚动后,小圆离原点最远?②当小圆结束运动时,小圆运动的路程共有多少?此时两圆与数轴重合的点之间的距离是多少?(结果保留π)(3)若两圆同时在数轴上各自沿着某一方向连续滚动,滚动一段时间后两圆与数轴重合的点之间相距6π,求此时两圆与数轴重合的点所表示的数.【答案】(1)-4π(2)解:①第1次滚动后,|﹣1|=1,第2次滚动后,|﹣1+2|=1,第3次滚动后,|﹣1+2﹣4|=3,第4次滚动后,|﹣1+2﹣4﹣2|=5,第5次滚动后,|﹣1+2﹣4﹣2+3|=2,第6次滚动后,|﹣1+2﹣4﹣2+3﹣8|=10,则第6次滚动后,小圆离原点最远;②1+2+4+3+2+8=20,20×π=20π,﹣1+2﹣4﹣2+3﹣8=﹣10,∴当小圆结束运动时,小圆运动的路程共有20π,此时两圆与数轴重合的点之间的距离是10π(3)解:设时间为t秒,分四种情况讨论:i)当两圆同向右滚动,由题意得:t秒时,大圆与数轴重合的点所表示的数:2πt,小圆与数轴重合的点所表示的数为:πt,2πt﹣πt=6π,2t﹣t=6,t=6,2πt=12π,πt=6π,则此时两圆与数轴重合的点所表示的数分别为12π、6π.ii)当两圆同向左滚动,由题意得:t秒时,大圆与数轴重合的点所表示的数:﹣2πt,小圆与数轴重合的点所表示的数:﹣πt,﹣πt+2πt=6π,﹣t+2t=6,t=6,﹣2πt=﹣12π,﹣πt=﹣6π,则此时两圆与数轴重合的点所表示的数分别为﹣12π、﹣6π.iii)当大圆向右滚动,小圆向左滚动时,同理得:2πt﹣(﹣πt)=6π,3t=6,t=2,2πt=4π,﹣πt=﹣2π,则此时两圆与数轴重合的点所表示的数分别为4π、﹣2π.iiii)当大圆向左滚动,小圆向右滚动时,同理得:πt﹣(﹣2πt)=6π,t=2,πt=2π,﹣2πt=﹣4π,则此时两圆与数轴重合的点所表示的数分别为﹣4π、2π【解析】【解答】解:(1)若大圆沿数轴向左滚动1周,则该圆与数轴重合的点所表示的数是﹣2π•2=﹣4π,故答案为:﹣4π;【分析】(1)该圆与数轴重合的点所表示的数,就是大圆的周长;(2)①分别计算出第几次滚动后,小圆离原点的距离,比较作答;②先计算总路程,因为大圆不动,计算各数之和为﹣10,即小圆最后的落点为原点左侧,向左滚动10秒,距离为10π;(3)分四种情况进行讨论:大圆和小圆分别在同侧,异侧时,表示出各自与数轴重合的点所表示的数.根据两圆与数轴重合的点之间相距6π列等式,求出即可.5.如果,那么我们规定 .例如:因为,所以 .(1)根据上述规定,填空:________, ________, ________.(2)若记,, .求证: .【答案】(1)3;0;-2(2)解:依题意则∵∴【解析】【解答】解:(1)(3,27)=3,(4,1)=0,(2,0.25)=-2,故答案为:3;0;-2【分析】根据新定义的算法计算出根指数即可;由新定义的算法,得到同底数幂的乘法,底数不变,指数相加;证明出结论.6.瓶中装有浓度为的酒精溶液克,现在又分别倒入克和克的、两种酒精溶液,瓶中的浓度变成了.已知种酒精溶液浓度是种酒精溶液浓度的倍,那么种酒精溶液的浓度是百分之几?【答案】解:新倒入的纯酒精重量:(1000+100+400)×14%-1000×15%=210-150=60(克)设A种酒精溶液的浓度为x,则B种为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年六年级数学易错题难题题一、培优题易错题1.“△”表示一种新的运算符号,已知:2△3=2﹣3+4,7△2=7﹣8,3△5=3﹣4+5﹣6+7,…;按此规则,计算:(1)10△3=________.(2)若x△7=2003,则x=________.【答案】(1)11(2)2000【解析】【解答】(1)10△3=10-11+12=11;(2)∵x△7=2003,∴x-(x+1)+(x+2)-(x+3)+(x+4)-(x+5)+(x+6)=2003,解得x=2000.【分析】(1)首先弄清楚定义新运算的计算法则,从题目中给出的例子来看,第一个数表示从整数几开始,后面的数表示几个连续整数相加减,根据发现的运算规则,即可由10△3列出算式,再根据有理数加减法法则,即可算出答案;(2)根据定义新运算的计算方法,由x△7=2003,列出方程,求解即可。
2.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走均为正,向下向左走均为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(________,________),B→C(________,________),C→________(+1,﹣2);(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.(4)若图中另有两个格点M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则N→A应记为什么?【答案】(1)+3;+4;+2;0;D(2)解:P点位置如图1所示;(3)解:如图2,根据已知条件可知:A→B表示为:(1,4),B→C记为(2,0)C→D记为(1,﹣2);则该甲虫走过的路线长为:1+4+2+1+2=10(4)解:由M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),所以,5﹣a﹣(3﹣a)=2,b﹣2﹣(b﹣4)=2,所以,点A向右走2个格点,向上走2个格点到点N,所以,N→A应记为(﹣2,﹣2)【解析】【解答】解:(1)图中A→C(+3,+4),B→C(+2,0),C→D(+1,﹣2);故答案为:(+3,+4),(+2,0),D;【分析】(1)根据向上向右走均为正,向下向左走均为负确定数据即可;(2)根据所给的路线确定点的位置即可;(3)根据表示的路线确定长度相加可得结果;(4)观察点的变化情况,根据(1)即可确定点走了格数,从而确定结论.3.纽约、悉尼与上海的时差如下表(正数表示同一时刻比上海时间早的时数,负数表示同一时刻比上海晚的时数):城市悉尼纽约时差/时+2-121日上午10时,悉尼时间是________.(2)上海、纽约与悉尼的时差分别为________(正数表示同一时刻比悉尼时间早的时数,负数表示同一时刻比悉尼晚的时数).(3)王老师2018年9月1日,从纽约Newwark机场,搭乘当地时间上午10:45的班机,前往上海浦东国际机场,飞机飞行的时间为14小时55分钟,问飞机降落上海浦东国际机场的时间.【答案】(1)12(2)-2,-14(3)解:10时45分+14时55分+12时=37时40分.故飞机降落上海浦东国际机场的时间为2018年9月2日下午1:40【解析】【解答】(1)10+(+2)=12时,即当上海是10月1日上午10时,悉尼时间是12时.( 2 )12-10=2;-12-2=-14;故上海、纽约与悉尼的时差分别为-2,-14.【分析】(1)根据表格得到悉尼时间是10+(+2);(2 )由表格得到上海与悉尼的时差是2,纽约与悉尼的时差-12-2;(3)根据题意得到10时45分+14时55分+12时,得到飞机降落上海浦东国际机场的时间.4.如图,半径为1的小圆与半径为2的大圆上有一点与数轴上原点重合,两圆在数轴上做无滑动的滚动,小圆的运动速度为每秒π个单位,大圆的运动速度为每秒2π个单位.(1)若大圆沿数轴向左滚动1周,则该圆与数轴重合的点所表示的数是________;(2)若大圆不动,小圆沿数轴来回滚动,规定小圆向右滚动时间记为正数,向左滚动时间记为负数,依次滚动的情况记录如下(单位:秒):﹣1,+2,﹣4,﹣2,+3,﹣8①第几次滚动后,小圆离原点最远?②当小圆结束运动时,小圆运动的路程共有多少?此时两圆与数轴重合的点之间的距离是多少?(结果保留π)(3)若两圆同时在数轴上各自沿着某一方向连续滚动,滚动一段时间后两圆与数轴重合的点之间相距6π,求此时两圆与数轴重合的点所表示的数.【答案】(1)-4π(2)解:①第1次滚动后,|﹣1|=1,第2次滚动后,|﹣1+2|=1,第3次滚动后,|﹣1+2﹣4|=3,第4次滚动后,|﹣1+2﹣4﹣2|=5,第5次滚动后,|﹣1+2﹣4﹣2+3|=2,第6次滚动后,|﹣1+2﹣4﹣2+3﹣8|=10,则第6次滚动后,小圆离原点最远;②1+2+4+3+2+8=20,20×π=20π,﹣1+2﹣4﹣2+3﹣8=﹣10,∴当小圆结束运动时,小圆运动的路程共有20π,此时两圆与数轴重合的点之间的距离是10π(3)解:设时间为t秒,分四种情况讨论:i)当两圆同向右滚动,由题意得:t秒时,大圆与数轴重合的点所表示的数:2πt,小圆与数轴重合的点所表示的数为:πt,2πt﹣πt=6π,2t﹣t=6,t=6,2πt=12π,πt=6π,则此时两圆与数轴重合的点所表示的数分别为12π、6π.ii)当两圆同向左滚动,由题意得:t秒时,大圆与数轴重合的点所表示的数:﹣2πt,小圆与数轴重合的点所表示的数:﹣πt,﹣πt+2πt=6π,﹣t+2t=6,t=6,﹣2πt=﹣12π,﹣πt=﹣6π,则此时两圆与数轴重合的点所表示的数分别为﹣12π、﹣6π.iii)当大圆向右滚动,小圆向左滚动时,同理得:2πt﹣(﹣πt)=6π,3t=6,t=2,2πt=4π,﹣πt=﹣2π,则此时两圆与数轴重合的点所表示的数分别为4π、﹣2π.iiii)当大圆向左滚动,小圆向右滚动时,同理得:πt﹣(﹣2πt)=6π,t=2,πt=2π,﹣2πt=﹣4π,则此时两圆与数轴重合的点所表示的数分别为﹣4π、2π【解析】【解答】解:(1)若大圆沿数轴向左滚动1周,则该圆与数轴重合的点所表示的数是﹣2π•2=﹣4π,故答案为:﹣4π;【分析】(1)该圆与数轴重合的点所表示的数,就是大圆的周长;(2)①分别计算出第几次滚动后,小圆离原点的距离,比较作答;②先计算总路程,因为大圆不动,计算各数之和为﹣10,即小圆最后的落点为原点左侧,向左滚动10秒,距离为10π;(3)分四种情况进行讨论:大圆和小圆分别在同侧,异侧时,表示出各自与数轴重合的点所表示的数.根据两圆与数轴重合的点之间相距6π列等式,求出即可.5.操作探究:已知在纸面上有一数轴(如图所示),(1)操作一:折叠纸面,使数字1表示的点与﹣1表示的点重合,则﹣3表示的点与________表示的点重合;(2)操作二:折叠纸面,使﹣1表示的点与5表示的点重合,回答以下问题:①10表示的点与数________表示的点重合;(3)②若数轴上A、B两点之间距离为15,(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少?【答案】(1)3(2)﹣6(3)解:由题意可得,A、B两点距离中心点的距离为15÷2=7.5,∵中心点是表示2的点,∴A、B两点表示的数分别是﹣5.5,9.5.【解析】【解答】解:(1)因为折叠纸面,使数字1表示的点与﹣1表示的点重合,可确定中心点是表示0的点,所以﹣3表示的点与3表示的点重合,故答案为:3;(2)①因为折叠纸面,使﹣1表示的点与5表示的点重合,可确定中心点是表示2的点,所以10表示的点与数﹣6表示的点重合,故答案为:﹣6;【分析】(1)先求出中心点,再求出对应的数即可;(2)①求出中心点是表示2的点,再根据对称求出即可;②求出中心点是表示2的点,求出A、B到表示2的点的距离是7.5,即可求出答案.6.在浓度为的盐水中加入一定量的水,则变为浓度的新溶液.在这种新溶液中加入与前次加入的水量相等的盐,溶液浓度变为 .求 .【答案】解:设原来的盐水为100克,加入的水(或盐)重a克。
x=10+0.1a因为:x+a=30+0.6a则:10+0.1a+a=30+0.6a1.1a-0.6a=30-100.5a=20a=40所以x=30+0.6×40-40=14答:x的值是14。
【解析】【分析】设原来的盐水为100克,加入的水或(盐)重a克,根据混合后的浓度是10%列出一个方程,化简这个方程得到x与a的关系。
然后根据加入盐后的浓度是30%列出另一个方程,把这个方程中x的值代换成a,解方程求出a的值,进而求出x的值。
7.已知三种混合物由三种成分、、组成,第一种仅含成分和,重量比为;第二种只含成分和,重量比为;第三种只含成分和,重量之比为 .以什么比例取这些混合物,才能使所得的混合物中、和,这三种成分的重量比为?【答案】解:D:C=(3+5):2=4:1;第二种混合物不含,的含量为,第三种混合物不含,的含量为,所以倍第三种混合物含为,倍第二种混合物含为,即第二种、第三种混合物的重量比为;于是此时含有,,即,而最终混合物中,所以第一种混合物的质量与后两种混合质量和之比为,所以三种混合物的重量比为。
答:三种混合物的比为20:6:3。
【解析】【分析】第一种混合物中、重量比与最终混合物的、重量比相同,均为.所以,先将第二种、第三种混合物的、重量比调整到,再将第二种、第三种混合物中、与第一种混合物中、视为单一物质,然后求出新配成的物质中D:C的比。
最终确定三种混合物的重量比。
8.一项工程,甲、乙合作小时可以完成,若第小时甲做,第小时乙做,这样交替轮流做,恰好整数小时做完;若第小时乙做,第小时甲做,这样交替轮流做,比上次轮流做要多小时,那么这项工作由甲单独做,要用多少小时才能完成?【答案】解:乙的工作效率是甲的:,工作效率和:,甲的工作效率:,甲独做的时间:1÷=21(小时)。
答:这项工作由甲单独做,要用21小时才能完成。
【解析】【分析】若第一种做法的最后一小时是乙做的,那么甲、乙共做了偶数个小时,那么第二种做法中甲、乙用的时间应与第一种做法相同,不会多小时,与题意不符.所以第一种做法的最后一小时是甲做的,第二种做法中最后小时是甲做的,而这小时之前的一小时是乙做的,这样就能求出乙的工作效率是甲的。