2020年六年级数学易错题难题题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年六年级数学易错题难题题

一、培优题易错题

1.“△”表示一种新的运算符号,已知:2△3=2﹣3+4,7△2=7﹣8,3△5=3﹣4+5﹣6+7,…;按此规则,计算:

(1)10△3=________.

(2)若x△7=2003,则x=________.

【答案】(1)11

(2)2000

【解析】【解答】(1)10△3=10-11+12=11;(2)∵x△7=2003,

∴x-(x+1)+(x+2)-(x+3)+(x+4)-(x+5)+(x+6)=2003,

解得x=2000.

【分析】(1)首先弄清楚定义新运算的计算法则,从题目中给出的例子来看,第一个数表示从整数几开始,后面的数表示几个连续整数相加减,根据发现的运算规则,即可由10△3列出算式,再根据有理数加减法法则,即可算出答案;

(2)根据定义新运算的计算方法,由x△7=2003,列出方程,求解即可。

2.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走均为正,向下向左走均为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向.

(1)图中A→C(________,________),B→C(________,________),C→________(+1,﹣2);

(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置;

(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.

(4)若图中另有两个格点M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则N→A应记为什么?

【答案】(1)+3;+4;+2;0;D

(2)解:P点位置如图1所示;

(3)解:如图2,根据已知条件可知:

A→B表示为:(1,4),B→C记为(2,0)C→D记为(1,﹣2);

则该甲虫走过的路线长为:1+4+2+1+2=10

(4)解:由M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),

所以,5﹣a﹣(3﹣a)=2,b﹣2﹣(b﹣4)=2,

所以,点A向右走2个格点,向上走2个格点到点N,

所以,N→A应记为(﹣2,﹣2)

【解析】【解答】解:(1)图中A→C(+3,+4),B→C(+2,0),C→D(+1,﹣2);故答案为:(+3,+4),(+2,0),D;

【分析】(1)根据向上向右走均为正,向下向左走均为负确定数据即可;

(2)根据所给的路线确定点的位置即可;

(3)根据表示的路线确定长度相加可得结果;

(4)观察点的变化情况,根据(1)即可确定点走了格数,从而确定结论.

3.纽约、悉尼与上海的时差如下表(正数表示同一时刻比上海时间早的时数,负数表示同一时刻比上海晚的时数):

城市悉尼纽约

时差/时+2-12

1日上午10时,悉尼时间是________.

(2)上海、纽约与悉尼的时差分别为________(正数表示同一时刻比悉尼时间早的时数,负数表示同一时刻比悉尼晚的时数).

(3)王老师2018年9月1日,从纽约Newwark机场,搭乘当地时间上午10:45的班机,前往上海浦东国际机场,飞机飞行的时间为14小时55分钟,问飞机降落上海浦东国际机

场的时间.

【答案】(1)12

(2)-2,-14

(3)解:10时45分+14时55分+12时=37时40分.

故飞机降落上海浦东国际机场的时间为2018年9月2日下午1:40

【解析】【解答】(1)10+(+2)=12时,即当上海是10月1日上午10时,悉尼时间是12时.

( 2 )12-10=2;

-12-2=-14;

故上海、纽约与悉尼的时差分别为-2,-14.

【分析】(1)根据表格得到悉尼时间是10+(+2);(2 )由表格得到上海与悉尼的时差是2,纽约与悉尼的时差-12-2;(3)根据题意得到10时45分+14时55分+12时,得到飞机降落上海浦东国际机场的时间.

4.如图,半径为1的小圆与半径为2的大圆上有一点与数轴上原点重合,两圆在数轴上做无滑动的滚动,小圆的运动速度为每秒π个单位,大圆的运动速度为每秒2π个单位.

(1)若大圆沿数轴向左滚动1周,则该圆与数轴重合的点所表示的数是________;

(2)若大圆不动,小圆沿数轴来回滚动,规定小圆向右滚动时间记为正数,向左滚动时间记为负数,依次滚动的情况记录如下(单位:秒):﹣1,+2,﹣4,﹣2,+3,﹣8

①第几次滚动后,小圆离原点最远?

②当小圆结束运动时,小圆运动的路程共有多少?此时两圆与数轴重合的点之间的距离是多少?(结果保留π)

(3)若两圆同时在数轴上各自沿着某一方向连续滚动,滚动一段时间后两圆与数轴重合的点之间相距6π,求此时两圆与数轴重合的点所表示的数.

【答案】(1)-4π

(2)解:①第1次滚动后,|﹣1|=1,

第2次滚动后,|﹣1+2|=1,

第3次滚动后,|﹣1+2﹣4|=3,

第4次滚动后,|﹣1+2﹣4﹣2|=5,

第5次滚动后,|﹣1+2﹣4﹣2+3|=2,

第6次滚动后,|﹣1+2﹣4﹣2+3﹣8|=10,

则第6次滚动后,小圆离原点最远;

②1+2+4+3+2+8=20,

20×π=20π,

﹣1+2﹣4﹣2+3﹣8=﹣10,

∴当小圆结束运动时,小圆运动的路程共有20π,此时两圆与数轴重合的点之间的距离是10π

(3)解:设时间为t秒,

分四种情况讨论:

i)当两圆同向右滚动,

由题意得:t秒时,大圆与数轴重合的点所表示的数:2πt,

小圆与数轴重合的点所表示的数为:πt,

2πt﹣πt=6π,

2t﹣t=6,

t=6,

2πt=12π,πt=6π,

则此时两圆与数轴重合的点所表示的数分别为12π、6π.

ii)当两圆同向左滚动,

由题意得:t秒时,大圆与数轴重合的点所表示的数:﹣2πt,

小圆与数轴重合的点所表示的数:﹣πt,

﹣πt+2πt=6π,

﹣t+2t=6,

t=6,

﹣2πt=﹣12π,﹣πt=﹣6π,

则此时两圆与数轴重合的点所表示的数分别为﹣12π、﹣6π.

iii)当大圆向右滚动,小圆向左滚动时,

同理得:2πt﹣(﹣πt)=6π,

3t=6,

t=2,

2πt=4π,﹣πt=﹣2π,

则此时两圆与数轴重合的点所表示的数分别为4π、﹣2π.

iiii)当大圆向左滚动,小圆向右滚动时,

同理得:πt﹣(﹣2πt)=6π,

t=2,

πt=2π,﹣2πt=﹣4π,

则此时两圆与数轴重合的点所表示的数分别为﹣4π、2π

【解析】【解答】解:(1)若大圆沿数轴向左滚动1周,则该圆与数轴重合的点所表示的数是﹣2π•2=﹣4π,

故答案为:﹣4π;

【分析】(1)该圆与数轴重合的点所表示的数,就是大圆的周长;(2)①分别计算出第几次滚动后,小圆离原点的距离,比较作答;②先计算总路程,因为大圆不动,计算各数

相关文档
最新文档