公路测量坐标系的建立
(整理)公路测量坐标系的建立
![(整理)公路测量坐标系的建立](https://img.taocdn.com/s3/m/dc6289874693daef5ff73d39.png)
摘要】本文以公路测量为例,较详细地论述了在线路测量中应考虑的变形因素,以及解决变形的办法,详细地叙述了建立独立坐标系的作用及建立这种坐标系的六种方法,并介绍了因提高归化高程面而产生新椭球后的一些椭球常数的计算方法和步骤。
此外,本文还对当路线跨越相邻投影带时,需要进行相邻带的坐标换算这一问题进行了阐述。
【关键字】独立坐标系高斯投影带抵偿高程面新椭球常数坐标转换归化高程面线路控制测量中坐标系统的建立与统一方法第一章概述铁路、公路、架空送电线路以及输油管道等均属于线型工程,它们的中线统称线路。
一条线路的勘测和设计工作,主要是根据国家的计划与自然地理条件,确定线路经济合理的位置。
为达此目的,必须进行反复地实践和比较,才能凑效。
线路在勘测设计阶段进行的控制测量工作,称线路控制测量,在线路控制测量过程中,由于每条线路不可能距离较短,有的可能跨越一个带,二个带甚至更多,所以,在线路控制测量中,长度变形是一个不可避免的问题,但我们可以采取一些措施来使长度变形减弱,将长度变形根据施测的精度要求和测区所处的精度范围控制在允许的范围之内。
最有效的措施就是建立与测区相适应的坐标系统.坐标系统是所有测量工作的基础.所有测量成果都是建立在其之上的,一个工程建设应尽可能地采用一个统一的坐标系统.这样既便于成果通用又不易出错.对于一条线路,如果长度变形超出允许的精度范围,我们将建立新的坐标系统加以控制.这就涉及到一个非常关键的问题,既,坐标系统的建立与统一.对于不同的情况,我们可以采用适应的方法尽可能建立统一的坐标系统,且使其长度变形在允许范围之内.本文以公路控制测量为例,详细论述了线路控制测量中坐标系统的建立与统一方法.第二章坐标系统的建立当对一条线路进行控制测量时,首先应根据已有资料判断该测区是否属同一投影带和长度变形是否在允许范围之内.这样我们就可以判断是否需要建立新的坐标系统和怎样建立,下面对此进行详细讨论.§2.1 相对误差对变形的影响与国家点联测的情况:我们的每项测量工作都是在地球表面上进行的,而要将实地测量的真实长度归化到高斯平面上,应加入二项改正.这样就改变了其真实长度,这种高斯投影平面上的长度与地面长度之差,称之为长度综合变形,其计算公式为,£=+Ym²*S/2R²-Hm*s/Ra取:R=Ra=6371Km.S=s将其写成相对变形的形式并代入数子:£/s=(0.00123y²-15.7H)*10y:测区中心横坐标(Km)H:测区平均高程(Km)依据我国的工程测量规范规定,建立平面控制网的坐标系统应该保证长度综合变形不超过2.5cm/km.(相对变形不超过1/40000)。
公路测量坐标计算公式
![公路测量坐标计算公式](https://img.taocdn.com/s3/m/419792502379168884868762caaedd3383c4b5c9.png)
公路测量坐标计算公式引言公路测量是一项基础工作,用于确定公路建设或维护所需的各个节点坐标。
在公路工程领域,测量坐标计算公式是至关重要的工具,用于测算和确定公路各个位置的坐标信息。
本文将介绍公路测量坐标计算公式的原理和应用。
坐标系统在公路测量中,使用的坐标系统通常是平面直角坐标系。
这个坐标系统由X轴和Y轴组成,其中X轴表示东西方向,Y轴表示南北方向。
公路测量中,测量标准一般会规定一个起始点作为基准点,所有的测量点都以该基准点为原点建立坐标。
公路测量坐标计算公式坐标计算原理坐标计算公式的原理是通过已知的测量数据和几何关系,推导出待求点的坐标。
常用的坐标计算方法包括三角测量法、坐标转换法和横断面测量法等。
三角测量法三角测量法是基于三角形几何学原理的坐标计算方法。
它通过测量已知点与待求点之间的夹角和距离,利用三角函数关系计算出待求点的坐标。
三角测量法适用于平面内的测量,并具有较高的精度。
坐标转换法坐标转换法是将已知点的坐标转换到待求点坐标的计算方法。
它利用已知点和待求点在同一坐标系统中的相对位置关系,通过坐标转换公式计算待求点的坐标。
坐标转换法适用于已知点坐标较为准确的情况。
横断面测量法横断面测量法适用于公路等线性工程的坐标计算。
它通过测量已知点的高程和于待求点的高程差,利用高程差和水平距离之间的关系计算待求点的坐标。
横断面测量法适用于公路中断面的测量和计算。
应用示例公路测量坐标计算公式在实际工程中具有广泛的应用。
下面以一个简单的示例来说明其应用过程:假设有一段公路,已知起点的坐标为(0,0),终点的坐标为(1000,0)。
现在需要测算该公路上距离起点100米处的坐标。
根据三角测量法,可以通过测量起点和待求点之间的夹角和距离来计算待求点的坐标。
假设测量得到的夹角为45度,距离为100米。
根据三角函数的性质,可以计算出待求点的坐标为(100,100)。
总结公路测量坐标计算公式是公路工程中不可或缺的工具。
通过三角测量法、坐标转换法和横断面测量法等方法,可以准确计算公路上各个位置的坐标信息。
公路设计与施工测量中独立坐标系的建立
![公路设计与施工测量中独立坐标系的建立](https://img.taocdn.com/s3/m/1dd40d381611cc7931b765ce0508763230127452.png)
公路设计与施工测量中独立坐标系的建立
一、引言
公路工程施工测量过程中,坐标系的建立是非常重要的环节,这不仅直接影响到测量数据的准确性和精确度,也影响到建筑物和资产的正确定位。
因此,建立一个独立的坐标系是非常重要的。
二、坐标系建立的方法
1.采用三点法建立坐标系
三点法通过三个已知点的坐标来确定坐标系,其中两点作为定向点,第三点作为源点,从而建立一个坐标系。
此方法的优点在于不需要其他外部参照系,因此是一种简单易行的建立坐标系的方法。
2.采用三角方法建立坐标系
三角法是一种针对空间的坐标测量方法,它通过在空间中设立三个角点,并采用单位弧长两点距离的三角测量方法,确定其余点的位置,从而建立一个坐标系。
此方法的优点在于不需要太多限制条件,因此可以在空间的任何位置使用。
3.采用图面平差法建立坐标系
图面平差法是一种针对平面的坐标测量方法,它通过观测平面内一组点的坐标,并采用图面平差原理,来确定一个坐标系,这个坐标系通常是一个椭圆坐标系。
此方法的优点是可以准确地确定平面内所有测量点的坐标。
三、总结
建立独立坐标系是公路工程施工测量中非常重要的一步。
坐标系换带抵偿计算对长直线的影响浅析
![坐标系换带抵偿计算对长直线的影响浅析](https://img.taocdn.com/s3/m/088d1aac33d4b14e85246881.png)
坐标系换带抵偿计算对长直线路影响浅析李贤忠(苏交科集团(甘肃)交通规划设计有限公司,兰州730010)1.建立公路独立坐标系的一般方法在公路设计过程中,为便于施工放线,要求采用的坐标系应满足实地测量的距离与坐标反算的距离尽量一致,不需现场进行投影和归化改正。
按公路勘测规范要求,公路设计采用的坐标系应满足全区投影变形值不得大于2.5cm/km,大型构造物处的投影变形值不得大于1.0cm/km的要求。
根据投影变形的理论,投影变形有如下特点:高斯投影总会使地面距离变长、归化改正总会使地面距离缩短,两者存在一定程度的抵消作用。
一般地,建立公路独立坐标系的方法有以下三种:(1)抵偿坐标系:不改变坐标系的中央子午线,通过将投影面从参考椭球面改为某一大地高程面(一般为测区平均高程面或设计线路纵坡平均高程面),使得投影变形值和归化改正数之间抵消结果满足规范对投影变形控制的要求。
(2)任意带坐标系:不改变投影面(仍为参考椭球面),通过移动中央子午线至某一位置,使得投影变形和归化改正数之间的抵消结果满足规范对投影变形控制的要求。
(3)任意带抵偿坐标系:通过既移动中央子午线、又改变抵偿投影面大地高的方式,使得投影变形和归化改正数之间的抵消结果满足规范对投影变形控制的要求。
通过上述方式建立的公路独立坐标系,可以有效控制长度投影变形,但同时也会产生某种角度变形,对长直线尤为明显,下面通过具体案例进行分析探讨。
2.坐标系换带抵偿对长直线的影响现假定某公路项目的一个段落概况如下:测区中心位于105º00′E、35°34′附近,该段落线路全长51km,总体走向为西北-东南的长直线;测区大地高2000-2600米,抵偿投影时按300米高差划分3个抵偿面;按3km 步长确定该线路上的参考点在CGCS2000大地坐标系中央子午线105°的坐标作为基础数据,换带计算时采用104°50′、105°00′、105°10′三个中央子午线;分析上述三种建立独立坐标系的方式对该长直线段落的影响,不考虑投影变形结果能否满足规范要求。
公路全球定位系统GPS测量规范
![公路全球定位系统GPS测量规范](https://img.taocdn.com/s3/m/c380c6200a4e767f5acfa1c7aa00b52acec79c55.png)
1 总则1.0.1 为规定利用全球定位系统﹙Global Positioning System, 缩写为 GPS﹚建立公路工程GPS测量控制网(de)原则﹑精度和作业方法, 特制定本规范.1.0.2 本规范是依据公路勘测规范﹙JTJ 061),并参照全球定位系统(GPS)测量规范(CH 2001-92)(de)有关规定, 在收集﹑分析﹑研究和总结经验(de)基础上制定(de).1.0.3 本规范适用于新建和改建公路工程项目(de)各级GPS控制网(de)布设与测量.1.0.4 采用全球定位系统测量技术建立公路平面控制网时,应根据公路勘测规范(JTJ 061)中规定(de)平面控制测量(de)等级﹑精度等确定相应(de)GPS控制网(de)等级.1.0.5 GPS测量采用WGS-84大地坐标系.当公路工程GPS控制网根据实际情况采用1954年北京坐标系﹑1980西安坐标系或抵偿坐标系时, 应进行坐标转换.各坐标系(de)地球椭球基本参数﹑主要几何和物理常数见附录A.高程系统根据实际情况可采用1956年黄海高程系或1985国家高程基准.1.0.6 GPS测量时间系统为协调世界时(UTC). 在作业过程中,附录D "GPS观测手薄" 中(de)开﹑关机时间可采用北京时间记录.1.0.7 GPS接收机及附属设备均按有关规定定期检测.1.0.8 GPS控制测量应按有关规定对全过程进行质量控制.1.0.9 在提供GPS控制测量成果资料时,应执行保密制度中(de)有关规定.2 术语2.0.1 基线Baseline两测量标志中心(de)几何连线.2.0.2 观测时段 Observation sessionGPS 接收机在测站上从开始接收卫星信号进行观测到停止观测(de)时间长度.2.0.3 同步观测 Simultaneous observation两台或两台以上GPS接收机同时对一卫星进行(de)观测.2.0.4 同步观测环 Simultaneous observation三台或三台以上GPS接收机同步观测所获得(de)基线向量构成 (de)闭合环.2.0.5 独立基线 Independent baseline由独立观测时段所确定(de)基线.2.0.6 独立观测环 Independent observable loop由独立基线向量构成(de)闭合环.2.0.7 自由基线 Free baseline不属于任何非同步图形闭合条件(de)基线.2.0.8 复测基线 Duplicate measure baseline观测两个或两个以上观测时段(de)基线.2.0.9 边连式 Link method by a baseline相邻图形之间以一条基线边相连接(de)布网方式.在一个控制网中,不引入外部基准,或虽引入外部基准但并不产生控制网非观测误差引起(de)变形和改正(de)平差方法.在建立公路控制网时,根据需要投影到抵偿高程面上和(或)以任一子午线为中央子午线(de)一种直角坐标系.为一个公路工程项目而建立(de)精度等级最高,并同国家控制点联测能控制整个路线(de)控制网.为满足公路测设放线或施工放样,在首级控制网基础上加密并贯通整条公路(de)控制网.观测时天线平均相位中心标志面(de)高度.3 GPS 控制网分级与设计3.1 GPS 控制网分级3.1.1 根据公路及桥梁﹑隧道等构造(de)特点及不同要求,GPS 控制网分为一级﹑二级﹑三级﹑四级共四个等级.各级GPS控制网(de)主要技术指标规定见表功3﹒1﹒1表3﹒1﹒1 GPS控制网(de)主要技术指标注:①各级GPS控制网每对相邻点间(de)最小距离应不小于平均距离(de)1/2,最大距离不宜大于平均距离(de)两倍;②特殊构造物指对施工测量精度有特殊要求(de)桥梁﹑隧道等构造物.3.1.2 GPS控制网相邻点间弦长精度应按下式计算确定:σ式中:σ—弦长标准差(mm);a—固定误差(mm);b—比例误差(ppm);d—相邻点间(de)距离(km).3.2 GPS 控制网设计3.2.1 GPS控制网(de)布设应根据公路等级﹑线地形地物﹑作业时卫星状况﹑精度要求等因素进行综合设计,并编制技术设计书(或大纲).3.2.2 GPS(de)WGS-84大地坐标系统转换到所选平面坐标系时,应使测区内投影长度变形值不大于2.5cm/km.根据测区所处地理位置及平均高程情况,可按下列方法选定坐标系统:°带平面直角坐标系.(1)投影于1954年北京坐标系或者1980西安坐标系椭球面上(de)高斯正形投影任意带平面直角坐标系.(2)投影于抵偿高程面上(de)高斯正形投影3°带平面直角坐标系.(3)投影于抵偿高程面上(de)高斯正形投影任意带平面直角坐标系.3.2.3 GPS控制网采用公路抵偿坐标系进行坐标转换时,应确定以下技术参数; --参考椭球及其相应(de)基本参数;--中央子午线经度值;--纵横坐标(de)加常数值;--投影面正常高;--测区平均高程异常值;--起算点坐标及起算方位角.公路抵偿坐标系所采用(de)椭球中心、轴向和扁率应与国家参考椭球相同.3.2.4 公路路线过长时,可视需要将其分为多投影带.在各分带交界附近应布设一对相互通视(de)GPS点.3.2.5 同一公路工程项目中(de)特殊构造物(de)测量控制网应同项目测量控制网一次完成设计、施测与平差.当特殊构造物测量控制网(de)等级要求高时,宜以其作为首级控制网,并据以扩展其它测量控制网.3.2.6 当GPS 控制网作为公路首控制网,且需采用其它测量方法进行加密时,应每隔离5km设置一对相互到通视(de)GPS点.当GPS首级控制网直接作为施工控制网时,每个GPS点至少应与一个相邻点通视3.2.7 设计GPS控制网时,应由一个或若干个独立观测环构成,并包含较多(de)闭合条件.3.2.8 GPS 控制网由同步GPS观测边构成多边形闭合环或附合路线时,其边数应符合下列规定:--一级GPS控制网应不超过去5条;--二级GPS控制网应不超过去6条;--三级GPS控制、网应不超过去7条;--四级GPS控制网应不超过去8条;3.2.9 一、二级GPS 控制网应采用网连式、边连式布网;三、四级GPS控制网宜采用铰链导线式或点连式布网.GPS控制网中不应出现自由基线.路线附近具有等级高(de)GPS点时,应予以联测.同一公路工程项目(de)GPS控制网分为多个投影带时,在分带交界附近应同国家平面控制点联测.平原、微丘地形联测点(de)数量不宜少于6个,必须大于3个;联测点(de)间距不宜大于20km,且应均匀分布.重丘、山岭地形联测点(de)数量不宜少于是10个.各级GPS控制网(de)高程联测应不低于四等水准测量(de)精度要求.4 选点与埋石4.1 准备资料:--测区划1:10000-1:150000地形图;--既有各类控制测量资料,包括控制点(de)平面坐标、高程、坐标系统、技术总结等;--测区(de)气象、地质、地形、地貌、交通、通信及供电等资料;--路线走向、线位布设、路线设计数据及大型构造物位置等资料.4.2 选点4.2.1 选点员应按技术要求进行踏勘,并实地核对、调整、确定点位.点位应有利于采用其它测量方法扩展和联测.对需做水准联测(de)点位还应踏勘水准路线.4.2.2 点位应选在基础稳定,并易于长期保存(de)地点.4.2.3 点位应便于安置接收设备和操作,视野开阔,视场内不应有高度角大于15°(de)成片障碍物,否则应绘制点位环视图.4.2.4 点位附近不应有强烈干扰卫星信号接收(de)物体.点位距大功率无线电发射源(如电视台、微波站等)(de)距离应不小于400m;距220Kv以上电力线路(de)距离应不小于50m.4.2.5 点位应利于公路勘测放线与施工放样,且距路线中心线不宜小于50m,并不大于300m.对于大型桥梁、互通式立交、隧道等还应考虑加密布设控制网(de)要求.4.2.6 GPS控制点需要设方位点时,其目标应明显,便于观测;与 GPS点(de)距离不宜小于500m,且与路线垂直.4.2.7 GPS控制网(de)点名应沿公路前进方向顺序编号,并非编号前冠以“GPS”字样和等级.当新点同原有点重合时,应采用原有点名.同一个GPS控制网中禁有相同(de)点名.4.2.8 选定(de)点位应标注于1:10000或1:50000(de)地形图上,并绘制GPS 控制网选点图,填写GPS点之记,点之记格式见附录B.4.3 埋石4.3.1 各级GPS点(de)标石均应有中心标志.中心标志用直径不小于14mm(de)钢筋制作,并用清晰、精细(de)十字线刻成直径小于1mm(de)中心点.标石表面应有GPS点名及施测单位名称.4.3.2 GPS点(de)标石可按附录C预制,亦可现场浇制.埋设时坑底应填以砂石并固密实,或现浇20cm厚(de)混凝土.埋设(de)GPS点应待沉降稳定后方可使用.4.3.3 GPS点位于山区岩石地段时,可利用基岩凿成坑穴,埋入中心标志并浇灌混凝土.标石顶端外形尺寸应符合附录C(de)规定.4.3.4 GPS点位于耕作地区时,应埋设于非耕种地上,并露出地面少许;当必须埋设于耕地时,标石顶面应埋设于耕种表土层以下.对冰冻地区,其埋设深度应大于该地区(de)冰冻深度.4.3.5 GPS点位于沙丘或土层疏松地区,应适当增大标石尺寸和基坑底层现浇混凝土(de)面积与厚度.4.3.6 当有牢固永久性建筑物可用以设置标石时,可在建筑物上凿孔埋入中心标志并浇灌混凝土,其顶端外形尺寸应符合附录C(de)规定.4.3.7 利用原有平面控制点时,应确认该点标石完好,并符合同级GPS点观测与埋石要求,且能长期保存.4.3.8 为特殊构造物而设计(de)一、二级GPS控制网可视需要埋设有强制对中装置(de)观测墩.4.3.9 所有GPS点在埋石处应设置明显(de)指向标志,并现场绘制交通路线略图,填写点之记.5 观测5.1 技术指标表5.1.1 GPS控制网观测基本技术指标.5.2 观测计划5.2.1 进入测区前,应事先编制GPS卫星可见性预报表.预报表应包括可见卫星号﹑卫星高度角﹑方位角﹑最佳观测星组﹑最佳观测时间﹑点位图形强度因子﹑概括位置坐标﹑预报历元﹑星历龄期等.5.2.2 观测作业前,应根据接收机台数﹑GPS图形﹑卫星可见性预报表编制观测计划.在实施中,应依照实际作业情况,及时作出调整.5.2.3 观测作业后,应及时绘制联测草图以备后续作业调度使用.5.3 作业要求5.3.1 观测组必须执行调度计划,按规定(de)时间进行同步观测作业.5.3.2 观测人员必须按照GPS接收机操作手册(de)规定进行观测作业.5.3.3 天线安置在脚架上直接对中整平时,对中精度为1mm.5.3.4 天线安置在觇标上时,应将标志中心投影至基板上,然后在基板上对中整平.如觇标顶部对信号和信息有干扰,则应卸去.5.3.5 每时段观察应在测前﹑测后分别量取天线高.两次天线高之差应不大于3mm,并取平均值作为天线高.5.3.6 观测时应防止人员或其它物体触动天线或遮挡信号.5.3.7 接收机开始记录数据后,应随时注意卫星信号和信息存储情况.当接收或存储出现异常时,应随时进行调整,必要时应及时通知其它接收机以调整观测计划.5.3.8 在现场应按规定作业顺序填写观测手簿,不得事后补记.观测手簿(de)格式见附录D.5.3.9 经检查所有规定作业项目全部完成,且记录完整无误后方可迁站.得作任何剔除或删改.磁盘应贴好标签,并妥善保存.6 基线解算与检核6.0.1 外业观测结束后及时进行观测数据(de)处理和质量分析,检查其是否符合规范或技术设计要求.6.0.2 基线解算中所需(de)起算点坐标,可按下列顺序选用:--国家或其它等级高(de)GPS控制网点(de)既有WGS--84坐标值;--国家或其它等级高(de)控制点转换至WGS—84(de)坐标值;-- GPS单点定位观测2h以上(de)平差值提供(de)WGS--84坐标值.6.0.3 当GPS控制网点间距离小于20km时,可不考虑对流层和电离层(de)修正;当大于20km时,每时段应于始﹑中﹑终各观测一次气象元素,并采用标准模型加入对流层和电离层(de)修正.6.0.4 采用M台接收机同步观测时,每一时段应解算出M(M-1)/2条GPS基线向量边,并计算出该观测时间段(de)同步环坐标分量闭合差.当各基线(de)同步观测时间超过观测时间(de)80/100时,其闭合差值应符合式Wx≤(√n/5) ·σ (6﹒0﹒4-1)Wy≤(√n/5) ·σ (6﹒0﹒4-2)Wz≤(√n/5) ·σ (6﹒0﹒4-3)W =√Wx2+ Wy2+Wz2≤(√3n/5) ·σ (6﹒0﹒4-4)式中:W—同步环坐标分量闭合差(mm);σ—弦长标准差(mm);n --同步环中(de)边数.当各基线同步观测时间为观测时间性段(de)40/100-80/100时,其同步环坐标分量闭合差可适当放宽.当各基线同步观测时间少于观测时间段(de)40/100时,应按异步环处理. 6.0.5 由独立观测边组成(de)异步环(de)坐标分量闭合差应符合式(6﹒0﹒5-1)- (6﹒0﹒5-4)(de)规定:Vx≤3√n·σ (6﹒0﹒5-1)Vy≤3√n·σ (6﹒0﹒5-2)Vz≤3√n·σ (6﹒0﹒5-3)V≤3√3n·σ (6﹒0﹒5-4)式中:V—异步环坐标分量闭合差(mm);σ—弦长标准差(mm);n –异步环中(de)边数.6.0.6 同一条边任意两个时段(de)成果互差,应小于GPS接收机标准精度(de)2√2倍.6.0.7 当网中有两个或两个以上已知点时,应按本规范第6﹒0﹒5条(de)规定计算已知点之间(de)附合闭合差.6.0.8 当检查或数据处理时发现观测数据不能满足要求,应对成果进行全面(de)分析,并对其中部分数据进行补测或重测,必要时全部数据应重测.7 GPS控制网平差计算7.0.1 平差时应首先以一个点(de)WGS-84系坐标作为起算依据进行无约束平差,检查GPS基线向量网本身(de)内符合精度、基线向量间有无明显(de)系统误差,并剔除含有粗差(de)基线边.7.0.2 当用M台接收机同步观测时,应从计算出(de)M(M-1)/2条GPS观测边中选取(M-1)条边参加GPS网平差计算.选取(de)原则是:--独立(de)观测边;--网形构成非同步闭合环,不应存在自由基线;--必须不含明显(de)系统误差;--组成(de)闭合环基线数和异步环长度应尽量小.7.0.3 在进行GPS控制网平差前,应根据实际需要选定起算数据和相应(de)地面坐标,并应对起算数据(de)可靠性及精度进行检查分析.7.0.4 GPS控制网可以采用三维约束平差或二维约束平差法.约束平差时,约束点(de)坐标、距离或方位角可作为强制约束(de)固定值,也可作为加权观测值.当采用三维约束平差时,可只假定一个点(de)大地作为高程起算数据.当采用二维约束平差时,应先将三维GPS基线向量转换为二维基线向量.7.0.5 当GPS控制网分为多个投影带,且在分差交界附近联测国家控制点时,可分片进行平差.平差时应有一定数量(de)重合点,重合点位互差不得大于两倍(de)点位中误差.7.0.6 平差结果应输出所选直角坐标(de)三维或二维坐标、基线向量改正数、基线长、方位、点位精度、转换参数及其精度,并同时输出单位权中误差及其它要求输出(de)内容.7.0.7 为计算GPS控制网点(de)正常高,先利用已联测高程(de)GPS点正常高和经GPS控制网平差得到(de)大地高,求其高程异常值,然后采用拟合或插值等方法求其它 GPS点(de)高程异常值和正常高.7.0.8 计算结束后,应对所处理(de)数据及结果进行分析,并写入总结报告.8 成果验收与资料提交8.0.1 GPS测量工作结束后应编写技术总结,并按测绘产品检查验收规定(CH 1002—95)和测绘产品质量评定标准(CH1003—95)(de)要求进行验收.8.0.2 GPS测量工作技术总结应包括:--任务来源、项目名称、施测目(de)、施测单位及施量起讫时间,参加作业人员、工作量及作业简况;--作业依据及技术精度要求;--测区范围与位置、测区概况,测区已有测量资料情况及检核、采用情况;--GPS接收机型号、数量及相应(de)技术参数,仪器检验情况等;--坐标系统与起算数据(de)选定及相应(de)参数;--选点、埋石情况;--野外观测方案、作业中(de)问题、观测成果检查以及执行技术规定情况; --观测数据质量分析与野外检核计算情况;--数据处理软件以及处理过程说明;--平差计算和精度分析;--存在问题和需要说明(de)问题;--各种附表和附图.8.0.3 成果验收(de)重点:--接收机检验方法和结果;--GPS控制网网形设计与联测图;--GPS控制网(de)布设应满足公路路线及大型构造物勘察设计与施工放样(de)要求;--起算数据和坐标系统(de)选择;--野外资料(de)检核与计算;--数据处理、平差过程及其成果精度.8.0.4 提交(de)资料应包括:--测量任务书和技术设计书(或大纲);--GPS接收机检验资料;--卫星可见性预报和观测计划;--GPS坐标成果表;--点之记;--观测手簿和存储介质(包括数据处理过程中生成(de)文件); --平差计算资料和成果磁盘;--GPS联测示意图;--标注有GPS点位(de)1:10000或者1:50000地形图;--所使用(de)原始资料;--技术总结和成果验收报告.附录A 大地坐标系有关资料A1 WGS-84大地坐标系(de)地球椭球基本参数、主要几何和物理常数 A1.1 地球椭球基本参数长半径a=6378m地球引力常数(含大气层)GM=3986005×108m3s-2正常化二阶带谐系数C2.0=-484.16685×10-6地球自转角速度w=7292115×10-11rads-1A1.2 主要几何和物理常数短半径b=6356752.3142m扁率第一偏心率平方e2第二偏心率平方e2椭球正常重力位2s-2赤道正常重力-2A2 1980西安坐标系(de)参考椭球基本参数、主要几何和物理常数A2.1 参考椭球基本参数长半径a=6378140m地球引力常数(含大气层)GM=3986005×108m3s-2二阶带谐系数J2=1082.63×10-6地球自转角速度w=7292115×10-11rads-1A2.2 主要几何和物理常数短半径b=6356755.2882m扁率a=1/298.257第一偏偏心率平方e2第二偏偏心率平方e2椭球正常重力位u0=2s-2赤道正常重力y0=9.780318m s-2A3 1954年北京坐标系参考椭球(de)基本几何参数长半径a=6378245m短半径b=6356863.0188m扁率a=1/298.3第一偏心率平方e2第二偏心率平方e2附录B GPS点之记工程名称:调制:校核:附录D GPS观测手簿工程名称:附录E 本规范用词说明一、本规范条文,要求执行(de)严格程度(de)用词,说明如下:1.表示很严格,非这样做不可(de)用词:正面词一般采用“必须”;反面词一般采用“严禁”.2.表示严格,在正常情况下均应这样做(de)用词:正面词一般采用“应”;反面词一般采用“不应”或“不得”.3.表示允许稍有选择,在条件可时首先应这样做(de)用词:正面词一般采用“宜”或“可”;反面词一般采用“不宜”.二、条文中指明应按其他有关标准、规范执行(de)写法为:“应按……执行”或“应符合……要求或规定”.非必须按所指定(de)标准、规范或其他规定执行(de)写法为:“可参照……”.附件公路全球定位系统(GPS) 测量规范(JTJ/T 066-98)条文说明1﹒总则1.0.1 自1980年第一台商ET用GPS接收机问世以来,随着GPS工作卫星(de)不断入轨和GPS接收机性能(de)不断提高和改进,GPS测量技术已广泛应用于我国国民经济建设(de)各个部门.公路测设部门是80年代后期开始运用GPS测量技术(de).由于公路建设(de)特点,无论是在测量原则,还是在测量精度和作业方法等方面均有别于其它行业.因此,为了将GPS商量技术更好地应用于公路工程建设,有必要制定本规范.目前GPS测量技术在公路测设中主要用于建立公路工程测量控制网.最近推出RTK方法后虽可使运用范围扩大,但由于尚处于推广阶段,故本规范规定(de)应用范围是公路测量控制网(de)布设与测量.作为建立公路测量控制网(de)主要手段之一,GPS定位技术应用于公路建设(de)主要方法是静态相对定位及快速静态定位.因为这两种方法能够获得高精度(de)定位,故本规范规定了按静态相对定位及快速静态定位建立测量控制网(de)方法.1.0.4 公路勘测规范(JTJ 061)中根据公路等级及所需(de)测量精度等规定了相应(de)控制测量等级.GPS测量作为建立公路测量控制网(de)有效手段之一,为保证各规范间(de)衔接和一致,GPS控制网(de)等级是根据公路勘测规范(JTJ 061)中相对应(de)具体规定确定(de).1.0.6 GPS测量(de)时间系统采用协调世界时(UTC),而实际作业人员为调度方便起见,一般在记录时采用北京标准时(BST).因此本规范规定在“GPS观测手簿”中(de)有关观测作业计划及开关机时间可采用北京标准时(BST).两者可用BST=UTC+8h式进行换算.3 GPS控制网分极与设计3.1.1 GPS控制网分级GPS测量技术具有精度高、灵活性强等特点,各等级(de)观测方法和观测时间没有很大差异,但为了和公路勘测规范(JTJ061)相适应,根据公路勘测(de)特点,将GPS控制网分为一、二、三、四级共四个等级.表3.1.1 GPS控制网与公路平面控制测量等级关系GPS控制网等级与主要技术指标中有关每对相邻点间(de)平均距离,是根据公路勘测中(de)实际情况确定(de).如四级GPS控制网主要是直接作为高速公路(de)施工控制网,其平均距离规定为500m较为适宜;三级GPS控制网主要是作为高速公路(de)首级控制网,测设时还需在此基础上加密低一级控制网,GPS控制网中(de)点作为加密低一级控制网(de)起算数据,其每对相邻点间(de)平均距离规定为1km较为适宜;一、二级GPS控制网,主要应用于大型桥梁、隧道等测量控制网(de)建立,其实际作业中要求相邻点间(de)平均距离较长.表中固定误差和比例误差(de)规定是既考虑到施测控制网(de)等级,又结合目前接收机发展(de)状况而确定(de).点位中误差是指GPS控制网中(de)点相对于联测(de)高等级控制点(de)相对点位误差.3.2 GPS控制网设计3.2.2 为了使GPS控制网投影长度变形值小于2.5cm/km,必要时可采用公路抵偿坐标系.公路低偿坐标系除可移动中央子午线外,亦可选择自己(de)参考椭球.一般情况下该椭球(de)中心、轴向和扁率与国家参考椭球相同,只不过其长半径有一改正量.设某公路抵偿坐标系位于海拔高程为h(de)曲面上,该地(de)大地水准面差距为ξ,则该曲面离国家参考椭球(de)高度(hn)为:长半径(de)改正量为:式中: da——椭球长半径(de)改正量(m)a——国家参考椭球(de)长半径(m)N——抵偿坐标系控制网原点在国家参考椭球中卯圈(de) 曲率半径(m)则公路抵偿坐标系参考椭球(de)长半径aL为:GPS定位成果是相对于WGS-84椭球而言(de),地方抵偿坐标系坐标是相对于某一地方椭球而言(de),因此必须将GPS定位成果投影成与国家大地测量控制网或地方独立控制网相匹配容.其要点是使 GPS基线向量网与常规地面测量控制网原点重合,起始方位一致,这样使两者在方向和尺度上均具有可比性.两者在起始方向上(de)偏差可利用地面网原点至起始方位点(de)大地方位角A0和GPS控制网相应方位上(de)大地方位角A求得.显然,两坐标系在起始方向上(de)偏差对转换精度具有直接(de)影响.坐标系转换关系(de)确定+是根据两坐标系公共点(de)坐标来确定(de),其公式如下:Xis XitZis Zit式中:T=[△X △Y △Z K εx εy εz]1 0 0 Xit 0 -Zit YiC= 0 1 0 Yit Z 0 -Xit0 0 1 Zit -Yit Xit 0Xit ,Yit,Zit,;Xit,Yit,Zit—公共点在两坐标系中(de)坐标;εx,εy,εz—两坐标系间(de)旋转参数;K—两坐标系间(de)尺度比.影响转换参数求定精度(de)主要因素有:(1)地面网观测值与卫星网观测值不匹配;(2)地面网坐标精度和卫星网(de)精度;(3)公共点(de)分布情况等.3.2.4 “必要时”是指东西方向(de)路线过长时,即使采用抵偿坐标系,仍然难以保证其投影长度变形值小于2.5cm/km,为此,可将整个路线分成多个投影带.在分带附近布设一对相互通视(de)GPS点,是为使采用其它测量方法进行加密和扩展时两分带在该处(de)坐标能统一和唯一.3.2.5 一项公路工程中往往分布着多种大型构造物,如桥梁、互通立交、隧道等,为保持GPS控制网精度(de)一致性,使用构造物测量控制网与路线测量控制网协调一致,无论其等级如何,应一次设计、布设、平差.而对于特殊构造物,由于它们对测量精度要求高,故在进行GPS控制网平差时,可以先将特殊构造按首级控制网平差,然后把首级控制网点作为固定点,对次级网平差.为提高GPS控制网(de)精度,也可将两级网联合进行统一平差.3.2.6 GPS控制网作为公路工程项目(de)首级控制网时,每隔5km应布设一对相互通视(de)GPS点,是为在采用其它测量方法进行加密时可布设成附合导线(de)形式.当GPS控制网直接作为施工控制网时,每一点至少与一个相邻点通视,是为了便于施工放样顺利进行.3.2.7 衡量GPS控制网测量质量高低(de)主要指标与其它测量方法一样,同样是精度和可靠性.采用不同(de)布网方法,其总基线数、独立基线数、剩余独立基线数均不会相等,其同步环闭合条件、异步环闭合条件亦不相同,因而控制网(de)精度、可靠性等也不同.显然,闭合条件越多,其精度和可靠性越好,因此在布网时应尽可能使整个网中包含较多闭合条件.3.2.8 评定基线处理结果质量(de)重要依据之一是非同步环闭合差.为避免基线过多时误差可能相互掩盖,所以组成非同步环(de)基线数不宜过多;根据经验与测算,对不同等级(de)基线数作了具体(de)规定.3.2.9 所谓网连式布网,是指相邻同步图形之间有两个以上公共点相连接(de)布网方法;所谓边连式布网,是指相邻同步图形之间仅有两个公共点相连(de)布网方法;所谓铰链导线式布网是指沿路线方向,布设成具有多个结点且同步环与同步环相套(de)布网方法;所谓点连式布网,是指相邻同步图形之间仅有一个公共点连接(de)布网方法.显然依图形几何强度和可靠性指标由强到弱(de)布网方式分别为网连式、边连式、铰链导线式和点连式,据此规定了各级网(de)布网方式.。
公路工程测量中坐标系的建立
![公路工程测量中坐标系的建立](https://img.taocdn.com/s3/m/3e8d23340912a216147929f6.png)
我 们 知 道 ,长 度 变 形 随 边 离 中 央 子 午 线 的距 离
区边缘 ,或 测 区中央 ,或测 区 内某一 点 的子午 线作
为 中央子午 线 。
(m y )的平 方 和随高 程 ( 成 正 比增 大 ,且这 两项 日 ) 改正 数为 一 正 一 负 ,在 化 算 中可 抵 消部 分 变 形 值 。
用 G S技术 时 ,采 用该 法是不太 适 宜的 。特别 是在 P
东 西 向的长线 路公路 建设 中更不 宜采 用该法 。
( . 0 2 y 一 1 . H)×1 0 0 1 3 57 0 ( 2)
( ) 选 择 “ 偿 投影 带 ” 按 高 斯 正 形 投 影 计 3 抵 算 的平 面 直角坐 标系 。 在这种 坐标 系中 ,把地 面 观测 结果 归 算 到参 考 椭球 面上 ,但投影 带 的中央 子午线不 按 国家 3 度 带 。 的划分 方法 ,而是 依据 补偿 高程 面 归算 长度 变 形 而
为 了使 工程 控制 网 的坐标 能不 加 改正 地 用 于实
际放 样 ,公 路工 程 中通常根 据 工程 测 量 的特 点 和要 求 ,建立 自己 的 区域 坐 标 系 。 而 区 域 坐 标 系 的 建 立 ,关键 在于合 理地 选择投 影带 和投 影面 。
1 T程 测 量 中 几 种 可 能 采 用 的坐 标 系 及 选 用 方 法
计 算 的平 面直 角坐标 系 。这是 综 合第 二 、三两 种 坐 标 系长 处 的一 种任 意高斯 直 角 坐标 系 。该 法是 目前
. ㈩ s
,
形 投影 ,但 投影 的高程 面不是 参 考椭 球 面而 是依 据 补 偿 高斯正 形 投 影 长度 变 形 而 选 择 的 高程 参 考 面 。 在这 个 高 程 参 考 面 上 ,长 度 变 形 为 零 。根 据 文 献
一种“连续挂靠坐标系”构建的技术方法
![一种“连续挂靠坐标系”构建的技术方法](https://img.taocdn.com/s3/m/c4fc3761effdc8d376eeaeaad1f34693dbef107c.png)
一种“连续挂靠坐标系”构建的技术方法苏秀永1,2,石中凯1,2,胡俊凯1,2,吴文超1,2(1.中国电建集团华东勘测设计研究院有限公司,浙江杭州310014;2.浙江华东测绘与工程安全技术有限公司,浙江杭州310014)A Technical Method of Constructing “Continuous Attached Coordinate System ”SU Xiuyong 1,2,SHI Zhongkai 1,2,HU Junkai 1,2,WU Wenchao 1,2(1.Power China Huadong Engineering Co.,Ltd.,Hangzhou 310014,China;2.Zhejiang Huadong Mapping and Engineering Safety Technology Co.,Ltd.,Hangzhou 310014,China)Abstract:In the area with high altitude and great fluctuation,it is generally necessary to select appropriate projection surface and projection belt to establish multiple independent coordinate systems to control comprehensive side length deformation to meet specification requirements,to en-sure the accuracy of large-scale topographic mapping and construction sample drawing.In order to facilitate mapping,drawing and construction setting out in survey and design stage,it is necessary to integrate multiple independent coordinate systems into one coordinate bined with the fourth-class GPS control survey in a newly built highway project in Southwest China,a construction method of “continuous attached co-ordinate system ”was explored.The results show that:the side length difference is less than 10mm,and the relative error of side length is less than 1/300000,which fully meets the requirements of engineering mapping and construction setting out.The “continuous attached coordinate system ”solves the tedious problem of frequent conversion when using the traditional multi elevation compensation projection plane coordinate system,and can be directly connected with the original national (local)surveying and mapping results.Key words:length deformation,projection surface,projection belt,independent coordinate system,attached coordinate system,“continuous at-tached coordinate system ”,reliability摘要:在海拔高、起伏大的地区,新建长距离带状公路,一般需要选择适当的投影面和投影带建立多个独立坐标系,从而控制边长综合变形满足规范要求,以保证大比例尺地形图测绘和施工放样的精度。
高速公路测绘中坐标系及投影面的选择
![高速公路测绘中坐标系及投影面的选择](https://img.taocdn.com/s3/m/e7f5b27c5022aaea998f0fe0.png)
3期 6月
公路工程 HighwayEngineering
Doi:10.19782/j. cnki.1674-0610.2019.03.017
Vol.44,No.3 Jun.,2019
高速公路测绘中坐标系及投影面的选择
许 云 燕 1,孙 现 申 2,孙 树 芳 1
(1河南测绘职业学院,河南 郑州 450000; 2解放军信息工程大学,河南 郑州 450000)
1 坐 标 系 统 选 择 方 法
在高速公路的勘察测绘 中 [1-3] ,最 主 要 的 步 骤 是控制其边长投影改正量。依据相关规定,测量区
[收 稿 日 期 ]2018-12-19 [基 金 项 目 ]2017年 河 南 省 教 育 厅 教 学 改 革 项 目 (2017ZJC15024) [作 者 简 介 ]许 云 燕 (1976-),女 ,河 南 新 乡 人 ,讲 师 ,硕 士 ,研 究 方 向 :工 程 测 量 。 [引 文 格 式 ]许 云 燕 ,孙 现 申 ,孙 树 芳 .高 速 公 路 测 绘 中 坐 标 系 及 投 影 面 的 选 择 [J].公 路 工 程 ,2019,44(3):88-91.
XUYY,SUNXS,SUNSF.Studyonsynchronousconstructionmethodoftowerbeam ofhighrisepiersandlongspanasymmetrical cablestayedbridges[J].HighwayEngineering,2019,44(3):88-91.
图 1 抵偿投影面和参 考 椭 球 面、 城 市 平 均 高 程 面 关 系 简 要示意图
Figure1 Schematicdiagram ofcompensationprojectionplane andthereferenceellipsoid, theaveragehigh into thecity
公路测量坐标系的选择
![公路测量坐标系的选择](https://img.taocdn.com/s3/m/bf353c473c1ec5da50e27055.png)
摘要:高等级公路勘测主要包括平面控制测量、高程控制测量、地形测量、路线定线与放线、中桩测量、横断面测量,以及路基路面防护排水勘查、沿线设施勘测与调查、环境保护勘测与调查、临时工程勘测与调查、征地动迁勘测与调查等内容。
本文将介绍和研究上述前六项内容。
关键词:高等级公路;勘测;内容一、平面控制测量1、测量坐标系为了确定地面点的空间位置,需要建立测量坐标系。
常见的测量坐标系有大地坐标系,高斯平面直角坐标系和WGS—84坐标系。
⑴大地坐标系。
地面上一点的位置(如P),可用大地坐标(L,B)表示。
大地坐标系是以参考椭球面作为基准面,以起始子午面(即通过格林尼治天文台的子午面)和赤道面作为在椭球面上确定某一点投影位置的两个参考面。
如图1所示,过地面某点的子午面与起始子午面之间的夹角,称为该点的大地经度,用L表示。
规定从起始子午面起算,向东为正,由0°至180°称为东经;向西为负,由0°至180°称为西经。
过地面某点的椭球面法线(PP)与赤道面的交角,称为该点的大地纬度,用B表示。
规定从赤道面起算,由赤道面向北为正,从0°到90°称为北纬;由赤道面向南为负,从0°到90°称为南纬。
⑵高斯平面直角坐标系。
投影面上,中央子午线和赤道的投影都是直线。
以中央子午线和赤道的交点O作为坐标原点,以中央子午线的投影为纵坐标轴X,规定X轴向北为正;以赤道的投影为横坐标轴Y,Y轴向东为正,这样便形成了高斯平面直角坐标系,如图2所示。
图1大地坐标系图2高斯平面直角坐标系高斯投影中,除中央子午线外,各点均存在长度变形,且距中央子午线愈远,长度变形愈大。
为了控制长度变形,将地球椭球面按一定的经度差分成若干范围不大的带,称为投影带。
带宽一般分为经差6°、3°,分别称为6°带、3°带。
⑶WGS—84坐标系。
如图3所示,图3 空间直角坐标系以O为原点,起始子午面与赤道面交线为X轴,赤道面上与X轴正交的方向为Y轴,椭球体的旋转轴为Z轴,指向符合右手规则。
公路工程测量独立坐标系的建立方法探讨
![公路工程测量独立坐标系的建立方法探讨](https://img.taocdn.com/s3/m/047048b2f121dd36a32d8267.png)
近年来 , 高 等 级 公 路 工 程 建 设 发 展 迅
符, 但在 实 际 工 程 中 , 由于 测 区 距 中央 子 午 制 在 一 个 微 小 的 范 围内 , 能 够 满 足 工 程 施
速 , 公路工 程横跨东 西 南北 , 具 有 测 区 带 线 的 距 离 和 参 考 椭 球 面 的 位 置 , 这 两 项 将 工 放 样 的 精 度 需 要 。
变形 问 题 。 这 种 变 形 主要 由 实 测 长 度 投 影
到参 考 椭球 面 上 的变 形V 和 参考 椭 球 面上 的边 长 投 影 到 高 斯 平 面上 的 变 形V … ( 1 ) 实 测 边 长 归算 到 参 考椭 球 体 面 上 的
变形 影 响 :
V 一
式 中: s 为实测边长度;
采用统一 3度带投影变形 ( c m/ k m)
7. 7 0
l 4. 6 7 l 6. 3 2
E0l 8
E0 2 4 E0 2 9
3 0. 4 3
3 0 . 3 6 3 0 . 3 l
l l 2. 23
l 1 2. 28 1 1 ’ 6
99. 21
皿圆
测 绘 工 程
公 路 工 程测 量 独 立 坐标 系 的建 立 方法 探 讨 ①
李献 民 李 夕明 ( 宿州市 土地勘 测规划 设计 院 安徽宿 州 2 3 4 0 0 0 ) 摘 要: 坐标 系的选择是所 有测量工作的基 础, 关 系着项 目 施 工的整体 质量 , 因此必 须分析 测区各位置的投 影变形 , 以使建立 的坐标 系能 够满足规 范要 求的变形精度 。 文章结合 湖北省荆 门市某一级公 路 测量 的地理范 围和 工程建设情 况, 分析独立 坐标 系建立对 - r  ̄ - r 质量 的影响 , 介 绍工程控 制 网的投 影 变形问题 及投 影 带和抵偿投 影 面的选择 。
柬埔寨76号公路施工控制坐标系的建立
![柬埔寨76号公路施工控制坐标系的建立](https://img.taocdn.com/s3/m/28cc086c783e0912a2162ae8.png)
生活水 平 , 有重 大意 义 。 具
安坐标 系椭 球面 上 的高斯 正 形 投 影任 意 带 平面 直 角 坐标 系, 这样 我们 就 将无 约 束 网平 差后 得 到 的 WG 一8 S 4大地
坐标 , WG 一 4椭球为参考椭球进行高斯正形投影 。 以 S 8
第3 4卷 第 2期
21 0 1年 4 月
测 绘 与 空 间 地 理 信 息
GE oMA C & S AT A NF TI s P I L I oRMA I T oN EC NO OG T H L Y
Vo . 4, 1 3 No. 2
Ap . 0 1 r ,2 1
柬埔 寨 7 6号 公 路 施 工 控 制 坐 标 系 的 建 立
2 h nKa n ier g& T c n lg op rt nMCC, h n a g10 1 , ia .S e nE gn ei n eh oo yC ro a o i S e y n 10 6 Chn )
Ab t a t o i e i o t ls r e n i e r g o a . 6 i mb d a h sp p r i u t td h w t sa l h c n r l o r s r c :C mb n d w t c n r u v y e g n e i fRo d No 7 n Ca o i ,t i a e l sr e o o e tb i o t o - h o n l a s oc d n t y tm n h tt e c n i e e n t e sr u e i g e gn e n . i ae s se a d w a o b o s rd i h t p s r yn n i e r g d i v i
公路坐标使用手册
![公路坐标使用手册](https://img.taocdn.com/s3/m/24eb2b8d83d049649a665806.png)
公路施工测量坐标计算系统使用手册速通测绘使用手册一、程序运行平台:Win9X/WinME/WinNT/Win2000/WinXP。
二、程序开发平台:VC++.NET三、主要功能:积木法坐标计算、交点法坐标计算、互通式立体交叉、纵断面高程计算、放样辅助计算、交会定点计算、附闭合导线严密平差及近似平差、坐标转换、路基土石方计算、报表设计等。
漂亮的AutoCad 输出功能, 可以将原始数据发送到AutoCad,生成.dwg文件,生成的AutoCad平面线位图包含百米桩、公里桩、起讫桩号及主点标志(如ZY、YZ、ZH、HY、YH、HZ、YY、GQ)等,生成的图形坐标系为大地坐标系,图形按大地坐标系绘制,系统提供了“世界坐标系→大地坐标系”、“大地坐标系→世界坐标系”间的转换,系统支持整座互通N个匝道的绘图及AutoCad输出,可用于投标平面图及施工平面图的布置。
完整的打印预览及报表生成功能,在预览页面可将报表保存为EXCEL形式或网页形式。
报表中的“单位、制表、复核”等参数在系统菜单栏的“报表设置”项中设置。
对于“逐桩坐标报表”有两种选择,根据需要可选择全部打印或只打印中桩桩号、坐标及方位角,请在菜单栏的“报表设置”项中设置。
坐标计算时,可计算任意角度的边桩,边桩连线与中点切线右夹角默认为90°(在“右桩夹角(dms)”栏内不填写数据时),如边桩夹角为35°15′25.5″,应在“右桩夹角(dms)”栏内填入35.15255。
同时系统在加桩时可一次计算多个边桩,桩间米数为自动计算时桩的间距,支持“桩间米数”与“加桩桩号”同时输入计算,逐桩计算时系统会将各主点坐标一并输出,支持多个“加桩桩号”一次输入计算,如进行单独加桩计算时可删掉桩间米数,仅输出加桩结果,填写如下图:如上图填写可一次计算出20m倍数的中桩及K0+65、K0+126、K0+248、K0+397处6m、14m、23m、30m处左边桩及4m、8m、25m、30m处右边桩,其中右边桩与切线夹角为35°15′25.5″,计算结果如下图:四、软件界面说明软件采用类似Windows资源管理器界面,易上手,好操作,树形功能选择,表格式数据输入,真正体(一)菜单栏说明菜单栏由文件、数据、图形、报表、帮助五大主菜单组成,如下图:1、文件菜单包含六个一级子菜单,如下图:新建项目:清空当前数据表格,重新输入原始数据;打开项目:打开一个以前保存的.stc文件,数据自动导入原始数据表;保存项目:将当前原始数据表中的数据保存为.stc磁盘文件;打印预览:预览当前数据区显示的原始数据或计算结果,查看报表中打印格式;打印:打印当前数据区显示的原始数据或计算结果;退出系统:关闭应用程序;2、数据菜单包含六个一级子菜单,如下图:输出计算结果:单击此菜单,程序对当前数据区的原始数据进行计算,并在数据区显示计算结果;原始数据显示:单击此菜单,在数据区显示原始数据;计算结果显示:单击此菜单,在数据区显示计算结果;清空当前表格:删除数据区当前表格中的所有数据,删除后数据不能恢复;删除当前记录:删除数据区当前表格中一条选中的记录,删除后数据不能恢复;插入一条记录:在数据区当前表格中一条选中的记录前插入另一条记录,如果您在输入数据时丢掉一条记录,可以利用此菜单加入;3、图形菜单包含四个一级子菜单,二个二级子菜单,如下图:本地图形预览:单击此菜单,可以在数据区绘制图形进行预览;输出ACAD文件:单击此菜单,可以启动AutoCAD,将数据发送至AutoCAD系统生成图形,软件自动将AutoCAD 系统当前模型窗口的“世界坐标系”转换为“大地坐标系”,所绘制图形的坐标均为大地坐标;导出位图文件:单击此菜单,可以将数据区中绘制的图形保存为.bmp位图文件,供其它图形软件打开;世界坐标系→大地坐标系:启动AutoCAD,单击此菜单,可以将AutoCAD系统当前模型窗口中的“世界坐标系”转换为“大地坐标系”;大地坐标系→世界坐标系:由软件生成的AutoCAD文件已将坐标系转换为“大地坐标系”,在“大地坐标系”下绘制图形如直线、圆、修改文字等一切正常,如重新加入文字时生成的文字因坐标转换会出现文字翻转、镜向等情况,这时如果单击此菜单将坐标系转换为“世界坐标系”, 重新加入文字就会一切正常,全部处理完毕再将坐标系转换为“大地坐标系”。
公路测量坐标系选择及坐标转换方法
![公路测量坐标系选择及坐标转换方法](https://img.taocdn.com/s3/m/af3fb6ee85254b35eefdc8d376eeaeaad1f31620.png)
公路测量坐标系选择及坐标转换方法一、公路测量坐标系选择在公路测量中,选择合适的坐标系是非常重要的,它直接影响到测量结果的准确性和后续数据处理的方便性。
常见的公路测量坐标系有以下几种:1. 平面直角坐标系:平面直角坐标系是最常用的坐标系之一。
它以测量起点为原点,建立一个平面,将测量线路分为东西方向和南北方向两个坐标轴。
这种坐标系适用于较小范围的测量,精度较高。
2. 地理坐标系:地理坐标系使用经度和纬度来表示位置,是一种全球通用的坐标系。
在公路测量中,如果需要与其他地理信息系统进行数据交换,就需要使用地理坐标系。
但由于地理坐标系的测量精度较低,一般不适用于高精度的公路测量。
3. 工程测量坐标系:工程测量坐标系是根据具体工程测量任务而建立的坐标系。
它可以根据需要选择不同的坐标原点和坐标轴方向,以适应具体的测量需求。
工程测量坐标系一般用于较大范围的测量,如公路工程中的大地坐标系。
二、坐标转换方法在公路测量中,常常需要进行不同坐标系之间的转换。
以下介绍几种常见的坐标转换方法:1. 平面直角坐标系和地理坐标系的转换:平面直角坐标系和地理坐标系之间的转换需要考虑地球的曲率和投影等因素。
常用的转换方法有高斯投影法和椭球面坐标转换法。
高斯投影法是将地理坐标系投影到平面直角坐标系上,常用于大范围的测量。
椭球面坐标转换法是将地理坐标系的经纬度转换为平面直角坐标系的x、y坐标,常用于小范围的测量。
2. 平面直角坐标系和工程测量坐标系的转换:平面直角坐标系和工程测量坐标系之间的转换可以通过坐标原点和坐标轴的平移和旋转来实现。
一般先将平面直角坐标系的原点平移到工程测量坐标系的原点,然后根据需要进行坐标轴的旋转,最后得到工程测量坐标系的坐标。
3. 地理坐标系和工程测量坐标系的转换:地理坐标系和工程测量坐标系之间的转换需要考虑地理坐标系的经纬度和高程与工程测量坐标系的坐标之间的关系。
常用的转换方法有大地坐标系转换法和高程转换法。
公路全球定位系统(GPS)测量规范
![公路全球定位系统(GPS)测量规范](https://img.taocdn.com/s3/m/b57fcbef7fd5360cbb1adb78.png)
1 总则为规定利用全球定位系统﹙Global Positioning System, 缩写为 GPS﹚建立公路工程GPS测量控制网的原则﹑精度和作业方法,特制定本规范。
本规范是依据《公路勘测规范》﹙JTJ 061),并参照《全球定位系统(GPS)测量规范》(CH 2001-92)的有关规定, 在收集﹑分析﹑研究和总结经验的基础上制定的。
本规范适用于新建和改建公路工程项目的各级GPS控制网的布设与测量。
采用全球定位系统测量技术建立公路平面控制网时,应根据《公路勘测规范》(JTJ 061)中规定的平面控制测量的等级﹑精度等确定相应的GPS控制网的等级。
GPS测量采用WGS-84大地坐标系。
当公路工程GPS控制网根据实际情况采用1954年北京坐标系﹑1980西安坐标系或抵偿坐标系时,应进行坐标转换。
各坐标系的地球椭球基本参数﹑主要几何和物理常数见附录A.高程系统根据实际情况可采用1956年黄海高程系或1985国家高程基准.GPS测量时间系统为协调世界时(UTC). 在作业过程中,附录D "GPS观测手薄" 中的开﹑关机时间可采用北京时间记录.GPS接收机及附属设备均按有关规定定期检测.GPS控制测量应按有关规定对全过程进行质量控制.在提供GPS控制测量成果资料时,应执行保密制度中的有关规定.2 术语基线Baseline两测量标志中心的几何连线。
观测时段 Observation sessionGPS 接收机在测站上从开始接收卫星信号进行观测到停止观测的时间长度。
同步观测 Simultaneous observation两台或两台以上GPS接收机同时对一卫星进行的观测。
同步观测环 Simultaneous observation三台或三台以上GPS接收机同步观测所获得的基线向量构成的闭合环。
独立基线 Independent baseline由独立观测时段所确定的基线。
独立观测环 Independent observable loop由独立基线向量构成的闭合环。
公路勘察测绘中抵偿面任意带高斯投影坐标系的建立
![公路勘察测绘中抵偿面任意带高斯投影坐标系的建立](https://img.taocdn.com/s3/m/248f88d358fb770bf68a55bd.png)
路桥科技173公路勘察测绘中抵偿面任意带高斯投影坐标系的建立万 飞(安徽省交通勘察设计院有限公司,安徽 合肥 230011)摘要:坐标系统选择在公路勘察测绘中是一项重要的工作,合理的坐标系统关乎到整个工程质量。
基于此,本文介绍了具有抵偿面的任意带坐标系重要性及其设计原理,阐述了公路勘察测绘中抵偿面任意带高斯投影坐标系的建立分析,以期通过坐标系的选择,满足线路工程规划、勘察、设计要求,提高公路线路测量的精准度。
关键词:公路勘察测绘;抵偿面;高斯投影新时期,国家推出交通强国战略,公路、铁路、大型桥梁、隧道等大型工程不断兴起。
这些大型工程的在规划、勘察、设计及施工都要在一个统一的平面坐标系统中进行。
在公路实际测量中,经常跨越高斯投影平面坐标3°投影带,由于线性工程里程较长,高差变化较大,因此,需要将公路勘测数据进行高斯投影改化,这就给测图和用图带来不便,如控制网实测边长应化算为高斯平面边长。
测图时地面长度化算为高斯平面边长要进行投影差改正,另外地面点如果高出椭球面一定高度,则地面长度归算至椭球面上也要投影差改正。
综合上面两项投影差的改正即总投影差,其决定了投影变形大小,为了满足测区内投影长度变形小于2.5cm/km 规定,有时需选择局部坐标系。
1 抵偿面任意带高斯投影坐标系的构建在公路勘察测绘中的必要性 在公路建设初期,线路的勘测设计是关键因素,我国很多规划的高速公路东西跨越1-2两个投影带,因此很难避免长度变形问题,合理的策略应用,能够减少公路线路测量中的变形量[1]。
为把线路长度变形量控制在合理范围内,必须结合公路测量精度标准、测区精度变化范围,建立与测区相适应的坐标系统。
抵偿面任意带高斯投影坐标系是公路勘察测绘工作的基础,对获取观测数据结果有重要作用。
为提高测量精准度,减少误差,在工程测量时通常采用统一的坐标系统[2]。
在高速公路工程建设中,通过拟定的直角坐标系对公路勘察测绘进行分析,对于构建抵偿面任意带高斯投影坐标系、提高公路线网建设的可靠性、控制投影长度有重要意义。
公路测量坐标系的建立
![公路测量坐标系的建立](https://img.taocdn.com/s3/m/c40fcd6ef12d2af90342e657.png)
摘要】本文以公路测量为例,较详细地论述了在线路测量中应考虑的变形因素,以及解决变形的办法,详细地叙述了建立独立坐标系的作用及建立这种坐标系的六种方法,并介绍了因提高归化高程面而产生新椭球后的一些椭球常数的计算方法和步骤。
此外,本文还对当路线跨越相邻投影带时,需要进行相邻带的坐标换算这一问题进行了阐述。
【关键字】独立坐标系高斯投影带抵偿高程面新椭球常数坐标转换归化高程面线路控制测量中坐标系统的建立与统一方法第一章概述铁路、公路、架空送电线路以及输油管道等均属于线型工程,它们的中线统称线路。
一条线路的勘测和设计工作,主要是根据国家的计划与自然地理条件,确定线路经济合理的位置。
为达此目的,必须进行反复地实践和比较,才能凑效。
线路在勘测设计阶段进行的控制测量工作,称线路控制测量,在线路控制测量过程中,由于每条线路不可能距离较短,有的可能跨越一个带,二个带甚至更多,所以,在线路控制测量中,长度变形是一个不可避免的问题,但我们可以采取一些措施来使长度变形减弱,将长度变形根据施测的精度要求和测区所处的精度范围控制在允许的范围之内。
最有效的措施就是建立与测区相适应的坐标系统.坐标系统是所有测量工作的基础.所有测量成果都是建立在其之上的,一个工程建设应尽可能地采用一个统一的坐标系统.这样既便于成果通用又不易出错.对于一条线路,如果长度变形超出允许的精度范围,我们将建立新的坐标系统加以控制.这就涉及到一个非常关键的问题,既,坐标系统的建立与统一.对于不同的情况,我们可以采用适应的方法尽可能建立统一的坐标系统,且使其长度变形在允许范围之内.本文以公路控制测量为例,详细论述了线路控制测量中坐标系统的建立与统一方法.第二章坐标系统的建立当对一条线路进行控制测量时,首先应根据已有资料判断该测区是否属同一投影带和长度变形是否在允许范围之内.这样我们就可以判断是否需要建立新的坐标系统和怎样建立,下面对此进行详细讨论.§2.1 相对误差对变形的影响与国家点联测的情况:我们的每项测量工作都是在地球表面上进行的,而要将实地测量的真实长度归化到高斯平面上,应加入二项改正.这样就改变了其真实长度,这种高斯投影平面上的长度与地面长度之差,称之为长度综合变形,其计算公式为,£=+Ym²*S/2R²-Hm*s/Ra取:R=Ra=6371Km.S=s将其写成相对变形的形式并代入数子:£/s=(0.00123y²-15.7H)*10y:测区中心横坐标(Km)H:测区平均高程(Km)依据我国的工程测量规范规定,建立平面控制网的坐标系统应该保证长度综合变形不超过2.5cm/km.(相对变形不超过1/40000)。
建立公路控制测量坐标系方法的探讨
![建立公路控制测量坐标系方法的探讨](https://img.taocdn.com/s3/m/711c07797fd5360cba1adbc3.png)
_羔s番 十 一s
为了计算方便 , 又不 致损 害必要精度 , 以将 可 椭球 视为 圆球 , 半径 R R ≈ 37 m, 取 不 同 其 ≈ A 6 1k 又 投影面上的同一距离近似相等 , S , 即 ≈s将上式写 成相对 变形 的形式 , 为 : 则
4 .保持 国家统一的椭球面作投影 面不变 , 选 择“ 意 投影 带” 按高 斯投 影计 算 平 面直 角 任 ,
△ 一 +豢 + s 纂s s丢 s 。
当 S 7 m 和 Y < 3 0k 时 ( 。 边 缘 ) 公 < 0k 5 m 6带 ,
常采用 15 北京坐标系坐标或 18 西安坐标系 , 94 90
按标 准 3或 6投 影 带划 分 ; 公路 控 制 测 量却 只 要 。 。 而 满 足其 坐标 系统 的投 影 变形 足够 小 即可 , 不 拘 束 并 于按标 准 3或 6投 影带 划 分 ; 。 。 投影 变 形 小 于控 制 测 量要求 精度 的 15 / /  ̄12时 , 以忽 略之 ,公 路 勘测 可 《 规 范 J 0 1 9 明确 规 定 : 面 控 制 网 的坐 标 系 TJ6 —9 》 平
胡世龙, 巨平 许
( 安徽省地质测绘技术 院, 安徽 合 肥 2 0 2 ) 3 0 2 摘 要 近年 来, 公路控制测量 中普遍采用 GP S测 量, 多数测绘单位都是 按照 国 家控 制测 量的方法和要 求进行布
设、 测量 , 没有 考虑公路 测量的特 殊性。这样就存在 一个 问题 : 工单位现 场用全 站仪 实测 某两点之 间的距 离与 用 施 坐标反算 的距 离相 差很 大, 无法满足作为工程施 工的要 求 。针 对这一 问题 , 文就如何 建 立公 路控 制测量 坐标 系 本
公路勘察GPS RTK测量中坐标系定义方法
![公路勘察GPS RTK测量中坐标系定义方法](https://img.taocdn.com/s3/m/3a5b7ccdaa00b52acfc7ca9a.png)
[] B o nE Ra dMal k . v la o So e 2 rw n l i s B E a t no tn — c R ui f o — t e C nati So e Ma x A p at ] T R, n s n o t n t - t sh [ . R o c n i r l J
o o e r sh lJ. A T,19 ,2 ( ) — fr tn txA p at]A P s Ma i [ 9 7 6 3 :8
1. 2
低矿 料 的 内摩 擦力 ,而且 会显 著 降低其 粘结 力 ,从 而 导致沥 青混 凝 土强度 的降低 。
43 控 制 集料 的级 配和 密 实度 .
1 9 ,3 ( ) 3 4 . 9 8 5 6 :4 — 6
适 当增 大 集 料 的粒 径 ,可 以提 高抗 车 辙能 力 。
沥 青 混 合 料 的密 实 度 决 定 着其 空 隙 率 ( T 的 大 V M) 小 ,密 实度 越大 ,空 隙率 越小 ,混合 料 的抗 辙槽 能
力 就 越 强 ,但 V M也 不 能 太 小 ,S pra e 为 , T u ep v 认 当V M< %时 ,路面 的抗 车 辙能 力 明显下 降 。 T 4 44 控 制 沥青 面层 的厚 度 . 半 刚性 基 层的沥 青 面层厚 度不 宜太 大 ,厚的沥 青面 层容 易产 生车辙 ,但 也不 宜过 薄 ,否则 沥青 面 层容 易损坏 基层 ,出现沥 青 面层底 部开 裂现象 。国 e ar 3 or R W y oa Sr g nn dR p i e h a
o o u r c e i g a C b n F b rRen o c d fa C l mn B a k t Usn a o i e i f r e r
复杂地形条件下公路工程平面坐标系的建立方法研究
![复杂地形条件下公路工程平面坐标系的建立方法研究](https://img.taocdn.com/s3/m/aa3e001a68eae009581b6bd97f1922791688bec1.png)
复杂地形条件下公路工程平面坐标系的建立方法研究
陈明晶
【期刊名称】《测绘与空间地理信息》
【年(卷),期】2024(47)4
【摘要】为满足公路工程的勘察设计及后期现场施工的需要,建立适宜的平面坐标系是一项极具必要性与重要性的工作。
基于高斯投影变形的2个主要影响因素以及二者之和可部分抵消的特征,结合实例分析了复杂地形条件下公路工程平面坐标系的建立过程;同时,为了克服常规方法建立过程存在以平均代表整体、变形检验方式又存在“以点代面”的局限性,研究了应用DEM检验投影变形的方法,可实现全测区范围内投影变形量的统计分析与可视化展示,为在复杂地形条件下建立公路工程平面坐标系提供了参考。
实例表明该方法在复杂地形条件下是适用的、有效的,具有一定的理论与现实意义。
【总页数】5页(P162-165)
【作者】陈明晶
【作者单位】福建省交通规划设计院有限公司
【正文语种】中文
【中图分类】P25;TB22
【相关文献】
1.山区复杂地形条件下的公路工程中GPS-RTK测量的技术分析
2.复杂地形条件下电厂总平面布置经济性分析
3.复杂地形条件下地表岩移观测站的建立与观测方法
研究4.复杂地形条件下直流电阻率异常特征分析及地形改正方法研究5.常见平面坐标系之间相互转换的方法研究——以1954北京坐标系、1980西安坐标系、2000国家大地坐标系之间的平面坐标相互转换为例
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要】本文以公路测量为例,较详细地论述了在线路测量中应考虑的变形因素,以及解决变形的办法,详细地叙述了建立独立坐标系的作用及建立这种坐标系的六种方法,并介绍了因提高归化高程面而产生新椭球后的一些椭球常数的计算方法和步骤。
此外,本文还对当路线跨越相邻投影带时,需要进行相邻带的坐标换算这一问题进行了阐述。
【关键字】独立坐标系高斯投影带抵偿高程面新椭球常数坐标转换归化高程面线路控制测量中坐标系统的建立与统一方法第一章概述铁路、公路、架空送电线路以及输油管道等均属于线型工程,它们的中线统称线路。
一条线路的勘测和设计工作,主要是根据国家的计划与自然地理条件,确定线路经济合理的位置。
为达此目的,必须进行反复地实践和比较,才能凑效。
线路在勘测设计阶段进行的控制测量工作,称线路控制测量,在线路控制测量过程中,由于每条线路不可能距离较短,有的可能跨越一个带,二个带甚至更多,所以,在线路控制测量中,长度变形是一个不可避免的问题,但我们可以采取一些措施来使长度变形减弱,将长度变形根据施测的精度要求和测区所处的精度范围控制在允许的范围之内。
最有效的措施就是建立与测区相适应的坐标系统.坐标系统是所有测量工作的基础.所有测量成果都是建立在其之上的,一个工程建设应尽可能地采用一个统一的坐标系统.这样既便于成果通用又不易出错.对于一条线路,如果长度变形超出允许的精度范围,我们将建立新的坐标系统加以控制.这就涉及到一个非常关键的问题,既,坐标系统的建立与统一.对于不同的情况,我们可以采用适应的方法尽可能建立统一的坐标系统,且使其长度变形在允许范围之内.本文以公路控制测量为例,详细论述了线路控制测量中坐标系统的建立与统一方法.第二章坐标系统的建立当对一条线路进行控制测量时,首先应根据已有资料判断该测区是否属同一投影带和长度变形是否在允许范围之内.这样我们就可以判断是否需要建立新的坐标系统和怎样建立,下面对此进行详细讨论.§2.1 相对误差对变形的影响与国家点联测的情况:我们的每项测量工作都是在地球表面上进行的,而要将实地测量的真实长度归化到高斯平面上,应加入二项改正.这样就改变了其真实长度,这种高斯投影平面上的长度与地面长度之差,称之为长度综合变形,其计算公式为,£=+Ym²*S/2R²-Hm*s/Ra取:R=Ra=6371Km.S=s将其写成相对变形的形式并代入数子:£/s=(0.00123y²-15.7H)*10y:测区中心横坐标(Km)H:测区平均高程(Km)依据我国的工程测量规范规定,建立平面控制网的坐标系统应该保证长度综合变形不超过2.5cm/km.(相对变形不超过1/40000)。
与国家电联侧的情况。
2.1.1当长度综合变形小于2.5cm/km,(相对变形小于1/40000)时因为这时的长度变形符合精度要求,即在允许的误差范围之内,故这时的变形不予考虑。
直接采用国家统一的坐标系统。
2.1.2当长度综合变形大于2.5cm/km,(相对变形超过1/40000)时因为这时的长度综合变形已不符合精度要求,所以必须对变形予以考虑,那么我们要采取何措施才能最大程度地限制变形,将变形控制在允许的范围之内呢?方法就是建立适应于该测区的地方独立坐标系.§2.2建立地方独立坐标系2.2.1建立地方独立坐标系的作用在工程建设地区(如公路,铁路,管线,水库)布设测量控制网时,其成果不仅要满足1:500比例尺测图需要,而且还应满足一般工程放样的需要.在线路测量中,最总是要将测的收据经计算在放倒实地而施工放样时要求控制网由坐标反算的长度与实测的长度尽可能相符,但国家坐标系的成果很难满足这样的要求,这是因为国家坐标系每个投影带(高斯投影)都是按一定的间隔(6°或3°)划分,由西向东有规律地分布.而每项工程建设地区的中眼再者,国家坐标系的高程归化面是参考椭球面,各地区的地面位置与参考椭球面都有一定的距离,这两项将产生高斯投影变形改正和高程归化改正,经过这两项改正后的长度不可能与实测的长度相等.建立独立坐标系的主要目的就是为了减小高程归化与投影变形产生的影响,将它们控制在一个微小的范围,使计算出来的长度在实际利用时(如工程放样)不需要做任何改算.2.2.2建立独立坐标系主要考虑哪些方面的因素建立独立坐标系主要考虑两个方面的因素:一是分带;一是建立抵偿高程面.2.2.2.1分带方法地球的形状与大小,即大地水准面的形状与大小,十分接近一个两极稍扁的旋转椭球体.我们平常所用的地形图一般采用高斯投影,即横轴椭圆柱正形投影.如图(略), 椭球与椭圆柱面相切的子午线成为中央子午线或轴子午线,即高斯平面直角坐标系的X 轴.将中央子午线东西方向一定经差(一般为6°或3°)范围地区投影到椭圆柱面上再把椭圆柱面按某一棱线展开,便构成了高斯平面直角坐标系统。
高斯投影中,除中央子午线外,椭球面上上任何两点投影到椭圆柱面上,两点间线段的长度均发生变形,且随着中央子午线两侧经差的增大,长度变形加剧。
为了控制这种长度变形,使它在测图和用图时影响很小,在相隔一定地区另立中央子午线,即采用分带投影。
我国国家测量规定采用6°带和3°代两种分带办法。
一般地,对于1/25000~1/100000的地形图采用6°带,对于1/10000或更大比例尺的地形图采用3°带,同时还规定每一个6°带向东加宽30′,向西加宽15′或7.5′,以保证在投影带的边缘部分有两套坐标和地形图,便于在边缘部分补点、计算。
有些测绘单位为了控制长度变形,满足工程放样的需要,往往对1/1000、1/500或更大比例尺的地形图采用1.5°带或独立投影带。
由于采用分带投影,椭球面上统一的坐标系被分割成相互独立的坐标系。
在公路施工测量中,常常会遇到内容完全相同的地形图中点的坐标不一样的情况,就是在测图时采用了不同中央子午线的缘故,需要进行坐标换带计算。
2.2.2.2投影带的选择国家坐标系统为了控制长度变形,虽然采用了分带投影,以满足测图的基本要求,但长度变形依然存在,尤其是在投影带的边缘,长度变形不能满足高等级公路勘测和施工的要求。
减弱长度变形的办法是根据精度要求和测区所处的精度范围来选择中央子午线和投影带的大小重新确定分带投影。
<<工程测量规范>>规定,当长度变形超过1/40000时,必须进行分带投影。
2.2.2.2.1长度变形在高斯投影中,首先要把地面上的长度换算到参考椭球面上,然后再换算到参考椭球面上。
设地面上的长度为S,Hm为平均高程面高程,hm表示大地水准面超出参考椭球面的高度,R表示地面长度方向法截线的曲率半径,那么,将地面上的长度换算到参考椭球面上的改正数为:⊿=-……当=2000m时,二次项的影响小于10,的影响也很小,可以忽略。
因此⊿= -┅┅┅┅┅┅⑴将参考椭球面上的长度换算到高斯平面上的改正数为:⊿当<70km和<350km时(6º带边缘),公式误差小于10m;对于边长较短的三、四等计算,完全可以只取第一项:⊿┅┅┅┅┅┅⑵由上面两式可以看出,两项改正符号互为相反。
理论上,当两项改正大小相等时,长度变形为零。
即┅┅┅┅┅⑶按式⑴选择测区中心点,理论上可以满足地面距离与高斯平面上的距离保持一致。
2.2.2.2.2测区中心点大地坐标(B,L)的计算设公路起点坐标为(,),中点坐标为(,),令已知子午圈弧长公式为┅┅┅┅⑷对我国采用的克氏椭球来说高斯投影反算公式(高斯投影中由平面直角坐标计算该点在椭球面上的地理坐标的公式)为┅┅┅┅┅┅┅┅⑸计算时尚需将换成。
┅┅┅┅┅┅⑹由公式⑵⑶⑷可计算出点(,)的大地坐标(,)按式⑴计算出,同样可求出′,则新投影的中央子午线为:2.2.2.2.3投影范围的确定实际上,测区范围不是一个理想的水平面,总是高低不平,y值变动有正有负,虽然采用新投影,但残余变形依然存在。
对式⑴、式⑵微分:转换成中误差的形式:两项误差的共同影响为将式⑶带入并整理得:┅┅┅┅┅┅⑺即为某点相对于测区中心变动的最大幅度。
因此,投影带的最大宽度为。
如果测区范围内值变动大于,则要进行分带处理。
下面通过实例帮助分析理解这一点。
2.2.2.2.4例:从国家3°带基本图上查得某高速公路起点坐标为(3272722,40605050),终点坐标为(3273592,40667890),该测区为平原微丘,高程变化为170∽230m,平均海拔高程为200 m,要求测区内长度变形不超过1/15000,试分析是否要进行换带投影。
第一步:分析是否可以直接套用国家坐标系统由已知数据计算得:由式⑴、式⑵计算得到长度变形之和为1/5050,超出精度要求范围,故不能套用国家坐标系统,必须进行换带投影。
第二步:投影带宽度的确定要求长度变形小于1/15000,按式⑺求得,而测区内值变动为故只需选择一个投影带即可。
第三步:求测区中心点的大地坐标由坐标值可知,°。
由、按式⑸、式⑹可计算出:B=29°34′30″l=1°24′33″按式⑶求得=50481.68,由、按式⑸、式⑹可计算出:l′=0°31′16″选取中央子午线的原则是,以靠近国家坐标系统标准投影带中央子午线的值作为新的投影带的中央子午线。
因此120°53′14″新的投影带中央子午线确定后,原国家点坐标要换算到新的坐标系中方能使用。
2.2.2.3如何确定抵偿高程面我们知道,将实地测量的真实长度归化到国家统一的椭球面上时,应加如下改正数⊿┅┅┅┅┅┅⑻式中——长度所在方向的椭球曲率半径;——长度所在高程面对于椭球面的高差;——实地测量水平距离。
然后再将椭球面上的长度投影至高斯平面,则加入如下改正数⊿┅┅┅┅┅┅⑼式中——测区中点的平均曲率半径;——距离的末端点横坐标平均值。
这样地面上的一段距离,经过上面两次改正计算,被该改变了真实长度。
这种高斯投影平面上的长度与地面长度之差,我们称之为长度综合变形,其计算公式为为了计算方便,又不致损害必要精度,可以将椭球视为圆球,取圆球半径≈≈6371km,又取不同投影面上的同一距离近似相等,即S≈s,将上式写成相对变形的形式,则为┅┅┅┅┅┅⑽公式⑴表明,将距离由较高的高程面化算至较低的椭球面时,长度总是减小的;公式⑵则表明,将椭球面上的距离化算至高斯平面时,长度总是增加的。
所以两个投影过程对长度变形具有抵偿的性质。
如果适当选择椭球的半径,是距离化算到这个椭球面上所减小的数值,恰好等于由这个椭球面化算至高斯平面所增加的数值,那么高斯平面上的距离同实地距离就一致了。