大地测量中常用的坐标系
大地测量坐标系有哪几种
大地测量坐标系有哪几种大地测量是地球测量科学的一个重要分支,用于测量地球表面的各种物理量以及地球内部的结构。
在大地测量中,坐标系是一种基本工具,用于描述地球表面上特定位置的几何位置信息。
大地测量坐标系可以根据不同的原点、基准面和轴线方向进行分类,常见的包括以下几种:1. 地理坐标系地理坐标系是最常见和使用最广泛的坐标系之一。
地理坐标系使用经纬度来确定地球上任意点的位置。
经度表示东西方向上的位置,以本初子午线为基准,范围从0°至180°以东或以西测量。
纬度表示南北方向上的位置,以赤道为基准,范围从0°至90°以北或以南测量。
地理坐标系是基于地球形状和自转定义的,可以用来定位全球范围内的地理位置。
2. 平面直角坐标系平面直角坐标系是一种以直角坐标系描述地球表面位置的投影坐标系。
它将地球表面视为一个平面,通过将球面上的点投影到平面上来表示位置。
平面直角坐标系使用直角坐标系的x、y坐标来表示位置,通常在地理测量和工程测量中使用。
该坐标系有许多具体的投影方法,如UTM(通用横轴墨卡托投影)、高斯-克吕格投影等,每种投影都符合特定的测量目的和地理区域。
3. 大地坐标系大地坐标系是一种基于椭球体模型的坐标系,用来更精确地描述地球表面的几何位置。
大地坐标系使用经度、纬度和高程三个参数来表示位置。
经纬度与地理坐标系相同,高程表示点相对于参考椭球体表面的高度差。
大地坐标系通过采用具体的椭球体模型,可以在不同地区提供更高的测量精度和一致性。
常见的大地坐标系包括WGS84(世界大地坐标系)和国家大地坐标系等。
4. 本地坐标系本地坐标系是一种基于局部地区特定基准点和轴线方向定义的坐标系。
本地坐标系通常用于狭小地区的工程测量,如建筑施工和道路规划。
在本地坐标系中,参考点被确定为坐标原点,轴线被定义为参考方向。
本地坐标系的优点是能够提供更准确、更具体的位置描述,但局限于特定地区,无法进行区域范围的位置比较。
四大常用坐标系及高程坐标系
四大常用坐标系及高程坐标系Document number:NOCG-YUNOO-BUYTT-UU986-1986UT我国四大常用坐标系及高程坐标系1、北京54坐标系(BJZ54)北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。
新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。
由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。
因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。
它的原点不在北京而是在前苏联的普尔科沃。
北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/;2、西安80坐标系1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。
为此有了1980年国家大地坐标系。
1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG75地球椭球体。
该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。
基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。
西安80坐标系,属三心坐标系,长轴6378140m,短轴6356755,扁率1/298.3、WGS-84坐标系WGS-84坐标系(WorldGeodeticSystem)是一种国际上采用的地心坐标系。
坐标原点为地球质心,其地心空间直角坐标系的Z轴指向国际时间局(BIH)定义的协议地极(CTP)方向,X轴指向的协议子午面和CTP赤道的交点,Y轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系。
大地测量坐标系有哪些
大地测量坐标系有哪些大地测量是测量地球表面的形状、尺寸和重力场的科学与技术领域。
而在大地测量中,坐标系统起到了至关重要的作用。
大地测量坐标系统根据测量目的和测图需求的不同,提供了几种不同的坐标系统。
在本文中,我们将介绍常见的大地测量坐标系统。
地理坐标系 (Geographic Coordinate System, GCS)地理坐标系使用经度和纬度来表示地球上任意点的位置,是最常见的坐标系统之一。
经度是指一个点相对于本初子午线的东西位置,以度数表示;纬度是指一个点相对于地球赤道的南北位置,同样以度数表示。
这个坐标系统是在球面或椭球面上建立的,通常用于大范围地图制作、导航和位置定位。
在地理坐标系中,经度和纬度被定义为连续变量,取值范围为经度(-180°到180°)和纬度(-90°到90°)。
例如,北京的地理坐标为39.9042°N纬,116.4074°E 经。
平面直角坐标系 (Plane Rectangular Coordinate System, PRCS)平面直角坐标系是一种基于二维笛卡尔坐标系的投影方法。
通常被用于较小区域的精确测量和制图。
平面直角坐标系的原点和坐标轴取决于使用的映射投影。
最常见的平面直角坐标系之一是国家大地坐标系 (National Geodetic Coordinate System, NGCS),用于大多数国家的地图制作和测量工作。
在国家大地坐标系中,点的位置由两个值确定,通常分别称为东坐标和北坐标,以米为单位。
它们与某个选定的基准点的位置相关联。
工程坐标系 (Engineering Coordinate System, ECS)工程坐标系是一种用于工程测量、设计和建设的坐标系统。
与平面直角坐标系类似,工程坐标系是二维笛卡尔坐标系的一种投影表示方法,其原点和坐标轴可以根据需要设定。
工程坐标系常用于道路、桥梁、建筑物等各种工程项目的定位和测量。
最新我国四大常用坐标系及高程坐标系精选
我国四大常用坐标系及高程坐标系1、北京54坐标系(BJZ54)北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。
新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。
由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。
因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。
它的原点不在北京而是在前苏联的普尔科沃。
北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/298.3;2、西安80坐标系1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。
为此有了1980年国家大地坐标系。
1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG75地球椭球体。
该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。
基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。
西安80坐标系,属三心坐标系,长轴6378140m,短轴6356755,扁率1/298.257221013、WGS-84坐标系WGS-84坐标系(WorldGeodeticSystem)是一种国际上采用的地心坐标系。
坐标原点为地球质心,其地心空间直角坐标系的Z轴指向国际时间局(BIH)1984.0定义的协议地极(CTP)方向,X轴指向BIH1984.0的协议子午面和CTP 赤道的交点,Y轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系。
常用坐标系
一、常用坐标系1、北京坐标系北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。
1954年北京坐标系的历史:新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。
由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。
因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。
它的原点不在北京而是在前苏联的普尔科沃。
北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/298.3;2、西安80坐标系1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。
为此有了1980年国家大地坐标系。
1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG75地球椭球体。
该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。
基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。
西安80坐标系,属三心坐标系,长轴6378140m,短轴6356755,扁率1/298.257221013、2000国家大地坐标系的定义国家大地坐标系的定义包括坐标系的原点、三个坐标轴的指向、尺度以及地球椭球的4个基本参数的定义。
2000国家大地坐标系的原点为包括海洋和大气的整个地球的质量中心;2000国家大地坐标系的Z轴由原点指向历元2000.0的地球参考极的方向,该历元的指向由国际时间局给定的历元为1984.0的初始指向推算,定向的时间演化保证相对于地壳不产生残余的全球旋转,X轴由原点指向格林尼治参考子午线与地球赤道面(历元2000.0)的交点,Y轴与Z轴、X轴构成右手正交坐标系。
大地测量学常用的坐标系
大地测量学常用的坐标系引言大地测量学是研究地球形状、大小、重力场及其变化的科学,广泛应用于工程测量、地图制图、导航定位等领域。
在进行测量和定位时,需要采用合适的坐标系来描述地球表面的点和其相对位置关系。
本文将介绍大地测量学中常用的坐标系。
地心坐标系(Geocentric Coordinate System)地心坐标系是以地球质心为原点建立的坐标系,常用来描述地球内部重力场的分布以及地球形状的变化。
地心坐标系的三个坐标轴分别指向地球的北极、本初子午线和赤道平面,称为北极轴、子午轴和赤道轴。
地心坐标系的优点是在研究全球性的问题时非常有用,可以精确描述地球形状和大小的变化。
大地坐标系(Geodetic Coordinate System)大地坐标系是基于地球表面形状和地球椭球体模型建立的坐标系。
在大地坐标系中,使用经度(longitude)和纬度(latitude)来确定地球表面上点的位置。
经度是指从本初子午线开始,沿赤道向东或向西测量的角度,纬度是指从赤道开始,沿黄道向北或向南测量的角度。
大地坐标系常用于地图制图和导航定位等应用中。
投影坐标系(Projected Coordinate System)投影坐标系是为了适应地球表面的非平面特性而引入的。
在投影坐标系中,地球表面上的经纬度坐标被投影到一个平面上,从而实现对地图的制作和使用。
不同的投影方式会导致不同的形变问题,如面积变形、角度变形和长度变形等。
常见的投影坐标系有墨卡托投影、麦卡托投影、兰伯特投影等。
本地坐标系(Local Coordinate System)本地坐标系是根据地球表面的局部特征建立的坐标系,主要用于工程测量和定位。
在本地坐标系中,原点和坐标轴的选择由具体的测量任务和地理特征决定。
本地坐标系可以使用笛卡尔坐标系或极坐标系来表示。
与其他坐标系相比,本地坐标系的优势在于简化了测量计算和数据处理的过程。
结论在大地测量学中,常用的坐标系包括地心坐标系、大地坐标系、投影坐标系和本地坐标系。
中国使用的测量坐标系
中国使用的测量坐标系
我国使用的测量坐标系有以下四种:
1、北京54坐标系
2、西安80坐标系:该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里。
3、2000国家大地坐标系:简称为CGCS2000,英文全称为China Geodetic Coordinate System 2000。
Z轴指向BIH1984.0定义的协议极地方向(BIH国际时间局),X轴指向BIH1984.0定义的零子午面与协议赤道的交点,Y轴按右手坐标系确定。
该坐标系的大地坐标和美国WGS84坐标系的大地坐标基本一致,可直接采用,只是平面坐标需要用系数调整。
4、1985国家高程标准:我国于1956年规定以黄海(青岛)的多年平均海平面作为统一基面,叫"1956年黄海高程系统",为中国第一个国家高程系统。
黄海高程是1956年9月4日,国务院批准试行《中华人民共和国大地测量法式(草案)》,首次建立国家高程基准,称“1956年黄海高程系”,简称“黄海基面”。
系以青岛验潮站1950—1956年验潮资料算得的平均海面为零的高程系统。
原点设在青岛市观象山。
该原点以“1956年黄海高程系”计算的高程为72.289米。
后经复查,发现该高程系验潮资料过短,准确性较差,改用青岛验潮站1950-1979年的观测资料重新推算,并命名为“1985国家高程基准”。
国家水准点设于青岛市观象山,其高程为72.260米,作为我国高程测量的依据。
它的高程是以“1985国家高程基准”所定的平均海水面为零点测算而得,“1956年黄海高程系”已废止。
我国三大坐标系讲解
我国三大常用坐标系区别(北京54、西安80和WGS-84)我国三大常用坐标系区别(北京54、西安80和WGS-84)1、北京54坐标系(BJZ54)北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。
1954年北京坐标系的历史:新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。
由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。
因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。
它的原点不在北京而是在前苏联的普尔科沃。
北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/298.3;2、西安80坐标系1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。
为此有了1980年国家大地坐标系。
1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG 75地球椭球体。
该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。
基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。
西安80坐标系,属三心坐标系,长轴6378140m,短轴6356755,扁率1/298.257221013、WGS-84坐标系WGS-84坐标系(World Geodetic System)是一种国际上采用的地心坐标系。
坐标原点为地球质心,其地心空间直角坐标系的Z轴指向国际时间局(BIH)1984.0定义的协议地极(CTP)方向,X轴指向BIH1984.0的协议子午面和CTP赤道的交点,Y轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系。
大地测量坐标系统有哪几种
大地测量坐标系统有哪几种在地球表面进行测量和定位时,人们需要使用不同的坐标系统来描述地理位置。
大地测量坐标系统是一种标定和测量地球表面点位置的方法,它可以帮助我们准确地描述地球上的点的位置和空间关系。
下面将介绍几种常见的大地测量坐标系统。
地球经纬度坐标系统地球经纬度坐标系统是最常见的一种大地测量坐标系统。
它基于地球的自转和自转轴,以经度和纬度来表示地球上的点位置。
经度是从本初子午线开始,向东西方向测量的角度,取值范围是-180°至+180°。
纬度是从赤道开始,向南北方向测量的角度,取值范围是-90°至+90°。
地球经纬度坐标系统可以用来定位地球上的任意一点。
平面直角坐标系统平面直角坐标系统是另一种常见的大地测量坐标系统。
它是一种将地球表面看作一个平面的近似方式。
在平面直角坐标系统中,地球表面被划分为若干个平面坐标系,每个平面坐标系都有一个局部原点和一个单位长度。
这些平面坐标系可以根据需要进行划分和调整。
平面直角坐标系统适用于需要精确计算地表点相对位置的工程和测量任务。
地心坐标系统地心坐标系统是一种以地球的质心为原点建立的三维直角坐标系统。
它使用X、Y和Z三个坐标轴来表示地球上的点的位置。
X轴通过本初子午线,指向北极点。
Y轴通过90°东经和赤道平面的交点。
Z轴与地球自转轴平行,指向地球上的北半球。
地心坐标系统在大地测量、地理信息系统和卫星导航等领域得到广泛应用。
地心大地坐标系统地心大地坐标系统是一种基于地心坐标系统的二维投影坐标系统。
它采用大地椭球面来近似地球的形状,并使用大地纬度和经度来确定地球上的点位置。
地心大地坐标系统是为了与地球实际形状更好地匹配而设计的,在测量和地图制作等领域具有广泛应用。
区域高程坐标系统区域高程坐标系统是专用于描述地球表面高程变化的坐标系统。
它使用一个参考点的高程作为基准,通过对地球表面进行高程调整来描述其他点的高程。
区域高程坐标系统通常与地理信息系统和水文学相关的应用紧密结合,用于分析地形特征、水文过程和气候变化等。
大地坐标系
2. 平面直角坐标
由于经纬线在图上多是弧线,不便于图上作业,更不便于距离和角度的换算,因此,在大比例尺图上都绘有平面直角坐标网。
确定平面上某点位置的长度数值,就是该点的平面直角坐标。平面直角坐标会值是用公里和米表示的。
平面直角坐标的构成平面直角坐标,是在颊上由两条垂直相交的直线建立起来的坐标系统。纵线为纵轴,以X表示;横线为横轴,以Y表示;两直线的交点为坐标原点,以0表示。确定某点的位置时,以该点到横轴的垂直距离为纵坐标(X),到纵轴的垂直距离为横坐标(Y)。并规定,X值在横轴以上的为正,以下的为负;Y值在纵轴以右的为正,以左的为负。如甲点的坐标:X=250,Y=300。用这种方法确定点位的,就叫平面直角坐标法。
反之,用同样的方法,知道了坐标值,也可以确定目标点在图上的位置,这里就不详细介绍了。
3. 邻带补充坐标网
地形图上的平面直角坐标网,是按投影带建立的各自独立的坐标系,纵、横坐标线都只平行于本带的纵、横坐标轴;所以,在两带相接的地方,图上的坐标线就拼接不起来。但是,在实战中,常会碰到这种情况:比如,我炮兵发射阵地位置在十九带而射击目标位置在二十带,因为不是一个投影带,坐标系统不一致,这就无法指示目标,不能计算炮目距离和方位角。
提起“坐标”这个词,有些读者可能有点陌生,其实,在我们生活中还是经常碰到的,只是不这么称呼罢了。比如我们到体育馆看球赛,去礼堂听报告,入场券上就有×排×号,按照这个排、号,就能找到自己的座位。这种用排和号两个数确定座位的方法,在数学上就叫做坐标法。为了使用地图的方便,制图人员就把这个坐标法搬到了地图上,成为确定地面点位的方法。因为地球比较大,坐标的起算点、计算的方法和表达的方式就必须有一系列的规定,这些规定,就是坐标系统。
测量中常用的坐标系统
测量中常用的坐标系一、坐标系类型1、大地坐标系定义:大地测量中以参考椭球面(不准确)为基准面建立起来的坐标系。
一定的参考椭球和一定的大地原点上的大地起算数据,确定了一定的坐标系。
通常用参考椭球参数和大地原点上的起算数据作为一个参心大地坐标系建成的标志。
大地坐标(地理坐标):将某点投影到椭球面上的位置用大地经度L和大地纬度B表示,( B , L)统称为大地坐标。
大地高H:某点沿投影方向到基准面(参考椭球面)的距离。
在大地坐标系中,某点的位置用(B , L,H)来表示。
2、空间直角坐标系定义:以椭球体中心为原点,起始子午面与赤道面交线为X 轴,在赤道面上与X轴正交的方向为Y轴,椭球体的旋转轴为Z轴。
在空间直角坐标系中,某点的位置用(X,Y,Z)来表示。
3、平面直角坐标系在小区域进行测量工作若采用大地坐标来表示地面点位置是不方便的,通常采用平面直角坐标系。
测量工作以x轴为纵轴,以y轴为横轴投影坐标:为了建立各种比例尺地形图的控制及工程测量控制,一般应将椭球面上各点的大地坐标按照一定的规律投影到平面上,并以相应的平面直角坐标表示。
4、地方独立坐标系基于限制变形、方便、实用和科学的目的,在许多城市和工程测量中,常常会建立适合本地区的地方独立坐标系,建立地方独立坐标系,实际上就是通过一些参数来确定地方参考椭球与投影面。
二、国家大地坐标系1.1954年北京坐标系(BJ54旧)坐标原点:前苏联的普尔科沃。
参考椭球:克拉索夫斯基椭球。
平差方法:分区分期局部平差。
存在问题:(1)椭球参数有较大误差。
(2)参考椭球面与我国大地水准面存在着自西向东明显的系统性倾斜。
(3)几何大地测量和物理大地测量应用的参考面不统一。
(4)定向不明确。
2.1980年国家大地坐标系(GDZ80)坐标原点:陕西省泾阳县永乐镇。
参考椭球:1975年国际椭球。
平差方法:天文大地网整体平差。
特点:(1)采用1975年国际椭球。
(2)参心大地坐标系是在1954年北京坐标系基础上建立起来的。
大地测量常用坐标系及其转换
常用坐标系及其转换
1、常用坐标系
大地坐标系:以地球椭球面为参考面的地球椭球面坐标系(LBH)。
(参心、地心)
空间直角坐标系(XYZ)
站心(局部)直角坐标系(UNE)极坐标系
直角坐标系原点位于测站点
U轴与测站点法线重合,指向天顶
N轴垂直于U轴,指向(北)
E轴形成左手系(东)
站心极坐标系用极距、方位角和高度角表示
常用坐标系及其转换
1、常用坐标系
高斯直角坐标系(xyH)
高斯投影的条件是:
满足正形投影条件(柯西黎曼方程)
中央子午线投影后为直线
中央子午线投影后长度不变(其它线变长)
2、坐标系转换
XYZ LBH(同一参考系下换算)
XYZ NEU(同一参考系下换算,已知站心的大地或空间直角坐标) 不同参考系下坐标系转换(用XYZ转换公式,B 模型和M
模型,七参数-平移量旋转量各3,一个尺度因子;
四参数一般是针对平面坐标的转换-2个平移,一个旋转,一个尺度) LBH xyH(球面化为平面,注意中央子午线选取和分带,H为大地高)
2、坐标系转换
不同坐标系之间常用BURSA 模型,七参数)
2、坐标系转换
局部小范围内,对高斯平面坐标可用四参数模型
四、我国的大地坐标系
(一)、1954年北京坐标系
(二)、1980年国家大地坐标系
(三)、2000中国大地坐标系CGCS2000
(四)、新1954年北京坐标系
(五)、1978地心坐标系
(六)、1988地心坐标系。
大地测量坐标系统有几种
大地测量坐标系统有几种大地测量是测量地球表面形状和大小的学科,其主要目的是为了获取准确的地理位置信息。
为了方便地标识不同地方的位置,在大地测量中广泛使用了各种坐标系统。
大地测量坐标系统是用来表示地球上某个点的位置的系统,根据不同的需求和应用,可以使用多种不同的坐标系统。
本文将介绍大地测量中常用的三种坐标系统。
地理坐标系统地理坐标系统(Geographic Coordinate System,GCS)是大地测量中最常见的坐标系统之一。
它使用经度(Longitude)和纬度(Latitude)来表示地球上任意点的位置。
地理坐标系统以地球的赤道和本初子午线作为基准线,以度(Degree)为单位来测量。
经度表示东西方向上的位置,纬度表示南北方向上的位置。
经度的取值范围为-180到180度,纬度的取值范围为-90到90度。
地理坐标系统的优点是简单、易于理解和计算,被广泛应用于地图制作、位置定位、导航系统等领域。
但由于地理坐标系统没有考虑地球椭球体的形状,对于精确度要求较高的应用可能有一定的误差。
投影坐标系统投影坐标系统(Projected Coordinate System,PCS)基于地理坐标系统,通过将地球表面投影到二维平面上来表示地球上的位置。
由于地球是一个三维椭球体,为了在二维平面上进行地图制作等应用,需要将地球表面投影到平面上,这就是投影坐标系统的基本原理。
投影坐标系统中使用各种投影方法,如等距圆柱投影、等距圆锥投影、等面积平展投影等,将地球表面的经纬度坐标转换为二维平面坐标。
不同的投影方法在表示形状和面积时有着不同的特点和误差。
在实际应用中,可以根据不同的需求选择不同的投影坐标系统。
投影坐标系统的优点是能够直接在平面上进行测量和计算,精度相对较高。
它被广泛应用于地图制作、测量工程、GIS(地理信息系统)等领域。
然而,由于投影过程中的误差和变形,可能会引入一定程度的误差。
大地坐标系统大地坐标系统(Geocentric Coordinate System,GCS)是一种以地球的质心为基准的坐标系统。
四大常用坐标系及高程坐标系
我国四大常用坐标系及高程坐标系
1、北京54坐标系(BJZ54)
北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。它的原点不在北京而是在前苏联的普尔科沃。
西安80坐标系,属三心坐标系,长轴6378140m
3、WGS-84坐标系
WGS-84坐标系(WorldGeodeticSystem)是一种国际上采用的地心坐标系。坐标原点为地球质心,其地心空间直角坐标系的Z轴指向国际时间局(BIH)1984.0定义的协议地极(CTP)方向,X轴指向BIH1984.0的协议子午面和CTP赤道的交点,Y轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系。这是一个国际协议地球参考系统(ITRS),是目前国际上统一采用的大地坐标系。GPS广播星历是以WGS-84坐标系为根据的。
WGS84坐标系,长轴6378137.000m
由于采用的椭球基准不一样,并且由于投影的局限性,使的全国各地并不存在一至的转换参数。对于这种转换由于量较大,有条件的话,一般都采用GPS联测已知点,应用GPS软件自动完成坐标的转换。当然若条件不许可,且有足够的重合点,也可以进行人工解算。
4、2000国家大地坐标系
英文缩写为CGCS2000。2000国家大地坐标系是全球地心坐标系在我国的具体体现,其原点为包括海洋和大气的整个地球的质量中心。2000国家大地坐标系采用的地球椭球参数如下:
大地测量坐标系有哪些类型
大地测量坐标系有哪些类型在大地测量领域,为了描述地球上任意点的位置,人们需要使用不同类型的坐标系。
大地测量坐标系是一种用来确定地球表面上点的位置的参考系统。
本文将介绍几种常见的大地测量坐标系类型。
地理坐标系(Geographic Coordinate System)地理坐标系是最常见的大地测量坐标系之一,用于描述地球表面上点的位置。
地理坐标系使用经度和纬度来确定地球上任意点的位置。
经度表示位于东西方向上的位置,范围是从-180°到180°,东经为正,西经为负。
纬度表示位于南北方向上的位置,范围是从-90°到90°,南纬为负,北纬为正。
地理坐标系以地球的中心为原点,以经线和纬线来划分地球表面。
它使用球面坐标系来近似地球的形状,适用于全球范围内的位置定位和空间数据分析。
平面直角坐标系(Plane Rectangular Coordinate System)平面直角坐标系是一种二维坐标系,使用直角坐标系来描述地球上点的位置。
它将地球表面划分为水平的均匀网格,每个点都由一个水平坐标和一个垂直坐标确定。
平面直角坐标系通常使用投影方式来实现,常见的投影方式包括墨卡托投影、通用横轴墨卡托投影和高斯-克吕格投影等。
这些投影方式可以将地球表面上的经纬度坐标投影到一个平面上,以便于进行测量和计算。
大地坐标系(Geodetic Coordinate System)大地坐标系是一种用来确定地球上任意点位置的三维坐标系。
它采用了椭球体来近似地球的形状,并使用经度、纬度和高程来描述点的位置。
经度和纬度的定义与地理坐标系相同,高程则表示点相对于参考椭球体的高度。
大地坐标系考虑了地球的曲率和椭球体的形状,能够提供较高精度的位置描述。
它常用于测量和工程应用,如地形测量、测量控制点和航空导航等。
地心坐标系(Geocentric Coordinate System)地心坐标系是一种以地球质心为原点的三维坐标系,用于描述地球上点的位置。
大地测量中常用的坐标系
B) 椭球大地测量学:研究坐标系建立及地球椭球性 质以及投影数学变换为主要内容。
C) 大地天文测量学:以研究测量天文经度、纬度及 天文方位角为中心内容。 D) 大地重力测量学:以研究重力场及重力测量方法 为中心内容。
E) 测量平差:以研究大地测量控制网平差计算为主 要内容。
高斯平面直角坐标系
高斯投影平面特点 1,中央子午线是直线,其长度 不变,离开中央子午线的其它 子午线是弧形,凹向中央子午 线。离开中央子午线越远,变 形越大; 2,投影后赤道是一条直线,赤 道与中央子午线保持正交; 3 离开赤道的纬线是弧线,凸 向赤道。
高斯平面直角坐标系
高斯投影可以将椭球面变成平 面,但是离开中央子午线越远 变形越大。实际中采用分带投 影的方法。投影带宽度是以两 相邻子午线的径差l来划分。有 6°带和3 °带等不同投影方法。
a) 几何大地测量学:基本任务是确定地球的形状和 大小及确定地面点的几何位置。 B) 物理大地测量学:基本任务是用物理方法(重力 测量)确定地球形状及其外部重力场。 C) 空间大地测量学:以人造地球卫星及格其他空间 探测器为代表的空间大地测量的理论、技术与方法。
二 大地测量的基本概念
2.3 大地测量学的基本体系
a=6378137米, α =1:298.257223563
新华网北京2001年2月23日电(记者张继民)覆盖我国全部国土,其分 辨率东部为30公里见方格网、西部为60公里见方格网,精度为30厘 米至60厘米的2000中国似大地水准面,近日通过国家验收。这表明, 新一代分米级精度大地水准面已在我国建立。 曾确定了被称为1980中国大地水准面。这一水准面的精度为±3 米至±5米,分辨率为220公里见方网格。随着科学技术特别是卫星空 间技术的飞速发展,测绘生产技术发生了重大变革,1980中国大地水 准面已远远不能满足现代大地测量发展以及地学研究、国民经济建设的需 要。为此,国家测绘局在“九五”期间设立了重点科技攻关项目——建立 我国分米级精度大地水准面研究。 使用大量我国大陆及其周边海洋地区的重力、高精度GPS水准、 多代卫星测高数据和数字高程模型及海深模型等国内外资料,并结合国情, 最终建立了我国新一代分米级精度大地水准面。通过用中国地壳运动观测 网络的73个GPS水准点进行独立检核,表明其精度在我国东部即东经 102度以东地区,优于0.3米。西部即东经102度以西、北纬36 度以北优于0.4米,东经102度以西、北纬36度以南优于0.6米。 首次以整体分米级精度覆盖了我国全部国土。
我国四大常用坐标系及高程坐标系
For personal use only in study and research; not forcommercial useFor personal use only in study and research; not forcommercial use我国四大常用坐标系及高程坐标系1、北京54坐标系(BJZ54)北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。
新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。
由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。
因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。
它的原点不在北京而是在前苏联的普尔科沃。
北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/298.3;2、西安80坐标系1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。
为此有了1980年国家大地坐标系。
1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG75地球椭球体。
该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。
基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。
西安80坐标系,属三心坐标系,长轴6378140m,短轴6356755,扁率1/298.257221013、WGS-84坐标系WGS-84坐标系(WorldGeodeticSystem)是一种国际上采用的地心坐标系。
大地测量学中常用的坐标系
大地测量学中常用的坐标系1. 引言在大地测量学中,坐标系是一个基本的概念,用于描述地球上的点位置。
它提供了一种统一的方式来表示地球上的各个点,并且在地图绘制、导航、测量和地理信息处理等领域中起着重要的作用。
本文将介绍大地测量学中常用的几种坐标系,并简要讨论它们的特点和应用。
2. 地理坐标系地理坐标系是地球表面上一个点位置的地理经度和纬度的组合。
经度表示东西方向的位置,纬度表示南北方向的位置。
在地理坐标系中,地球被划分为无数个纬度和经度的网格,每个网格都可以用一对经纬度来唯一标识。
地理坐标系的优点是简单易懂,适用于各种地理信息处理和地图绘制应用。
例如,利用地理坐标系可以轻松绘制地图,计算两点之间的距离和方位角,以及进行导航和位置定位等。
然而,地理坐标系也有一些局限性。
由于地球并不是完全规则的椭球体,地理坐标系在不同地区可能会出现误差。
此外,地理坐标系的坐标单位是度,不方便进行精确的计算。
3. 大地坐标系大地坐标系是一种基于地球椭球体模型的坐标系。
它使用经度、纬度和高程来描述一个点的位置。
与地理坐标系相比,大地坐标系更加精确。
大地坐标系的经度和纬度单位是弧度,高程单位是米。
大地坐标系在大地测量学和测绘工程中被广泛使用。
它可以通过测量的方法来确定一个点的位置,这包括使用全站仪、电子经纬仪、水准仪等设备。
大地坐标系还可以用于测量和监测地球表面的形变和位移。
使用大地坐标系进行测量和计算需要考虑地球的椭球体模型和大地水准面。
这意味着在不同的地区,采用不同的模型和参数进行计算,以获得更精确的结果。
4. 地心坐标系地心坐标系是一种以地球质心为原点的坐标系。
它通过径向距离、纬度和经度来描述一个点的位置。
地心坐标系在地球动力学研究中起着重要作用,可以用来描述地球的形状、自转和重力场等特征。
地心坐标系的优点是可以更好地描述地球内部的运动和变形。
例如,在地震学中,地心坐标系可以用来分析地震震源的位置和深度。
5. 投影坐标系投影坐标系是为了将地球表面上的三维位置投影到二维平面上而设计的坐标系。
测绘技术中常见的大地坐标系介绍
测绘技术中常见的大地坐标系介绍大地坐标系是测绘技术中常见且重要的概念之一。
它是地球表面上所有点的地理位置和空间关系的统一表示方法,为地表地理信息的收集、处理和分析提供了坚实的基础。
一、大地坐标系的概念与分类大地坐标系是一种以地球椭球体作为基准的坐标系。
它将地球表面上的点通过纬度和经度表示,并以相对于椭球体的形状和尺寸的不同所分类。
1. 大地坐标系的概念大地坐标系是地理学和测绘学中常用的一种坐标系。
它基于地球的形状与尺寸,用经线和纬线的交角以及经度、纬度值来表示地球上的点。
2. 大地坐标系的分类大地坐标系根据采用的基准椭球的不同可以分为国际1924年椭球、WGS84椭球等。
其中,国际1924年椭球适用于大部分国家的测绘工作,而WGS84椭球则被广泛应用于GPS定位等领域。
二、大地坐标系的基本原理与常用表示方法大地坐标系是在大地测量学的基础上实现的,它考虑了地球的曲率、地心引力场和地球自转等因素的影响。
1. 大地坐标系的基本原理大地坐标系采用椭球体作为基准,通过在地球表面上测量点的经度、纬度和高程,确定每个点的地理位置。
2. 大地坐标系的常用表示方法大地坐标系的常用表示方法包括经纬度表示、平面坐标表示和空间直角坐标表示。
其中,经纬度表示方法是最直观也是最常用的方法,通过度、分、秒的方式表示某一点的纬度和经度值。
三、大地坐标系在测绘技术中的应用大地坐标系在测绘技术中有着广泛的应用,特别是在地理信息系统领域。
1. 地图绘制与定位大地坐标系被广泛应用于地图绘制和定位。
通过将地球表面上的点表示为经纬度值,可以准确地在地图上标注和定位不同的地理要素,如地名、河流、山脉等。
2. GPS定位与导航大地坐标系在GPS定位和导航系统中发挥着重要作用。
GPS设备通过接收卫星信号,测量接收站点与其所在位置的距离,并利用大地坐标系将接收站点的位置转换为经纬度值,从而实现准确定位和导航。
3. 地理信息系统分析与处理大地坐标系为地理信息系统提供了基本的坐标表示方法。
大地测量坐标系
大地测量坐标系大地测量坐标系是在大地测量过程中,由于需要不同而建立的不同坐标系。
常用大地测量坐标系统。
ooo}-,B∙大地坐标系和子午面直角坐标系的关系oo式中,a为地球椭球的长半轴,e为地球椭球的第一偏心率}-,B为大地纬度。
∙子午面直角坐标系和大地坐标系的转换oo式中,a为地球椭球的长半轴,e为地球椭球的第一偏心率}-,B为大地纬度。
a、b为地球椭球的长、短半轴,u为归化纬度。
∙空间直角坐标系与子午面直角坐标系的转换o X = xcosLo Y = xsinLo Z = yooo}-,Bo X = acosucosLo Y = acosusinLo Z = bsinu关键词:GPS 坐标系统坐标系转换一、概述GPS及其应用GPS即全球定位系统(Global Positioning System)是美国从本世纪70年代开始研制,历时20年,耗资200亿美元,于1994年全面建成的卫星导航定位系统。
作为新一代的卫星导航定位系统经过二十多年的发展,已成为在航空、航天、军事、交通运输、资源勘探、通信气象等所有的领域中一种被广泛采用的系统。
我国测绘部门使用GPS也近十年了,它最初主要用于高精度大地测量和控制测量,建立各种类型和等级的测量控制网,现在它除了继续在这些领域发挥着重要作用外还在测量领域的其它方面得到充分的应用,如用于各种类型的工程测量、变形观测、航空摄影测量、海洋测量和地理信息系统中地理数据的采集等。
GPS以测量精度高;操作简便,仪器体积小,便于携带;全天候操作;观测点之间无须通视;测量结果统一在WGS84坐标下,信息自动接收、存储,减少繁琐的中间处理环节、高效益等显著特点,赢得广大测绘工作者的信赖。
二、GPS测量常用的坐标系统1.WGS-84坐标系WGS-84坐标系是目前GPS所采用的坐标系统,GPS所发布的星历参数就是基于此坐标系统的。
WGS-84坐标系统的全称是World Geodical System-84(世界大地坐标系-84),它是一个地心地固坐标系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a=6378137米, α =1:298.257223563
新华网北京2001年2月23日电(记者张继民)覆盖我国全部国土,其分 辨率东部为30公里见方格网、西部为60公里见方格网,精度为30厘 米至60厘米的2000中国似大地水准面,近日通过国家验收。这表明, 新一代分米级精度大地水准面已在我国建立。 曾确定了被称为1980中国大地水准面。这一水准面的精度为±3 米至±5米,分辨率为220公里见方网格。随着科学技术特别是卫星空 间技术的飞速发展,测绘生产技术发生了重大变革,1980中国大地水 准面已远远不能满足现代大地测量发展以及地学研究、国民经济建设的需 要。为此,国家测绘局在“九五”期间设立了重点科技攻关项目——建立 我国分米级精度大地水准面研究。 使用大量我国大陆及其周边海洋地区的重力、高精度GPS水准、 多代卫星测高数据和数字高程模型及海深模型等国内外资料,并结合国情, 最终建立了我国新一代分米级精度大地水准面。通过用中国地壳运动观测 网络的73个GPS水准点进行独立检核,表明其精度在我国东部即东经 102度以东地区,优于0.3米。西部即东经102度以西、北纬36 度以北优于0.4米,东经102度以西、北纬36度以南优于0.6米。 首次以整体分米级精度覆盖了我国全部国土。
WGS-84坐标系
WGS-84坐标系是目前GPS所采用的坐标系统,GPS所发布的星历参数就 是基于此坐标系统的。 WGS-84坐标系统的全称是World Geodical System-84(世界大地坐标 系-84),它是一个地心地固坐标系统。 WGS-84坐标系统由美国国防部制图局建立,于1987年取代了当时GPS 所采用的坐标系统―WGS-72坐标系统而成为GPS的所使用的坐标系统。 WGS-84坐标系的坐标原点位于地球的质心,Z轴指向BIH1984.0定义的 协议地球极方向,X轴指向BIH1984.0的启始子午面和赤道的交点,Y轴与X 轴和Z轴构成右手系。 WGS-84系所采用椭球参数为:
三 大地水准面
X Y Z 2 2 1 2 a a b 参考椭球体扁率 a b = a
2
2
2
a,b为参考椭球体的几何参数
1954年北京坐标系
1954年北京坐标系是我国目前广泛采用的大地测 量坐标系。该坐标系源自于原苏联采用过的1942年普尔 科夫坐标系。 建国前,我国没有统一的大地坐标系统,建国初 期,在苏联专家的建议下,我国根据当时的具体情况, 建立起了全国统一的1954年北京坐标系。该坐标系采用 的参考椭球是克拉索夫斯基椭球,该椭球的参数为:
1 空间直角坐标系
空间直角坐标系的坐标系原点位于参考椭球的中心, Z轴指向参考椭球的北极,X轴指向起始子午面与赤道 的交点,Y轴位于赤道面上,且按右手系与X轴呈90° 夹角。某点在空间中的坐标可用该点在此坐标系的各 个坐标轴上的投影来表示。
2 空间大地坐标系
空间大地坐标系是采用大地经度(L)、纬度(B) 和大地高(H)来描述空间位置的。纬度是空间的点 与参考椭球面的法线与赤道面的夹角,经度是空间 中的点与参考椭球的自转轴所在的面与参考椭球的 起始子午面的夹角,大地高是空间点沿参考椭球的 法线方向到参考椭球面的距离。
a) 采用等角投影(又称正形投影)。在有限的范围内使地图 上图形同椭球上原形保持相似,免除了大量投影计算工作。
B) 在所采用的正形投影中,要求长度和面积变形不大。
C) 投影后应该保证具有一个单一起算点的统一的坐标系。
高斯平面直角坐标系
高斯投影 将一个横椭圆柱 套在地 球上。椭球体中心o在椭 圆柱中心轴上,椭球体 南北极与椭圆柱相切, 并使某一子午线与圆柱 相切。此子午线称为中 央子午线。然后将椭球 体面上的点,线按正形 投影条件投影投影到椭 圆柱上,再沿椭圆柱n, s点母线割开,并展成平 面,称为高斯投影平面。
高斯平面直角坐标系
L6 0
6°带投影是从英国格林威治子午线开始,自西向东,每 隔6°投影一次,编号1~60带(n)。各带中央子午线经度 6
L 6n 3
6 0
L0
高斯平面直角坐标系
L6 0
已知某点大地经度L,可按下式计算该点所属的带号: n=L/6(的整数商)+1(有余数时) 中国11个6°带,13~23带(中央子午线75 °~135 °) 北京位于6°带的第20带,中央子午线的经度117度。
3 平面直角坐标系
平面直角坐标系是利用投影变换,将空间坐标 (空间直角坐标或空间大地坐标)通过某种数 学变换映射到平面上,这种变换又称为投影变 换。投影变换的方法有很多,如UTM投影、 Lambuda投影等,在我国采用的是高斯-克吕格 投影,也称为高斯投影。
5 高斯平面直角坐标系
5.1 基本概念 地图数学投影:将椭球面上元素(包括坐标、方位和距离) 按一定的数学法则投影到平面上。 高斯投影对地图投影的要求:
三 大地水准面 二 大地测量学的基本概念
3.1 大地水准面的概念
大地测量学所研究的是在整体上非常接近于地球自 然表面的水准面。设想与平均海水面相重合,不受潮汐、 风浪及大气压变化影响,并延伸到大陆下面处处与铅垂线 相垂直的水准面的连续封闭曲面。由它包围的形体称为大 地体。 3.2 似大地水准面 由于地球质量特别是外层质量分布的不君性,使得 大地水准面形状非常复杂。引入不需要任何关于地壳结构 方面的假设而确定的似大地水准面,它与大地水准面很接 近。
a) 几何大地测量学:基本任务是确定地球的形状和 大小及确定地面点的几何位置。 B) 物理大地测量学:基本任务是用物理方法(重力 测量)确定地球形状及其外部重力场。 C) 空间大地测量学:以人造地球卫星及格其他空间 探测器为代表的空间大地测量的理论、技术与方法。
二 大地测量的基本概念
2.3 大地测量学的基本体系
a=6378140米, α =1:298.257
椭球的短轴平行于地球的自转轴(由地球质心指向1968.0 JYD地极原点方向),起始子午面平行于格林尼治平均天文 子午面,椭球面同似大地水准面在我国境内符合最好,高程 系统以1956年黄海平均海水面为高程起算基准
中华人民共和国大地原点 -中国的地理坐标 为了在国家领土上进行大地测量,必须采用一个参 考椭球体。其数学的参考椭球面必须与物理的大地水则是定位中的基准点,也是地理坐标-经 度、纬度的起算点。 中国的大地原点坐落在距西安市36千米的咸阳市泾 阳县境内。原点在地下室,标志用红色玛瑙石制成,直 径10厘米,中部突起的半球上,刻有精密十字。如果谁 有幸用手触摸那指甲盖大的十字,就等于按在中国大地 经纬坐标的起算点和基准点—中华大地的“原点”上。
高程系统
在测量中常用的高程系统有大地高系统、正高系统和正常高系统。 一、 大地高系统 大地高系统是以参考椭球面为基准面的高程系统。某点的大 地高是该点到通过该点的参考椭球的法线与参考椭球面的交点间的 距离。大地高也称为椭球高,大地高一般用符号 Hr 表示。 大地高是一个纯几何量,不具有物理意义,同一个点,在不同的基 准下,具有不同的大地高。 二、 正高系统 正高系统是以大地水准面为基准面的高程系统。某点的正高 是该点到通过该点的铅垂线与大地水准面的交点之间的距离,正高 用符号 表示。 三、 正常高 正常高系统是以似大地水准面为基准的高程系统。某点的正 常高是该点到通过该点的铅垂线与似大地水准面的交点之间的距离 ,正常高用 表示。 四、 高程系统之间的转换关系
大地水准面
大地水准面是水准 面中的一个特殊水 准面。即在海洋中 与静止海水面重合, 最接近地球的真实 形态和大小。
大地水准面是不规则曲面,不便于进行测量数据处理
三
大地水准面
三
大地水准面
为便于准确计算测量 成果,用一个接近大 地体的旋转椭圆球体 作为地球的参考大小 和形状----称为 参考椭球体,称其外 表为参考椭球面。
高斯平面直角坐标系的建立
Y(东)
根据高斯投影的特点,以赤 道和中央子午线的交点为坐 标原点o,中央子午线方向 为x轴,北方向为正。赤道 投影线为y轴,东方向为正。
高斯平面直角坐标系的建立
5.2 国家统一坐标 在我国x坐标都是正的,y坐标的最大值(在赤道上)约 为330为了避免出现负的横坐标,可在横坐标上加上500,000m。 此外还应在坐标前面冠以带号。
大地测量中常用的坐标系
一 定向井工程中大地测量的应用
二
三 1 2 3
大地测量的基本概念
大地水准面 参考椭球面 空间直角坐标系 空间大地坐标系
5
6 7
高斯平面直角坐标系
高程系统 GPS全球定位系统
一 定向井工程中大地测量的应用
二 大地测量的基本概念
2.1 大地测量学的定义
主要任务是测量和描绘地球并监测其变化,为人类 活动提供关于地球的空间信息。是一门地球信息学科。是 一切测绘科学技术的基础。 2.2 大地测量学的基本分支
N为卯酉圈的半径;
a 为地球椭球 b 为地球椭球的短半轴。
2 空间直角坐标系向空间大地坐标系的转换方法为:
在采用上式进行转换时,需要采用迭代的方法, 先将B求出,最后在确定H。
3 空间坐标系与平面直角坐标系间的转换
空间坐标系与平面直角坐标系间的转 换采用的是投影变换的方法。在我国 一般采用的是高斯投影。
a=6378245米, α =1:298.3
1980年西安大地坐标系
1978年,我国决定重新对全国天文大地网施行整体平 差,并且建立新的国家大地坐标系统,整体平差在新大地 坐标系统中进行,这个坐标系统就是1980年西安大地坐标 系统。1980年西安大地坐标系统所采用的地球椭球参数的 四个几何和物理参数采用了IAG 1975年的推荐值,它们是:
例如,有一点Y=19 123456.789m,该点位在19带内,其相对于
中央子午线而言的横坐标是:首先去掉带号,再减去500000m, 最后得Y=-376543.211m。
高斯平面直角坐标系的建立
Y(东)