高分子材料成型加工原理
高分子材料成型加工原理期末复习重点(升华提升版)
1聚合物主要有哪几种聚集态形式?玻璃态(结晶态)、高弹态和粘流态2线性无定形聚合物当加工温度T处于Tb < T <Tg.Tg<T<Tf.Tf <T <Td时.分别适合进行何种形式的加工?聚合物加工的最低温度?T < Tg 玻璃态——适应机械加工;聚合物使用的最低(下限) 温度为脆化温度TbTg <T <Tf 高弹态.非晶聚合物Tg <T <Tf 温度区间.靠近Tf一侧.粘性大.可进行真空、压力、压延和弯曲成型等;高弹形变有时间依赖性.加工中有可逆形变.加工的关键的是将制品温度迅速冷却到Tg以下;结晶或部分结晶聚合物在Tg~Tm, 施加外力> 材料的屈服强度.可进行薄膜或纤维拉伸;聚合物加工的最低温度: 玻璃化温度TgT > Tf (Tm) 粘流态(熔体.液态)比Tf略高的温度.为类橡胶流动行为.可进行压延、挤出和吹塑成型。
可进行熔融纺丝、注射、挤出、吹塑和贴合等加工3熔融指数?说明熔融指数与聚合物粘度、分子量和加工流动性的关系, 挤出和注塑成型对材料的熔融指数要求有何不同?熔融指数(Melt Flow Index)一定温度(T >Tf 或 Tm)和压力(通常为2.160kg )下.10分钟内从出料孔 (Ø= 2.095mm ) 挤出的聚合物重量(g∕10 min)。
a评价热塑性聚合物的挤压性;b评价熔体的流动度 (流度φ= 1/η), 间接反映聚合物的分子量大小;c购买原料的重要参数。
分子量高的聚合物.易缠结.分子间作用力大.分子体积大. 流动阻力较大.熔体粘度大.流动度小.熔融指数低;加工性能较差。
分子量高的聚合物的力学强度和硬度等较高。
分子量较低的聚合物.流动度小.熔体粘度低.熔融指数大.加工流动性好。
分子量较低的聚合物的力学强度和硬度等较低是塑料使用的下限温度; 4解释:应变软化;应力硬化;塑性形变及其实质。
高分子加工原理与技术2-成型原理
Q=
1 JBiblioteka τ γ·=1 Jηaγ·2
(2-2)
用摩擦热加热塑料是通过挤出机或注射机的螺杆与 料筒的相对旋转运动等途径来实现的。由于聚合物的 表观粘度随摩擦升温而降低,使物料熔体烧焦的可能 性不大,而且塑化效率高,塑化均匀。
2.1.2 高分子材料的流变性能
(1)流动类型
➢层流和湍流 ➢稳定流动与不稳定流动 ➢等温流动和非等温流动 ➢一维流动、二维流动和三维流动 ➢拉伸流动和剪切流动 ➢拖曳流动和压力流动
第2章 高分子材料成型原理
2.1 高分子材料的加工性能 2.1.1 高分子材料的熔融性能
热传导 热传递 对流
辐射
高分子材料的熔融方法:
无熔体移走的传导熔融 有强制熔体移走(由拖曳或压力引起)的传导熔融 耗散混合——熔融 利用电的、化学的或其它能源的耗散熔融方法 压缩熔融
热扩散系数及其影响因素
聚合物熔体在管隙中的流动分析
➢ 圆管通道 ➢ 圆锥形通道
流动缺陷
塑料流体在流道中流动时,常因种种原因使流动出现 不正常现象或缺陷。这种缺陷如果发生在成型时中,则常 会使制品的外观质量受到损伤,例如表面出现闷光、麻面、 波纹以致裂纹等,有时制品的强度或其它性能也会裂变。 这些现象与工艺条件、高聚物的非牛顿性、端末效应、离 模膨胀和熔体破裂有关。
(2)非牛顿型流动
图2-6 各类型流体的流动曲线 a-宾汉流体 b, e-假塑性流体 c-膨胀性流体 d-牛顿型流体
描述假塑性和膨胀性的非牛顿流体的流变行为, 用幂律函数方程 :
τ = Kγ·n
式中 K——流体稠度,Pa·s n——流动指数,也称非牛顿指数。
(3) 时间依赖性流体 这类流体的流变特征除与剪切速率与剪切应力
高分子材料加工原理(1)(1)
高分子材料加工原理第一章化学纤维人造纤维再生纤维素:黏胶纤维、铜氨纤维、莱赛尔纤维纤维素纤维:二醋酯纤维、三醋酯纤维橡胶纤维其他:甲壳素纤维、海藻纤维合成纤维聚酰胺纤维芳族聚酰胺纤维聚酯纤维生物可降解聚酯纤维聚丙烯腈纤维改性聚丙烯腈纤维聚乙烯醇纤维聚氯乙烯纤维聚烯烃纤维聚氨酯纤维聚氟烯烃纤维二烯类弹性体纤维聚酰亚胺纤维2、工程塑料通用工程塑料聚酰胺()聚碳酸酯()聚甲醛聚苯醚丙烯腈丁二烯苯乙烯共聚物超高分子量聚乙烯()特种工程塑料聚砜芳香族聚酰胺()聚酰亚胺()聚苯硫醚聚芳酯聚苯酯聚醚酮氟塑料()简答及论述1、聚合物熔融有哪几种方式,各方式的主控因素是什么?答:(1)无熔体移走的传导熔融:熔融热=表面热传导,熔融速率仅由热传导决定。
(2)(主要)有强制熔体迁移(由拖拽或压力引起)的传导熔融:熔融热=接触表面的热传导+黏性耗散生热。
熔融效率由热传导率、熔体迁移及黏性耗散生热速率共同决定(3)耗散混合熔融:熔融热=整个体积内将机械能转化为聚合物内能。
耗散混合熔融速率由整个外壁面上和混合物固体-熔体界面上辅热传导决定。
(4)利用电、化学或其他能源的耗散熔融(5)压缩熔融(6)振动诱导挤出熔融过程:熔融的主要能量来源于单纯使用振动力场2、怎样利用溶度参数理论来选择溶剂?答:当溶剂的内聚能密度或溶度参数与聚合物的内聚能密度或溶度参数相等或相近时,溶解过程的混合热焓等于或趋近于零,这时溶解过程能够自发进行。
一般来说,当时,聚合物就不溶于该溶剂。
3、Brodkey的混合理论涉及的混合的基本运动形式有哪些?聚合物成型时熔融物料的混合以哪一种运动形式为主?为什么?答:分子扩散、涡旋扩散、体积扩散以体积扩散为主原因(1)在聚合物加工中,由于聚合物熔体粘度一般很高,熔体与熔体间分子扩散挤满,因而分子扩散无实际意义。
(2)在聚合物加工中,由于物料的运动速度达不到紊流,而且黏度又高,故很少发生涡旋扩散(3)聚合物加工中的混合与一般的混合不同,由于聚合物熔体的粘度通常高于100Pa*s,因此混合只能在层状领域产生层对流混合,即通过层流而使物料变形、包裹、分散,最终达到混合均匀。
高分子材料成型加工原理
1注射成型的特点:生产周期快,适应性强,生产率高和易于自动化2注射成型加工三要素:材料,设备,模具3成型工艺三要素:温度T 压力P 时间t 。
压力:塑化压力,注射压力,保压压力4什么是注射成型:注射成型亦称注射模塑或利用注塑机的注塑,是热塑性塑料的一种重要成型方法 5注塑成型就是将塑料在气塑成型机的料筒内加热熔化,当呈流动状态时在栓塞或螺杆加压下熔融塑料被压缩并向前移动,进而通过料筒前端的喷嘴以很快速度注入温度较低的闭合磨具内,经过一定的时间冷却定型后,开启磨具即得制品(间歇操作)6螺杆分类:1加料段,作用,输送物料,物料状态,固体状态,部分熔化,螺纹特点,等距等深,最深2压缩段,压实物料,熔融状态,等距不等深,渐变3均化段,定温定量定压,熔融状态,等距等深,最浅均化段,定温定量定压,熔融状态,等距等深,最浅 7填料的表面处理:作用1使颗粒分散均匀,不凝结在一起2所有填充剂粒子被聚合物包围润湿3使其充剂表面与聚合物有良好的粘合力 8偶联剂(硅烷类):一是具有良性结构物质分子中一部分基团与无机物表面化学基团反应形成顽固的化学键,另一部分有亲有机性质,可与有机物反应,从而把两种性质不同材料结合起来9什么是挤出成型:挤出成型亦称挤压模塑或挤塑,即借助螺杆或柱塞的挤压作用,使受热熔化的塑料在压力推动下,强行推动口模而成为具有恒定截面的连续型材料的一种定型方法10挤出成型适用范围:挤出法几乎能成型所有的热塑性塑料,也可加工某些热固性塑料11挤出成型制品:生产的制品有管材,板材,薄膜,线缆包覆物以及塑料与其它材料的复合材料等12挤出成型的设备:单螺杆挤出机的基本结构:主机,挤出机辅助设备 挤出机分类:单螺杆,双螺杆,立式,卧式,排气式,非排气式,螺杆,柱塞13什么是一次成型:在大多数情况下一次成型是通过加热使塑料处于粘流态的条件下,在大多数情况下一次成型是通过加热使塑料处于粘流态的条件下,经过流动,经过流动,经过流动,成型和成型和冷却硬化(或交联固化)而将塑料制成各种形状的产品方法14什么是二次成型:二次成型则是将一次成型所得的片,管,板等塑料成品,加热使其处于类橡胶状态(在材料的Tg Tg——Tf 或Tm 间)通过外力作用使其形变而成型为各种较简单性状,再经冷却定型而得产品15共混聚合物选择原则:化学结构原则(相近)溶解度参数原则(接近)流变学原则(等粘度原则)(接近)胶体化学原则(表面张力)(接近)分子扩散动力学原则 16什么是填充和增强改性:在聚合物中填加其它无机和有机物以改变其力学,在聚合物中填加其它无机和有机物以改变其力学,工艺,工艺,使用性能活降低成本的改性方法17注射机主要参数:1公称注射量,做一次最大行程射出的聚苯乙烯的量2注射压力,注射过程中最大压力3注射速度4塑化能力,单位时间塑化物料的多少5锁模力18什么是增强改性:在聚合物中加入增强材料以及改变聚合物的性能尤其是力学性能的改性方法,在聚合物中加入增强材料以及改变聚合物的性能尤其是力学性能的改性方法,增强材增强材料:玻纤,碳纤,晶须,硼纤维19什么是填料,什么是增强材料:为了改善塑料的成型加工性能,提高制品的某些技术指标,赋予塑料制品某些新的性能,或为了降低成本和聚合物单耗而加入的一类物质称填料。
高分子材料成型加工原理
⾼分⼦材料成型加⼯原理第⼀章绪论1.按所属成型加⼯阶段划分,塑料成型加⼯可分为⼏种类型?分别说明其特点。
(1)⼀次成型技术⼀次成型技术,是指能将塑料原材料转变成有⼀定形状和尺⼨制品或半制品的各种⼯艺操作⽅法。
⽬前⽣产上⼴泛采⽤的挤塑、注塑、压延、压制、浇铸和涂覆等。
(2)⼆次成型技术⼆次成型技术,是指既能改变⼀次成型所得塑料半制品(如型材和坯件等)的形状和尺⼨,⼜不会使其整体性受到破坏的各种⼯艺操作⽅法。
⽬前⽣产上采⽤的只有双轴拉伸成型、中空吹塑成型和热成型等少数⼏种⼆次成型技术。
(3)⼆次加⼯技术这是⼀类在保持⼀次成型或⼆次成型产物硬固状态不变的条件下,为改变其形状、尺⼨和表观性质所进⾏的各种⼯艺操作⽅法。
也称作“后加⼯技术”。
⼤致可分为机械加⼯、连接加⼯和修饰加⼯三类⽅法。
2.成型⼯⼚对⽣产设备的布置有⼏种类型?(1)过程集中制⽣产设备集中;宜于品种多、产量⼩、变化快的制品;衔接⽣产⼯序时所需的运输设备多、费时、费⼯、不易连续化。
(2)产品集中制⼀种产品⽣产过程配套;宜于单⼀、量⼤、永久性强的制品、连续性强;物料运输⽅便,易实现机械化和⾃动化,成本降低。
3.塑料制品都应⽤到那些⽅⾯?(1)农牧、渔业(2)包装(3)交通运输(4)电⽓⼯业(5)化学⼯业(6)仪表⼯业(7)建筑⼯业(8)航空⼯业(9)国防与尖端⼯业(10)家具(11)体育⽤品和⽇⽤百货4.如何⽣产出⼀种新制品?(1)熟悉该种制品在物理、机械、热、电及化学性能等⽅⾯所应具备的指标;(2)根据要求,选定合适的塑料,从⽽决定成型⽅法;(3)成本估算;(4)试制并确定⽣产⼯艺规程、不断完善。
第⼆章塑料成型的理论基础1.什么是聚合物的结晶和取向?它们有何不同?研究结晶和取向对⾼分⼦材料加⼯有何实际意义?2.请说出晶态与⾮晶态聚合物的熔融加⼯温度范围,并讨论两者作为材料的耐热性好坏。
晶态聚合物:Tm——Td;⾮晶态聚合物:Tf——Td。
对于作为塑料使⽤的⾼聚物来说,在不结晶或结晶度低时最⾼使⽤温度是Tg,当结晶度达到40%以上时,晶区互相连接,形成贯穿整个材料的连接相,因此在Tg以上仍不会软化,其最⾼使⽤温度可提⾼到结晶熔点。
高分子材料加工原理第五章
(2)纺丝流体从喷丝孔中的剪切流动
向纺丝线上的拉伸流动的转化
(3)流体丝条的单轴拉伸流动
(4)纤维的固化
(二)纤维成型过程中成纤聚合物的变化
(1)几何形态变化 (do (2)物理形态变化 ①宏观状态参数 T-X (温度场) Ci-X (浓度场) ②微观状态参数 取向度 结晶度 网络结构 V-X (速度场) P-X (应力场) dx)
ρxAxVx=常数
T(x):由补偿式接 触温度计、红外线 拍照等确定 ρ(T) ① 高速摄影法 不发生 结晶时
ρx ≈ K Vx
dx: ②取样器取样法确定
③ 激光衍射法
έ(x) =
dVx dx
Test stand for temperature and velocity measurement: Infrared Camera and Laser Doppler Anemometer
(3)化学结构变化
(三)纺丝过程的基本规律
1.在纺丝线的任何一点上,聚合物的流动是稳态 和连续的.
纺丝线:熔体挤出细流和固化初生纤维的总称. 稳态: , T , Ci , P, 0
t
连续:在稳态纺丝条件下,纺程上各点
每一瞬时所流经的聚合物质量相等(流动
连续性方程) : 熔体纺丝 溶液纺丝 ρxAxVx=常数 ρxAxVxCix=常数
2.纺丝线上的主要成形区域内,占支配地位的形变是单轴拉伸
3.纺丝过程是一个状态参数连续 变化的非平 衡态动力学过程 同 一时间不同位置V 、 T 、 Ci 、 P 等连续变化.
4.纺丝动力学包括几个同时进行并相互联系的单元过程
动能传递、传热、传质、结构参数变化等.
(四)纺丝流体的可纺性
高分子材料加工原理(第四章)
从动态实验不仅能表征粘弹流体的频率依赖性 粘度,而且能表征其弹性。测定值是复数粘度。
* () i ()
( )
G ( )
G ( ) ( )
——非牛顿流体粘性的表征 ——弹性的表征
第一节 聚合物流体的非牛顿剪切粘性
第一节 聚合物流体的非牛顿剪切粘性
(3)可预示某些聚合物流体的可纺性
d lg a d 1 / 2
2 10
结构黏度指数▣可用来表 征聚合物浓溶液结构化的 程度。▣越大,表明聚合 物流体的结构化程度越大。
第一节 聚合物流体的非牛顿剪切粘性
第一节 聚合物流体的非牛顿剪切粘性
②切力增稠的原因: 增加到某数值时,流体中有新的结构的形成。 大多数胀流型流体为多分散体系,固体含量较多,且浸润 性不好。静止时,流体中的固体粒子堆砌得很紧密,粒子 间空隙小并充满了液体,这种液体有一定的润滑作用。 较低时,固体粒子就在剪切力的作用下发生了相对滑 当 动,并且能够在原有堆砌密度大致保持不变的情况下,使 得整个悬浮体系沿力的方向发生移动,这时候表现为牛顿 流动; 增加到一定值时,粒子间碰撞机会增多,阻力增大; 当 同时空隙增大,悬浮体系总体积增加,液体已不能再充满 空隙,粒子间移动时的润滑作用减小,阻力增大,所以 a 增大。
点;
3、掌握聚合物流体切力变稀的原因;
本节作业
1、P118-1(1、2、3、5、9)、2、4、7
第一节 聚合物流体的非牛顿剪切粘性
【教学内容导读】 流体的粘性和牛顿粘性定律 非牛顿流体的流动行为及粘性表征
影响聚合物流体剪切粘性的因素
【课时安排】4课时
高分子材料成型加工原理笔记(精简)
11 减轻挠度的方法:通常可将辊筒设计和加工成略带腰鼓型,或调整两辊筒的轴,使其交叉一定角度或加预应力,就能在一定程度上克服或减轻分离力的有害作用,提高压延制品厚度的均匀性。
12 在压延过程中,热塑性塑料由于受到很大的剪切应力的作用,因此大分子会顺着薄膜前进方向发生定向作用,使生成的薄膜在物理机械性能上出现各向异性,这种现像称为压延效应。
压延效应的大小,受压延温度、转速、供料厚度和物料性能等的影响,升温或增加压延时间,均可减轻压延效应。
5 压延分离力:在辊筒对物料挤压和剪切的同时,辊筒液受到来自物料的反作用力,这种力图使两辊分开的力称为分离力或横压力。
1、简述离模膨胀的含义、原因及主要影响因素。
答:定义:被挤出的聚合物熔体断面积远比口模断面积大的现象。
离模膨胀比定义为充分松弛的挤出物直径d 与口模直径D之比。
原因:a、取向效应b、弹性变形效应c、正应力效应影响因素:1)长径比一定,B随剪切速率增加而增大。
在熔体破裂临界剪切速率之前有最大值Bmax,而后下降;2)低于τc之下,B随τ增加而增大。
高于τc 时,B值则下降;3)在低于临界ɤc的一定的剪切速率下,B随温度升高而降低;4)剪切速率恒定,B随长径比L/D的增大而降低。
L/D超过某一数值时,B为常数。
5)离模膨胀比随熔体在口模内停留时间呈指数关系地减少。
6)离模膨胀比随聚合物的品种和结构不同而异。
线性、柔性聚合物位阻低,松弛时间短,B值小;粘度大,分子量高,分布窄,非牛顿性强,松弛缓慢,B值大。
5、为什么在一种设备上螺杆转速(n)不能过高?并且靠增加转速来提高生产率也是有限度的?答:随着转速的增加,物料所受到的剪切作用加大,即剪切速率增大,因为大多数聚合物都是假塑性流体,因此,随γ↑,η↓,则漏流↑,逆流↑,所以,当转速高到一定程度时,漏流和逆流对产量的影响就不能忽略了。
在实际生产中,也不能靠提高螺杆的转速无限制的增加生产能力,随n不断提高,剪切速率达到一定范围后,就会出现熔体破裂现象。
高分子材料加工原理
高分子材料加工原理一、高分子材料加工原理:1.高分子材料的加工性质:1)、高分子材料的加工性:高分子具有一些特有的加工性质,如良好的可塑性,可挤压性,可纺性和可延性。
正是这些加工性质为高分子材料提供了适于多种多样加工技术的可能性,也是高分子能得到广泛应用的重要原因。
高分子通常可以分为线型高分子和体型高分子,但体型高分子也是由线型高分子或某些低分子物质与分子量较低的高分子通过化学反应而得到的。
线型高分子的分子具有长链结构,在其聚集体中它们总是彼此贯穿、重迭和缠结在一起。
在高分子中,由于长链分子内和分子间强大吸引力的作用,使高分子表现出各种力学性质。
高分子在加工过程所表现的许多性质和行为都与高分子的长链结构和缠结以及聚集态所处的力学状态有关。
根据高分子所表现的力学性质和分子热运动特征,可将其划分为玻璃态、高弹态和粘流态,通常称这些状态为聚集态。
高分子的分子结构、高分子体系的组成、所受应力和环境温度等是影响聚集态转变的主要因素,在高分子及其组成一定时,聚集态的转变主要与温度有关。
不同聚集态的高分子,由于主价健与次价健共同作用构成的内聚能不同而表现出一系列独特的性质,这些性能在很大程度上决定了高分子材料对加工技术的适应性,并使高分子在加工过程表现出不同的行为。
高分子在加工过程中都要经历聚集态转变,了解这些转变的本质和规律就能选择适当的加工方法和确定合理的加工工艺,在保持高分子原有性能的条件下,能以最少的能量消耗,高效率地制备良好的产品。
玻璃态高分子不宜进行引起大变形的加工,表现为坚硬的固体,但可通过车、铣、削、刨等进行加工。
在玻璃化温度Tg以下的某一温度,材料受力容易发生断裂破坏,这一温度称为脆化温度,它是材料使用的下限温度。
在Tg以上的高弹态,高分子的模量减少很多,形变能力显著加大。
在Tg-Tf 温度区靠近Tf,由于高分子的粘性很大,可进行某些材料的真空成型、压力成型、压延和弯曲成型等。
把制品温度迅速冷却到Tg以下温度是这类加工过程的关键。
高分子成型加工原理 第四章压缩模塑
4.8 冷压烧结成型
氟塑料,熔体在成型温度下具有很高的 粘度,事实上难以熔化,不能用一般热塑性 塑料的方法成型。 只能用类似粉末冶金烧结成型的方法, 通称冷压烧结成型。 成型时,先将一定量的含氟塑料放入常 温下的模具中,在压力作用下,压制成密实 的形坯,然后送至烘室内进行烧结,冷却后 即成为制品。
三、局限性
1.如果生产效率低,则运营成本高;
2.不适于松散度大的长纤维塑料;
3.不适于结构复杂、混色斑纹制品。
4.2.1 压缩粉的性能对预压的影响
一、水分
水分含量少,不利于预压;水分含量过大, 则不利于模压,导致性能劣化。
二、颗粒均匀度 大小相间适宜。 如大颗粒多,则预压物含孔隙多,强度低; 细小颗粒多,则加料装置易阻塞,易封入空气, 易在阴阳模中造成销塞。
4.3
预热
为提高制品质量和便于模压进行,须预热。 作用
干燥
提供热料
一、热固性塑料预热的优点
1.缩短闭模时间,加快固化速率,缩短模塑周期 2.增进制品固化的均匀性,提高制品物理力学性能 3.提高塑料的流动性,降低塑模损耗和废品率,减 小制品的收缩率和内应力,提高制品因次稳定性 和表面光洁度。
4.降低模压压力
(5)制品的密度随模压压力的增加而增加,但 是有限。 二、模压温度
模压温度:指模压时所规定的模具温度,并不等 于模具型腔内塑料的温度。 模压温度是使热固性塑料流动、充模、并最 后固化成型的主要原因,决定了成型过程中聚合 物交联反应的速度,从而影响塑料制品的最终性 能。
模压温度对制品性能的影响: (1)温度升高,加速热固性塑料在模腔中的固化 速度,固化时间缩短。 高温有利于缩短模压周期; (2)过高温度,会因固化速度太快而使塑料流动 性迅速降低,引起充模不满, 特别是形状复杂、壁薄、深度大的制品; (3)温度过高,能引起色料变色、有机填料等分 解,使制品表面暗淡;
高分子材料成型加工原理
高分子材料成型加工原理
高分子材料成型加工是一种将高分子材料加工成所需要形状并赋予特定性能的过程。
这类材料具有高分子化学键的共价键,通过化学交联或物理交联可以具有不同的物理、力学和化学性质。
高分子材料成型加工的原理是利用热、化学或/和机械能对高分子材料进行重构,形成所需形状和特性。
高分子材料成型加工可分为热成型和冷成型两类。
热成型是在高温和高压下加工材料,形成所需形状和性质。
这类材料通常被称为热塑性材料。
冷成型是在正常温度和压力下进行加工,这种材料通常被称为热固性材料。
两种材料的加工方法略有不同。
热成型加工的主要方法包括挤出法、注射法、吹塑法、热压缩法和热成型法等。
这些方法的共同点是使用高温和高压,使高分子材料流动并具有所需形状。
与热成型不同,冷成型是通过化学反应或光固化将高分子材料固化成所需形状。
这些加工方法包括浇注、压制、浸渍、喷涂和光固化等。
在实践中,选择合适的高分子材料加工方法非常重要。
通过了解高分子材料的特性和与加工方法相关的因素,可以选择出最适合的成型加工方法。
这种方法可以提高产量,保证产品质量和降低成本。
高分子材料成型加工原理
高分子材料成型加工原理随着科技的不断发展,高分子材料在现代工业中的应用越来越广泛。
高分子材料的特性决定了它在成型加工过程中的行为和性能,因此深入了解高分子材料的成型加工原理对于工业生产至关重要。
高分子材料的特性高分子材料是由化学反应产生的大分子化合物,具有许多独特的物理和化学特性。
高分子材料通常是由重复单元组成的长链状分子,这些分子之间的相互作用是高分子材料的特性之一。
高分子材料的分子链通常具有很高的分子量,这使得它们具有很高的黏度和粘滞性。
高分子材料的分子链通常是柔软的,这使得它们容易被拉伸和变形。
此外,高分子材料还具有良好的绝缘性和化学稳定性,这使得它们在许多应用中都具有很高的价值。
高分子材料的成型加工过程高分子材料的成型加工过程通常包括以下几个步骤:1. 加热和熔融高分子材料通常需要加热和熔融才能进行成型加工。
在加热和熔融的过程中,高分子材料的分子链会变得更加柔软和流动,这使得它们更容易被塑造成所需的形状。
2. 塑形在高分子材料加热和熔融之后,可以对其进行塑形。
塑形通常包括挤出、注塑、吹塑、压缩成型等多种方法。
在塑形的过程中,高分子材料会被压缩、拉伸、挤出或注入到所需的形状中。
3. 冷却和固化在高分子材料塑形之后,需要进行冷却和固化。
冷却和固化的过程中,高分子材料会逐渐变硬,分子链之间的相互作用也会逐渐增强。
这使得高分子材料能够保持所需的形状和性能。
高分子材料成型加工的影响因素高分子材料成型加工的过程受到许多因素的影响,包括材料的性质、成型加工条件、机器设备和操作人员等。
1. 材料的性质高分子材料的成型加工过程受到材料的物理和化学性质的影响。
例如,高分子材料的熔点、流动性和分子量等特性会影响其成型加工的温度和压力等条件。
2. 成型加工条件成型加工条件是影响高分子材料成型加工过程的另一个重要因素。
例如,成型加工的温度、压力、速度和冷却时间等条件都会影响高分子材料的成型效果和性能。
3. 机器设备机器设备是高分子材料成型加工过程中的另一个重要因素。
高分子材料加工原理
第三章产生入口效应的原因:聚合物液体以收敛流动方式进入导管入口时,它必须变形以适应它在新的且有适当压缩性的流道内流动,但聚合物熔体具有弹性,也就是对变形具有抵抗力,因此,就必须消耗适当的能量,即消耗相当的压力降,来完成在这段管内的变形。
熔体各点的速度在进入导管前后是不同的,为调整速度,也要消耗一定的压力降。
产生离模膨胀的原因(解释之一)聚合物熔体从导管中流出后,周围压力大大减小,甚至完全消失,这意味着聚合物内的大分子突然变得自由了,因此,前段流动中储存于大分子中的弹性变形能量被释放出来,致使在流动变形中已经伸展开的大分子链重新恢复卷曲,各分子链的间距随着增大,从而导致聚合物内自由空间增大,于是体积相应发生膨胀。
总之,凡是导致流动中弹性成分增加的因素都使入口效应和离膜膨胀效应变得严重。
一般情况下,粘度大(分子量大)、分子量分布窄和非牛顿性强的聚合物,流动中会储存更多的可逆弹性成分,同时又因松弛缓慢,液体流出管口时膨胀现象就越显著。
降低液体温度会使入口区域弹性形变成分显著增加,离膜膨胀效应加剧,但当剪切速率增加并超过某一数值时,膨胀比反而会降低,这一数值称为临界剪切速率。
液体在此种情况下转入不稳定流动状态。
入口效应和出模膨胀效应通常对塑料的成型都是不利的,可能导致产品变形和扭曲,降低塑件的尺寸稳定性,并可能在塑件内产生内应力,降低塑件物理和力学性能。
增加管子或口模的平直部分长度,适当降低成型时的压力和提高成型温度,并对挤出物加以适当速度的牵引或拉伸等,均有利于减小或消除端末效应带来的不利影响。
牛顿型流体速度分布为抛物线,膨胀型流体速度分布为锥形,n越大,锥形越尖,假塑性流体速度分布更平缓,n越小,越平。
发生“熔体破裂”的可能原因:1、液体流动时在管壁上产生的滑移2、液体中的弹性回复3、液体的剪切历史差异毛细管粘度计:它可以求出施加于熔体上的剪切应力和剪切速率之间的关系,即求出熔体的流动曲线,优点是结构简单,调节容易,并能通过出口膨胀来考虑熔体弹性;缺点是剪切速率高,不稳定,需要做一系列校正,但是毛细管流变仪仍是用途最广泛的。
高分子材料加工原理
1.简述粒子填充剂对剪切粘度的影响一般固体物质的加入会使聚合物的剪切粘度有所增大,增大的程度与流体中粒子填充剂体积及剪切速率有关。
在低剪切速率下,粘度随填充剂增加而升高的程度要比高剪切速率大些。
2.简述聚合物在螺杆挤压机中熔融的能量来源对于聚合物在螺杆挤压机中的熔融,即有强制熔体移走的传导熔融,其能量来源于两个方面:一是依靠机筒沿螺槽深度方向自上而下传导而来的能量,这是加热器装在机筒外壁上,上下温差大,左右温差小的必然结果;二是通过熔膜移走而使熔融层受到剪切作用,使部分机械能转变成热能的必然结果。
3.塑料二次成型的主要方式二次成型主要包括拉幅薄膜、中空吹塑成型及热定型。
①拉幅薄膜是将挤出成型所得的厚度为1-3mm的厚片或管坯重新加热到材料的高弹态进行大幅度拉伸而形成的薄膜。
②中空吹塑是知道空心塑料制品的成型方法,是借助气体压力使闭合在模具型腔中的处于类橡胶态的型坯吹胀成为中空制品的二次成型技术③热成型是一种以热塑性塑料片材为成型对象的二次成型技术,首先将裁成一定尺寸和形状的片材,夹在模具的框架上,让其在高弹态的适宜温度下加热软化,然后施加压力使坯件弯曲与延伸,在达到预定的型样后使其冷却定型,经过适当的修整,即成为制品。
4.PET超高速纺丝中双折射沿纺程的分布特点并解释其原因聚合物熔体从喷丝孔以温度T0挤出后温度逐渐下降。
据此可以将取向度沿纺程的分布划分为三个区:①流动形变区在喷丝板以下0-70cm的范围内,此处大部分的细化形变已基本完成,但是双折射仍然很小。
这是因为该区的形变速率较低,聚合物处于高温,大分子迅速地发生解取向作用。
因此此区中双折射仅和纺丝应力有关。
②结晶取向区在喷丝板70-130cm。
显然,与常规纺PET不同,其取向度在该狭小的区域内急剧上升,其饱和值大大提高。
此区对应的直径曲线上出现细颈,温度曲线上出现平台,形变速率dv/dx出现极大的峰值。
这是由于PET卷绕丝在纺程上发生了结晶。
高分子材料成型加工聚合物加工原理
4 稳定剂的选择 • 取决于制品,如硬质或软质制品、透明与否、一般使 用还是食品包装等等; • 成型加工方式:注射成型、硫化床涂层等加工温度高, 对热稳定剂的选择严格。
二、抗氧剂(防老剂)
1 自动氧化反应机理
NR自动氧化反应机理
CH3 CH3 • ~CH2-C=CH-CH2~ + O2→ ~CH-C=CH-CH2~ + HOO• CH3 ↓+O2 CH3 ~CH-C=CH-CH2~ → ~CH-C=CH-CH2~ O-O• O• CH3 CH3 ~CH2-C=CH-CH2—CH-C=CH-CH2~ ↓β断裂 O• CH3 O CH3 ~CH2-C=CH-CH2• + CH-C=CH-CH2~ 氧化结果:大分子断裂,生成带有醛、酮基团的小分子。
第二节 影响高分子材料性能的物理因素 一 相对分子质量及其分布
1 Tg随分子量增加而提高。 2 熔体粘度随分子量增加而增加,流动性下降,成型困难。 3 成型方法 注塑、挤出、吹塑对分子量要求不同(低→高)。 4 强度、热变形温度等性能随分子量增加而增加。 5 分子量分布对成型性和制品性能均有影响 (宽→窄) 橡胶→塑料→合成纤维
3 聚苯乙烯(Polystyrene,PS)
GPPS:本体法比悬浮法透明性高; 苯乙烯共聚物:HIPS(本体或悬浮)、EPS(悬浮)、 (本体或悬浮)、ABS(多种方法) AS
4 聚酰胺-6(Polyamide,PA-6)
开环聚合(熔融缩聚):常用品种; 碱聚合(阴离子):单体浇铸尼龙(MC尼龙),分子量高。
2 热稳定剂的作用
• • • • • •
中和HCl; 取代不稳定氯原子; 钝化杂质; 防止自动氧化; 与不饱和部位反应; 破坏碳正离子。
高分子成型原理
高分子成型原理
高分子成型是一种通过将高分子材料加热、熔化,然后注入到模具中,在模具中冷却固化得到所需形状的方法。
其主要原理包括以下几个方面:
1. 熔融:高分子材料在加热条件下变成可流动的熔体,使其能够被注入到模具中。
加热的温度通常高于材料的熔点,以确保材料完全熔化。
2. 注塑:将熔化的高分子材料通过注射机注入到模具中。
注射机通过螺杆推动熔融的材料进入模具腔室,以达到所需的形状和尺寸。
3. 冷却:在注塑完成后,模具中的熔体开始冷却并逐渐固化。
冷却速度对成型制品的性能和质量有重要影响,因此通常会采取降温系统或冷却装置来控制冷却速度。
4. 开模:当成型制品完全固化后,模具会打开进行取出。
一般通过顶出机构或者模具的自动弹簧弹出来保证成品的完整性。
高分子成型原理的关键在于控制好熔融、注塑、冷却和开模等各个环节。
同时,还需要考虑材料的特性、模具的设计和加工参数等因素,以确保最终成型制品的质量和性能。
高分子材料成型原理
高分子材料成型原理高分子材料成型是指将高分子材料加工成所需形状的过程。
高分子材料是指由大量重复单元组成的聚合物,可通过化学方法或物理方法制备而成。
成型是高分子材料应用的重要环节,涉及到材料的加工性能、成型工艺和成型设备。
下面将详细介绍高分子材料成型的原理。
高分子材料成型主要有热成型、挤出成型、压缩成型、注塑成型和吹塑成型等常见方式。
热成型是将高分子材料加热到一定温度,并将其放置在模具中冷却成型。
挤出成型是通过加热高分子材料,在一定的压力下挤压通过挤压机的模具口成型。
压缩成型是将加热后的高分子材料置于开放式或闭合式模具中,在一定的压力下压实成型。
注塑成型是将高分子材料加热熔化后注入模具中,并通过模具的冷却使之凝固成型。
吹塑成型是利用高温高压空气对熔化的材料进行吹塑形成中空物件。
高分子材料成型的原理主要涉及材料的熔融性和流动性、加工工艺参数的选择和控制、模具的设计和制造等方面。
首先,材料的熔融性和流动性对成型过程中的熔融、流动和凝固起着关键作用。
高分子材料在加热过程中会熔化,形成熔体。
这种熔体具有较低的黏度和较高的流动性,可以通过加工设备的压力和形状来控制其流动和凝固。
熔体在流动过程中,一方面受到流动时的摩擦力和剪切力,另一方面受到冷却慢的边界面和模具的限制而凝固。
因此,材料的熔融性和流动性对成型的形状、尺寸、结构和性能有重要影响。
其次,成型工艺参数的选择和控制对材料成型起着至关重要的作用。
工艺参数包括温度、压力、速度和模具温度等。
温度直接影响材料的熔化和流动性,过高的温度会导致材料过分流动或剪切变性;过低的温度会导致材料凝固不全或产生缺陷。
压力决定材料的流动性和充实性,过高的压力会使材料过度充实或破坏;过低的压力会使材料流动性差或充实不足。
速度影响材料的填充速度和凝固速度,过高的速度会导致材料流失或产生空隙;过低的速度会使材料充实不足或凝固不全。
模具温度决定材料的凝固速度和尺寸稳定性,过高的温度会使材料凝固迅速或产生变形;过低的温度会使材料凝固慢或产生缺陷。