遥感基础知识

合集下载

遥感基础知识试题及答案

遥感基础知识试题及答案

1、多波段遥感:探测波段在可见光与近红外波段范围内,再分为若干窄波段来探测目标。

2、维恩位移定律:黑体辐射光谱中最强辐射的波长与黑体的绝对温度成反比。

黑体的温度越高,其曲线的峰顶就越往左移,即往短波方向移动。

3、瑞利散射与米氏散射:前者是指当大气中的粒子直径比波长小得多的时候所发生的大气散射现象。

后者是指气中的粒子直径与波长相当时发生的散射现象。

4、大气窗口;太阳辐射通过大气时,要发生反射、散射、吸收,从而使辐射强度发生衰减。

对传感器而言,某些波段里大气的投射率高,成为遥感的重要探测波段,这些波段就是大气窗口。

5、多源信息复合:遥感信息图遥感信息,以及遥感信息与非遥感信息的复合。

6、空间分辨率与波谱分辨率:像元多代表的地面范围的大小。

后者是传感器在接收目标地物辐射的波谱时,能分辨的最小波长间隔。

7、辐射畸变与辐射校正:图像像元上的亮度直接反映了目标地物的光谱反射率的差异,但也受到其他严肃的影响而发生改变,这一改变的部分就是需要校正的部分,称为辐射畸变。

通过简便的方法,去掉程辐射,使图像的质量得到改善,称为辐射校正。

8、平滑与锐化;图像中某些亮度变化过大的区域,或出现不该有的亮点时,采取的一种减小变化,使亮度平缓或去掉不必要的“燥声”点,有均值平滑和中值滤波两种。

锐化是为了突出图像的边缘、线状目标或某些亮度变化大的部分。

9、多光谱变换;通过函数变换,达到保留主要信息,降低数据量;增强或提取有用信息的目的。

本质是对遥感图像实行线形变换,使多光谱空间的坐标系按照一定的规律进行旋转。

10、监督分类:包括利用训练样本建立判别函数的“学习”过程和把待分像元代入判别函数进行判别的过程。

1、遥感与遥感技术系统:遥远地感知;目标地物的电磁波,信息获取,信息接受,信息处理,信息应用。

2、动遥感与被动遥感:前者是探测器主动发射电磁波并接受信息。

后者是被动接受目标地物的电磁波。

3、磁波与电磁波谱:电磁振动的传播;按电磁波在真空中的传播的波长排列。

遥感专业必会知识点总结

遥感专业必会知识点总结

遥感专业必会知识点总结遥感技术的基本原理是通过感测器(如光电传感器、微波传感器等)对地球表面或大气进行监测,收集返回的电磁辐射信号,然后利用数字图像处理方法将其转化为数字图像,通过图像处理技术分析、解译和提取目标地物的信息。

由于遥感技术具有成本低、周期短、覆盖面广等特点,因此其在资源调查、环境监测等领域有着独特的优势。

以下将从遥感技术的基础原理、遥感图像的获取、遥感图像的处理和分析方法等方面,对遥感专业必会的知识点进行总结。

一、遥感技术的基础原理1. 电磁辐射与地球观测地球表面和大气等物体都会产生电磁辐射,包括可见光、红外线、微波等各种波段的辐射。

遥感技术利用的核心是通过感测器捕获和记录这些辐射信号,然后将其转化为数字图像。

2. 传感器的工作原理传感器是遥感技术的核心设备,其工作原理是通过接收地面或大气发射的电磁波,然后将其转化为电信号,并记录下来供后续处理分析。

3. 遥感平台的选择及参数设置选择合适的遥感平台和传感器对于获取高质量的遥感图像至关重要,需要考虑到分辨率、光谱范围、观测角度等参数,以保证获取到的图像能够满足实际需求。

4. 遥感图像的地理坐标系统遥感图像需要具有地理坐标系统以便进行地理信息系统(GIS)中的空间分析和地图制作,常用的地理坐标系统包括经纬度坐标系统、投影坐标系统等。

二、遥感图像的获取1. 遥感图像的获取方式遥感图像的获取方式主要包括航拍和卫星遥感两种,航拍是通过飞机或者无人机等载具进行空中摄影,而卫星遥感则是通过卫星搭载的传感器以及遥感平台对地面进行拍摄。

2. 遥感图像的光谱特性遥感图像的光谱范围可以通过调整传感器的波段来获取不同波段的图像,其中可见光、红外光、紫外光等不同波段的图像可以提供丰富的地物信息。

3. 遥感图像的分辨率遥感图像的分辨率是指图像中能够识别的最小物体大小,分辨率越高则图像的细节信息越丰富。

一般来说,遥感图像的分辨率可以分为空间分辨率、光谱分辨率、时间分辨率、辐射分辨率等。

遥感基础知识

遥感基础知识

遥感在地面、空中和外层空间的各种平台上,用各种传感器获取反映地表特征的各种数据,通过传输、变换和处理等,提取有用的信息,实现研究地物的空间形状、位置、性质、变化及其与周围环境的相互关系的一门现代应用技术。

电磁波谱:电磁波在真空中传播的波长或频率,按递增或递减排列就构成了电磁波谱。

绝对黑体 :如果一个物体对于任何波长的电磁辐射都全部吸收,则这个物体是绝对黑体。

绝对白体:是一种只向外辐射而不吸收任何电磁辐射的理想物体大气窗口:有些波段的电磁辐射通过大气后衰减较小,透过率较高,对遥感十分有利,这些波段通常称为大气窗口光谱反射特性曲线:反射光谱是某种物体的反射率对波长变化的规律,以波长为横坐标,反射率为纵坐标所得的曲线称为该物体的反射波谱特性曲线太阳同步轨道:是指卫星轨道面与太阳地球连线之间在黄道面内的夹角,不随地球绕太阳公转而改变。

MODIS:Moderate-resolution Imaging Spectroradiometer 是EOS-AM1系列卫星的主要探测仪器。

MODIS光谱区间:0.4 --14.4 μm覆盖范围±55°,2330 km 扫描宽度,空间分辨率250 m (2bands),500 m (5 bands),1000 m (29 bands)全景畸变:由于地面分辨率随扫描角发生变化,使红外扫描影像产生畸变,这种畸变通常称之为全景畸变共线方程:(5-5)公式5-5即为描述像点、传感器投影中心和地物点之间关系的共线方程几何校正:是解决遥感图像的几何变形问题,消除遥感图像的几何误差的过程。

灰度重采样:若输出图像阵列中的像素在原始图像中的投影点位坐标计算值不为整数,原始图像阵列中该非整数点位上并无现成的亮度存在,于是就必须采用适当的方法把该点位周围领进整数点位上亮度值对该点的亮度贡献累积起来,构成该点位的新亮度值,这个过程为数字图像灰度值的重采样。

大气校正:消除因为大气散射引起的辐射误差的处理称为大气校正。

遥感基础知识

遥感基础知识

遥感基础知识(转)一.什么是遥感?“遥感”,顾名思义,就是遥远地感知。

传说中的“千里眼”、“顺风耳”就具有这样的能力。

人类通过大量的实践,发现地球上每一个物体都在不停地吸收、发射和反射信息和能量,其中有一种人类已经认识到的形式――电磁波,并且发现不同物体的电磁波特性是不同的。

遥感就是根据这个原理来探测地表物体对电磁波的反射和其发射的电磁波,从而提取这些物体的信息,完成远距离识别物体。

例如,大兴安岭森林火灾发生的时候,由于着火的树木温度比没有着火的树木温度高,它们在电磁波的热红外波段会辐射出比没有着火的树木更多的能量,这样,当消防指挥官面对着熊熊烈火担心不已的时候,如果这时候正好有一个载着热红外波段传感器的卫星经过大兴安岭上空,传感器拍摄到大兴安岭周围方圆上万平方公里的影像,因为着火的森林在热红外波段比没着火的森林辐射更多的电磁能量,在影像着火的森林就会显示出比没有着火的森林更亮的浅色调。

当影像经过处理,交到消防指挥官手里时,指挥官一看,图像上发亮的范围这么大,而消防队员只是集中在一个很小的地点上,说明火情逼人,必须马上调遣更多的消防员到不同的地点参加灭火战斗。

上面的例子简单的说明了遥感的基本原理和过程,同时涉及到了遥感的许多方面。

除了上文提到的不同物体具有不同的电磁波特性这一基本特征外,还有遥感平台,在上面的例子中就是卫星了,它的作用就是稳定地运载传感器。

除了卫星,常用的遥感平台还有飞机、气球等;当在地面试验时,还会用到地面象三角架这样简单的遥感平台。

传感器就是安装在遥感平台上探测物体电磁波的仪器。

针对不同的应用和波段范围,人们已经研究出很多种传感器,探测和接收物体在可见光、红外线和微波范围内的电磁辐射。

传感器会把这些电磁辐射按照一定的规律转换为原始图像。

原始图像被地面站接收后,要经过一系列复杂的处理,才能提供给不同的用户使用,他们才能用这些处理过的影像开展自己的工作。

由于遥感在地表资源环境监测、农作物估产、灾害监测、全球变化等等许多方面具有显而易见的优势,它正处于飞速发展中。

遥感概论复习重点

遥感概论复习重点

遥感概论复习重点遥感概论是地球科学和环境科学中的重要学科之一,主要研究地球表面信息的获取、处理和应用。

以下是遥感概论复习的重点内容。

一、遥感基础知识1.遥感的定义、特点和应用范围;2.遥感数据的分类、图像解译的基本步骤;3.遥感的数据源、传感器和平台;4.遥感数据的光谱特征和光谱反射率;5.遥感数据的空间、光谱和时间分辨率。

二、遥感图像解译1.遥感图像解译的基本概念和步骤;2.遥感图像的特征提取方法;3.遥感图像分类方法和常用分类算法;4.遥感图像解译中的误差源和误差评价方法;5.遥感图像的应用领域和典型应用案例。

三、遥感技术的发展和应用1.遥感技术的发展历程和主要进展;2.遥感技术在农业、林业、环境监测、城市规划等领域的应用;3.遥感技术在气象、地质灾害监测、资源调查和管理中的应用;4.遥感技术在国土调查、地理信息系统、地理空间数据处理中的应用。

四、遥感数据处理和分析1.遥感数据的获取和预处理技术;2.遥感图像的增强和滤波处理方法;3.遥感数据的特征提取和信息提取方法;4.遥感数据的数学模型和解析技术;5.遥感数据的多光谱、高光谱和合成孔径雷达处理方法。

五、遥感与地理信息系统(GIS)的集成应用1.遥感与GIS的概念、关系和集成模式;2.遥感数据在GIS中的应用和分析方法;3.遥感数据与GIS数据的转换和交互;4.遥感数据与GIS空间分析的集成方法;5.遥感与GIS的应用案例和未来发展方向。

六、遥感应用中的伦理和社会问题1.遥感数据的隐私和安全问题;2.遥感数据在环境保护和资源管理中的伦理问题;3.遥感数据的使用和共享政策问题;4.遥感数据在社会冲突和隐患管理中的道德问题;5.遥感数据的技术限制和社会影响问题。

以上内容是遥感概论复习的重点,通过对这些知识点的深入学习和理解,可以帮助学生全面掌握遥感概论的基本理论和应用技术,为进一步深入研究和应用遥感技术打下坚实的基础。

遥感技术工程师笔试题与解析

遥感技术工程师笔试题与解析

遥感技术工程师笔试题与解析一、遥感基础知识1. 什么是遥感技术?简要说明其应用领域和作用。

遥感技术是利用卫星、飞机等远距传感器获取地面、海洋等目标的信息并进行记录、处理与分析的技术。

其应用领域涵盖农业、环境监测、城市规划等多个领域,可实现对地球表面信息的快速获取和监测。

2. 请简述光学遥感和雷达遥感的原理及各自优缺点。

光学遥感是利用电磁波在大气和地表之间反射、散射和吸收的规律获取地面信息的技术,优点是分辨率高但受天气、云层等因素影响。

雷达遥感则是利用微波对地物进行探测,具有穿透云层和夜间观测的优势,但分辨率相对较低。

二、遥感数据处理与分析3. 请简要说明遥感影像的预处理步骤及其意义。

遥感影像预处理包括大气校正、几何校正、辐射校正等步骤,旨在消除影像中的噪声和变形,确保后续分析准确可靠。

4. 什么是遥感数据分类?请列举一些常用的分类方法并比较其优劣。

遥感数据分类是将遥感影像中的像元划分为不同类别的过程,常用方法包括最大似然分类、支持向量机、人工神经网络等,各有优缺点,最大似然分类简单易懂但需要明确类别分布,支持向量机分类准确性高但参数复杂。

三、遥感应用案例分析5. 以城市规划为例,说明遥感技术在城市规划中的应用及效果。

通过遥感技术获取城市地表信息,包括建筑分布、植被覆盖等,可为城市规划提供准确的数据支持,帮助规划者制定合理、科学的城市发展方案,提升城市规划效率和质量。

6. 请结合农业监测实际案例,分析遥感技术在农业领域的价值与局限性。

通过遥感技术获取农田植被生长情况、土壤湿度等信息,可以实现对农作物生长情况的监测和预测,为农业生产提供科学依据,但受云层、阳光角度等因素影响,数据获取不稳定。

综上所述,遥感技术在多领域具有重要应用价值,但也存在着一定的局限性,需要继续不断完善和改进。

希望以上内容对您有所帮助,祝您工作顺利!。

遥感影像有关知识点总结

遥感影像有关知识点总结

遥感影像有关知识点总结一、遥感影像的基础知识1. 遥感影像的定义遥感影像是指通过无人载具(如卫星、飞机、无人机等)对地面进行观测和测量,获取地面信息的影像数据。

遥感影像可以分为光学遥感影像、雷达遥感影像等。

2. 遥感影像的波段遥感影像的波段是指影像中所使用的波段范围。

在光学遥感中,常见的波段包括可见光、红外线、近红外线等。

而在雷达遥感中,波段主要包括X波段、C波段、S波段等。

3. 遥感影像的分辨率遥感影像的分辨率是指影像中能够分辨的最小物体的大小。

分辨率可以分为空间分辨率、光谱分辨率和时间分辨率,其中空间分辨率最为重要,它决定了遥感影像能够显示的地面细节。

4. 遥感影像的分类根据遥感影像所使用的波段和传感器类型,遥感影像可以分为多种类型,如全色影像、多光谱影像、高光谱影像、雷达影像等。

二、遥感影像的采集和处理1. 遥感影像的获取遥感影像的获取主要通过卫星、飞机、无人机等载具进行观测和测量,然后将采集的数据进行处理,得到遥感影像。

2. 遥感影像的预处理遥感影像在获得后,需要进行预处理来提高影像质量。

预处理包括辐射校正、几何校正、大气校正等环节,以确保影像能够准确地反映地面信息。

3. 遥感影像的特征提取特征提取是指利用计算机算法从遥感影像中提取地物信息的过程。

常用的特征提取方法包括阈值分割、区域生长、边缘检测等。

4. 遥感影像的分类遥感影像的分类是指将影像中的像元根据其光谱特征和空间信息分为不同的类别。

常用的分类方法包括最大似然分类、支持向量机分类、人工神经网络分类等。

5. 遥感影像的地物识别地物识别是指对遥感影像进行解译,识别影像中的地物类型。

常见的地物识别包括植被识别、水体识别、建筑物识别等。

6. 遥感影像的信息提取信息提取是指利用遥感影像获取地面信息,如地表覆盖类型、地面高程等。

信息提取可以借助数字高程模型、地物识别技术等手段。

三、遥感影像的应用1. 环境监测遥感影像可以用来监测大气污染、土壤侵蚀、植被覆盖等环境变化,为环境保护和治理提供数据支持。

遥感原理与应用的课后答案

遥感原理与应用的课后答案

遥感原理与应用的课后答案第一章:遥感基础知识1.1 遥感概述•遥感是利用空间传感器获取地球表面信息的科学与技术。

•遥感技术的特点包括遥感性质、遥感对象、遥感方法等。

1.2 遥感的分类•根据遥感方式,可将遥感分为主动遥感和被动遥感两种。

•主动遥感指人工发射电磁波,通过接收返回信号得到目标的信息。

•被动遥感则是通过接收自然环境中辐射的信息。

1.3 遥感系统的组成•遥感系统由人工卫星、航空平台、地面站三个部分组成。

•人工卫星是指搭载遥感装置的卫星,用于对地观测。

•航空平台一般指飞机或无人机等载人或无人飞行器。

•地面站则用于接收、处理和存储遥感数据。

第二章:遥感图像的获取与处理2.1 遥感图像获取•遥感图像的获取方式包括主动遥感和被动遥感。

•被动遥感图像的获取主要依赖于地球表面辐射的能量。

•主动遥感图像则是通过人工发射的电磁波测量返回信号得到。

2.2 遥感图像处理步骤•遥感图像处理步骤包括预处理、增强、分类和解译等。

•预处理主要针对图像的去噪、几何校正等。

•增强则是对图像的对比度、亮度等进行调整。

•分类是指将图像中的不同特征划分为不同类别。

•解译则是对分类结果进行分析和理解。

2.3 遥感图像的分类•遥感图像的分类主要有无监督分类和有监督分类两种方法。

•无监督分类是指根据图像中像素的相似性进行自动分类。

•有监督分类则需要根据预先标记好的样本进行分类。

第三章:遥感在环境监测中的应用3.1 遥感在气象监测中的应用•遥感可以用于获取气象元素,如温度、湿度、风速等。

•通过遥感技术可以实现大范围、高分辨率的气象监测。

3.2 遥感在水资源监测中的应用•遥感可以用于获取地表水体的面积、水质等信息。

•借助遥感技术可以实现对广大水域的高效监测。

3.3 遥感在土地利用监测中的应用•利用遥感图像可以获取土地利用类型、变化等信息。

•遥感技术可以为土地规划和管理提供重要支持。

3.4 遥感在灾害监测中的应用•遥感图像可以用于监测地震、洪水、火灾等灾害。

遥感基础入门知识

遥感基础入门知识

遥感基础遥感是20世纪60年代发展起来的对地观测综合性技术,其发展经历了如下四个阶段:无记录的地面遥感阶段(1608~1838);有记录的地面遥感阶段(1839~1857);空中摄影遥感阶段(1858~1956);航天遥感阶段(1957年至今)。

遥感技术具有以下几个特点:大面积的同步观测;时效性;数据的综合性和可比性强;经济效益和社会效益高。

随着科技的发展,遥感技术也在不断进步,遥感探测的波段不断延伸,波段的分割越来越精细,从单一谱段向多谱段发展;成像雷达所获取的信息也向多频率、多角度、多极化、多分辨率的方向发展;激光测距和遥感成像的结合使得三维实时成像成为可能,各种传感器的空间分辨率不断提高;数字成像技术的发展,打破了传统摄影与扫描成像的界限。

此外,多种探测技术的集成日趋成熟,如雷达、多光谱成像与激光测高、GPS的集成可同时取得经纬度坐标和地面高程数据。

遥感信息融合包括数据层融合、特征层融合和决策层融合。

决策层融合有望在高光谱遥感信息智能处理中发挥重要作用,一方面高光谱遥感信息本身可以分成若干组,每一组分别进行分类后,按照证据理论将各组分类结果进行融合,得到最后的分类结果;另一方面高光谱遥感信息可以和其他信息进行融合,对于高空间分辨率或其它遥感信息分类精度不够、同物异谱或同谱异物现象可以通过高光谱遥感信息辅助解决,最后将分类结果惊醒融合即可。

其中一个关键的技术问题是如何根据不同情况设计有效的融合算法。

高光谱遥感技术的特点:高光谱遥感是高光谱分辨率遥感(Hyper spectral Remote Sensing)的简称,它是在电磁波谱的可见光、近红外、中红外和热红外波段范围内,获取许多非常窄的光谱连续的影像数据的技术。

高光谱遥感技术的特点:1)高光谱遥感的成像光谱仪可以分离成几十甚至数百个很窄的波段来接受信息,光谱分辨率高(5~10nm),波段连续性强(在0.4um~2.5um范围内有几百个波段);2)所有波段排列在一起能形成一条连续的完整的光谱曲线;3)光谱的覆盖范围从可见光到热红外的全部电磁辐射波谱范围;4)高光谱数据是一个光谱图像的立方体,其空间图像维描述地表二维空间特征,其光谱维揭示图像每一像元的光谱曲线特征,由此实现了遥感数据图像维与光谱维信息的有机融合。

遥感基本知识

遥感基本知识

IR扫描仪 0.5~1.1 1.55~1.75 2.08~2.25 10.4~12.5 77.8米 1~2天
最小侧视观 1~2天 察周期
其他陆地卫星
• • • • 天空实验室(Skylab,美国1973年发射) 热容量制图卫星(HCMM1978) 地球资源卫星( Bnaskara,印度) 空间实验室(Specelab,欧空局) IKONOS(4m彩色、1m全色) Quickbird(快鸟、0.6m)
LandSat3
1978.3.5 18天 4 MSS RBV 1983年退 役
LandSat4
1982.7.1 6 16天 7
LandSat5
1984.3.1 16天 7
LandSat6
1993.10. 5
LandSat7
1999.4.1 5 16天 8
MSS、TM
1983年退 役
MSS、TM
在役服务
• 传感器:为2台高分辩率可见光扫描仪(High Resolution Visible sensor——HRV) • 它能满足资源调查、环境管理与监测、农作物估产、地质与矿 产勘探、土地利用、测制地图及地图更新等多方面的需求。
SPOT HRV 各波段主要用途
波段 XS1 波长 0.5-0.59 绿色 分辨率 20米 用途 位于植被叶绿素光谱反射曲线最大值的 波长附近,对植被识别有利,同时位于 水体最小衰减值的长波一边,能探测水 的混浊度和10-20米的水深。
使用胶片 记录
使用磁记 录 高光谱
成像传感器类型
遥感影像的分辨率
• 空间分辨率
一个像元代表的实地的最小尺寸
• 时间分辨率:
同一个地区可获得的两个影像最小的时间间隔

遥感基础学习知识原理与应用知识点

遥感基础学习知识原理与应用知识点

遥感基础学习知识原理与应用知识点一、遥感的基本概念与分类1.遥感的定义:遥感是指通过遥远距离采集并记录地球表面信息的科学技术。

2.遥感的分类:按照遥感的数据类型可分为光学遥感、微波遥感和热红外遥感;按照数据获取平台可分为航空遥感和卫星遥感。

二、遥感的基本原理1.辐射传输原理:地球表面物体受到太阳辐射照射后,会发生反射、散射和吸收,这些辐射经过大气层的传输和变化后达到遥感仪器,形成遥感数据。

2.遥感数据的获取原理:通过遥感仪器记录地球表面物体的辐射或能量信息,如通过遥感卫星的光学传感器记录地球表面反射光谱。

3.遥感数据的处理原理:遥感数据需要经过预处理、解译和分析等过程,以提取有价值的信息。

三、遥感的主要技术与方法1.遥感图像解译:通过对遥感图像进行目视或计算机辅助解译,识别和判读地表物体。

2.遥感数字化:遥感图像通过扫描或数字相机获取,然后通过数字化处理,得到数字图像。

3.遥感分类:将遥感图像中的地表物体划分成不同的类别或类型,如土地利用分类、植被类型分类等。

4.遥感定量分析:通过对遥感图像进行数学模型和算法的分析,提取地表物体的数量信息,如土地覆盖变化分析、物质迁移分析等。

5.遥感辅助决策:通过利用遥感图像数据进行地表资源调查、规划设计和决策支持等。

四、典型遥感应用领域1.地质勘探与矿产资源:通过遥感技术可以探测到地下的地质信息和矿产资源分布情况。

2.土地利用与土地覆盖:通过遥感图像可以对土地利用类型进行分类和监测,了解土地利用变化和土地覆盖的动态变化情况。

3.植被监测与农业信息提取:通过遥感技术可以获取到植被的生长状况、植被类型和叶面积指数等信息,对农业生产进行监测和评估。

4.城市规划与环境监测:通过遥感技术可以获取到城市的用地分布、建筑物高度和环境污染等信息,对城市规划和环境保护进行监测和分析。

5.自然灾害监测与评估:通过遥感技术可以实时获取地震、火灾、洪水等自然灾害的信息,进行监测和评估,为应急救灾提供支持。

遥感基础学习知识原理与应用知识点

遥感基础学习知识原理与应用知识点

第一章1、遥感的定义:通过不接触被探测的目标,利用传感器获取目标数据,通过对数据进行分析,获取被探测目标、区域和现象的有用信息2、广义的遥感:在不直接接触的情况下,对目标物或自然现象远距离感知的一种探测技术。

3、狭义的遥感:指在高空和外层空间的各种平台上,应用各种传感器(摄影仪、扫描仪和雷达等)获取地表的信息,通过数据的传输和处理,从而实现研究地面物体形状、大小、位置、性质以及环境的相互关系。

4、探测依据:目标物与电磁波的相互作用,构成了目标物的电磁波特性。

(信息被探测的依据)传感器能收集地表信息,因为地表任何物体表面都辐射电磁波,同时也反射入照的电磁波。

地表任何物体表面,随其材料、结构、物理/化学特性,呈现自己的波谱辐射亮度。

5、遥感的特点:1)手段多,获取的信息量大。

波段的延长(可见光、红外、微波)使对地球的观测走向了全天候全天时。

2)宏观性,综合性。

覆盖范围大,信息丰富,一景TM影像185×185km2,可见的,潜在的各类地表景观信息。

3)时间周期短。

重复探测,有利于进行动态分析6、遥感数据处理过程7、遥感系统:1)被探测目标携带信息2)电磁波辐射信息的获取3)信息的传输和记录4)信息的处理和应用第三章1、电磁波的概念:在真空或物质中电场和磁场的相互振荡以及振动而进行传输的能量波。

2、电磁波特征(特征及体现):1)波动性:电磁辐射以波动的形式在空间中传播2)粒子性:以电磁波形式传播出去的能量为辐射能,其传播也表现为光子组成的粒子流的运动紫外线、X射线、γ射线——粒子性可见光、红外线——波动性、粒子性微波、无线电波——波动性3、叠加原理:当空间同时存在由两个或两个以上的波源产生的波时,每个波并不因其他的波的存在而改变其传播规律,仍保持原有的频率(或波长)和振动方向,按照自己的传播方向继续前进,而空间相遇的点的振动的物理量,则等于各个独立波在该点激起的振动的物理量之和。

4、相干性与非相干性:由叠加原理可知,当两列频率、振动方向相同,相位相同或相位差恒定的电磁波叠加时,在空间会出现某些地方的振动始终加强,另一些地方的振动始终减弱或完全抵消,这种现象叫电磁波的相干性。

遥感基本知识总结

遥感基本知识总结

遥感基本知识总结一. 遥感的基本概念1. 遥感的基本知识“遥感”一词来自英语Remote Sensing,从字面上理解就是“遥远的感知”之意。

顾名思义,遥感就是不直接接触物体,从远处通过探测仪器接受来自目标物体的电磁波信息,经过对信息的处理,判别出目标物体的属性。

实际工作中,重力、磁力、声波、机械波等的探测被划为物理探测(物探)的范畴,因此,只有电磁波探测属于遥感的范畴。

根据遥感的定义,遥感系统包括:被测目标的信息特征、信息的获取、信息的传输与记录、信息的处理和信息的应用这五大部分。

1. 目标物的电磁波特性任何目标物体都具有发射、反射和吸收电磁波的性质,这是遥感探测的依据。

2. 信息的获取接受、记录目标物体电磁波特征的仪器,称为“传感器”或者“遥感器”。

如:雷达、扫描仪、摄影机、辐射计等。

3. 信息的接收传感器接受目标地物的电磁波信息,记录在数字磁介质或者胶片上。

胶片由人或回收舱送至地面回收,而数字介质上记录的信息则可通过卫星上的微波天线输送到地面的卫星接收站。

4. 信息的处理地面站接收到遥感卫星发送来的数字信息,记录在高密度的磁介质上,并进行一系列的处理,如信息恢复、辐射校正、卫星姿态校正、投影变换等,再转换为用户可以使用的通用数据格式,或者转换为模拟信号记录在胶片上,才能被用户使用。

5. 信息的应用遥感技术是一个综合性的系统,它涉及到航空、航天、光电、物理、计算机和信息科学以及诸多应用领域,它的发展与这些科学紧密相关。

2. 遥感的分类1)按遥感平台分地面遥感:传感器设置在地面上,如:车载、手提、固定或活动高架平台。

航空遥感:传感器设置在航空器上,如:飞机、气球等。

航天遥感:传感器设置在航天器上,如:人造地球卫星、航天飞机等。

2)按传感器的探测波段分紫外遥感:探测波段在0.05~0.38μm之间。

可见光遥感:探测波段在0.38~0.76μm之间。

红外遥感:探测波段在0.76~1000μm之间。

光学遥感常用基础知识_V1.0_20110314

光学遥感常用基础知识_V1.0_20110314

光学遥感常用基础知识1. 遥感与摄影测量概述遥感Remote Sensing遥感是应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。

遥感的分类(1)按遥感平台分地面遥感:传感器设置在地面平台上,如车载、船载、手提、固定或活动高架平台等。

航空遥感:传感器设置于航空器上,主要是飞机、气球等。

航天遥感:传感器设置于环地球的航天器上,如人造地球卫星、航天飞机、空间站、火箭等。

光学和雷达都属于航天遥感范畴。

航宇遥感:传感器设置于星际飞船上,指对地月系统外的目标的探测。

(2)按传感器的探测波段分紫外遥感:探测波段在0.05~0.38μm之间。

可见光遥感:探测波段在0.38~0.76μm之间。

因受太阳光照条件的极大限制,加之红外摄影和多波段遥感的相继出现,可见光遥感已把工作波段外延至近红外区(约0. 9μm)。

在成像方式上也从单一的摄影成像发展为包括黑白摄影、红外摄影、彩色摄影、彩色红外摄影及多波段摄影和多波段扫描,其探测能力得到极大提高。

因此我们常见的光学遥感属于可见光遥感范畴。

红外遥感:探测波段在0.76~1000μm之间。

微波遥感:探测波段在1mm~10m之间。

雷达属于微波遥感范畴。

多波段遥感:指探测波段在可见光波段和红外波段范围内,再分为若干窄波段来探测目标。

(3)按传感器类型分主动遥感:主动遥感由探测器主动发射一定电磁波能量并接收目标的后向散射信号。

我们常用的雷达属于主动遥感范畴。

被动遥感:被动遥感的传感器不向目标发射电磁波,仅被动接收目标物的自身发射和对自然辐射源的反射能量。

我们常用的光学属于被动遥感范畴。

(4)按记录方式分成像遥感:传感器接收的目标电磁辐射信号可转换成(数字或模拟)图像。

非成像遥感:传感器接收的目标电磁辐射信号不能形成图像。

(5)按应用领域分可分为环境遥感、大气遥感、资源遥感、海洋遥感、地质遥感、农业遥感、林业遥感等等。

遥感概论期末复习知识点(完整)

遥感概论期末复习知识点(完整)

遥感概论期末复习知识点一遥感的定义遥感是应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的科学及综合性探测技术。

二遥感的基本原理自然界的任何物体本身都具有发射、吸收、反射以及折射电磁波的能力,遥感是利用传感器主动或被动地接受地面目标反射或发射的电磁波,通过电磁波所传递的信息来识别目标,从而达到探测目标物的目的。

三遥感的物理基础(一)电磁波电磁波是遥感技术的重要物理理论基础。

1、电磁波的性质:具有波的性质和粒子的性质(波粒二相性)2、波长越短(频率越高),能量越高。

3、电磁波谱电磁波几个主要的分段:宇宙射线、伽玛射线、X射线、紫外、可见光、红外(近、中、远)、微波、无线电波。

遥感常用的电磁波段主要是近紫外、可见光、红外、微波紫外:紫外线是电磁波谱中波长从0.01~0.38um辐射的总称,主要源于太阳辐射。

由于太阳辐射通过大气层时被吸收,只有0.3~0.38um波长的光能穿过大气层到达地面,且散射严重。

由于大气层中臭氧对紫外线的强烈吸收与散射作用,紫外遥感通常在2000m 高度以下的范围进行。

可见光:是电磁波谱中人眼可以感知的部分,遥感常用的可见光是蓝波段(0.45um附近)、绿波段(0.55um附近)和红波段(0.65um附近)红外,红外线是波长介乎微波与可见光之间的电磁波,波长在0.7um至1mm之间,遥感常用的在0.7um-100mm微波,波长在0.1毫米~1米之间的电磁波。

微波波段具有一些特殊的特性:①受大气层中云、雾的散射影响小,穿透性好,不受光照等条件限制,白天、晚上均可进行地物微波成像,因此能全天候的遥感。

②微波遥感可以对云层、地表植被、松散沙层和干燥冰雪具有一定的穿透能力。

微波越长,穿透能力越强。

4、黑体辐射定律辐射出射度:在单位时间内从物体表面单位面积上发出的各种波长的电磁波能量的总和。

黑体:如果一个物体对于任何波长的电磁辐射都全部吸收,又能全部发射,则该物体是绝对黑体。

遥感基础知识(很全适合初学者)

遥感基础知识(很全适合初学者)

☆基础资料☆遥感基础知识光谱成像技术实验室整理:扬帆远航来源:互联网版权:Free中国科学院西安光学周密机械研究所二零零五年十月目录A.基础篇--------------------------------------------------------------------------11.--------------------------------------------------------------2 2.-----------------------------------------------------------------------23.-----------------------------------------------------------------------44.----------------------------------------------------------------8 5.----------------------------------------------------------------9 6.----------------------------------------------------------10B.理论篇------------------------------------------------------------------------131.------------------------------------------------------------14 2.-----------------------------------------------------------------14 3.-------------------------------------------------------154.--------------------------------------------------------------16 5.-------------------------------------------------------------------176.--------------------------------------------------------------------- 207.----------------------------------------------------------- 22 8.---------------------------------------------------------24C.应用篇----------------------------------------------------------------------- 271.-----------------------------------282.---------------------------------------------------------28 3.--------------------------------------------------294.-----------------------------------------------------29 5.----------------------------------------------------------30 6.----------------------------------------------------------31 7.----------------------------------------------------------31A 基础篇1.什么是成像光谱仪成像光谱确实是在特定光谱域以高光谱分辨率同时取得持续的地物光谱图像,这使得遥感应用能够在光谱维上进行空间展开,定量分析地球表层生物物理化学进程与参数。

遥感基础知识

遥感基础知识

遥感基础知识遥感原理与应用(A)第 1 章绪论§1 遥感的基本概念1.1 遥感的涵义“遥感”一词最早源于美国,由Evelyn.L.pruitt(伊夫林.L.布鲁依特)于1960年提出。

其英文原词是Remote sensing,即遥远感知的意思。

在一定距离的空间,不与目标物接触,通过信息系统去获取有关目标物的信息,经过对信息的分析研究,确定目标物的属性及目标物之间的相互关系。

简言之,泛指一切无接触的远距离探测。

1.1.1 广义遥感是指以现代工具为技术手段,对目标进行遥远感知的整个过程。

从这一概念看,遥感技术的范围很广,因为没限定目标的空间范围。

1.1.2 狭义遥感技术是指从远距离高空以至外层空间的平台上,利用紫外线、可见光、红外、微波等探测仪器,通过摄影或扫描方式,对目标电磁波辐射能量的感应、接收、传输、处理和分析,从而识别目标物性质和运动状态的现代化技术系统。

狭义遥感技术是20世纪60年代蓬勃发展起来的一门综合性探测技术,属高新技术领域范畴。

§2 遥感系统根据遥感的定义,遥感系统包括:被测目标的信息特征、信息的获取、信息的传输与记录、信息的处理和信息的应用五大部分§3 遥感的分类和特点3.1 遥感的分类3.1.1 按遥感平台分●航宇遥感:传感器设置于星际飞船上,指对地月系统外的目标的探测。

●航天遥感:传感器设置于环地球的航天器上,如人造地球卫星、航天飞机、空间站、火箭等;●航空遥感:传感器设置于航空器上,主要是飞机、气球等;●地面遥感:传感器设置在地面平台上,如车载、船载、手提、固定或活动高架平台等。

3.1.2 按传感器的探测波段分●紫外遥感(0.05—0.38μm)●可见光遥感(0.38—0.76μm)●红外遥感(0.76—1000μm)●微波遥感(1mm—10m)●多波段遥感——指探测波段在可见光和红外波段范围内,再分成若干个窄波段来探测目标。

3.1.3 按工作方式分●主动遥感和被动遥感:前者是由探测器主动向目标发射一定能量的电磁波,并接收目标的反射或散射信号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

遥感原理与应用(A)第 1 章绪论§1 遥感的基本概念1.1 遥感的涵义“遥感”一词最早源于美国,由Evelyn.L.pruitt(伊夫林.L.布鲁依特)于1960年提出。

其英文原词是Remote sensing,即遥远感知的意思。

在一定距离的空间,不与目标物接触,通过信息系统去获取有关目标物的信息,经过对信息的分析研究,确定目标物的属性及目标物之间的相互关系。

简言之,泛指一切无接触的远距离探测。

1.1.1 广义遥感是指以现代工具为技术手段,对目标进行遥远感知的整个过程。

从这一概念看,遥感技术的范围很广,因为没限定目标的空间范围。

1.1.2 狭义遥感技术是指从远距离高空以至外层空间的平台上,利用紫外线、可见光、红外、微波等探测仪器,通过摄影或扫描方式,对目标电磁波辐射能量的感应、接收、传输、处理和分析,从而识别目标物性质和运动状态的现代化技术系统。

狭义遥感技术是20世纪60年代蓬勃发展起来的一门综合性探测技术,属高新技术领域范畴。

§2 遥感系统根据遥感的定义,遥感系统包括:被测目标的信息特征、信息的获取、信息的传输与记录、信息的处理和信息的应用五大部分§3 遥感的分类和特点3.1 遥感的分类3.1.1 按遥感平台分●航宇遥感:传感器设置于星际飞船上,指对地月系统外的目标的探测。

●航天遥感:传感器设置于环地球的航天器上,如人造地球卫星、航天飞机、空间站、火箭等;●航空遥感:传感器设置于航空器上,主要是飞机、气球等;●地面遥感:传感器设置在地面平台上,如车载、船载、手提、固定或活动高架平台等。

3.1.2 按传感器的探测波段分●紫外遥感(0.05—0.38μm)●可见光遥感(0.38—0.76μm)●红外遥感(0.76—1000μm)●微波遥感(1mm—10m)●多波段遥感——指探测波段在可见光和红外波段范围内,再分成若干个窄波段来探测目标。

3.1.3 按工作方式分●主动遥感和被动遥感:前者是由探测器主动向目标发射一定能量的电磁波,并接收目标的反射或散射信号。

后者是被动接收目标物的自身发射和自然辐射源的反射能量。

●成像遥感与非成像遥感:前者传感器接收的目标电磁辐射信号可转换成(数字或模拟)图像;后者传感器接收的目标电磁辐射信号不能形成图像。

3.1.4 按遥感的应用领域分●从大的研究领域可以分为:外层空间遥感、大气层遥感、陆地遥感、海洋遥感等。

●从具体应用领域可以分为:资源遥感、环境遥感、农业遥感、林业遥感、渔业遥感、地质遥感、气象遥感、水文遥感、城市遥感、工程遥感、灾害遥感、军事遥感等。

3.2 遥感的特点●视域广。

居高俯视,如由卫星遥感获得的图像覆盖地面面积很大,达34385Km2,便于进行大区域宏观观察与对比分析。

●信息丰富。

包括紫外线、可见光、红外、微波、多波段遥感,能提供超出人的视觉以外的地面信息。

●定时、定位观测。

能够周期性地监测地面同一目标的动态变化。

●不受国界和地理条件的限制。

可以遥感地球的任何角落。

●效率高、速度快,精度高、成本低。

➢宏观同步性➢时效性➢综合性➢可比性➢经济性➢局限性§4 遥感发展简史4.1 无记录的地面遥感阶段(1608—1838年)4.2 有记录的地面遥感阶段(1839—1857年)4.3 空中摄影遥感阶段(1858—1956年)4.4 航天遥感阶段(1957—)4.5 遥感技术发展趋势1)掌握发射技术和具备卫星发射能力的国家越来越多2)高分辨率小型商业卫星成为重要的信息来源3)雷达卫星成为重要的信息来源4)高光谱分辨率遥感(成像光谱)5)遥感、地理信息系统、全球定位系统的综合应用§5 我国遥感技术的发展概况5.1 起步阶段(20世纪50年代至80年代中期)5.2 试验应用阶段(80年代后期至90年代前期)5.3 实用化和产业化阶段(90年代后期以后)第2章遥感技术的物理基础§1 电磁波与电磁波谱1.1 电磁波及其特性由振源发出的电磁振荡在空间的传播叫做电磁波。

在电磁波里,振荡的是空间电场矢量E和磁场矢量M。

电场矢量E和磁场矢量M互相垂直,并且都垂直于电磁波传播方向V。

电磁辐射的特性主要表现在以下两个方面:1.1.1电磁辐射的波动性电磁辐射的波动性主要表现为电磁波能产生干涉、衍射、偏振和散射(色散)现象。

电磁辐射的这些波动特性在遥感技术中具有重要的实际意义。

1.1.2 电磁辐射的粒子性电磁辐射的粒子性,是指电磁波是由密集的光子微粒组成的,电磁辐射实质上是光子微粒流的有规律运动,波是光子微粒流的宏观统计平均,而粒子是波的微观量子化。

当电磁辐射与物质相互作用时,主要表现为粒子性。

1.2 电磁波谱不同辐射源产生的电磁波的波长各不相同,其变化也很大。

人们把各种电磁波按波长或频率的大小,依次排列成图表,这个图表就叫做电磁波谱图。

在整个电磁波谱中可划分出若干个波段。

(1)宇宙射线:能量大,穿透性强,人工无法产生。

(2)γ射线:能量高,穿透性较强,放射性之的矿物,辐射出γ射线。

(3)X射线:人工可以产生。

从宇宙中来的X射线,被大气全部吸收。

(4)紫外线:0.01—0.38μ波长﹤0.28μ的紫外线,在通过大气层时,被臭氧层吸收。

0.28—0.38μ的紫外线,部分能穿过大气层,但散射严重,只有部分到达地面,可作为遥感的辐射源,称为摄影紫外。

(5)可见光:0.38—0.76μ,是人视觉能见到的电磁波,可以用棱镜分为红、橙、橙、黄、绿、青、蓝、紫7种色光。

可用于摄影、扫描等各种方式成像,是遥感最常用的波段。

(6)红外线:0.76—1000μ。

其中可细分为:●近红外0.76—3μ,是地球表层反射太阳的红外辐射,故称为反射红外。

可用于摄影。

●中红外3—6μ是地球表层反射太阳的红外辐射和地球表层自身辐射的混合辐射红外,可用于摄影和扫描。

●热红外6—15μ是地球自身发射的红外线,故称为热红外。

热红外只能用于扫描方式,经过光电信号的转换才能成像。

●远红外,15—1000μ,绝大部分要被大气层吸收,所以不作遥感辐射源。

(7)微波0.1—100cm,它实际上是无线电波的一部分。

其中可分为毫米波、厘米波和分米波。

微波能穿透大气层,可用于主动遥感和被动遥感。

(8)无线电波:这个波区不能用于遥感。

因为它不能通过大气层。

无线电波中的短波可被大气层中的电离层吸收严重。

因此,无线电波只能用于远距离通讯或无线电广播。

综合上述各波谱段的基本特点可以看出,遥感技术应用的波谱段主要是从紫外—微波。

§2 电磁辐射凡是能够产生电磁辐射的物体都是辐射源。

不仅能够吸收其它物体对它的辐射,也能够向外辐射。

因此,对辐射源的认识不仅限于太阳、炉子等发光发热的物体。

能发出紫外线、X射线、红外线、微波辐射等的物体也是辐射源,只是辐射强度和波长不同而已。

电磁波传递就是能量的传递。

因此,遥感探测实际上就是辐射能量的测定。

2.1 辐射测量●辐射能量(W):电磁辐射的能量。

单位:J●辐射通量(φ):单位时间内通过某一面积的辐射能量。

单位:W●辐射通量密度(E):单位时间内通过单位面积的辐射能量,φ=dW/dt。

单位:W/m2,S为面积。

●辐照度(I):被辐射的物体表面单位面积上的辐射通量,l=dφ/ds。

单位:W/m2,S为面积。

●辐射出射度(M):辐射源物体表面单位面积上的辐射通量,M=dφ/ds。

单位:W/m2,S 为面积。

●辐射亮度(L):单位立体角、单位时间内,从外表面的单位面积上辐射出的辐射能量,L= φ/Ω(A cosθ)。

立体角定义为:Ω=S/R 2;S----是与球半径垂直的某小面元的面积;R----是小辐射面元中心与球面上面元S的距离,即球半径;立体角单位是球面度,无量纲;球心对全球面所张立体角Ω=4π。

2.2 黑体辐射2.2.1 绝对黑体为了便于讨论热辐射性质,需要有一个理想的标准热辐射体作为参考源,这个参考源就是黑体。

绝对黑体的定义:在任何温度下,对任何波长的入射辐射的吸收系数(率)α=(λ,T)恒等于1,即α=(λ,T)=1的物体称为绝对黑体(简称黑体)。

绝对黑体是用不透明材料制成的带有小孔的空腔体。

空腔内壁对于辐射只有吸收和反射,从小孔进入的辐射照射到内壁上时,经过若干次吸收和反射后,其入射能量接近全部吸收。

2.1.2 黑体辐射定律2.1.2.1普朗克定律1900年普朗克为了描述黑体辐射通量密度与温度、波长分布的关系。

用量子理论概念推导出热辐射定律,其解析式为:普朗克公式图示:变化特点:(1) 辐射通量密度随波长连续变化,只有一个最大值;(2) 温度越高,辐射通量密度越大,不同温度的曲线不相交;(3) 随温度升高,辐射最大值向短波方向移动。

2.1.2.2 斯忒藩-玻尔兹曼定律绝对黑体的总辐射出射度与黑体温度的四次方成正比。

M =σT4σ为斯忒藩-玻尔兹曼常数,σ=5.67×10-8 W.m-2.K-42.1.2.3 维恩位移定律黑体辐射光谱中最大辐射的峰值波长λmax与黑体绝对温度T成反比,即随着温度的增加,最大辐射的峰值波长λmax向短波方向移动:λmax=b/Tb为常数,b=2.898×10-32.1.2.4 基尔霍夫定律在研究电磁辐射传输过程中,基尔霍夫发现:在给定的温度下,物体辐射出射度和吸收率之比,对任何材料都是一个常数,并等于该温度下黑体的辐射出射度。

这就是基尔霍夫定律。

其表达式为:M′/ α=MM′为真实物体的辐射出射度;α为吸收率。

2.1.3 实际物体的辐射前述4个辐射定律都是说明黑体辐射规律的。

实际上,自然界中的物体都不是黑体。

这时只要增加一个因子,就可把黑体辐射与实际物体辐射联系起来。

这个因子叫做比辐射率(发射率或发射本领),以符号ε表示。

ε是实际物体辐射出射度与同温度下黑体辐射出射度之比,即:ε=M ′/ M2.3 太阳和地球的电磁辐射前已述及,凡是能产生电磁辐射的物体都是辐射源。

辐射源可分为天然辐射源和人工辐射源。

在地球环境中,最大的天然辐射源是太阳,其次是地球。

在遥感技术中,被动遥感是依靠天然辐射源进行遥感探测目标的;主动遥感则是接收人工辐射源发出的电磁辐射的回波信号来探测目标的。

2.3.1 太阳辐射太阳是一个极大的辐射源,其表面温度高达5900°K左右。

这个极大的辐射源每时每刻都在不断地向宇宙空间辐射出巨大的能量。

但是它辐射出来的能量到达地球表面仅仅是总能量的1/22亿。

尽管这部分能量是总能量的极小一部分却是相当稳定的,其为19.5卡/cm.分。

太阳辐射的光谱是一条连续的光谱曲线,短波方向的截止波长为0.3μ(0.01μ,0.2μ),长波方向的截止波长为6.0μ,峰值波在0.47μ附近。

因此,太阳辐射的光谱是以可见光为主,占总辐射通量密度的85%以上。

相关文档
最新文档