例题图形计数进阶_尖子班(学而思)
例题 图形计数进阶_尖子班学而思)

图形计数进阶【例 1】 (1)已知图中点 C,D,E,F 为线段 AB 的五等分点,图中共有( )条线段, 如果AB =10厘米,那么所有线段的和是( )米.(2)图中一个大角被分成 6 个小角,每个小角都是 30°,图中共有( )个角,这些角的和是( )度. (仅考虑劣角, 不考虑优角)【例 2】1.(1) 数一数,图中共有( ) 个三角形.(2) 数一数,图中三角形共有 ( ) 个.。
(3) 数一数,图中有( ) 个三角形.2.图中线段的条数比三角形的个数多 ____________________.【例 3】(1) 图中共有( ) 个三角形.(2) 图中共有( ) 个三角形.(3) 图中共有( ) 个三角形.【例 4】1. (1)数一数,图中有( )个长方形.(2)用16个同样大小的正方形组成如图的一个大正方形,下图中有( )个正方形.(3)如图,四条边长度都相等的四边形称为菱形.用16个同样大小的菱形组成如图的一个大菱形.数一数,图中共有( ) 个菱形.2.图中有______个正方形【例 5】下图中共有( )个长方形,这些长方形的面积和是( )【例 6】1.在图所示的线段中,包含“☆”的线段有 ( )条;包含“△”的线段有( )条; 至少包含“☆”和“△”中的一个的线段有( )条.2。
在图所示的线段中,包含“A”的线段有( )条;包含“B”的线段有( )条;至少包含“A”和“B”中的一个的线段有( )条.【例 7】 (1)下图中包含五角星的长方形一共有()个(2)下图中包含五角星的长方形一共有( )个.(3)只包含一个字母的长方形有( )个【例 8】1.由 20 个单位小正方形组成的长方形中,包含☆的正方形共有( )个.2.在下面的图中,包含苹果的正方形一共有()个.。
学而思各年级数学大纲

1.通过动手操作学习倒油取水问题,进行条件判断分析; 2.通过动手测量,判断物品的真假,培养学生的逻辑推理能力。 探索多种类型数学游戏中的乐趣,感受数学之美,拓展思维。 阶段学校效果检测,帮助学生查漏补缺,有利于后期学习方法的改进。 主要内容 学会通过观察数字和得数,利用倒推思想适当添加运算符号使算式成立,并通过“24点”益 智游戏提高学习兴趣,培养学生数感。 理解小数的意义,学会读写小数并会比较小数大小;会解决生活中简单小数问题。 面积认知进阶,通过观察掌握平行四边形及梯形特征;引导学生通过转化思想推导出平行四 边形及梯形面积公式;学会利用面积公式解决实际几何问题。 利用差不变思想解决常见年龄问题。 复习余数,倍数概念。掌握带余数除法的计算及各数之间关系。 学会读懂简单的条形统计图和折线统计图,并会分析统计图提出合理性建议;学会分析表格 中通的过数找据规,律结与合递逻推辑思推想理解、决列经方典程种等树方问法题解中决的一经些典应排用列性方问式题问。题及多线交点个数、分平面个 数方法。 掌握等差数列的概念及识别方法;熟练掌握等差数列的通项公式、项数公式、求和公式、中 项定理、连续奇数和公式等重要结论并会运用;学会利用等差数列解决应用题。 学习和解决各种以数字与数值为内容的文字数字谜问题,包括数字组成的多位数,数字在运 算下的变化,数的分解、分拆与排列。
★★★
★★★
计算
几何
应用
应用 应用
逻辑 应用
巧算加减法
几何计数问题进阶
有趣的周期问题
和差问题 移多补少应用题
推理综合 重叠问题
几何
计算 应用 方法
巧求周长
数阵图 猜猜他几岁 逆向思考
学而思初二数学秋季班第7讲.期中复习.尖子班.学生版

⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪⎧⎪⎨⎨⎩⎪⎪⎧⎪⎨⎪⎩⎪⎪⎩定义轴对称基本知识点对称点与对称轴垂直平分线性质与判定做图形的对称轴轴对称轴对称变换用坐标表示轴对称等腰三角形性质、判定等腰三角形等边三角形性质、判定【例1】 ⑴如图,把矩形纸片ABCD 纸沿对角线折叠,设重叠部分为△EBD ,那么下列说法错误的是( )A .△EBD 是等腰三角形,EB =EDB .折叠后∠ABE 和∠CBD 一定相等C .折叠后得到的图形是轴对称图形D .△EBA 和△EDC 一定是全等三角形⑵将一个矩形纸片依次按图①、图②的方式对折,然后沿图③中的虚线裁剪,最后将图④的纸再展开铺平,所得到的图案是( )典题精练思路导航题型一:轴对称7期中复习E DCA图(4)图(3)图(2)图(1)向右对折(向上对折)D.C.B.A.【例2】 如图,A 为马厩,B 为帐篷,牧马人某天要从马厩牵出马,先到草地边的某一处牧马,再到河边饮水,然后回到帐篷,请你帮他确定这一天的最短路线.作出图形并说明理由.河草地BASSS SAS ASA AAS HL⎧⎧⎪⎨⎨⎩⎪⎩对应边相等全等三角形性质全等三角形对应角相等全等三角形判定:,,,, 思路导航题型二:全等三角形⎧⎨⎩性质、判定角平分线有关角平分线辅助线【例3】 如图,在△ABC 中,BE 、CF 分别是AC 、AB 两边上的高,在BE 上截取BD =AC ,在CF 的延长线上截取CG =AB ,连接AD 、AG . 请你确定△ADG 的形状,并证明你的结论.BAC DEFG【例4】 △ABC 中,∠CAB =∠CBA =50°,O 为△ABC 内一点,∠OAB =10°,∠OBC =20°,求∠OCA 的度数.COBA【例5】 在Rt △ABC 中,∠ACB =90°,∠A =30°,BD 是△ABC 的角平分线,DE ⊥AB于点E .⑴如图1,连接EC ,求证:△EBC 是等边三角形; ⑵点M 是线段CD 上的一点(不与点C 、D 重合),以BM 为一边,在BM 的下方作∠BMG =60°,MG 交DE 延长线于点G .请你在图2中画出完整图形,并直接写出MD ,DG 与AD 之间的数量关系;⑶如图3,点N 是线段AD 上的一点,以BN 为一边,在BN 的下方作典题精练∠BNG =60°,NG 交DE 延长线于点G .试探究ND ,DG 与AD 数量之间的关系,并说明理由.GN图3图2图1AE BCDAE BCDDC BE A【例6】 已知四个实数a 、b 、c 、d ,且a ≠b ,c ≠d .满足:a 2+ac =4,b 2+bc =4,c 2+ac =8,d 2+ad =8.⑴求a +c 的值;⑵分别求a 、b 、c 、d 的值. 典题精练题型三:因式分解【例7】 设a 1=32-12,a 2=52-32,…,a n =()()222121n n +--(n 为大于0的自然数).⑴探究a n 是否为8的倍数,并用文字语言表述你所获得的结论;⑵若一个数的算术平方根是一个自然数,则称这个数是“完全平方数”.试找出a 1,a 2,…,a n ,…这一列数中从小到大排列的前4个完全平方数,并指出当n 满足什么条件时,a n 为完全平方数(不必说明理由).训练1. 阅读理解如图1,△ABC 中,沿∠BAC 的平分线AB 1折叠,剪掉重复部分;将余下部分沿∠B 1A 1C 的平分线A 1B 2折叠,剪掉重复部分;…;将余下部分沿∠B n A n C 的平分线A n B n +1折叠,点B n 与点C 重合,无论折叠多少次,只要最后一次恰好重合,∠BAC 是△ABC 的好角.小丽展示了确定∠BAC 是△ABC 的好角的两种情形.情形一:如图2,沿等腰三角形ABC 顶角∠BAC 的平分线AB 1折叠,点B 与点C 重合;情形二:如图3,沿∠BAC 的平分线AB 1折叠,剪掉重复部分;将余下部分沿∠B 1A 1C 的平分线A 1B 2折叠,此时点B 1与点C 重合. 探究发现⑴△ABC 中,∠B =2∠C ,经过两次折叠,∠BAC 是不是△ABC 的好角?(回答“是”或“不是”).⑵小丽经过三次折叠发现了∠BAC 是△ABC 的好角,请探究∠B 与∠C (不妨设∠B >∠C )之间的等量关系.根据以上内容猜想:若经过n 次折叠∠BAC 是△ABC 的好角,则∠B 与∠C (不妨设∠B >∠C )之间的等量关系为 . 应用提升⑶小丽找到一个三角形,三个角分别为15°、60°、105°,发现60°和105°的两个角都是此三角形的好角. 请你完成,如果一个三角形的最小角是4°,试求出三角形另外两个角的度数,使该三角形的三个角均是此三角形的好角.图3ABCA 1B 1B 2CD BA图2图1C…B n+1A 3A 2A 1B nB 2B 1BA训练2. 一节数学课后,老师布置了一道课后练习题:如图,已知在Rt △ABC 中,AB =BC ,∠ABC =90°,BO ⊥AC ,于点O ,点PD 分别在AO 和BC 上,PB =PD ,DE ⊥AC 于点E , 思维拓展训练(选讲)求证:△BPO ≌△PDE .备用图2431COBAD CE OP AB⑴理清思路,完成解答⑵本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写本题的证明过程. ⑵特殊位置,证明结论若PB 平分∠ABO ,其余条件不变.求证:AP =CD .训练3. 因式分解⑴()22223103x a b x a ab b ++-+- ⑵()()211a b ab +-+⑶()()2222483482x x x x x x ++++++ ⑷2222223a b ab a c ac abc b c bc -+--++训练4. 按下面规则扩充新数:已有a 和b 两个数,可按规则c =ab +a +b 扩充一个新数,而a ,b ,c 三个数中任取两数,按规则又可扩充一个新数,…,每扩充一个新数叫做一次操作.现有数2和3.⑴求按上述规则操作三次得到扩充的最大新数;⑵能否通过上述规则扩充得到新数5183?并说明理由.题型一 轴对称 巩固练习【练习1】 如图1,两个等边△ABD ,△CBD 的边长均为1,将△ABD 沿AC 方向向右平移到△A ′B ′D ′的位置,得到图2,则阴影部分的周长为 .图2图1CB D'DA'CDB A题型二 全等三角形 巩固练习【练习2】 在等边△ABC 中,AC =9,点O 在AC 上,且AO =3,P是AB 上一动点,连接OP ,将线段OP 绕点O 逆时针旋转60°得到线段OD ,若使点D 恰好落在BC 上,则线段AP 的长是( )A .4B .5C .6D .8【练习3】 如图⑴,BD 、CE 分别是△ABC 的外角平分线,过点A 作AF ⊥BD ,AG ⊥CE ,垂足分别为F 、G ,连接FG ,延长AF 、AG ,与直线BC 相交于M 、N .⑴试说明:FG =12(AB +BC +AC ); ⑵①如图⑵,BD 、CE 分别是△ABC 的内角平分线;②如图⑶,BD 为△ABC 的内角平分线,CE 为△ABC 的外角平分线. 则在图⑵、图⑶两种情况下,线段FG 与△ABC 三边又有怎样的数量关系?请写出你的猜想,并对其中的一种情况说明理由. 复习巩固BP A O DC(3)GE FD A(2)AB CD E FG(1)GE DF A题型三 因式分解 巩固练习【练习4】 分解因式:()4442x y x y +++-.【练习5】 图①是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形. ⑴图②中的阴影部分的面积为 ;33初二秋季·第7讲·尖子班·学生版⑵观察图②请你写出三个代数式()2m n +、()2m n -、mn 之间的等量关系⑷实际上有许多代数恒等式可以用图形的面积来表示. 如图③,它表示了 .⑸试画出一个几何图形,使它的面积能表示()()22343m n m n m mn n ++=++.③②①nnm m m nm n mmmnmmnn初二秋季·第7讲·尖子班·学生版第十五种品格:创新成功往往就藏在你没注意的地方有一家电台请来了一位商业奇才做嘉宾主持。
学而思奥数2016秋季班提高班第3讲讲义

四年级秋季提高班第3讲作业图形计数进阶作业1数一数,下图中有多少个三角形?【答案】30个【分析】共有3层,每层都有432110个,故共有10330个.作业2左图中有__________个三角形;右图中有__________个三角形.【答案】35;43【分析】左:1515535;右:355343作业3下面的图形中有多少个长方形?【答案】60个【分析】长有3216种,宽是432110种,故共有61060个长方形.作业4下图中包含有“好未来”三个汉字的长方形有多少个?好未来【答案】18个【分析】3618个.作业5图中有__________个(可旋转可翻转).【答案】34个【分析】对应到中,每个小长方形内有2个,所以有21734个.复习巩固作业6观察5*255560,7*477777777778638,推知9*5的值是__________.【答案】111105【分析】原式999999999999999111105作业7某班有3个小组,赵、钱、孙三人分属不同的小组.这次语文考试成绩公布,情况如下:赵和第3小组的那位成绩不一样,孙比第1小组的那位成绩低,三人中第3小组的那位比钱分数高:若赵、钱、孙三人按语文成绩由高到低排列,正确的顺序是__________.【答案】赵、孙、钱【分析】赵不属于第3小组,钱也不属于第3小组,所以孙属于第3小组,孙比第1小组的成绩低,且比钱的分数高,所以赵是第1小组的,分数最高,钱分数最低.作业85个足球队进行比赛,每个球队都与其他球队各比一场,胜方得3分,负方得0分,平局各得1分.最后四个队分别得1分、2分、5分和7分,那么第五个队得__________分.【答案】12【分析】前4队3胜7负,所以第5个队只能4场全胜,12分.四年级秋季提高班第3讲练习册答案图形计数进阶同步练习1.35个。
左边15个,右边15个,左右结合有5个.2.22个按大小分类(边长为1、2的三角形),共有16622个三角形;方法二:“向右”的三角形有8311个,故“向左”的三角形也有11个,共有22个.3.100个,有(4321)(4321)100个平行四边形.4.30个左下可选3个点,右上可选10个点,则共有31030个.5.(1)43213434()个;(2)新增的三角形以新产生的线段为边,上半部分有639个,下半部分有4个,总共新增9413个;有341347个;(3)又新增一条一样的线段,所以边长在这条线段上三角形也有13个,边长同时在这两条新增线段上的三角形总共有4个;所以图中总共有三角形341313464个.6.36个中心正方形内有84416个,其外有8412个,“跨界”的有8个,故共有1612836个.深化练习7.38个添线法,原有10个,添上右倾的斜线增加了10414个,再添上左倾的斜线,增加了634114个,所以共10141438个.最后添左倾斜线时,为保证不重不漏,可将这条斜线以外的每个交点与斜线形成的新三角形个数标在点上,最后相加得到总数,如下图,共增加了63514个三角形. 1111060138.添线法,1520253590.9.85由2个例2(1)的图构成,新增加含4块的三角形有10个,含8块的三角形有5个,所以共35210585个.实战练习10.20个按大小分类枚举(正放:面积为1、4的正方形;斜放:面积为2、5的正方形),共有826420个正方形.阶段测试1.1*2=121=32.原式=101102103104105 (12345)1015101503.依题意,A A A A A*2224,A A A A A4*3=8+3=11,A A A A A11*4=22+4=26,得26260,10.A A4.图中共有19+11+5+1=36个正方形.5.观察图形可知,在题述图形中由实线和虚线构成的长方形各有9个,共计9+9=18个.6.个数=6×8=48(个).7.“甲已经赛了4盘”,说明甲与乙、丙、丁、小强各赛了1盘(小强与甲赛了1盘)“丁赛了1盘”,肯定丁只与甲比赛. “乙赛了3盘”,说明乙与甲、丙、小强各赛了1盘(小强与乙赛了1盘).现在已经知道,丙赛的2盘是与甲、乙各赛了1盘,所以,小强赛了2盘.8.四个人循环比赛总共比赛5×4÷2=10(场),每场无论分出胜负还是打平,两人的得分和一定是2分,因此最终四个人的得分加起来一定是10×2=20(分).9.每场平局两队共得2分,如果分出胜负则两队共得3分.6支球队共要比65215场比赛,其中有4场平局,所以有15411场分出了胜负,那么6支球队总得分为2431141分,由于有5支球队共得了31分,所以第6支球队得了413110分.10.法一:四人共赛6局,总分为6212(分),因为没有人全胜,所以得分最高的选手最多是两胜一平得5分,因此在另外的3局比赛中:如果全部是平局,则4个人的分数只能分别为5,3,2,2,就会出现分数相同的情况,如下左图(图中箭头表示有胜负,箭头指向输者,虚线表示平局)如果有2局是平局,则可以出现满足条件的情况:4人分数分别为5,4,2,1,如下右图②③②⑤D C B A ④①②⑤D C B A所以至少有3局是平局.法二:四人共赛6局,如果6局都是平局,那么四人总分相同,不合题意.如果有5局平局,那么除有胜负的两人外,另两人总分相同,不合题意.如果有4局平局,那么可分为三种情况:一个人胜两局,输的两个人总分相同;一个人输两局,胜的两个人总分相同;四个人中两人胜两人负,两个胜的人总分相同,两个负的人总分相同,都不合题意.3局平局是可能的,如下图所示,连线表示平局,箭头指向的一方为负方,图中数字为各人总分.②④①⑤四年级秋季提高班第3讲图形计数进阶例1图(1)中有__________个三角形;图(2)中有__________个三角形;图(3)中有__________个三角形;图(4)中有__________个三角形.(1)(2)(3)(4)【答案】30;20;37;50【分析】(1)151530;(2)增加一条线,线上面增加3个三角形,线下面增加2个三角形,153220个;(3)在(1)、(2)的基础上增加2个三角形,305237个;(4)在(3)的基础上增加633113个,所以共371350个.【随堂练】(1)图中有多少个三角形(2)图中有多少个三角形(3)图中有多少个三角形【答案】(1)20个(2)30个(3)27个拓展5图(1)有__________个三角形;图(2)有__________个三角形;图(3)有__________个三角形.(1)(2)(3)【答案】34;47;64【分析】(1)43213434()个;(2)新增的三角形以新产生的线段为边,上半部分有639个,下半部分有4个,总共新增9413个;有341347个;(3)又新增一条一样的线段,所以边长在这条线段上三角形也有13个,边长同时在这两条新增线段上的三角形总共有4个;所以图中总共有三角形341313464个.例2图(1)有__________个三角形;图(2)有__________个三角形.(1)(2)【答案】35;29【分析】(1)分类枚举,含1块、2块、3块、5块的分别有10、10、10、5个,共有101010535个;(2)以去掉的线为边的三角形有6个,所以剩下35629个;练一练下图中有多少个三角形?(3)【答案】47【分析】以新增的线为边的三角形左右两边各6个,所以共有356247个.拓展9数出下图中三角形的个数.【答案】85【分析】由2个例2(1)的图构成,新增加含4块的三角形有10个,含8块的三角形有5个,所以共35210585个.例3(1)图中有__________个长方形.(2)下图中含“★”的长方形有多少个?★(3)下图中含两个“★”的长方形有多少个?★★【答案】150;54;54【分析】(1)长方形邻边对应:一条水平线段和一条竖直线段可确定一个长方形.根据乘法原理可知,长方形有()()1234512341510150个.(2)长方形两点对应:只要确定对角的两个顶点就可以确定一个水平的长方形,就像在电脑桌面上拖动鼠标选中文件一样.这种对应法专门用来解决包含某个区域的长方形个数.如下图所示,★的左上角有6个点,右下角有9个点,根据乘法原理,共有6954个长方形.★(3)同(2),包含两个★的长方形有9654个.★★【随堂练】1.图中有多少个长方形【答案】10660个2.图中有多少个包含“心”的长方形【答案】4624例4在下图45的方格中:(1)有__________个;(2)有__________个(可旋转可翻转);(3)有__________个(可旋转可翻转);(4)有__________个(可旋转可翻转).【答案】(1)12;(2)48;(3)17;(4)34【分析】特殊图形的对应:可将特殊图形对应到能包含自身的最小长方形中.(1)4312个;(2)对应到中,每个田字格内有4个,所以有41248个;(3)横向的有339个,纵向的有248个,共9817个;(4)对应到中,每个小长方形内有2个,所以有21734个.【随堂练】图中有多少个【答案】66224()练一练下图中,共有__________个(可旋转可翻转).【答案】30【分析】图中有7个田字格,4728个,注意左上角与右下角还各有1个,共28230个.例5用9个钉子钉成相互间隔为1厘米的正方阵(如下图).如果用一根皮筋将适当的三个钉子连结起来就得到一个三角形,这样得到的三角形中,面积等于2平方厘米的三角形有多少个?面积等于1平方厘米的三角形有多少个?【答案】8;32【分析】(1)面积等于2平方厘米的分类统计如下:3×2=6(个)1×2=2(个)所以,面积等于2平方厘米的三角形的个数有:6+2=8(个).(2)面积等于1平方厘米的分类统计如下:3×2×4=24(个)2×4=8(个)面积等于2平方厘米的三角形有8个;面积等于1平方厘米的三角形有32个.练一练13枚钉子钉成水平和竖直间隔都为1厘米的点阵. 用一根橡皮筋套住其中的几枚钉子,可以构成三角形、正方形、梯形等.请回答:可以构成多少个正方形?【答案】11【分析】按大小分类枚举(正放:面积为1、4的正方形;斜放:面积为2、8的正方形),共有415111个正方形.拓展1016枚钉子钉成水平和竖直间隔都为1厘米的点阵. 用一根橡皮筋套住其中的几枚钉子,可以构成三角形、正方形、梯形等.请回答:可以构成多少个正方形?【答案】20【分析】按大小分类枚举(正放:面积为1、4的正方形;斜放:面积为2、5的正方形),共有826420个正方形.拓展练习拓1☆数一数下图中,有多少个三角形?【答案】35个【分析】左边15个,右边15个,左右结合有5个.拓2☆☆图中共有多少个三角形?【答案】22个【分析】按大小分类(边长为1、2的三角形),共有16622个三角形;方法二:“向右”的三角形有8311个,故“向左”的三角形也有11个,共有22个.拓3☆☆下面的图中共有多少个平行四边形?【答案】100个【分析】有(4321)(4321)100个平行四边形.拓4☆☆下图中有多少个同时包含2个五角星的长方形?★★【答案】30个【分析】左下可选3个点,右上可选10个点,则共有31030个.拓5☆☆☆图(1)有_________个三角形;图(2)有_________个三角形;图(3)有_________个三角形.(1)(2)(3)【答案】34;47;64【分析】(1)43213434()个;(2)新增的三角形以新产生的线段为边,上半部分有639个,下半部分有4个,总共新增9413个;有341347个;(3)又新增一条一样的线段,所以边长在这条线段上三角形也有13个,边长同时在这两条新增线段上的三角形总共有4个;所以图中总共有三角形341313464个.拓6☆☆☆下图中有多少个三角形?【答案】36个【分析】中心正方形内有84416个,其外有8412个,“跨界”的有8个,故共有1612836个.拓7☆☆☆下图中有多少个三角形?【答案】38个【分析】添线法,原有10个,添上右倾的斜线增加了10414个,再添上左倾的斜线,增加了634114个,所以共10141438个.最后添左倾斜线时,为保证不重不漏,可将这条斜线以外的每个交点与斜线形成的新三角形个数标在点上,最后相加得到总数,如下图,共增加了63514个三角形. 111106013拓8☆☆☆图中有多少个三角形?【答案】90【分析】添线法,1520253590.拓9☆☆☆数出下图中三角形的个数.【答案】85【分析】由2个例2(1)的图构成,新增加含4块的三角形有10个,含8块的三角形有5个,所以共35210585个.拓10☆☆☆16枚钉子钉成水平和竖直间隔都为1厘米的点阵. 用一根橡皮筋套住其中的几枚钉子,可以构成三角形、正方形、梯形等.请回答:可以构成多少个正方形?【答案】20【分析】按大小分类枚举(正放:面积为1、4的正方形;斜放:面积为2、5的正方形),共有826420个正方形.。
学而思六年级尖子班长练习题四

20
A O B
20
2、解:如图所示,将左下角的阴影部分分为两部分,然后按照右图 所示,将这两部分分别拼补在阴影位置。可以看出,原题图的阴影 部分等于右下图中 AB 弧所形成的弓形, 其面积等于扇形 OAB 与三角 形 OAB 的面积之差。 所以阴影面积:π×4×4÷4-4×4÷2=4.56
3、解: 方法一:观察发现,阴影部分属于一个大的扇形,而这个扇形除了阴影部分之外,还有一个 求出这个不规则部分的面积就成了解决这个问题的关键. 不规则的空白部分 ABFD 在左上, 我们先确定 ABFD 的面积,因为不规则部分 ABFD 与扇形 BCF 共同构成长方形 ABCD,
2 2 2
1 1 S阴影 S扇形EAB S扇形BCF S长方形ABCD 62 42 4 6 15 (平 4 4
1 所以不规则部分 ABFD 的面积为 6 4 42 12 (平方厘米) , 4
再从扇形 ABE 中考虑,让扇形 ABE 减去 ABFD 的面积,
1 则有阴影部分面积为 62 12 15 (平方厘米). 4
方法二:利用容斥原理 方厘米) 4、解:设大圆的半径为 R,小圆的半径为 r,则 R -r =40 圆环的面积=大圆面积-小圆面积 2 2 =πR -πr 2 2 =π(R -r ) =40π =125.6(平方厘米) 5、解:连接 PD、AP、BD。PD 平行于 AB。 S△ABD=S△ABP (同底等高) 图中阴影部分面积分割为 S△ABD 和圆内小弓形的面积。 S△ABD=10×(10÷2)÷2=25 弓形面积: (3.14×5 -10×10÷2)÷4=7.125 阴影部分的面积为 25+7.125=32.125 答:阴影部分的面积为 32.125。
学而思中考数学.三角形.尖子班.学生版

初三寒假·第1讲·尖子班·学生版考试内容考试要求层次ABC三角形了解三角形的有关概念;了解三角形的稳定性;会按边和角对三角形进行分类;理解三角形的内角和、外角和及三边关系;会画三角形的主要线段;知道三角形的内心、外心和重心会用尺规作给定条件的三角形;掌握三角形内角和定理及推论;会按要求解决三角形的边、角的计算问题;能用三角形的内心、外心的知识解决简单问题;会证明三角形的中位线定理,并会应用三角形中位线性质解决有关问题等腰三角形和直角三角形了解等腰三角形、等边三角形、直角三角形的概念,会识别这三种图形;理解等腰三角形、等边三角形、直角三角形的性质和判定能用等腰三角形、等边三角形、直角三角形的性质和判定解决简单问题会运用等腰三角形、等边三角形、直角三角形的知识解决有关问题 全等三角形 了解全等三角形的概念,了解相似三角形与全等三角形之间的关系 掌握两个三角形全等的条件和性质;会应用全等三角形的性质与判定解决有关问题 会运用全等三角形的知识和方法解决有关问题勾股定理及其逆定理 已知直角三角形的两边长,会求第三边长会用勾股定理及其逆定理解决简单问题相似三角形了解两个三角形相似的概念会利用相似三角形的性质与判定进行简单的推理和计算;会利用三角形的相似解决一些实际问题锐角三角函数了解锐角三角函数(sin cos tan A A A ,,);知道304560︒︒︒,,角的三角函数值由某个角的一个三角函数值,会求这个角的其余两个三角函数值;会计算含有 304560︒︒︒,,角的三角函数式的值能运用三角函数解决与直角三角形有关的简单问题解直角三角形知道解直角三角形的含义会解直角三角形;能根据问题的需要添加辅助线构造直角三角形;会解由两个特殊直角三角形构成的组合图形的问题能综合运用直角三角形的性质解决有关问题本讲结构中考大纲剖析1中考第一轮复习三角形初三寒假·第1讲·尖子班·学生版一、等腰三角形二、直角三角形1.直角三角形的边角关系.①.直角三角形的两锐角互余. ②.三边满足勾股定理. ③.边角间满足锐角三角函数.知识导航初三寒假·第1讲·尖子班·学生版45°60°2.特殊直角三角形“等腰直角三角形”“含30︒和60︒的直角三角形”边的比:112∶∶边的比:132∶∶3.直角三角形中的特殊线.d cba“直角三角形斜边中线2c d =” acbh “直角三角形斜边高abh c=”三.尺规构造等腰三角形和直角三角形问题作图求点坐标 “万能法”其他方法 等腰三角形 lAB已知点A 、B 和直线l ,在l 上求点P ,使PAB △为等腰三角形lP 4P 5P 3P 2P 1BA“两圆一垂”分别表示出点A 、B 、P 的坐标,再表示出线段AB 、BP 、AP 的长度,由①AB=AP ②AB=BP③BP=AP 列方程解出坐标 作等腰三角形底边的高,用勾股或相似建立等量关系直角三角形lAB已知点A 、B 和直线l ,在l 上求点P ,使PAB △为直角三角形BA P 1P 2P 3P 4l“两垂一圆”分别表示出点A 、B 、P 的坐标,再表示出线段AB 、BP 、AP 的长度,由①222AB BP AP =+ ②222BP AB AP =+ ③222AP AB BP =+ 列方程解出坐标作垂线,用勾股或相似建立等量关系四.全等三角形全等三角形的性质:全等三角形的对应边相等,对应角相等. 全等三角形的判定:⑴SSS ;⑵SAS ;⑶ASA ;⑷AAS ;⑸HL .在证明图形的线或角关系时,通常需要将全等与图形变换(旋转、平移、轴对称等)相结合.初三寒假·第1讲·尖子班·学生版五.相似三角形相似三角形的性质:⑴ 相似三角形的对应角相等,对应边成比例,其比值称为相似比.⑵ 相似三角形对应高的比等于相似比,周长比等于相似比,面积比等于相似比的平方. 相似三角形的判定:⑴ 平行于三角形一边的直线,截其他两边所得的三角形与原三角形相似; ⑵ 两角对应相等,两三角形相似;⑶ 两边对应成比例且夹角相等,两三角形相似; ⑷ 三边对应成比例,两三角形相似. 相似三角形的基本模型:(1)EDC BA(3)ED CBA(4)D CBADCBA(6)EDCBA(2)EDCBA(5)EDCBA(10)(9)(8)A BDEABC DEEDBA【例1】 (1)如图所示的正方形网格中,网格线的交点称为格点,已知A 、B 是两格点,如果C 也是图中的格点,且使得ABC △为等腰三角形,则点C 的个数是( ) A.6 B.7 C.8 D.9(2)在平面直角坐标系中,点A 的坐标为(4),0,点B 的坐标为(410),,点C 在y 轴上,且ABC △是直角三角形,则满足条件的C 点的坐标为 .(3)如图所示,在△ABC 中,BC =6,E ,F 分别是AB ,AC 的中点,点P在射线EF 上,BP 交CE 于D ,点Q 在CE 上且BQ 平分∠CBP ,设BP =y ,PE =x .当CQ =21CE 时,y 与x 之间的函数关系式是 ; 当CQ =n1CE (n 为不小于2的常数)时, y 与x 之间的函数关系式是 .模块一 特殊三角形夯实基础初三寒假·第1讲·尖子班·学生版(4)已知:如图,在ABC △中,B ACB ∠=∠,点D 在AB 边上,点 E 在AC 边的延长线上,且BD CE =,连接DE 交BC 于F . 求证:DF EF =.【例2】 (1)如图,正方形ABCD 的边长为2, 将长为2的线段QF 的两端放在正方形相邻的两边上同时滑动.如果点Q 从点A 出发,沿 图中所示方向按A D C B A →→→→滑动到点A 为止,同时点 F 从点B 出发,沿图中所示方向按B A D C B →→→→滑动到 点B 为止,那么在这个过程中,线段QF 的中点M 所经过的路线围 成的图形的面积为( )A. 2B. 4-πC.πD.1π-(2)如图,在△ABC 中,∠C =90°,AC =4,BC =2,点A 、C 分别在x轴、y 轴上,当点A 在x 轴上运动时,点C 随之在y 轴上运动, 在 运动过程中,点B 到原点的最大距离是( )A. 222+ B .52 C .62 D . 6以下探究主题为:几何最值问题【探究1】如图,在ABC △中,∠C =90°,AC =4,BC =3,点A 、C 分别在x 轴、y 轴上,当点A 在x 轴上运动时,点C 随之在y 轴上运动,在运动过程 中,点B 到原点的最小距离是__________.【探究2】如图,在Rt ABC △ 中,∠C =90°,tan 12BAC ∠=,BC =6,点D在边AC 上,且23AD AC =,连结BD ,F 为BD 中点,将线段AD 绕 点A 旋转,在旋转过程中线段CF 长度的最大值为________,最小值 为_______.能力提升ACFEDB BC 第8题图QFMABC y xO CBA C BAO y x初三寒假·第1讲·尖子班·学生版【探究3】 如图,在Rt ABC △中,∠ACB =90°,∠B =30°,CB =33,点D 是平面上一点且CD =2,点P 为线段AB 上一动点,当△ ABC 绕点C 任意旋转时,在旋转过程中线段DP 长度的最大值 为_______,最小值为_______.【探究4】如图,Rt ABC △中,∠C =90°,∠ABC =30°,AB =6.点D 在AB 边上,点E 是BC 边上一点(不与点B 、C 重合), 且DA =DE ,则AD 的取值范围是___________________.【例3】 在△ABC 中,AB =AC ,∠BAC =α(︒<<︒600α),将线段BC 绕点B 逆时针旋转60°得到线段BD .图1图2A BCDEDCBA(1)如图1,直接写出∠ABD 的大小(用含α的式子表示);(2)如图2,∠BCE =150°,∠ABE =60°,判断△ABE 的形状并加以证明; (3)在(2)的条件下,连结DE ,若∠DEC =45°,求α的值.夯实基础模块二 全等三角形PDCBACDABE初三寒假·第1讲·尖子班·学生版【例4】 等边三角形ABO 的边长为2个单位长度,点P 、Q 分别从点B 、O 同时出发,以每秒1个单位长度向点O 、A 运动.(到达点O 、A 时停止运动)⑴ 如图1,连接AP 、BQ 相交于点C .证明:AP BQ =,60ACQ =︒∠. ⑵ 如图2,连接PQ ,探讨2PQ 与AB 之间的大小关系并证明你的结论.QA图1ACP QQP A图2夯实基础模块三 相似三角形能力提升初三寒假·第1讲·尖子班·学生版图3图2图12n-1B 2C 2A B CB 1C 1C 1B1C B A【例5】 (1)已知在△ABC 中,BC=a .如图1,点B 1 、C 1分别是AB 、AC 的中点,则线段B 1C 1的长是_______;如图2,点B 1 、B 2 ,C 1 、C 2分别是AB 、AC 的三等分点,则线段B 1C 1 + B 2C 2的值是__________;如图3, 点12......、、、n B B B ,12......、、、n C C C 分别是AB 、AC 的(n +1)等分点,则线段B 1C 1 + B 2C 2+……+ B n C n 的值是 ______.(2)如图,在正方形ABCD 中,AB =1,E 、F 分别是BC 、CD 边上点,① 若CE =12CB ,CF =12CD ,则图中阴影部分的面积是________;② 若CE =1n CB ,CF =1nCD ,则图中阴影部分的面积是_________.(用含n 的式子表示,n 是正整数).(3)如图,在矩形ABCD 中, AB =4,BC =6,当直角三角板MPN 的直角顶点P 在BC 边上移动时,直角边MP 始终经过点A ,设直角 三角板的另一直角边PN 与CD 相交于点Q .BP =x ,CQ=y ,那么y 与x 之间的函数图象大致是( )A能力提升【例6】如图1,在等腰直角△ABC中,∠BAC=90°,AB=AC=2,点E是BC边上一点,∠DEF=45°且角的两边分别与边AB,射线CA交于点P,Q.(1)如图2,若点E为BC中点,将∠DEF绕着点E逆时针旋转,DE与边AB交于点P,EF与CA 的延长线交于点Q.设BP为x,CQ为y,试求y与x的函数关系式,并写出自变量x的取值范围;(2)如图3,点E在边BC上沿B到C的方向运动(不与B,C重合),且DE始终经过点A,EF与边AC交于Q点.探究:在∠DEF运动过程中,△AEQ能否构成等腰三角形,若能,求出BE的长;若不能,请说明理由.初三寒假·第1讲·尖子班·学生版初三寒假·第1讲·尖子班·学生版【例7】 在△ABC 中,AB =4,BC =6,∠ACB =30°,将△ABC 绕点B 按逆时针方向旋转,得到△A 1BC 1. (1)如图1,当点C 1在线段CA 的延长线上时,求∠CC 1A 1的度数; (2)如图2,连接AA 1,CC 1.若△CBC 1的面积为3,求△ABA 1的面积;(3)如图3,点E 为线段AB 中点,点P 是线段AC 上的动点,在△ABC 绕点B 按逆时针方向旋转的过程中,点P 的对应点是点P 1,直接写出线段EP 1长度的最大值与最小值.C 1C BA 1A图2A 1C 1ABC图1图3A模块一 特殊三角形 课后演练【演练1】 ⑴如图,等腰ABC △中,AB AC =,20A =︒∠,线段AB 的垂直平分 线交AB 于D ,交AC 于E ,连接BE ,则CBE ∠等于( ) A .80° B . 70° C .60° D .50°实战演练图1EDBA11初三寒假·第1讲·尖子班·学生版⑵ 在等腰ABC △中,AB AC =,中线BD 将这个三角形的周长分别为15和 12两个部分,则这个等腰三角形的底边长为______________.⑶ 如图,等边三角形ABC 中,D 、E 分别为AB 、BC 边上的点,AD BE =, AE 与CD 交于点F ,AG CD ⊥于点G ,则AGAF = .【演练2】 如图,P 为边长为2的正三角形中任意一点,连接P A 、PB 、P C ,过P 点分别做三边的垂线,垂足分别为D 、E 、F ,则PD+PE+PF= ;阴影部分的面积为__________.模块二 全等三角形 课后演练 【演练3】 ⑴如图1,已知矩形ABCD 中,点E 是BC 上的一动点,过点E 作EF ⊥BD 于点F ,EG ⊥AC于点G ,CH ⊥BD 于点H ,试证明CH =EF +EG ;图3GEFL ABCDABCD EFGH图2图1H GFE DCBA⑵ 若点E 在BC 的延长线上,如图2,过点E 作EF ⊥BD 于点F ,EG ⊥AC 的延长线于点G ,CH ⊥BD 于点H , 则EF 、EG 、CH 三者之间具有怎样的数量关系,直接写出你的猜想;⑶ 如图3,BD 是正方形ABCD 的对角线,L 在BD 上,且BL =BC , 连接CL ,点E 是CL 上任一点, EF ⊥BD 于点F ,EG ⊥BC 于点G ,猜想EF 、EG 、BD 之间具有怎样的数量关系,直接写出你的猜想;⑷ 观察图1、图2、图3的特性,请你根据这一特性构造一个图形,使它仍然具有EF 、EG 、CH 这样的线段,并满足⑴或⑵的结论,写出相关题设的条件和结论.GFED CBAP F EA12初三寒假·第1讲·尖子班·学生版E 3E 2E 1D 4D 3D 2D 1CBA 【演练4】 图中是一副三角板,45︒的三角板Rt DEF △的直角顶点D 恰好在30︒的三角板Rt ABC △斜边AB 的中点处,304590A E EDF ACB ∠=︒∠=︒∠=∠=︒,,,DE 交AC 于点G ,GM AB ⊥ 于M .⑴ 如图1,当DF 经过点C 时,作CN AB ⊥于N ,求证:AM DN =.⑵ 如图2,当DF AC ∥时,DF 交BC 于H ,作HN AB ⊥于N ,⑴的结论仍然成立,请 你说明理由.图2图1EHABCD FGN NMGF ED CBA模块三 相似三角形 课后演练【演练5】 如图,已知Rt ABC △,1D 是斜边AB 的中点,过1D 作11D E AC ⊥于1E ,连接1BE 交1CD 于2D ;过2D 作22D E AC ⊥ 于2E ,连接2BE 交1CD 于3D ;过3D 作33D E AC ⊥于3E ,…, 如此继续,可以依次得到点45n D D D ,,…,,分别记11BD E △, 22BD E △,33BD E △,…,n n BD E △的面积为123S S S ,,,…n S .则n S =_________ABC S △(用含n 的代数式表示).第十八种品格:坚持品格教育—坚持有些人,做事是怕别人说失败,为不失败而坚持。
学而思六年级尖子班长练习题八

六年级秋季尖子班 第八讲
学而思 李斌
答案: 1、解析:夹在两平行线间的等积变形。 连接 DB、GE、FK, DB∥GE∥FK
在梯形 DBEG 中,S△DEG=S△BEG 在梯形 GEKF 中,S△GEK=S△GEF 所以,S 阴影= S△DEG+ S△GEK= S△BEG+ S△GEF=S 正方形 BEFG 即: (24÷4)2=36(平方厘米)
S ቤተ መጻሕፍቲ ባይዱB BC 1 1 1 . ∴ △ ABC S△FBE BE BF 1 3 3
A G D F B C E H
六年级秋季尖子班 第八讲
学而思 李斌
又 S△ ABC 1 ,所以 S△FBE 3 . 同理可得 S△GCF 8 , S△DHG 15 , S△ AEH 8 . 所以 SEFGH S△AEH S△CFG S△DHG S△BEF S ABCD 8 8 15+3+2 36 . 所以
H
.
A E
D
G
B
F
C
3、如图,ABCD 和 CGEF 是两个正方形,AG 和 CF 相交于 H,已知 CH 等于 CF 的三 分之一,三角形 CHG 的面积等于 6 平方厘米,求五边形 ABGEF 的面积。
4 、如图,平行四边形 ABCD , BE AB , CF 2CB ,
GD 3DC , HA 4 AD ,平行四边形 ABCD 的面积是 2 , 求平
六年级秋季尖子班 第八讲
学而思 李斌
第八讲 直线型面积(二) 补充练习
1、三个正方形 ABCD,BEFG,HKPF 如图所示放置在一起,图中正方形 BEFG 的周 长等于 24 厘米。求图中阴影部分的面积。
学而思三年级第三讲(数列图形规律)

兔子数列规律:第一项和第二项均是 1,从第三项开始,每一项是它的前两项的和。 该规律拓展运用(类兔子数列): 例:
2, 1, 3, 4, 7, 11, 18, 29……
2+1=3 1+3=4 3+4=7 4+7=11 7+11=18 11+18=29 1, 1, 1, 3, 5, 9, 17, 31…… 发现从第 4 项开始,每一项都是它的前 3 项之和
例 4 有一正六边形点阵,如图,它的中心是一个点,算作第一层; 第二层每边两个点(相邻两边共用一个点);第三层每边三个点…… 这个六边形点阵共 100 层,问这个点阵共有多少个点? 解析:注意第一层是 1 个点,第二层 6 个点,从第三层开始,每层 比前一层多 6 个点(每边多 1 个点,6 条边即多 6 个)。即第二层 6 个(1×6),第三层 12 个(2×6),第四层 18 个(3×6)……第 100 层应是 594 个(6×99)。 共 1 + 6+ 12 + 18 + …… + 594 = 1+(6+594)×99÷2=29701(个)
(2) 根据规律,写出第 6 行及第 7 行见上数表红色字体。
(3) 要推断第 10 行的数字之和,先看看前几行各自的和是否有规律
第一行:1
第二行:2
……21
第三行:4 2×2
……22
第四行:8 2×2×2
……23
第五行:16 2×2×2×2
……24
第六行:32 2×2×2×2×2
……25
发现是一个等比数列,第 10 行应该是 9 个 2 相乘,即 29,算出结果是 512。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图形计数进阶
【例1】(1)已知图中点C,D,E,F 为线段AB 的五等分点,图中共有( )条线段, 如果AB =10厘米,那么所有线段的和是
( )米.
(2)图中一个大角被分成 6 个小角,每个小角都是30°,图中共有( )个角,这些角的和是( )度. (仅考虑劣角, 不考虑优角)
【例2】
1.(1) 数一数,图中共有 ( ) 个三角形.
(2) 数一数,图中三角形共有( ) 个.。
(3) 数一数,图中有 ( ) 个三角形.
2.图中线段的条数比三角形的个数多____________________
.
【例3】
(1) 图中共有
( ) 个三角形.
(2) 图中共有
( ) 个三角形.
(3) 图中共有( ) 个三角形.
【例4】
1. (1)数一数,图中有( )个长方形.
(2)用16个同样大小的正方形组成如图的一个大正方形,下图中有
( )个正方形.
(3)如图,四条边长度都相等的四边形称为菱形.用16个同样大小的菱形组成如
图的一个大菱形.数一数,图中共有( ) 个菱形.
2.图中有______个正方形
【例5】下图中共有( )个长方形,这些长方形的面积和是( )
【例6】1.在图所示的线段中,包含“☆”的线段有( )
条;包含“△”的线段有( )条; 至少包含“☆”和
“△”中的一个的线段有( )条.
2。
在图所示的线段中,包含“A”的线段有( )条;包含“B”的线段有( )条;至少包含“A”和“B”中的一个的线段有( )条.
【例7】(1)下图中包含五角星的长方形一共有()个
(2)下图中包含五角星的长方形一共有( )个.
(3)只包含一个字母的长方形有( )个
【例8】
1.由20 个单位小正方形组成的长方形中,包含☆的正方形共有
( )个.
2.在下面的图中,包含苹果的正方形一共有()个.。