[2019浙江高考数学]规范——解答题的5个解题模板及得分说明
2019年浙江省高考数学试卷(原卷答案解析版)
C.当 D.当
【答案】A
【解析】
【分析】
本题综合性较强,注重重要知识、基础知识、运算求解能力、分类讨论思想的考查.本题从确定不动点出发,通过研究选项得解.
【详解】选项B:不动点满足 时,如图,若 ,
排除
如图,若 为不动点 则
选项C:不动点满足 ,不动点为 ,令 ,则 ,
排除
选项D:不动点满足 ,不动点为 ,令 ,则 ,排除.
(1)当 时,求函数 的单调区间;
(2)对任意 均有 求 的取值范围.
注: 为自然对数的底数.
2019年普通高等学校招生全国统一考试(浙江卷)数学
参考公式:
若事件 互斥,则
若事件 相互独立,则
若事件 在一次试验中发生的概率是 ,则 次独立重复试验中事件 恰好发生 次的概率
台体的体积公式
其中 分别表示台体的上、下底面积, 表示台体的高
(2)当 时,分三种情况,如图 与 若有三个交点,则 ,答案选D
下面证明: 时,
时 , ,则 ,才能保证至少有两个零点,即 ,若另一零点在
【点睛】遇到此类问题,不少考生会一筹莫展.由于方程中涉及 两个参数,故按“一元化”想法,逐步分类讨论,这一过程中有可能分类不全面、不彻底..
10.设 ,数列 中, , ,则( )
【详解】方法1:由分布列得 ,则
,则当 在 内增大时, 先减小后增大.
方法2:则
故选D.
【点睛】易出现的错误有,一是数学期望、方差以及二者之间的关系掌握不熟,无从着手;二是计算能力差,不能正确得到二次函数表达式.
8.设三棱锥 的底面是正三角形,侧棱长均相等, 是棱 上的点(不含端点),记直线 与直线 所成角为 ,直线 与平面 所成角为 ,二面角 的平面角为 ,则( )
2019年高考数学解答题得分模板导数及答案
学解答题是高考学试卷中非常重要的题型,通常有6个大题,分值在70分及以上,例如历年的课标全国卷,解答题为6道题,分值为70分,几乎占总分150分的一半.解答题的考点相对较多、综合性强,所以解答题的区分度高,做解答题时,不仅要得出最后的结论,还要写出关键步骤,并且每步合情合,因此怎样解答、把握步骤的得分点就非常重要了.我们可以把解学解答题的思维过程划分为一个个小题分步解答,总结恰当的“解答题模板”,按照一定的解题程序和答题格式分步解答,在短时间内取得最高的答题效率.课标全国卷对于导应用的考查,其难点一直围绕函的单调性、极值和最值展开,以导为工具探究函的性质,借此研究不等式、方程等问题,着重考查分类讨论、形结合、归与转的学思想方法,意在考查学生的运算求解能力、推论证能力,充分体现学性思维的特点,从思维的层次性、深刻性和创新性等方面进行考查,凸显了高考试题的选拔功能,一直是压轴题的不二选择,下面通过近几年的高考导压轴题,分析归纳解题策略.一、命题规律:(一)考试地位:导知识及其应用,每年必考,属于考点中的重难点.(二)分值: 1道解答题.分值12分(以课标全国卷为例).(三)考查内容:导作为研究函的工具,在函习题中考查.1.导的运算:(1)求导,其中复合函求导为科.(2)切线斜率相关的问题.2.利用导判断函的单调区间,求函极值、最值,处函零点问题等.3.导与不等式相结合考查.4.科还考察定积分的基本运算或利用定积分求面积.(四)难度:难.在历年新课标卷中,导解答题都作为最后一题,习题的后几问属于难题,有一定的区分度.在个别地区的自主命题中,导解答题有时作为压轴解答题,有时也放在前几个解答题中,难度基础或中等.(五)难题类型:1.导习题的解答题后几问.2.导难题常考内容:与函结合,解决复杂的函问题.例如函图象、最值、零点等问题.3.导与不等式等问题相结合.二、解题模板:模板一:函的单调性、极值、最值问题以函f (x)为例,第一步:确定定义域、求导:求f (x )的定义域,求f (x )的导f ′(x ). 第二步:解方程:求方程f ′(x )=0的根.第三步:列表格:利用f ′(x )=0的根将f (x )定义域分成若干个小开区间,并列出表格.第四步:得结论:由f ′(x )在小开区间内的正、负值判断f (x )在小开区间内的单调性,从表格观察f (x )的单调性、极值、最值等. 第五步:再回顾:对需讨论根的大小问题要特殊注意,另外观察f (x )的间断点及步骤规范性. 练习:已知函f (x )=(x -k )e x . (Ⅰ)求f (x )的单调区间; (Ⅱ)求f (x )在区间上的最小值.2.已知函f (x )=2ax -a 2+1x 2+1(x ∈R).其中a ∈R. (1)当a =1时,求曲线y =f (x )在点(2,f (2))处的切线方程; (2)当a ≠0时,求函f (x )的单调区间与极值. 答案:解: (1)当a =1时,f (x )=2x x 2+1,f (2)=45,又f ′(x )=2x 2+1-2x ·2x x 2+12=2-2x 2x 2+12,f ′(2)=-625.所以,曲线y =f (x )在点(2, f (2))处的切线方程为y -45=-625(x -2),即6x +25y -32=0.(2)f ′(x )=2a x 2+1-2x 2ax -a 2+1x 2+12=-2x -a ax +1x 2+12. 由于a ≠0,以下分两种情况讨论.①当a >0时,令f ′(x )=0,得到x 1=-1a,x 2=a .当x 变时,f ′(x ),f (x )的变情况如下表:x(-∞,-1a)-1a(-1a,a )a(a ,+∞)f ′(x )- 0 +-f (x )极小值极大值所以f (x )在区间⎝⎛⎭⎪⎫-∞,-1a ,(a ,+∞)内为减函,在区间⎝ ⎛⎭⎪⎫-1a ,a 内为增函.函f (x )在x 1=-1a 处取得极小值f ⎝ ⎛⎭⎪⎫-1a ,且f ⎝ ⎛⎭⎪⎫-1a =-a 2.函f (x )在x 2=a 处取得极大值f (a ),且f (a )=1.②当a <0时,令f ′(x )=0,得到x 1=a ,x 2=-1a,当x 变时,f ′(x ),f (x )的变情况如下表:所以f (x )在区间(-∞,a ),⎝ ⎛⎭⎪⎫-1a ,+∞内为增函,在区间⎝⎛⎭⎪⎫a ,-1a 内为减函.函f (x )在x 1=a 处取得极大值f (a ),且f (a )=1.函f (x )在x 2=-1a 处取得极小值f (-1a),且f ⎝⎛⎭⎪⎫-1a =-a 2.模板二:利用导求给定区间上的函的最值问题(通用模板)第一步:求函f (x )的导f ′(x )第二步:求函f (x )在给定区间上的单调区间 第三步:求函f (x )在给定区间上的极值 第四步:求函f (x )在给定区间上的端点值第五步:比较函f (x )的各极值与端点值的大小,确定函f (x )的最大值和最小值第六步:反思回顾,查看关键点,易错点和解题规范.如本题的关键点是确定函f (x )的单调区间;易错点是忽视对参a 的讨论 练习:已知函f (x )=ax 2+1(a >0),g (x )=x 3+bx .(1)若曲线y =f (x )与曲线y =g (x )在它们的交点(1,c )处具有公共切线,求a,b的值;(2)当a2=4b时,求函f(x)+g(x)的单调区间,并求其在区间(-∞,-1]上的最大值.模板三:构造函法解函导与不等式问题第一步:求导,确定函定义域.第二步:讨论解析式中的参,判断f(x)的单调性.第三步:构造函,利用函的导证明不等式.第四步:构造函,可以由所证不等式,通过移项构造函.第五步:讨论这个新的函的单调性、最值,利用最值问题、恒成立关系等证明不等式.第六步:反思检验,查找易错、易漏点,规范答题的严谨性.练习:已知函f(x)=e x-ln(x+m).(Ⅰ)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(Ⅱ)当m≤2时,证明:f(x)>0.开心一刻1.妻子每天对丈夫都要做彻底的搜身,看能否找到一根女人的头发。
2019年浙江省高考数学(含解析版)
【点睛】理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误.
3.若实数 满足约束条件 ,则 的最大值是( )
A. B.1
C.10D.12
【答案】C
【解析】
【分析】
本题是简单线性规划问题的基本题型,根据“画、移、解”等步骤可得解.题目难度不大题,注重了基础知识、基本技能的考查.
【详解】方法1:由分布列得 ,则
,则当 在 内增大时, 先减小后增大.
方法2:则
故选D.
【点睛】易出现的错误有,一是数学期望、方差以及二者之间的关系掌握不熟,无从着手;二是计算能力差,不能正确得到二次函数表达式.
8.设三棱锥 的底面是正三角形,侧棱长均相等, 是棱 上的点(不含端点),记直线 与直线 所成角为 ,直线 与平面 所成角为 ,二面角 的平面角为 ,则( )
A.当 B.当
C.当 D.当
非选择题部分(共110分)
二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分
11.复数 ( 为虚数单位),则 ________.
12.已知圆 的圆心坐标是 ,半径长是 .若直线 与圆相切于点 ,则 _____, ______.
13.在二项式 的展开式中,常数项是________;系数为有理数的项的个数是_______.
C. 先增大后减小D. 先减小后增大
8.设三棱锥 底面是正三角形,侧棱长均相等, 是棱 上的点(不含端点),记直线 与直线 所成角为 ,直线 与平面 所成角为 ,二面角 的平面角为 ,则( )
A. B.
C. D.
9.已知 ,函数 ,若函数 恰有三个零点,则( )
2019浙江高考数学(理科)有答案繁体字版有扫描版答题卡
2010年高考浙江卷理科數學試題及答案,時間2小時滿分150分答題前請仔細核對答題卡上的條形碼和准考證號本試卷採用網上閱卷,答題不得超過邊框,答出邊框外面的答案無效注:本卷為繁體修改版,內附答題卷樣卡AB卷兩張,有答案(後面)選擇題部分(共50分)參考公式:如果事件A、B互斥,那麼柱體的體積公式P(A+B)=P(A)+P(B)如果事件A、B相互獨立,那麼其中S表示柱體的底面積,表示柱體的高P(A·B)=P(A)·P(B) 錐體的體積公式如果事件A在一次試驗中發生的概率是P,那麼n次獨立重複試驗中恰好發生k次的概率其中S表示錐體的底面積,表示錐體的高球的表面積公式台體的體積公式球的體積公式,S2分別表示台體的上、下底面積其中S表示台體的高其中R表示球的半徑一、選擇題:本大題共10小題,每小題5分,共50分,在每小題給出的四個選項中,只有一項是符合題目要求的.(1)設P={x︱x<4},Q={x︱<4},則(A)(B)(C)(D)解析:,可知B正確,本題主要考察了集合的基本運算,屬容易題(2)某程式框圖如圖所示,若輸出的S=57,則判斷框內位(A) k>4? (B)k>5?(C)k>6? (D)k>7?解析:選A,本題主要考察了程式框圖的結構,以及與數列有關的簡單運算,屬容易題(3)設為等比數列的前項和,,則(A)11 (B)5 (C)(D)解析:解析:通過,設公比為,將該式轉化為,解得=-2,帶入所求式可知答案選D,本題主要考察了本題主要考察了等比數列的通項公式與前n 項和公式,屬中檔題(4)設,則“”是“”的(A)充分而不必要條件(B)必要而不充分條件(C)充分必要條件(D)既不充分也不必要條件解析:因為0<x<,所以sinx<1,故x sin2x<x sinx,結合x sin2x與x sinx的取值範圍相同,可知答案選B,本題主要考察了必要條件、充分條件與充要條件的意義,以及轉化思想和處理不等關係的能力,屬中檔題(5)對任意複數,為虛數單位,則下列結論正確的是(A)(B)(C)(D)解析:可對選項逐個檢查,A項,,故A錯,B項,,故B錯,C項,,故C錯,D項正確。
2019年浙江卷数学高考真题及答案解析(word精编)
2019年普通高等学校招生全国统一考试(浙江卷)数 学本试题卷分选择题和非选择题两部分。
全卷共4页,选择题部分1至2页;非选择题部分3至4页。
满分150分。
考试用时120分钟。
考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
参考公式:若事件A ,B 互斥,则()()()P A B P A P B +=+ 若事件A ,B 相互独立,则()()()P AB P A P B = 若事件A 在一次试验中发生的概率是p ,则n 次独立重复试验中事件A 恰好发生k 次的概率()C (1)(0,1,2,,)k k n kn n P k p p k n -=-=L 台体的体积公式11221()3V S S S S h =其中12,S S 分别表示台体的上、下底面积,表示台体的高柱体的体积公式V Sh =其中表示柱体的底面积,表示柱体的高锥体的体积公式13V Sh =其中表示锥体的底面积,表示锥体的高 球的表面积公式24S R =π球的体积公式343V R =π其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则U A B I ð=A .{}1-B .{}0,1?C .{}1,2,3-D .{}1,0,1,3-2.渐近线方程为x±y=0的双曲线的离心率是A.22B.1 C.2D.23.若实数x,y满足约束条件340340x yx yx y-+≥⎧⎪--≤⎨⎪+≥⎩,则z=3x+2y的最大值是A.1-B.1C.10 D.124.祖暅是我国南北朝时代的伟大科学家.他提出的“幂势既同,则积不容易”称为祖暅原理,利用该原理可以得到柱体体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示,则该柱体的体积是A.158 B.162C.182 D.325.若a>0,b>0,则“a+b≤4”是“ab≤4”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.在同一直角坐标系中,函数y =1xa,y=log a(x+),(a>0且a≠0)的图像可能是7.设0<a <1,则随机变量X 的分布列是则当a 在(0,1)内增大时 A .D (X )增大B .D (X )减小C .D (X )先增大后减小D .D (X )先减小后增大8.设三棱锥V -ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P -AC -B 的平面角为γ,则 A .β<γ,α<γB .β<α,β<γC .β<α,γ<αD .α<β,γ<β9.已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩,若函数()y f x ax b =--恰有三个零点,则 A .a <-1,b <0 B .a <-1,b >0 C .a >-1,b >0D .a >-1,b <010.设a ,b ∈R ,数列{a n }中a n =a ,a n +1=a n 2+b ,b *∈N ,则A .当b =,a 10>10B .当b =,a 10>10C .当b =-2,a 10>10D .当b =-4,a 10>10非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
高考数学解答题的5个解题模板及得分说明
∴在 Rt△ACB1 中,cos∠B1AC=AABC1=
2= 10
510,
∴直线 AC 和平面 ABB1A1 所成角的余弦值为
10 5.
题型概述
模板展示
模板3 函数与导数问题
(满分 15 分)设函数 f(x)=emx+x2-mx. (1)证明:f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增; (2)若对于任意 x1,x2∈[-1,1],都有|f(x1)-f(x2)|≤e-1,求 m 的 取值范围.
=1212cos
2x+
3 2 sin
2x-12cos
2x(4
分)
=
3 4 sin
2x-14cos
2x=12sin2x-π6.(6
分)
所以 f(x)的最小正周期 T=22π=π.(7 分)
题型概述
模板展示
(2)因为 f(x)在区间-π3,-π6上是减函数, 在区间-π6,π4上是增函数,(10 分)
题型概述
模板展示
解题模板
第一步 求导数:一般先确定函数的定义域,再求 f′(x). 第二步 定区间:根据 f′(x)的符号确定函数的单调区间. 第三步 寻条件:一般将恒成立问题转化为函数的最值问题. 第四步 写步骤:通过函数单调性探求函数最值,对于最值可能 在两点取到的恒成立问题,可转化为不等式组恒成立. 第五步 再反思:查看是否注意定义域,区间的写法、最值点的 探求是否合理等.
题型概述
模板展示
(2)因为 f(x)在区间-π4,-1π2上是减函数,在区间-1π2,π4上是 增函数, f-π4=-14,f-1π2=-12,fπ4=14, 所以函数 f(x)在闭区间-π4,π4上的最大值为14,最小值为-12.
2019年全国普通高等学校招生统一考试数学(浙江卷)试题(解析版)
2019年全国普通高等学校招生统一考试数学(浙江卷)试题★祝考试顺利★注意事项:1、考试范围:高考考查范围。
2、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并请认真核准条形码上的准考证号、姓名和科目。
将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
3、选择题的作答:每个小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
4、主观题的作答:用0.5毫米黑色签字笔直接答在答题卡上对应的答题区域内。
如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带等。
写在试题卷、草稿纸和答题卡上的非主观题答题区域的答案一律无效。
5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
6.保持卡面清洁,不折叠,不破损。
7、考试结束后,请将本试题卷、答题卡、草稿纸一并上交。
一、单选题1.已知全集U={1,2,3,4,5},A={1,3},则A. B. {1,3} C. {2,4,5} D. {1,2,3,4,5}【答案】C【解析】分析:根据补集的定义可得结果.详解:因为全集,,所以根据补集的定义得,故选C.点睛:若集合的元素已知,则求集合的交集、并集、补集时,可根据交集、并集、补集的定义求解.2.双曲线的焦点坐标是A. (−,0),(,0)B. (−2,0),(2,0)C. (0,−),(0,)D. (0,−2),(0,2)【答案】B【解析】分析:根据双曲线方程确定焦点位置,再根据求焦点坐标.详解:因为双曲线方程为,所以焦点坐标可设为,因为,所以焦点坐标为,选B.点睛:由双曲线方程可得焦点坐标为,顶点坐标为,渐近线方程为.3.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是A. 2B. 4C. 6D. 8【答案】C【解析】分析:先还原几何体为一直四棱柱,再根据柱体体积公式求结果.详解:根据三视图可得几何体为一个直四棱柱,高为2,底面为直角梯形,上下底分别为1,2,梯形的高为2,因此几何体的体积为选C.点睛:先由几何体的三视图还原几何体的形状,再在具体几何体中求体积或表面积等.4.复数(i为虚数单位)的共轭复数是A. 1+iB. 1−iC. −1+iD. −1−i【答案】B【解析】分析:先分母实数化化简复数,再根据共轭复数的定义确定结果.详解:,∴共轭复数为,选B.点睛:本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如. 其次要熟悉复数的相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭复数为.5.函数y=sin2x的图象可能是A. B.C. D.【答案】D【解析】分析:先研究函数的奇偶性,再研究函数在上的符号,即可判断选择.详解:令,因为,所以为奇函数,排除选项A,B;因为时,,所以排除选项C,选D.点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复.6.已知平面α,直线m,n满足mα,nα,则“m∥n”是“m∥α”的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】分析:根据线面平行的判定定理得充分性成立,而必要性显然不成立.详解:因为,所以根据线面平行的判定定理得.由不能得出与内任一直线平行,所以是的充分不必要条件,故选A.点睛:充分、必要条件的三种判断方法:(1)定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.(2)等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.则当p在(0,1)内增大时,A. D(ξ)减小B. D(ξ)增大C. D(ξ)先减小后增大D. D(ξ)先增大后减小【答案】D【解析】分析:先求数学期望,再求方差,最后根据方差函数确定单调性.详解:,,,∴先增后减,因此选D.点睛:8.已知四棱锥S−ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点),设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S−AB−C的平面角为θ3,则A. θ1≤θ2≤θ3B. θ3≤θ2≤θ1C. θ1≤θ3≤θ2D. θ2≤θ3≤θ1【答案】D【解析】分析:分别作出线线角、线面角以及二面角,再构造直角三角形,根据边的大小关系确定角的大小关系.详解:设O为正方形ABCD的中心,M为AB中点,过E作BC的平行线EF,交CD于F,过O作ON垂直EF于N,连接SO,SN,OM,则SO垂直于底面ABCD,OM垂直于AB,因此从而因为,所以即,选D.点睛:线线角找平行,线面角找垂直,面面角找垂面.9.已知a,b,e是平面向量,e是单位向量.若非零向量a与e的夹角为,向量b满足b2−4e·b+3=0,则|a−b|的最小值是A. −1B. +1C. 2D. 2−【答案】A【解析】分析:先确定向量所表示的点的轨迹,一个为直线,一个为圆,再根据直线与圆的位置关系求最小值.详解:设,则由得,由得因此的最小值为圆心到直线的距离减去半径1,为选A.点睛:以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程、解不等式、求函数值域或直线与曲线的位置关系,是解决这类问题的一般方法.10.已知成等比数列,且.若,则A. B. C. D.【答案】B【解析】分析:先证不等式,再确定公比的取值范围,进而作出判断.详解:令则,令得,所以当时,,当时,,因此,若公比,则,不合题意;若公比,则但,即,不合题意;因此,,选B.点睛:构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如二、填空题11.我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一。
2019年浙江卷数学高考试题及解答
2019年普通高等学校招生全国统一考试(浙江卷)数 学本试题卷分选择题和非选择题两部分。
全卷共4页,选择题部分1至2页;非选择题部分3至4页。
满分150分。
考试用时120分钟。
考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
参考公式:若事件A ,B 互斥,则()()()P A B P A P B +=+ 若事件A ,B 相互独立,则()()()P AB P A P B = 若事件A 在一次试验中发生的概率是p ,则n 次独立重复试验中事件A 恰好发生k 次的概率()C (1)(0,1,2,,)k k n kn n P k p p k n -=-=台体的体积公式121()3V S S h =+其中12,S S 分别表示台体的上、下底面积,h 表示台体的高柱体的体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式13V Sh =其中S 表示锥体的底面积,h 表示锥体的高球的表面积公式24S R =π球的体积公式 343V R =π其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则U AB ð=A .{}1-B .{}0,1?C .{}1,2,3-D .{}1,0,1,3-答案:A2.渐近线方程为x ±y =0的双曲线的离心率是 AB .1CD .2答案:C3.若实数x ,y 满足约束条件3403400x y x y x y -+≥⎧⎪--≤⎨⎪+≥⎩,则z =3x +2y 的最大值是A .1-B .1C .10D .12答案:C4.祖暅是我国南北朝时代的伟大科学家.他提出的“幂势既同,则积不容易”称为祖暅原理,利用该原理可以得到柱体体积公式V柱体=Sh ,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示,则该柱体的体积是A .158B .162C .182D .32答案:B5.若a >0,b >0,则“a +b ≤4”是 “ab ≤4”的 A .充分不必要条件B .必要不充分条件C.充分必要条件D.既不充分也不必要条件答案:A6.在同一直角坐标系中,函数y =1xa ,y=log a(x+12),(a>0且a≠0)的图像可能是答案:D7.设0<a<1,则随机变量X的分布列是则当a在(0,1)内增大时A.D(X)增大B.D(X)减小C.D(X)先增大后减小D.D(X)先减小后增大答案:D8.设三棱锥V-ABC的底面是正三角形,侧棱长均相等,P是棱VA上的点(不含端点),记直线PB与直线AC所成角为α,直线PB与平面ABC所成角为β,二面角P-AC-B的平面角为γ,则A.β<γ,α<γB.β<α,β<γC.β<α,γ<αD.α<β,γ<β答案:B9.已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩,若函数()y f x ax b =--恰有三个零点,则 A .a <-1,b <0 B .a <-1,b >0 C .a >-1,b >0D .a >-1,b <0答案:C10.设a ,b ∈R ,数列{a n }中a n =a ,a n +1=a n 2+b ,b *∈N ,则A .当b =12,a 10>10 B .当b =14,a 10>10C .当b =-2,a 10>10D .当b =-4,a 10>10答案:A非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
《高考真题》2019年浙江省高考数学试卷(解析版)
2019 年普通高等学校招生全国统一考试(浙江卷)数学参考公式:若事件A,B 互斥,则P(A B) P( A) P(B)柱体的体积公式V Sh若事件A,B 相互独立,则P( A B) P( A) P(B)若事件A在一次试验中发生的概率是p , 则nA k次独立重复试验中事件恰好发生次的概率其中表示柱体的底面积,表示柱体的高Sh锥体的体积公式1V Sh3k k n kP (k) C p (1 p) (k 0,1, 2, , n)n n其中S表示锥体的底面积,h表示锥体的高1台体的体积公式V (S1 S1S2 S2 ) h3其中S1 ,S2 分别表示台体的上、下底面积,h表2 球的表面积公式球体积公式S 4 R4V R33 其中R表示球的半径示台体的高选择题部分(共40 分)一、选择题:本大题共10 小题,每小题 4 分,共40 分, 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U 1,0,1,2,3 ,集合A 0,1,2 ,B1, 0,1 ,则e U A B ()A. 1B. 0,1C. 1,2,3D. 1,0,1,3【答案】 A【解析】【分析】本题根据交集、补集的定义可得.容易题,注重了基础知识、基本计算能力的考查.【详解】 C A={ 1,3} ,则C U A B { 1}U【点睛】易于理解集补集的概念、交集概念有误.2.渐近线方程为x y 0的双曲线的离心率是()1A. 22B. 1C. 2D. 2【答案】 C【解析】【分析】本题根据双曲线的渐近线方程可求得 a b,进一步可得离心率.容易题,注重了双曲线基础知识、基本计算能力的考查.【详解】根据渐近线方程为x±y=0 的双曲线,可得 a b,所以c 2a则该双曲线的离心率为 e c 2a ,故选:C.【点睛】理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误.x 3y 4 03.若实数x, y 满足约束条件3x y 4 0,则z 3x 2y的最大值是()x y 0A. 1B. 1C. 10D. 12【答案】 C【解析】【分析】本题是简单线性规划问题的基本题型,根据“画、移、解”等步骤可得解.题目难度不大题,注重了基础知识、基本技能的考查.【详解】在平面直角坐标系内画出题中的不等式组表示的平面区域为以(-1,1),(1,-1),(2,2)为顶点的三角形区域(包含边界),由图易得当目标函数z=3x+2y 经过平面区域的点(2, 2)时,z=3 x+2y取最大值z ma x 3 2 2 2 10.2【点睛】解答此类问题,要求作图要准确,观察要仔细.往往由于由于作图欠准确而影响答案的准确程度,也有可能在解方程组的过程中出错.4.祖暅是我国南北朝时代的伟大科学家. 他提出的“幂势既同,则积不容易”称为祖暅原理,利用该原理可以得到柱体体积公式V柱体Sh,其中S 是柱体的底面积,h 是柱体的高,若某柱体的三视图如图所示,则该柱体的体积是()A. 158B. 162C. 182D. 323【答案】 B【解析】【分析】本题首先根据三视图,还原得到几何体—棱柱,根据题目给定的数据,计算几何体的体积.常规题目.难度不大,注重了基础知识、视图用图能力、基本计算能力的考查.【详解】由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为2 6 4 63 3 6 162 2 2.【点睛】易错点有二,一是不能正确还原几何体;二是计算体积有误.为避免出错,应注重多观察、细心算.5.若a0,b 0,则“a b 4”是“a b 4 ”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】 A【解析】【分析】本题根据基本不等式,结合选项,判断得出充分性成立,利用“特殊值法”,通过特取a,b 的值,推出矛盾,确定必要性不成立.题目有一定难度,注重重要知识、基础知识、逻辑推理能力的考查.【详解】当a>0, b>0时,a b 2 ab ,则当a b 4时,有2 ab a b 4 ,解得ab 4 ,充分性成立;当a=1, b=4时,满足ab 4 ,但此时a+b =5>4 ,必要性不成立,综上所述,“ a b 4”是“a b 4”的充分不必要条件.【点睛】易出现的错误有,一是基本不等式掌握不熟,导致判断失误;二是不能灵活的应用“赋值法”,通过特取a,b 的值,从假设情况下推出合理结果或矛盾结果.6.在同一直角坐标系中,函数1 1y , y log x (a 0x aa 2且a 0) 的图象可能是()4A. B.C. D.【答案】 D【解析】【分析】本题通过讨论 a 的不同取值情况,分别讨论本题指数函数、对数函数的图象和,结合选项,判断得出正确结论.题目不难,注重重要知识、基础知识、逻辑推理能力的考查.【详解】当0 a 1时,函数xy a 过定点(0,1) 且单调递减,则函数y1xa过定点(0,1) 且单调递增,函数1y log x 过定点a21( ,0)2且单调递减, D 选项符合;当 a 1时,函数xy a 过定点(0,1) 且单调递增,则函数y1xa过定点(0,1) 且单调递减,函数1y log x 过定点a21( ,0)且单调递增,各选项均不2符合.综上,选 D.【点睛】易出现的错误有,一是指数函数、对数函数的图象和性质掌握不熟,导致判断失误;二是不能通过讨论 a 的不同取值范围,认识函数的单调性.7.设0 a 1,则随机变量X 的分布列是:5则当 a 在0,1 内增大时()A. D X 增大B. D X 减小C. D X 先增大后减小D. D X 先减小后增大【答案】 D【解析】【分析】研究方差随 a 变化的增大或减小规律,常用方法就是将方差用参数 a 表示,应用函数知识求解.本题根据方差与期望的关系,将方差表示为 a 的二次函数,二次函数的图象和性质解题.题目有一定综合性,注重重要知识、基础知识、运算求解能力的考查.详解】方法1:由分布列得1 aE(X ) ,则32 2 2 21 a 1 1 a 1 1 a 12 1 1D X a a ,则当a 在(0,1) 内增大时,( ) 0 13 3 3 3 3 3 9 2 6D(X)先减小后增大.22 2 22 a 1 (a1) 2a 2a 2 2 13 【方法2:则D( X ) E X E( X ) 0 a3 3 9 9 9 24 故选 D.【点睛】易出现的错误有,一是数学期望、方差以及二者之间的关系掌握不熟,无从着手;二是计算能力差,不能正确得到二次函数表达式.8.设三棱锥V ABC的底面是正三角形,侧棱长均相等,P 是棱VA上的点(不含端点),记直线PB 与直线AC 所成角为,直线PB 与平面ABC 所成角为,二面角P AC B 的平面角为,则()A. ,B. ,C. ,D. ,【答案】 B【解析】6【分析】本题以三棱锥为载体,综合考查异面直线所成的角、直线与平面所成的角、二面角的概念,以及各种角的计算.解答的基本方法是通过明确各种角,应用三角函数知识求解,而后比较大小.而充分利用图形特征,则可事倍功半.【详解】方法1:如图G 为AC 中点,V 在底面ABC 的投影为O,则P在底面投影 D 在线段AO上,过D作DE 垂直AE ,易得PE / /VG ,过P 作P F // AC 交VG 于F,过D 作D H / /AC ,交BG 于H ,则P F E G D H B D BPF , PBD, PED ,则 c o s c o s,即,P B P B P B P B PD PDtan tanED BD,即y ,综上所述,答案为 B.方法2:由最小角定理,记V AB C 的平面角为(显然)由最大角定理,故选 B.方法3:(特殊位置)取V ABC 为正四面体,P 为VA中点,易得3 33 2 2 2cos sin ,sin , sin6 6 3 3,故选 B.【点睛】常规解法下易出现的错误有,不能正确作图得出各种角.未能想到利用“特殊位置法”,寻求简便解法.x, x 09.已知a,b R ,函数 f (x) 1 13 2x (a 1)x ax, x 03 2 ,若函数y f (x) ax b恰有三个零点,则()A. a 1,b 0B. a 1,b 0C. a 1,b 0D. a 1,b 07【答案】 C【解析】【分析】当x 0 时,y f()x a x b x a(x1 b ) 最多a 一x 个b零点;当x⋯0 时,1 1 1 13 2 3 2y (f)x a x b x( 1 a)x a x a x b( ,1x利) 用导数a研究函数x 的单调b 性,3 2 3 2根据单调性画函数草图,根据草图可得.b【详解】当x 0 时,y f (x) ax b x ax b (1 a)x b 0,得;y f (x) ax b最x1 a多一个零点;当x⋯0时,1 1 1 13 2 3 2y f (x) ax b x (a1)x ax ax b x (a 1)x b ,3 2 3 22 ( 1)y x a x,当a 1,0,即a, 1时,y ⋯0,y f (x) ax b在[0 ,) 上递增,y f (x) ax b最多一个零点.不合题意;当a 1 0,即a 1时,令y0 得x [ a 1,) ,函数递增,令y0 得x [0 ,a 1) ,函数递减;函数最多有 2 个零点;根据题意函数y f (x) ax b恰有 3 个零点函数y f ( x) ax b在( ,0) 上有一个零点,在[0 ,) 上有2 个零点,如图:b a 0且b 01 13 2(a 1) (a 1)(a 1) b 03 2,1解得b 0,1 a 0,130 b (a 1) , a 1.6故选:C.8【点睛】遇到此类问题,不少考生会一筹莫展.由于方程中涉及a, b 两个参数,故按“一元化”想法,逐步分类讨论,这一过程中有可能分类不全面、不彻底.10.设a,b R ,数列a n 中, 2a1 a,a n 1 a n b ,n N , 则()1 1b ,a 10 B. 当b ,a10 10A. 当102 4C. 当b 2, a10 10D. 当b 4, a10 10【答案】 A【解析】【分析】对于B,令 2 1x 0,得λ4 121a ,得到当 b,取 12142﹣λ﹣2=0,得时,a10<10;对于C,令x2﹣λ﹣4=0,得 1 17λ=2 或λ=﹣1,取a1=2,得到当b=﹣2时,a10<10;对于D,令x2,取1 17a ,得到当b =﹣4时,a10 <10;对于 A ,121 12a a ,22 21 1 32 2a (a) ,32 2 4a3 1 9 1 17n 14 2 2a (a a ) >1,当n≥ 4 时,4a4 2 16 2 16n a n12an>11 32 2a10,由此推导出a4>(32)7296,从而a10>>10.64【详解】对于B,令 2 1x 0,得λ4 12,9取111a,∴ a 2, ,a<10 ,1n2 2 2 ∴当 b 14时, a 10< 10,故 B 错误;对于C ,令 x2﹣λ﹣2=0,得λ= 2 或 λ=﹣1, 取 a 1=2,∴ a 2=2,⋯ , a n =2<10, ∴当 b =﹣2 时, a 10<10,故 C 错误; 对于D ,令 x2﹣λ﹣4=0,得1 172﹣λ﹣4=0,得1 172, 取117117a,∴ a 2,⋯ , 1221 17 a< 10, n2∴当 b =﹣4 时, a 10<10,故 D 错误; 对于A ,1 1 2aa, 22211 322a(a ) ,32244 2 23 191 17a(a a) >1,442 16 2 16a n+1﹣a n >0,{ a n }递增,anan1a n1 2 an> 11 32 2当 n ≥ 4 时,,a 5 a4>3 2 a4 3 > a 52∴,∴a 10a4> ( 3 2729 )6,∴ a >> 10.故 A 正确. 1064a10 a9>32故选:A .【点睛】 遇到此类问题, 不少考生会一筹莫展 .利用函数方程思想, 通过研究函数的不动点,进一步讨论a 的可能取值,利用“排除法”求解.10非选择题部分(共110分)二、填空题:本大题共7 小题,多空题每题 6 分,单空题每题 4 分,共36 分11. 复数z11 i(i 为虚数单位),则| z | ________. 2【答案】2【解析】【分析】本题先计算z,而后求其模.或直接利用模的性质计算. 容易题,注重基础知识、运算求解能力的考查.【详解】| z|1 12 |1 i | 2 2.【点睛】本题考查了复数模的运算,属于简单题.12. 已知圆C 的圆心坐标是(0, m) ,半径长是r . 若直线2x y 3 0与圆相切于点A( 2, 1) ,则m _____,r ______.【答案】(1). m 2 (2). r 5【解析】【分析】本题主要考查圆的方程、直线与圆的位置关系.首先通过确定直线AC 的斜率,进一步得到其方程,将(0, m) 代入后求得m ,计算得解.【详解】可知1 1k AC : y 1 (x 2) ,把(0,)m代入得m 2,此时r | AC | 4 1 5 .AC2 2【点睛】解答直线与圆的位置关系问题,往往要借助于数与形的结合,特别是要注意应用圆的几何性质.13. 在二项式9( 2 x) 的展开式中,常数项是________;系数为有理数的项的个数是_______.【答案】(1). 16 2 (2). 5【解析】【分析】11本题主要考查二项式定理、二项展开式的通项公式、二项式系数,属于常规题目.从写出二项展开式的通项入手,根据要求,考察x 的幂指数,使问题得解.【详解】9( 2 x) 的通项为r 9 r rT 1 C9 ( 2) x (r 0,1,2 9) r可得常数项为0 9T1 C9 ( 2) 16 2 ,因系数为有理数,r = 1,3,5,7,9,有T , T ,T ,T ,T共5 个项2 4 6 8 10【点睛】此类问题解法比较明确,首要的是要准确记忆通项公式,特别是“幂指数”不能记混,其次,计算要细心,确保结果正确.14. 在V ABC 中,ABC 90 ,AB 4 ,BC 3,点D 在线段AC 上,若BDC 45 ,则BD ____;cos ABD ________.【答案】(1). 12 25 (2). 7 210【解析】【分析】本题主要考查解三角形问题,即正弦定理、三角恒等变换、数形结合思想及函数方程思想.在BDC 、ABD 中应用正弦定理,由cos ABD cos( BDC BAC ) 建立方程,进而得解.【详解】在ABD 中,正弦定理有:AB BDsin ADB sin BAC,而3AB 4, ADB ,42 2AC AB BC 5 ,BC 3 AB 4sin BAC ,cos BACAC 5 AC 5,所以12 2BD .57 2cos ABD cos( BDC BAC ) cos cos BAC sin sin BAC4 4 1012【点睛】解答解三角形问题,要注意充分利用图形特征.15. 已知椭圆2 2x y9 51 的左焦点为 F ,点P 在椭圆上且在x轴的上方,若线段PF 的中点在以原点O为圆心,OF 为半径的圆上,则直线PF 的斜率是_______ .【答案】15【解析】【分析】结合图形可以发现,利用三角形中位线定理,将线段长度用坐标表示成圆的方程,与椭圆方程联立可进一步求解.利用焦半径及三角形中位线定理,则更为简洁.【详解】方法1:由题意可知|OF |=|OM |= c= 2,由中位线定理可得PF1 2| O M | 4 ,设P(x, y) 可得 2 2(x2) y 16 ,联立方程2 2x y9 51可解得3 21x x (舍),点P 在椭圆上且在x轴的上方,,2 215求得3 15P , ,所以2 2kPF21512方法2:焦半径公式应用13解析1:由题意可知|OF |=|OM |= c= 2,由中位线定理可得PF1 2| O M | 4 ,即 a ex 4 xp p 3 2求得3 15P , ,所以2 2152 15k .PF12【点睛】本题主要考查椭圆的标准方程、椭圆的几何性质、直线与圆的位置关系,利用数形结合思想,是解答解析几何问题的重要途径.16. 已知a R,函数 3f (x) ax x ,若存在t R ,使得2| f (t 2) f (t) | ,则实数a 的最大值是____.3a 【答案】max 4 3【解析】【分析】本题主要考查含参绝对值不等式、函数方程思想及数形结合思想,属于能力型考题. 从研究2f (t 2) f (t) 2a 3t 6t 4 2入手,令2m 3t 6t 4 [1, ) ,从而使问题加以转化,通过绘制函数图象,观察得解.【详解】使得 2 2 2f (t 2) f (t) a{2 (t2) t(t 2) t ]} 2 2 a 3t6t 4 2 ,使得令 2m 3t 6t 4 [1, ) ,则原不等式转化为存在1m 1, |am 1| ,由折线函数,如图3只需1 1a 1 ,即3 32 4a ,即a 的最大值是3 343【点睛】对于函数不等式问题,需充分利用转化与化归思想、数形结合思想.17. 已知正方形ABCD 的边长为1,当每个i (i 1, 2,3, 4,5,6) 取遍时,14| AB BC CD DA AC BD |的最小值是________;最大值是_______.1 2 3 4 5 6【答案】(1). 0 (2). 2 5【解析】分析】本题主要考查平面向量的应用,题目难度较大.从引入“基向量”入手,简化模的表现形式,利用转化与化归思想将问题逐步简化.【详解】正方形ABCD 的边长为1,可得AB AD AC ,BD AD AB ,AB ? AD 0,【1 AB2 BC 3CD 4 DA 5 AC 6 BD 13 5 6 AB 2456 AD 要使 1 AB 2 BC 3 CD 4 DA 5 AC 6 BD 的最小,只需要1 3 5 62 4 5 6 0,此时只需要取 1 1, 2 1,3 1,4 1,5 1,6 1此时 1 2 3 4 5 6AB BC CD DA AC BD 0min2 21 AB2 BC 3CD 4 DA 5 AC 6 BD 13 5 6 AB 2456 AD2 21 3 5 62 4 5 62 21 3 5 62 4 5 62 22 25 6 5 62 28 45 6 5 6 5 6 5 62 2 28 4 25 6 5 6 5 62 2 2 212 4 25 6 5 6 5 62 2 2 212 4 2 2 205 6 5 6等号成立当且仅当1, 3, 5 6 均非负或者均非正,并且 2 , 4, 5 6 均非负或者均非正。
2019年高考浙江卷数学(附参考答案和详解)
绝密★启用前2019年普通高等学校招生全国统一考试(浙江卷)数学总分:150分考试时间:120分钟★祝考试顺利★注意事项:1、本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证条形码粘贴在答题卡的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:选出每小题答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸、答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内,写在试题卷、草稿纸、答题卡上的非答题区域均无效。
4、考试结束后,将本试卷和答题卡一并上交。
第I 卷一、选择题:本题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则()U A B =I ð( ) A.{}1-B.{}0,1C.{}1,2,3-D.{}1,0,1,3-2.渐近线方程为0x y ±=的双曲线的离心率是( )B.1D.23.若实数x ,y 满足约束条件340,340,0,x y x y x y -+≥⎧⎪--≤⎨⎪+≥⎩则32z x y =+的最大值是( )A.1-B.1C.10D.124.祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V Sh =柱体,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm ),则该柱体的体积(单位:3cm )是( )A.158B.162C.182D.3245.若0a >,0b >,则“4a b +≤”是“4ab ≤”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.在同一直角坐标系中,函数1x y a =,1log 2a y x ⎛⎫=+⎪⎝⎭(0a >,且1a ≠)的图象可能是( ) A. B.C. D.7.设01a <<,则随机变量X 的分布列是01111333X a P则当a 在()0,1内增大时( ) A.()D X 增大 B.()D X 减小C.()D X 先增大后减小D.()D X 先减小后增大8.设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P AC B --的平面角为γ,则( ) A.βγ<,αγ<B.βα<,βγ<C.βα<,γα<D.αβ<,γβ<9.已知,a b ∈R ,函数()()32,0111,032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩,若函数()y f x ax b =--恰有3个零点,则( ) A.1a <-,0b < B.1a <-,0b >C.1a >-,0b <D.1a >-,0b >10.设,a b ∈R ,数列{}n a 满足1a a =,21n na ab +=+,*n ∈N ,则( ) A.当12b =时,1010a > B.当14b =时,1010a >C.当2b =-时,1010a >D.当4b =-时,1010a >第Ⅱ卷(共110分)二、填空题:本题共7小题,多空题每题6分,单空题每题4分。
2019年高考数学浙江卷真题及答案详解
2019年普通高等学校招生全国统一考试·浙江卷数学参考公式:若事件A ,B 互斥,则()()()P A B P A P B +=+若事件A ,B 相互独立,则()()()P AB P A P B =若事件A 在一次试验中发生的概率是p ,则n 次独立重复试验中事件A 恰好发生k 次的概率()C (1)(0,1,2,,)k k n k n n P k p p k n -=-=台体的体积公式121()3V S S h = 其中12,S S 分别表示台体的上、下底面积,h 表示台体的高柱体的体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式13V Sh =其中S 表示锥体的底面积,h 表示锥体的高球的表面积公式 24S R =π球的体积公式343V R =π其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则U A B ð= A .{}1-B.C .{}1,2,3-D .{}1,0,1,3-2.渐近线方程为x ±y =0的双曲线的离心率是 A. B .1CD .23.若实数x ,y 满足约束条件3403400x y x y x y -+≥⎧⎪--≤⎨⎪+≥⎩,则z =3x +2y 的最大值是A .1-B .1C .10D .124.祖暅是我国南北朝时代的伟大科学家.他提出的“幂势既同,则积不容易”称为 祖暅原理,利用该原理可以得到柱体体积公式V 柱体=Sh ,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示,则该柱体的体积是A .158B .162C .182D .32 5.若a >0,b >0,则“a +b ≤4”是 “ab ≤4”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 6.在同一直角坐标系中,函数y =1xa ,y =log a (x +12),(a >0且a ≠0)的图像可能是7.设0<a <1,则随机变量X 的分布列是则当a 在(0,1)内增大时 A .D (X )增大 B .D (X )减小 C .D (X )先增大后减小 D .D (X )先减小后增大8.设三棱锥V -ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不 含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β, 二面角P -AC -B 的平面角为γ,则 A .β<γ,α<γ B .β<α,β<γ C .β<α,γ<α D .α<β,γ<β9.已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩,若函数()y f x ax b =--恰有三个零点,则 A .a <-1,b <0 B .a <-1,b >0C .a >-1,b >0D .a >-1,b <010.设a ,b ∈R ,数列{a n }中a n =a ,a n +1=a n 2+b ,b *∈N ,则 A .当b =12,a 10>10 B .当b =14,a 10>10C .当b =-2,a 10>10D .当b =-4,a 10>10非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
2019年浙江省高考理科数学试卷及答案解析【word版】
2019年浙江省高考理科数学试卷及答案解析【w o r d版】-CAL-FENGHAI.-(YICAI)-Company One12019年普通高等学校招生全国统一考试(浙江卷)数学(理科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出 的四个选项中,只有一项是符合题目要求的.(1)设全集{}2|≥∈=x N x U ,集合{}5|2≥∈=x N x A , 则=A C U ( ) A. ∅ B. }2{ C. }5{ D. }5,2{(2)已知是虚数单位,R b a ∈,,则“1==b a ”是“i bi a 2)(2=+”的( ) A. 充分不必要条件 B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件(3)某几何体的三视图(单位:cm )如图所示,则此几何体的 表面积是 A. 902cm B. 1292cm C. 1322cm D. 1382cm4.为了得到函数 x x y 3cos 3sin +=的图像,可以将函数x y 3sin 2=的图像( )A.向右平移4π个单位B.向左平移4π个单位C.向右平移12π个单位D.向左平移12π个单位5.在46)1()1(y x ++的展开式中,记n m y x 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f ) ( )A.45B.60C.120D. 2106.已知函数则且,3)3()2()1(0,)(23≤-=-=-≤+++=f f f c bx ax x x f ( )A.3≤cB.63≤<cC.96≤<cD. 9>c 7.在同意直角坐标系中,函数x x g x x x f a a log )(),0()(=≥=的图像可能是( )8.记,max{,},x x y x y y x y ≥⎧=⎨<⎩,,min{,},y x yx y x x y ≥⎧=⎨<⎩,设,a b 为平面向量,则( )A.min{||,||}min{||,||}a b a b a b +-≤B.min{||,||}min{||,||}a b a b a b +-≥C.2222min{||,||}||||a b a b a b +-≥+D.2222min{||,||}||||a b a b a b +-≤+9.已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个篮球 ()3,3m n ≥≥,从乙盒中随机抽取()1,2i i =个球放入甲盒中.(a )放入个球后,甲盒中含有红球的个数记为()1,2ii ξ=;(b )放入个球后,从甲盒中取1个球是红球的概率记为 ()1,2i p i =. 则A.()()1212,p p E E ξξ><B.()()1212,p p E E ξξ<>C.()()1212,p p E E ξξ>>D.()()1212,p p E E ξξ<<10.设函数21)(x x f =,),(2)(22x x x f -=|2sin |31)(3x x f π=,99,,2,1,0,99==i ia i ,记|)()(||)()(||)()(|98991201a f a f a f a f a f a f I k k k k k k k -++-+-= ,.3,2,1=k 则A.321I I I <<B. 312I I I <<C. 231I I I <<D. 123I I I <<二、填空题:本大题共7小题,每小题4分,共28分.11.若某程序框图如图所示,当输入50时,则该程序运算后输出的 结果是________.12.随机变量ξ的取值为0,1,2,若()105P ξ==,()1E ξ=,则()D ξ=________.13.当实数x ,y 满足240,10,1,x y x y x +-≤⎧⎪--≤⎨⎪≥⎩时, 14ax y ≤+≤恒成立,则实数a 的取值范围是________.14.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有_____种(用数字作答).15.设函数()⎪⎩⎪⎨⎧≥-<+=0,0,22x x x x x x f 若()()2≤a f f ,则实数a 的取值范围是______16.设直线)0(03≠=+-m m y x 与双曲线12222=-by a x (0a b >>)两条渐近线分别交于点B A ,,若点)0,(m P 满足PB PA =,则该双曲线的离心率是__________17、如图,某人在垂直于水平地面的墙面前的点处进行射击训练. 已知点到墙面的距离为,某目标点沿墙面的射击线移动,此人为了准确瞄准目标点,需计算由点观察点的仰角的大小.若则的最大值19(本题满分14分)已知数列{}n a 和{}n b 满足()()*∈=N n a a a nb n 221 . 若{}na 为 等比数列,且.6,2231b ba +==(1)求n a 与n b ; (2)设()*∈-=N n b a c nn n 11。
2019年高考数学教师版(含解析)之解题规范与评分细则
解题规范与评分细则解答题是高考试卷中的一类重要题型,通常是高考的把关题和压轴题,具有较好的区分层次和选拔功能.目前的高考解答题已经由单纯的知识综合型转化为知识、方法和能力的综合型解答题.要求考生具有一定的创新意识和创新能力.解答题综合考查运算能力、逻辑思维能力、空间想象能力和分析问题、解决问题的能力.“答题模板"是指针对解答数学解答题的某一类型,分析解题的一般思路,规划解题的程序和格式,拟定解题的最佳方案,实现答题效率的最优化;评分细则是阅卷的依据,通过认真研读评分细则,重视解题步骤的书写,规范解题过程,做到会做的题得全分;对于最后的压轴题也可以按步得分,踩点得分,一分也要抢.题型一三角函数及解三角形例1、[2018-全国卷I]在平面四边形ABCD中,ZADC=90°,ZA=45°,AB=2,BD=5.⑴求cos.ZADB;⑵若DC=2彖,求BC.【命题意图】本题主要考查正弦定理、余弦定理、同角三角函数基本关系式、诱导.公式,意在考查考生分析问题、解决问题的能力,以及运算求解能力.【解题思路】(1)在^ABD中,利用正弦定理,求得ZADB,利用大边对大角,判断出ZADB 的取值范围,再利用同角三角函数的基本关系,求出cosZADB.(2)利用⑴的结果,求出cosZBDC的值,再利用余弦定理即可求解.【评分细则】1.利用正弦定理,得s/nZADB,得3分.2.利用同角三角函数的基本关系,得cosZADB,得3分.3.由(l)s/nZADB的值求出cosZBDC,得2分.4.利用余弦定理,求出BC的值,得4分.【名师点拨】1.牢记公式,正确求解:在三角函数及解三角形类解答题中,通常涉及三角恒等变换公式、诱导公式及正弦定理和余弦定理,这些公式和定理是解决问题的关键,因此要牢记公式和定理.如本题第(1)问要应用到正弦定理及同角三角函数的基本关系,第(2)问要用到余弦定理.2.注意利用第(1)问的结果:在题设条件下,如果第(1)问的结果第(2)问能用得上,可以直接用,有些题目不用第(1)问的结果甚至无法解决,如本题即是在第(1)问的基础上求解.3.写全得分关键:在三角函数及解三角形类解答题中,应注意解题中的关键点,有则给分,无则不得分,所以在解答题时一定要写清得分关键点,如第(1)问中,没有将正弦定理表示出来的过程,则不得分.【变式探究】[2017•全国卷I]AABC的内角A,B,C的对边分别为a,b, c.己知^ABC的面a2积为3s/n N⑴求sin Bsin C;⑵若Geos Bcos C=l,a=3,求△ABC的周长.【评分细则】1.利用面积公式,得等式,2分.2.利用正弦定理,得边角关系,2分.3.利用公式化简,2分.4.利用已知条件,结合⑴的结论求出角A,2分.5.利用题设,结合余弦定理,求b+c,3分.6.求得周长,1分.题型二数列例2、[2018-全国卷I]已知数列{an}满足al=l,nan+l=2(n+l)an.设bn=《\(1)求bl,b2,b3;⑵判断数列{bn}是否为等比数列,并说明理由;⑶求{an}的通项公式.【命题意图】本题主要考查数列的基础知识与基本运算,考查考生的运算求解能力,考查的数学核心素养是逻辑推理与数学运算.【解题思路】(1)由na n+i=2(n+l)a n得到an+i=-a n,所以32—4,aj—12,分别代入bn=§求出bi,b2>b3;⑵由题设条件得出b n+i=2b n,即可证明数列{咀是等比数歹U;(3)借助⑵的结论求出{扇}的通项公式,进一步求出囱}的通项公式.【评分细则】1.由已知条件,求出a n+1,得1分.g2.分别代入n=l,2,求出a?,a3,再利用扇=《求出成,b2,b3,得4分.3.判断数列{咀是等比数列,得1分.4.利用等比数列的定义判断数列为等比数列,得4分.5.利用⑵的结果求出a®得2分.【名师点拨】1.牢记等差、等比数列的an及Sn公式.求等差、等比数列的基本量,首先考虑性质的运用,如果不能用性质,才考虑使用基本量法.2.注意利用第(2)问的结果:在题设条件下,如果第(2)问的结果第(3)问能用得上,可以直接用,有些题目不用第(2)问的结果甚至无法解决,如(3)题即是在第(2)问的基础上求得a。
2019高考数学解题规范(最终版)
高中数学答题规范要求一、答题规则与程序1、合理分配答题时间;2、做题顺序最好先易后难;3、会做的题一定要保证做对;4、碰到拿不准的题不要留尾巴,要把会的步骤写出;5、碰到难题既不能轻易放弃,也不要抓住不放;6、草稿纸的使用要得当。
二、解题过程及书写格式要求1、选择题的填涂标准化试题涂答案卡是一个很值得注意的问题。
许多同学都是把答案卡放在最后去涂,这样很危险。
万一由于最后一两道做不出来,冥思苦想之际忘记了时间,就会造成终身遗恨。
因此,做完选择题后,最好马上涂答案卡。
这样涂错的可能小,即使涂错,也会有充足的时间改正。
2、填空题的规范关于填空题,常见错误或不规范的答卷方式有:字迹不工整、不清晰、字符书写不规范或不正确、分式写法不规范、通项和函数表达式书写不规、函数解析式书写正确但不注明定义域、要求结果写成集合的不用集合表示、集合的对象属性描述不准确。
3、解答题的规范解答题的考点相对较多,综合性强,难度较高,解答题成绩的评定不仅看最后结论,还要看其推理论证过程,分情况判定分数,用以反映其差别,因而解答题命题的自由度较大。
在解答过程中,关键语句和关键词是否答出是多得分的关键,答题过程要整洁美观、逻辑思路清晰、概念表达准确、答出关键语句和关键词。
要将解题过程转化为得分点,主要靠准确完整的数学语言表述,这一点往往被一些学生忽视,尽管学生心中有数却说不清楚,因此得分少。
只有重视解题过程的语言表述,会做的题才能得分。
对容易题要详写,过程复杂的题要简写,答题时要会把握得分点。
五、常见的规范性问题1、解与解集方程的解一般用解表示(除非强调求解集);不等式、三角方程的结果一般用解集(集合或区间)表示,三角方程的通解中必须加k Z。
在写区间或集合时,要正确的书写圆括号、方括号或花括号,区间的两端点之间、集合的元素之间用逗号隔开。
2、带单位的计算题或应用题,最后结果必须带单位,特别是应用题解题结束后一定要写符合题意的“答”。
2019年高考数学解答题得分模板数列及答案
合,因此怎样解答、把握步骤的得分点就非常重要了.我们可以把解学解答题的思维过程划分为一个个小题分步解答,总结恰当的“解答题模板”,按照一定的解题程序和答题格式分步解答,在短时间内取得最高的答题效率.(一)难度、分值及考查内容:1. 难度:课标全国卷以基础、中等题为主,部分自主命题试卷列考查难度较大.2. 分值:12分(以课标全国卷为例).3.考查内容:(1)考查等差、等比列的通项公式、求和公式基本运算.(2)一般列的求和、根据递推关系求通项等.例如错位相减法求和,累加、累乘法求通项等.(3)难度较大的考查:列、函、方程、不等式等相关内容的综合问题.(二)解题模板:(以课标全国卷考查难度为例)模板一:列的通项、求和问题例:【2016山东文,19】已知列{}n a 的前n 项和238n S n n =+,{}n b 是等差列,且1n n n a b b +=+.(Ⅰ)求列{}n b 的通项公式; (Ⅱ)令1(1)(2)n n n n n a c b ++=+.求列{}n c 的前n 项和n T .(一)本题思维过程:1.求出列{}n a 的通项,再求列{}n b 的通项。
2.求列{}n c 的通项,然后利用错位相减法求和。
(二)本题解答过程:扫描二维码观看视频讲解.(三)列的通项、求和问题解题模板:第一步:求通项。
1.已知列前n 项和,求通项时,利用a n = S n - S n -1(n ≥2),如上述例题。
2.根据已知的递推公式求通项:根据已知条件确定列相邻两项之间的关系,转为等差或等比列求通项公式,即构造法。
或利用累加法或累乘法求通项公式等等.第二步:求和。
1.等差、等比列直接运用公式,即公式法。
2.一般列的求和:根据列表达式的结构特征确定求和方法,如错位相减法、分组法、裂项相消法等。
第三步:查看关键点、易错点及解题规范,例如错位相减法的计算量较大,注意检验.练习:【2016新课标Ⅰ文,17】已知{}n a 是公差为3的等差列,列{}n b 满足12111==3n n n n b b a b b nb +++=1,,.(Ⅰ)求{}n a 的通项公式;(Ⅱ)求{}n b 的前n 项和.模板二:考查列的函性质例:【2016全国Ⅱ,17】n S 为等差列{}n a 的前n 项和,且17=128.a S =,记[]=lg n n b a ,其中[]x 表示不超过x 的最大整,如[][]0.9=0lg99=1,. (Ⅰ)求111101b b b ,,;(Ⅱ)求列{}n b 的前1 000项和.(一)本题思维过程:1.利用已知条件求出等差列的公差,进而求出通项公式,然后求解111101b b b ,,。
2019年高考数学浙江卷含答案
数学试卷第1页(共20页)数学试卷第2页(共20页)绝密★启用前2019年普通高等学校招生全国统一考试(浙江省)数学本试题卷分选择题和非选择题两部分.满分150,考试时间120分钟.参考公式:若事件A ,B 互斥,则()()()P A B P A P B +=+若事件A ,B 相互独立,则()()()P AB P A P B =若事件A 在一次试验中发生的概率是P ,则n 次独立重复试验中事件A 恰好发生k 次的概率()C (1)(0,1,2,,)k k n kn n P k p p k n -=-=台体的体积公式121()3V S S h =+,其中12,S S 分别表示台体的上、下底面积,h 表示台体的高柱体的体积公式V Sh =,其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式13V Sh =,其中S 表示锥体的底面积,h 表示锥体的高球的表面积公式24S R =π球的体积公式343V R =π,其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则()U A B =I ð()A .{}1-B .{}0,1C .{}1,2,3-D .{}1,0,1,3-2x ±y =0的双曲线的离心率是()A.22B .1C .D .23.若实数x ,y 满足约束条件3403400x y x y x y -+≥⎧⎪--≤⎨⎪+≥⎩,则z =3x +2y 的最大值是()A .1-B .1C .10D .124.祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式VSh =柱体,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm ),则该柱体的体积(单位:3cm )是()A .158B .162C .182D .3245.若0a >,0b >,则“4a b +≤”是“4ab ≤”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.在同一直角坐标系中,函数1x y a =,1(2log )ayx=+(0a >,且1a ≠)的图象可能是()A B C D7.设01a <<,则随机变量X 的分布列是X 0a 1P131313则当a 在(0,1)内增大时,()A .D X ()增大B .D X ()减小C .D X ()先增大后减小D .D X ()先减小后增大毕业学校_____________姓名________________考生号_____________________________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第3页(共20页)数学试卷第4页(共20页)8.设三棱锥V –ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角––P AC B 的平面角为γ,则()A .βγ<,αγ<B .βα<,βγ<C .βα<,γα<D .αβ<,γβ<9.已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则()A .–1a <,0b <B .–1a <,0b >C .–1a >,0b <D .–1a >,0b >10.设a ,b ∈R ,数列{}n a 满足1a a =,21n n a a b +=+,n *∈N ,则()A .当12b =时,1010a >B .当14b =时,1010a >C .当–2b =时,1010a >D .当–4b =时,1010a >非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.复数11iz =+(i 为虚数单位),则||z =________.12.已知圆C 的圆心坐标是(0,)m ,半径长是r .若直线230x y -+=与圆C 相切于点(2,1)A --,则m =________,r =________.13.在二项式9)x 的展开式中,常数项是________,系数为有理数的项的个数是________.14.在ABC △中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则BD =________,cos ABD ∠=________.15.已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是________.16.已知a ∈R ,函数3()f x ax x =-,若存在t ∈R ,使得2|(2)()|3f t f t +-≤,则实数a 的最大值是________.17.已知正方形ABCD 的边长为1,当每个(1,2,3,4,5,6)i i λ=取遍1±时,123456||AB BC CD DA AC BD λλλλλλ+++++uu u r uu u r uu u r uu u r uuu r uu u r的最小值是________,最大值是________.三、解答题:本大题共5小题,共74分。
2019年高考数学浙江卷含答案解析
徐老师第1页2019年普通高等学校招生全国统一考试(浙江省)数学本试题卷分选择题和非选择题两部分.满分150,考试时间120分钟.参考公式:若事件A ,B 互斥,则()()()P A B P A P B +=+若事件A ,B 相互独立,则()()()P AB P A P B =若事件A 在一次试验中发生的概率是P ,则n 次独立重复试验中事件A 恰好发生k 次的概率()C (1)(0,1,2,,)k k n kn n P k p p k n -=-=台体的体积公式121()3V S S h =++,其中12,S S 分别表示台体的上、下底面积,h 表示台体的高柱体的体积公式V Sh =,其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式13V Sh =,其中S 表示锥体的底面积,h 表示锥体的高球的表面积公式24S R =π球的体积公式343V R =π,其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则()U A B =I ð()A .{}1-B .{}0,1C .{}1,2,3-D .{}1,0,1,3-2.渐近线方程为x ±y =0的双曲线的离心率是()A.2B .1CD .2第2页3.若实数x ,y 满足约束条件3403400x y x y x y -+≥⎧⎪--≤⎨⎪+≥⎩,则z =3x +2y 的最大值是()A .1-B .1C .10D .124.祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V Sh =柱体,其中S 是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm ),则该柱体的体积(单位:3cm )是()A .158B .162C .182D .3245.若0a >,0b >,则“4a b +≤”是“4ab ≤”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.在同一直角坐标系中,函数1x y a =,1(2log ay x =+(0a >,且1a ≠)的图象可能是()A BCD7.设01a <<,则随机变量X 的分布列是X 0a1P131313则当a 在(0,1)内增大时,()徐老师第3页A .D X ()增大B .D X ()减小C .D X ()先增大后减小D .D X ()先减小后增大8.设三棱锥V –ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角––P AC B 的平面角为γ,则()A .βγ<,αγ<B .βα<,βγ<C .βα<,γα<D .αβ<,γβ<9.已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则()A .–1a <,0b <B .–1a <,0b >C .–1a >,0b <D .–1a >,0b >10.设a ,b ∈R ,数列{}n a 满足1a a =,21n n a a b +=+,n *∈N ,则()A .当12b =时,1010a >B .当14b =时,1010a >C .当–2b =时,1010a >D .当–4b =时,1010a >非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.复数11iz =+(i 为虚数单位),则||z =________.12.已知圆C 的圆心坐标是(0,)m ,半径长是r .若直线230x y -+=与圆C 相切于点(2,1)A --,则m =________,r =________.13.在二项式9)x +的展开式中,常数项是________,系数为有理数的项的个数是________.14.在ABC △中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则BD =________,cos ABD ∠=________.15.已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是________.第4页16.已知a ∈R ,函数3()f x ax x =-,若存在t ∈R ,使得2|(2)()|3f t f t +-≤,则实数a 的最大值是________.17.已知正方形ABCD 的边长为1,当每个(1,2,3,4,5,6)i i λ=取遍1±时,123456||AB BC CD DA AC BD λλλλλλ+++++uuu r uuu r uuu r uuu r uuu r uuu r的最小值是________,最大值是________.三、解答题:本大题共5小题,共74分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(10 分)
f
π π π 1 1 - =- ,f - =- ,f = 4 2 3 6 4
3 4,
3 1 ,最小值为- . 4 2
(13 分)
(14 分)
所以
π π f(x)在区间-3,4上的最大值为
6
得分说明
π 1 ①无化简过程,直接得到 f(x)=2sin2x-6,扣 5 分; ②化简结果错误,中间某一步正确,给 2 分; ③单调性正确,计算错误,扣 2 分; ④若单调性出错,给 1 分; π ⑤求出 2x- 范围,利用数形结合求最值,同样得分. 6
2
(2 分)
(4 分) (6 分)
(7 分)
1 11 3 = cos 2x+ sin 2x- cos 2x 22 2 2
π 3 1 1 = 4 sin 2x-4cos 2x=2sin2x-6.
2π 所以 f(x)的最小正周期 T= =π. 2
5
(2)因为
π π π π f(x)在区间-3,-6上是减函数,在区间-6,4上是增函数,
8
π 3 2 【训练 1】 已知函数 f(x)=cos x sin x+3)- 3cos x+ 4 ,x∈R.
(1)求 f(x)的最小正周期; (2)求
解
π π f(x)在闭区间-4,4上的最大值与最小值.
(1)f(x)=cos
1 x sin 2
π xsinx+3-
规范——解答题的5个解题模板及得分说明
1
1.阅卷速度以秒计,规范答题少丢分 高考阅卷评分标准非常细,按步骤、得分点给分,评阅分步骤、采“点”给分.关
键步骤,有则给分,无则没分.所以考场答题应尽量按得分点、步骤规范书写.
2.不求巧妙用通法,通性通法要强化 高考评分细则只对主要解题方法,也是最基本的方法,给出详细得分标准,所以 用常规方法往往与参考答案一致,比较容易抓住得分点.
所以函数
10
3
模板1 三角问题
π (满分 14 分)已知函数 f(x)=sin x-sin x-6,x∈R.
2 2
(1)求 f(x)的最小正周期; π π (2)求 f(x)在区间-3,4上的最大值和最小值.
4
满分解答
π 1-cos2x-3
解
1-cos 2x (1)由已知,有 f(x)= - 2
3 3cos x+ 4
2
=cos
3 1 3 2 3 3 2 x+ 2 cos x+ 4
π 1 3 3 1 3 1 =4sin 2x- 4 (1+cos 2x)+ 4 =4sin 2x- 4 cos 2x=2sin2x-3.
2
3.干净整洁保得分,简明扼要是关键 若书写整洁,表达清楚,一定会得到合理或偏高的分数,若不规范可能就会吃 亏.若写错需改正,只需划去,不要乱涂乱划,否则易丢分. 4.狠抓基础保成绩,分步解决克难题
(1)基础题争取得满分.涉及的定理、公式要准确,数学语言要规范,仔细计算,
争取前3个解答题不丢分.(2)压轴题争取多得分.第(Ⅰ)问一般难度不大,要保证得 分,第(Ⅱ)问若不会,也要根据条件或第(Ⅰ)问的结论推出一些结论,可能就是 得分点.
7
解题模板
第一步 第二步 第三步 化简:利用辅助角公式化 f(x)为 y=Asin(ωx+φ)+k 的形式. 整体代换:设 t=ωx+φ,确定 t 的范围. 求解:利用 y=sin t 的性质求 y=Asin(ωx+φ)+k 的单调性、最值、对称性等.
第四步 反思:查看换元之后字母范围变化,利用数形结合估算结果的合理性,检查 步骤的规范性.
2π 所以 f(x)的最小正周期 T= 2 =π.
9
(2)因为
π π π π f(x)在区间-4,-12上是减函数,在区间-12,4上是增函数,
f
π π 1 π 1 1 - =- ,f - =- ,f = , 4 2 4 12 4 4 π π 1 1 f(x)在闭区间 -4,4 上的最大值为 ,最小值为- . 4 2