合肥一中最后一卷文数答案

合集下载

安徽省合肥市一中、合肥六中2025届高考语文考前最后一卷预测卷含解析

安徽省合肥市一中、合肥六中2025届高考语文考前最后一卷预测卷含解析

安徽省合肥市一中、合肥六中2025届高考语文考前最后一卷预测卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

1、阅读下文,完成各题。

来世我愿意做托斯卡纳①的一棵树陈丹燕①要是有来世,我想我不愿意再做一个人了,做一个人,是很美,可是也太累。

我来世想做一棵树,长在托斯卡纳绿色山坡上的一棵树。

要是我的运气好,我就是一棵形状很美的柏树,像绿色的烛火一样尖尖地伸向天空,总是蓝色的,金光流溢的天空。

②我的树梢是尖尖的,在总是温暖的绿色的山坡上静穆地指向天空,好像是一个在沉思着什么的人,其实我没有思想,也不再了解思想的疼痛。

我站得高高的,边上就是在古代战争中留下来的城堡。

我能看见很远的地方,变成了孤儿的拉斐尔正在度过一条蓝色的小湖,他要到罗马去画画,他忧郁地看着托斯卡纳美丽的坡地,这是他在告别自己的故乡。

而在一个阳台上,达芬奇正在给蒙娜丽莎画着肖像,她微微笑着,是那种内心细腻的人,为了掩盖自己而挡在面前的微笑,没有这种心思的人,会觉得那种笑很神秘的。

年轻的米开朗基罗从翡冷翠老城里的一扇木门里走出来,他的脸带着受苦的样子,他的天才压死了多少代画家,可他觉得自己的一生是不幸福的。

而在圣马可修道院里,安波切利在墙上画出了世界上最美的天使报喜。

我终于有机会看看我喜欢的画家。

安徽省合肥市第一中学高三最后一卷数学答案和解析

安徽省合肥市第一中学高三最后一卷数学答案和解析

合肥一中2023届高三最后一卷数学参考答案1.解析:因为][0,2,2,0A B ⎡⎤==-⎣⎦所以{}(){}0,0R A B A B x Rx ⋂=⋂=∈≠∣ð.故选:C .2.解析:因为1z =+,所以1z =,故z 的虚部是.故选:A .3.解析:5x =,故0.155 5.75 6.5y =⨯+=,经计算可得被污损的数据为6.4,答案选B .4.解析:曲线1:sin 2cos22C y x x π⎛⎫=+=⎪⎝⎭,把1:cos2C y x =上各点的横坐标缩短到原来的23,纵坐标不变,可得cos3y x =的图象;再把得到的曲线向左平移18π个单位长度,可以得到曲线25:cos 3cos 366C y x x ππ⎛⎫⎛⎫=--=+ ⎪ ⎪⎝⎭⎝⎭的图象,故选:C.5.解析:设直线1y =与y 轴交点为M ,由对称性,易知MFA 为直角三角形,且1602AFM AFB ∠∠== ,2AF FM ∴=,即1212p +=,去绝对值,解得23p =或6,p =∴抛物线的准线方程为13y =-或3y =-.故选:C.6.解析:一方面,考虑{}Ω,,,a b c d =含有等可能的样本点,{}{}{},,,,,A a b B a c C a d ===.则()()()()()()11,24P A P B P C P AB P BC P AC ======,故,,A B C 两两独立,但()1148P ABC =≠,故此时,()()()()P ABC P A P B P C =不成立.另一方面,考虑{}Ω1,2,3,4,5,6,7,8=含有等可能的样本点,{}{}{}1,2,3,4,3,4,5,6,4,6,7,8A B C ===.则()()()()11,28P A P B P C P ABC ====()111822P AC =≠⨯,故,A C 不独立,也即,,A B C 两两独立不成立.综上,“,,A B C 两两独立”是“()()()()P ABC P A P B P C =”的既不充分也不必要条件.故选D.7.解析:作AQ 垂直下半平面于,作AH x ⊥轴于H ,连接,HQ QB .设11,,,(0)A m B m m m m ⎛⎫⎛⎫--> ⎪ ⎪⎝⎭⎝⎭由题可知60AHQ ∠= ,则11,,22AH QH AQ m m m ===,两点间距离公式可得222144QB m m =+.22222144AB AQ QB m m =+=+≥,当且仅当22m =时,AB 取最小值2.故选A.8.解析:因为()1f x +为偶函数,所以()()11f x f x +=-+①,所以()f x 的图象关于直线1x =轴对称,因为()()11f x g x --=等价于()()11f x g x --=②,又()()31f x g x -+=③,②+③得()()132f x f x -+-=④,即()()132f x f x +++=,即()()22f x f x +=-,所以()()4f x f x +=,故()f x 的周期为4,又()()13g x f x =--,所以()g x 的周期也为4,故选项B 正确,①代入④得()()132f x f x ++-=,故()f x 的图象关于点()2,1中心对称,且()21f =,故选项A 正确,易得()()01,41f f ==,且()()132f f +=,故()()()()12344f f f f ++==,故20221()5054(1)(2)2021(1)i f i f f f ==⨯++=+∑,因为()1f 与()3f 值不确定,故选项C 错误,因为()()31f x g x -+=,所以()()()()()()10,30,013,211g g g f g f ===-=-,所以()()()()022130g g f f ⎡⎤+=-+=⎣⎦,故()()()()01230g g g g +++=,故2023()50600i g i ==⨯=∑,所以选项D 正确,故选C .9.解析:A.()()22AD AF AB AF ED =+=+,故A 错误;B.因为()()2,22||AB EA AB EA FA AB FA AB EB AB ⊥⋅+=⋅=⋅= ,故B 正确;C.()()11,22BC CD FE BC BC CD FE FE ⋅=⋅= ,又BC FE =,所以()()BC CD FE BC CD FE ⋅=⋅ ,故C正确;D.AE 在CB方向上的投影向量为()3322AE CB CB AE CB CB CB e CB CB⋅=⋅=-=,故D 错误.故选BC .10.解析:由切线长定理易得12l r r =+,A 正确.由勾股定理知()()222121212(2)4R r r r r r r =+--=,解得R =,B 正确.()()()222122222221212121212124422S R R R S r r r r r r r r l r r r r ππππ===+++++++.()()33212222222121212121212442331233R R V R R V r r r r r r r r h r r r r ππππ===++++++.所以1122,C S V S V =正确.1122212212122122231S r r r r S r r r r r r ==≤++++,当且仅当12r r =时等号成立,这与圆台的定义矛盾,故D 错误.综上,答案为ABC .11.解析:以BC 为x 轴,DA 为y 轴建系,则()(0,0,D A 可以求得动点M 的轨迹方程:22302x y y +-=.这是一个圆心在点0,4P ⎛⎫ ⎪ ⎪⎝⎭,半径为34的圆(不含原点)D A 项:()1,0B -,所以max 193||4BM BP r =+=.故A 错误B项:2222||1||11424CB MB MC MD MD ⎛⎫⋅=-=-≤-=- ⎪ ⎪⎝⎭ .故B 正确C 项:易知直线:10AB x y -+=,故1328ABM M AB S AB d -=≤.故C 错误D 项:易知cos MBC ∠取最小值,当且仅当MBC ∠取最大值,也即BM 与P 相切时.此时3tan 24MBC ∠=,故221tan 132cos 191tan2MBCMBC MBC ∠∠∠-==+.故D 正确.故选:BD.12.解析:由sin 0,cos 0x x >>得()f x 的定义域为2,2,2k k k Z πππ⎛⎫+∈ ⎪⎝⎭,当0,2x π⎛⎫∈ ⎪⎝⎭时,3,2x πππ⎛⎫+∈ ⎪⎝⎭不在定义域内,故()()f x f x π+=不成立,易知()f x 的最小正周期为2π,故选项A 错误,又()22222cos log cos 2sin log sin 2f x x x x x f x π⎛⎫-=⋅+⋅=⎪⎝⎭,所以()f x 的图象关于直线4x π=对称,所以选项B 正确,因为()222222sin log sin cos log cos f x x x x x =⋅+⋅,设2sin t x =,所以函数转化为()()()()()()2222log 1log 1,0,1,log log 1g t t t t t t g t t t =⋅+-⋅-∈='--,所以()0g t '>得,()0g t '<得102t <<,所以()g t 在10,2⎛⎫ ⎪⎝⎭上单调递减,在1,12⎛⎫ ⎪⎝⎭上单调递增,故min 1()12g t g ⎛⎫==- ⎪⎝⎭,即min ()1f x =-,故选项C 正确,因为()g t 在10,2⎛⎫ ⎪⎝⎭上单调递减,在1,12⎛⎫ ⎪⎝⎭上单调递增,由2sin t x =,令210sin 2x <<得20sin 2x <<,又()f x 的定义域为2,2,2k k k Z πππ⎛⎫+∈ ⎪⎝⎭,解得22,4k x k k Z πππ<<+∈,因为2sin t x =在2,24k k πππ⎛⎫+ ⎪⎝⎭上单调递增,所以()f x 的单调递减区间为2,2,4k k k Z πππ⎛⎫+∈ ⎪⎝⎭,同理函数的递增区间为2,2,42k k k Z ππππ⎛⎫++∈⎪⎝⎭,所以选项D 正确,故选BCD.13.解析:因为22(1)y x =-',所以曲线11xy x+=-在点()2,3-处的切线斜率为2,所以切线方程为()322y x +=-,即27y x =-,即270x y --=.14.解析:法1:()tan tan tan 1,tan tan tan tan 11tan tan αβαβαβαβαβ++==-∴+=-- .()()()cos sin 1tan tan tan tan 2cos cos βααβαβαβαβ--+∴=-++=.法2:(特殊值法)令38παβ==,易得答案.15.解析:0.255205.2550.250.0025510.0199=+++=+=- .16.解析:设双曲线的右焦点为2F ,根据双曲线方程知,2c =.直线过原点,由对称性,原点O 平分线段原点AB ,又原点O 平分线段2,FF ∴四边形2AFBF 为平行四边形.ABF 和2ABF 中,分别有中位线,,OP BF OQ AF ∥∥,,,OP OQ AF BF ⊥∴⊥∴ 四边形2AFBF 为矩形,2BFF ∴ 为直角三角形.不妨设B 在第一象限,设直线AB 倾斜角为2θ,则2,32ππθ⎡⎫∈⎪⎢⎣⎭,且OFB OBF ∠∠θ==,在Rt 2BFF中可得:22124cos 4sin ,2cos 2sin 4c a BF BF e a θθπθθθ∴=-=-∴===-⎛⎫- ⎪⎝⎭,2,,,3264ππππθθ⎡⎫⎡⎫∈∴∈⎪⎪⎢⎢⎣⎭⎣⎭ ,易知()14f θπθ=⎛⎫- ⎪⎝⎭在,64ππθ⎡⎫∈⎪⎢⎣⎭上为增函数,)11,4e ∞πθ∴=∈+⎛⎫- ⎪⎝⎭17.解析:(1)因为1cos 3B =,所以2222sin 1cos 2costan 222cos 2A CB AC B A C ++++=++()()1cos 1cos 21cos A C B A C -++=+++1cos 1cos 821cos 3B B B ++=+=-.(2)因为ABC S =1122sin 223ac B ac =⋅=,所以6ac =再由余弦定理知,2222cos b a c ac B =+-,即222614263c c ⎛⎫=+-⨯⨯ ⎪⎝⎭,也即4220360c c -+=,解得c =c =.18.解析:(1)因为21342n n n n S S S a +++=-,所以()21132n n n n n S S S S a +++-=--,即2132n n na a a ++=-所以()()()()()()21111111223222220n n n n n n n n n n n n n a a a a a a a a a a a a a ++++++++---=----=---=(为常数)所以数列{}12n n a a +-是等差数列.(2)由(1)知121221n n a a a a +-=-=,即121n n a a +=+.也即()1121n n a a ++=+,又112a +=,所以11222n n n a -+=⋅=..所以()()()()1222112122121n n n n n n n b n n n n n n a +⎡⎤++===-⎢+⋅+⋅++⎢⎥⎣⎦.∴数列{}n b 的前n 项和()12231111111212222232212n n n T n n +⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-⎢⎥ ⎪ ⎪ ⎪⋅⋅⋅⋅⋅+⋅⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦()()1111121121212n n n n +⎡⎤=-=-⎢⎥⋅+⋅+⋅⎢⎥⎣⎦19.(1)补全四面体PQRS 如图,即证:PQ SR ⊥取SR 的中点M ,正四面体中各个面均为正三角形,故,PM SR QM SR ⊥⊥,又PM QM M ⋂=,所以SR ⊥面PQM .又PQ ⊂面PQM ,所以PQ SR ⊥.(2)在QSR 的中心建系如图:则()(33,,,0,,02222S P R Q ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭1,0,,,33623A C ⎛⎛- ⎪ ⎪⎝⎭⎝⎭,31,,022K ⎛⎫-- ⎪ ⎪⎝⎭,.设面ACK 的法向量为(),,n x y z = ,则00n AC n AK ⎧⋅=⎪⎨⋅=⎪⎩,解得()n =- ,又33,,22PQ ⎛=- ⎝ ,所以22sin cos ,11n PQ θ== .20.解析:(1)设事件A 为“小周在这三个月集齐三款模型”,则()3333111034500A P A ⎛⎫== ⎪⎝⎭.(2)1,2,,12X = ,由题意得()()1911,2,,111010k P X k k -⎛⎫=== ⎪⎝⎭ ,()1191210P X ⎛⎫== ⎪⎝⎭11111199()12101010k k k E X -=⎛⎫⎛⎫=+⋅ ⎪⎪⎝⎭⎝⎭∑,错位相减求得最后结果为()11910910E X ⎛⎫=-⋅ ⎪⎝⎭.21.解析:(1)将()1,1M 代入,可以求得243b =.联立22314410x y x y ⎧+=⎪⎨⎪+-=⎩,得24610x x --=.设()()1122,,,A x y B x y ,则12262AB x =-=,又易知点M 到直线l的距离为2,故ABM的面积4ABM S = ..(2)设()()1122,,,A x y B x y ,联立22314410x y x ty ⎧+=⎪⎨⎪+-=⎩得()223230t y ty +--=,则1221222333t y y t y y t ⎧+=⎪⎪+⎨-⎪=⎪+⎩,11sin ,sin 22ABM PQM S AM BM AMB S PM QM PMQ ∠∠== ,又sin sin PMQ AMB∠∠=所以5PQM ABM S S = 等价于5PM QM AM BM =,也即5QM AM BMPM=5QM AMBMPM =即1251313x x -=-,也即129115x x --=,也即1295ty ty --=,也即223935t t =+,解得322t =±.22.解析:(1)()ln f x x ax =-'在()0,∞+上有两个变号零点,即ln xa x=有两个不等实根,设()()2ln 1ln ,x x g x g x x x-'==,故()g x 在()0,e 上单调递增,在(),e ∞+上单调递减,所以max 1()g x e=,且()10g =,又(),0x g x ∞+→+→,故10a e<<,且121x e x <<<,所以()2111111ln 12f x x x ax x =--+,又11ln x a x =,所以()21111111111ln 11ln 1ln 122x f x x x x x x x x x =-⋅⋅-+=-+,设()()1ln 1,1,2h x x x x x e =-+∈,所以()()1ln 102h x x =-<',所以()h x 在()1,e 上单调递减,所以()1,02e h x ⎛⎫∈-⎪⎝⎭,所以()11,02e f x ⎛⎫∈- ⎪⎝⎭.(2)法一:ln 0x ax -=的两个实根12,x x ,所以1122ln ,ln x ax x ax ==,所以()2121ln ln x x a x x -=-,得:2121ln ln x x a x x -=-,设21x t x =,又1202x x <<,所以2t >,要证:2128x x <,即证:123ln2ln 2ln x x +<,即证:123ln22ax ax +<,即证:()2123ln2a x x ->,即证:()212121ln ln 23ln2x x x x x x -->-,即证:2211212ln 3ln2x x xx x x -⋅>-,即证:22121121ln 3ln21x x x x x x -⋅>-,即证:21ln 3ln21t t t -⋅>-,设()()212ln 321ln ,(2),,(2)1(1)t t t t t t t t t t t ϕϕ+---=⋅>-'=>-,设()()()()222111112ln 3,(2),20t t F t t t t F t tt t t+-=+-->=--=>',所以()F t 在()2,∞+上单调递增,所以()()32ln202F t F >=->,所以()0t ϕ'>,所以()t ϕ在()2,∞+上单调递增,所以()()23ln2t ϕϕ>=,所以21ln 3ln21t t t -⋅>-,所以2128x x <成立.法二:ln 0x ax -=的两个实根12,x x ,所以1122ln ,ln x ax x ax ==,所以2211ln ln x x x x =,设21x t x =,又1202x x <<,所以2t >,.由2211ln ln x x x x =可得:12ln ln ln ,ln 11t t tx x t t ==--,.要证:2128x x <,即证:123ln2ln 2ln x x +<,即证:ln 2ln 3ln211t t t t t +<--,即证:21ln 3ln21t t t -⋅>-设()()212ln 321ln ,(2),,(2)1(1)t t t t t t t t t t t ϕϕ+---=⋅>-'=>-,设()()()()222111112ln 3,(2),20t t F t t t t F t tt t t+-=+-->=--=>',所以()F t 在()2,∞+上单调递增,所以()()32ln202F t F >=->,所以()0t ϕ'>,所以()t ϕ在()2,∞+上单调递增,所以()()23ln2t ϕϕ>=,所以21ln 3ln21t t t -⋅>-,所以2128x x <成立.法三:由(1)知:10a e<<,且121x e x <<<,()ln xg x x=在()0,e 上单调递增,在(),e ∞+上单调递减,又1122x x x <<,且()()12g x g x a ==,所以()()()2112g x g x g x =<,所以1111ln ln22x x x x <,所以211ln ln2x x <,所以2112x x <,所以112x <<,又()ln222g =,所以ln202a <<,又ln2ln424=,即()()24g g =,所以24x >,因为122x x <,所以212284x x x <<,故2128x x <.。

安徽省合肥市一中、合肥六中2025届高考数学考前最后一卷预测卷含解析

安徽省合肥市一中、合肥六中2025届高考数学考前最后一卷预测卷含解析

安徽省合肥市一中、合肥六中2025届高考数学考前最后一卷预测卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.某人2018年的家庭总收人为80000元,各种用途占比如图中的折线图,2019年家庭总收入的各种用途占比统计如图中的条形图,已知2019年的就医费用比2018年的就医费用增加了4750元,则该人2019年的储畜费用为( )A .21250元B .28000元C .29750元D .85000元2.《易·系辞上》有“河出图,洛出书”之说,河图、洛书是中华文化,阴阳术数之源,其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中.如图,白圈为阳数,黑点为阴数.若从这10个数中任取3个数,则这3个数中至少有2个阳数且能构成等差数列的概率为( )A .15B .120C .112D .3403.在边长为2的菱形ABCD 中,23BD =将菱形ABCD 沿对角线AC 对折,使二面角B AC D --的余弦值为13,则所得三棱锥A BCD -的外接球的表面积为( ) A .23π B .2πC .4πD .6π4.已知函数()ln f x x ax b =++的图象在点(1,)a b +处的切线方程是32y x =-,则a b -=( ) A .2 B .3 C .-2 D .-35.已知数列满足:.若正整数使得成立,则( ) A .16B .17C .18D .196.函数()()()22214f x xxx =--的图象可能是( )A .B .C .D .7.函数2|sin |2()61x x f x x=-+的图象大致为( )A .B .C .D .8.国家统计局服务业调查中心和中国物流与采购联合会发布的2018年10月份至2019年9月份共12个月的中国制造业采购经理指数(PMI)如下图所示.则下列结论中错误的是( )A .12个月的PMI 值不低于50%的频率为13B .12个月的PMI 值的平均值低于50%C .12个月的PMI 值的众数为49.4%D .12个月的PMI 值的中位数为50.3%9.在棱长均相等的正三棱柱111ABC A B C =中,D 为1BB 的中点,F 在1AC 上,且1DF AC ⊥,则下述结论:①1AC BC ⊥;②1AF FC =;③平面1DAC ⊥平面11ACC A :④异面直线1AC 与CD 所成角为60︒其中正确命题的个数为( )A .1B .2C .3D .410.设非零向量a ,b ,c ,满足||2b =,||1a =,且b 与a 的夹角为θ,则“||3b a -=”是“3πθ=”的( ).A .充分非必要条件B .必要非充分条件C .充分必要条件D .既不充分也不必要条件11.由曲线3,y x y x ==围成的封闭图形的面积为( )A .512B .13C .14D .1212.已知复数()()2019311i i z i--=(i 为虚数单位),则下列说法正确的是( ) A .z 的虚部为4B .复数z 在复平面内对应的点位于第三象限C .z 的共轭复数42z i =-D .25z =二、填空题:本题共4小题,每小题5分,共20分。

安徽合肥2024届高三下学期最后一卷语文试题含答案

安徽合肥2024届高三下学期最后一卷语文试题含答案

合肥2024届高三最后一卷语文试题(答案在最后)全卷满分150分。

考试用时150分钟。

注意事项:1.答题前,先将自己的姓名、准考证号填写在答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,18分)阅读下面的文字,完成1~5题。

中国文学史上的大作家都有不同程度的孤独感,尤其是先秦汉魏六朝至初盛唐的诗人。

失意困顿的遭际、缺乏同道的寂寞、对理想和操守的坚持、对世俗的洞彻和鄙视,是他们产生孤独感的共同原因。

而对不同时代、不同境遇的诗人而言,其孤独感又有不同的内涵。

对于孤独感提炼的艺术方式的差异,往往会造成诗人不同的艺术个性。

如屈原以香草自饰、独清独醒的孤洁,阮籍独坐空堂、徘徊旷野的茫然,陶渊明面对“八表同昏”独酌思友的寂寞,李白天马行空、从云端俯视人寰的清高,都与他们构筑的独特的艺术境界有关。

不过,虽然他们比兴和构思的方式不同,其艺术提炼的原理却是相同的,这就是以诗人高大伟岸的个人形象与污浊的世俗世界造成反差强烈的对比。

这也可以说是盛唐以前诗歌浪漫精神的表现传统之一。

杜甫忧国忧民、悲天悯人的精神受到万世敬仰。

他毕生的饥寒流离,往往被看成造就诗圣的前提条件,而他内心的孤独、寂寞和矛盾却较少被人关注。

其实,杜甫体会了屈原、阮籍、陶渊明和李白诸家大诗人的各种孤独感,而且越到晚年,他对孤独心境的提炼也愈益自觉。

“乾坤一腐儒”,就是他对自己与整个世界的关系经过反复思考之后的最后概括。

与其他大诗人相比,最大的不同是:杜甫在个人形象和广漠时空的对比中,突显的是自己的渺小和无力,然而其思考的深度和高度却迥出于前人。

2020届安徽省合肥市第一中学高三下学期最后一卷数学(文)试题(解析版)

2020届安徽省合肥市第一中学高三下学期最后一卷数学(文)试题(解析版)

2020届安徽省合肥市第一中学高三下学期最后一卷数学(文)试题一、单选题1.记全集U =R ,集合{}2|16A x x =≥,集合{}|22xB x =≥,则()UA B =( )A .[)4,+∞B .(]1,4C .[)1,4D .()1,4【答案】C【解析】求得集合{|4A x x =≤-或4}x ≥,{|1}B x x =≥,求得{|44}UA x x =-<<,再结合集合的交集运算,即可求解.【详解】由题意,全集U =R ,集合{}2|16{|4A x x x x =≥=≤-或4}x ≥, 集合{}|22{|1}xB x x x =≥=≥, 所以{|44}UA x x =-<<,所以()[){|14}1,4U AB x x =≤<=.故选:C . 【点睛】本题主要考查了集合的混合运算,其中解答中正确求解集合,A B ,再结合集合的补集和交集的运算求解是解答的关键,着重考查了推理与运算能力,属于基础题. 2.若复数z 的共轭复数满足()112i z i -=-+,则z =( )A .B .32C D .12【答案】C【解析】根据复数的乘法、除法运算求出z ,再由复数的模的求法即可求出z 【详解】由题意()112i z i -=-+, 所以()()()()1211231112i i i iz i i i -++-+-+===--+,所以22311022z z ⎛⎫⎛⎫==-+= ⎪ ⎪⎝⎭⎝⎭,故选:C 【点睛】本题主要考查复数的乘法、除法运算,考查复数的模的求法以及复数与共轭复数的模相等,属于基础题.3.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等,如图是源于其思想的一个程序框图,若输入的a ,b 分别为5,2,则输出的n 等于( )A .2B .3C .4D .5【答案】C【解析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量n 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案. 【详解】当1n =时,1542a b ==,,满足进行循环的条件; 当2n =时,45,84a b == 满足进行循环的条件; 当3n =时,135,168a b ==满足进行循环的条件; 当4n =时,405,3216a b ==不满足进行循环的条件, 故输出的n 值为4. 故选:C . 【点睛】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.4.从区间[0,1]内随机抽取2n 个数1x ,2x ,…n x ,1y ,.. ,n y 构成n 个数对(1x ,1y ),…,(n x ,n y ),其中两数的平方和不小于1的数对共有m 个,则用随机模拟的方法得到圆周率π的近似值为( ) A .m nB .4mnC .n mn- D .4()n m n- 【答案】D【解析】以面积为测度,建立方程,即可求出圆周率π的近似值. 【详解】由题意,从区间[0,1]随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n ),对应的区域的面积为12.而两数的平方和不小于1,对应的区域的面积为1-14π•12, ∴2211141m n π-⋅==1-21π41, ∴π()4n m n-=.故选D .【点睛】本题考查了几何概型的应用,几何概型的概率的值是通过长度、面积和体积的比值得到,本题属于基础题.5.已知x ,y 满足不等式组2402030x y x y y +-≥⎧⎪--≤⎨⎪-≤⎩,则yz x =的最大值为( )A .0B .35C .53D .6【答案】D【解析】画出约束条件的可行域,利用目标函数的几何意义,求出最优解,然后求解目标函数的最大值即可. 【详解】由x ,y 满足不等式组2402030x y x y y +-≥⎧⎪--≤⎨⎪-≤⎩,作出可行域如图,由可行域可知()5,3A ,()2,0B ,1,32C ⎛⎫⎪⎝⎭, y z x =可以看作是可行域内的点和点()0,0的最大值,显然在1,32C ⎛⎫⎪⎝⎭处都最大值6, 故选:D .【点睛】本题主要考查简单线性规划求解分式型目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题. 6.已知235log log log 0x y z ==<,则2x 、3y、5z 的大小排序为A .235x y z<<B .325y x z <<C .523z x y <<D .532z y x<<【答案】A【解析】x y z ,, 为正实数,且235log log log 0x y z ==<,111235235k k k x y z---∴===,,, 可得:1112352131,51k k k x y z,.---=>=>=> 即10k -> 因为函数1kf x x -=() 单调递增,∴235x y z<<.故选A.7.正方体1111ABCD A B C D -棱长为1,点,M N 分别是棱1,BC CC 的中点,动点P 在正方形11BCC B (包括边界)内运动,且1//PA 面AMN ,则1PA 的长度范围为( )A .51,2⎡⎤⎢⎥⎣⎦B .325,42⎡⎤⎢⎥⎣⎦ C .323,42⎡⎤⎢⎥⎣⎦D .31,2⎡⎤⎢⎥⎣⎦【答案】B【解析】取11B C 的中点E ,1BB 的中点F ,EF 中点O ,根据面面平行的判定可证得平面//AMN 平面1A EF ,由此可确定P 点轨迹为EF ,进而确定1PA 取得最大值和最小值时P 的位置,进而得到所求取值范围. 【详解】取11B C 的中点E ,1BB 的中点F ,连结1A E ,1A F ,EF , 取EF 中点O ,连结1A O ,点,M N 分别是棱长为1的正方体1111ABCD A B C D -中棱1,BC CC 的中点,1//AM A E ∴,//MN EF ,AMMN M =,1A E EF E ⋂=,,AM MN ⊂平面AMN ,1,A E EF ⊂平面1A EF ,∴平面//AMN 平面1A EF ,动点P 在正方形11BCC B (包括边界)内运动,且1//PA 面AMN ,∴点P 的轨迹是线段EF ,221115122A E A F ⎛⎫==+=⎪⎝⎭,22121122EF =+=, 1AO EF ∴⊥,∴当P 与O 重合时,1PA 的长度取最小值1A O ,14AO ==, 当P 与E (或F )重合时,1PA 的长度取最大值1A E 或1A F ,112A E A F ==. 1PA ∴的长度范围为⎣⎦. 故选:B . 【点睛】本题考查立体几何中动点轨迹问题的求解,关键是能够通过面面平行关系确定动点所形成的轨迹,进而通过轨迹确定最值点.8.已知双曲线()2222:10,0x y C a b a b-=>>的离心率3e =,过焦点F 作双曲线C 的一条渐近线的垂线,垂足为M ,直线MF 交另一条渐近线于N ,则MF NF=( )A .2B .12CD【答案】B【解析】画出图象,利用已知条件、双曲线的几何性质和点到直线的距离公式,即可求解. 【详解】解:由题意双曲线的离心率为:3e =,可得3c a =22243a b a +=,所以b a =y x =,如图:30MOF ∠=︒,(),0F c 则MF b==,OM a=,所以MN =,所以,31323333aMF bNF a ba a===--.故选:B【点睛】本题主要考查了双曲线的标准方程及其简单的几何性质的应用,着重考查了转化思想,数形结合思想,以及推理与计算能力.9.已知函数()()sinf x A x=+ωϕ,π0,0,2Aωϕ⎛⎫>><⎪⎝⎭的部分图象如图所示,则使()2f a x++()0f x-=成立的a的最小正值为()A.π6B.π4C.5π12D.π2【答案】C【解析】首先由图象先求函数的解析式,由关系式()2f a x++()0f x-=可知,函数关于(),0a对称,再由函数解析式求函数的对称中心.【详解】由()()20f a x f x++-=,得()()2f a x f x+=--,得函数关于(),0a对称,由图象知2A=,()02sin1fϕ==,得1sin2ϕ=,得π6ϕ=,则()π2sin6f x xω⎛⎫=+⎪⎝⎭,由五点对应法得11ππ2π126ω+=,得2ω=, 则()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭, 由π2π6x k +=,得ππ212k x =-, 即函数的对称中心为ππ,0212k ⎛⎫-⎪⎝⎭, 当0x >时,当1k =时,x 为最小值, 此时5π12x =,即此时5π12a =. 故选:C 【点睛】本题考查三角函数的图象和性质,解析式,重点考查分析图象的能力,属于基础题型,本题的关键是求函数的解析式.10.已知数列{}n a 的前n 项和为n S ,22n n S a =-,若存在两项,n m a a ,使得64n m a a ⋅=,则12m n+的最小值为( )A .123+B .1C .3+D .75【答案】B【解析】运用数列的递推式和等比数列的定义、通项公式可得a n =2n .求得m +n =6,1216m n +=(m +n )(12m n +)16=(32n m m n ++),运用基本不等式,检验等号成立的条件,即可得到所求最小值. 【详解】S n =2a n ﹣2,可得a 1=S 1=2a 1﹣2,即a 1=2, n ≥2时,S n ﹣1=2a n ﹣1﹣2,又S n =2a n ﹣2, 相减可得a n =S n ﹣S n ﹣1=2a n ﹣2a n ﹣1,即a n =2a n ﹣1, {a n }是首项为2,公比为2的等比数列. 所以a n =2n .a m a n =64,即2m •2n =64, 得m +n =6,所以1216m n +=(m +n )(12m n +)16=(32n m m n ++)16≥(),当且仅当2n m m n=时取等号,即为m 6=,n 12=-因为m 、n 取整数,所以均值不等式等号条件取不到,则1216m n +>(,验证可得,当m =2,n =4,或m =3,n =3,,12m n+取得最小值为1.故选:B . 【点睛】本题考查数列的通项公式的求法,注意运用数列的递推式和等比数列的定义、通项公式,考查基本不等式的运用,注意检验等号成立的条件,考查化简运算能力,属于中档题. 11.已知函数()1e xf x -=,()1ln 22xg x =+,若()()f a g b =成立,则b a -的最小值为( ) A .1ln 22-B .1ln 22+C .1ln2+D .1ln2-【答案】C【解析】首先根据()()y f a g b ==,先求,a b ,再表示122ln 1y b a e y --=--,通过设函数()122ln 1x h x e x -=--,0x >,利用导数求函数的最小值.【详解】 设1a y e-=,则1ln a y =+,1ln 22by =+,则122y b e -=, 则122ln 1y b a e y --=--,令()122ln 1x h x ex -=--,0x >,则()1212x h x e x-'=-,∴()h x '递增, ∴12x =时,()0h x '=, ∴()h x '有唯一零点, ∴12x =时,()h x 取最小值, 即b a -取最小值,11ln 22h ⎛⎫=+ ⎪⎝⎭. 故选:C 【点睛】本题考查导数与函数的最值,通过构造函数求函数的最值,重点考查转化与化归的思想,计算能力,属于中档题型.12.已知点A ,B 关于坐标原点O 对称,1AB =,以M 为圆心的圆过A ,B 两点,且与直线210y -=相切,若存在定点P ,使得当A 运动时,MA MP -为定值,则点P 的坐标为( ) A .104⎛⎫ ⎪⎝⎭, B .102⎛⎫ ⎪⎝⎭,C .14⎛⎫- ⎪⎝⎭0,D .102,⎛⎫- ⎪⎝⎭【答案】C【解析】设M 的坐标为(x ,y ),然后根据条件得到圆心M 的轨迹方程为x 2=﹣y ,把|MA |﹣|MP |转化后再由抛物线的定义求解点P 的坐标. 【详解】解:∵线段AB 为⊙M 的一条弦O 是弦AB 的中点,∴圆心M 在线段AB 的中垂线上, 设点M 的坐标为(x ,y ),则|OM |2+|OA |2=|MA |2, ∵⊙M 与直线2y ﹣1=0相切,∴|MA |=|y 12-|, ∴|y 12-|2=|OM |2+|OA |2=x 2+y 214+, 整理得x 2=﹣y , ∴M 的轨迹是以F (0,14-)为焦点,y 14=为准线的抛物线, ∴|MA |﹣|MP |=|y 12-|﹣|MP | =|y 14-|﹣|MP |14+=|MF |﹣|MP |14+, ∴当|MA |﹣|MP |为定值时,则点P 与点F 重合,即P 的坐标为(0,14-), ∴存在定点P (0,14-)使得当A 运动时,|MA |﹣|MP |为定值. 故选:C. 【点睛】本题主要考查了点轨迹方程的求解,抛物线的定义,属于一般题.二、填空题13.设向量a ,b 不平行,向量a b λ+与2a b +平行,则实数λ=_________. 【答案】12【解析】因为向量a b λ+与2a b +平行,所以2a b k a b λ+=+(),则{12,k k λ==,所以12λ=.【考点】向量共线.14.若圆()()22341x y -+-=上存在两点A 、B ,使得60APB ∠=︒,P 为圆外一动点,则P 点到原点距离的最小值为__________. 【答案】3【解析】首先由条件求出点P 的轨迹,再求两点间距离的最小值. 【详解】对于点P ,若圆上存在两点A ,B 使得60APB ∠=︒, 只需由点P 引圆的两条切线所夹的角不小于60︒即可, 当正好是60︒时,圆心到点P 的距离2d =,故动点P 在以()3,4为圆心,半径为1与2的圆环内运动, 由()3,4到原点的距离为5,所以P 点到原点距离的最小值为523-= 故答案为:3 【点睛】本题考查直线与圆的位置关系,重点考查转化与化归,临界思想,属于中档题型,本题大概重点是求出点P 的轨迹.15.如图,在正四棱锥P ABCD -中,PO ⊥面ABCD 且22AB =,设点M ,N 分别为线段PD ,PO 上的动点,已知当AN MN +取得最小值时,动点M 恰为PD 的中点,则该四棱锥的外接球的表面积为__________.【答案】64π3【解析】如图,在PC 上取点M ',使得PM PM '=,求出4PA AC ==,PO =,解方程()224r r =+得该四棱锥的外接球的半径,即得该四棱锥的外接球的表面积. 【详解】如图,在PC 上取点M ',使得PM PM '=, ∵顶点P 在底面的投影O 恰为正方形ABCD 的中心, ∴POC POD POA POB ≌≌≌, ∴PA PB PC PD ===, ∴MN MN '=,∴||||||||AN MN AN NM '+=+, ∴当AM PC '⊥时AM '最小, ∵M 为PD 的中点, ∴M '为PC 的中点, ∴4PA AC ==,∴PO =,又∵顶点P 在底面的投影O 恰为正方形ABCD 的中心, ∴外接球的球心在PO 上,设外接球的半径为r ,则()224r r =+.解得r =. 故外接球的表面积为264π4π3r =. 故答案为:64π3.【点睛】本题主要考查几何体的外接球问题,考查几何体的表面积的计算,意在考查学生对这些知识的理解掌握水平.16.设数列{}n a 的前n 项和为n S ,若存在实数A ,使得对于任意的*n ∈N ,都有n S A <,则称数列{}n a 为“T 数列”.则以下{}n a 为“T 数列”的是__________.①若{}n a 是等差数列,且10a >,公差0d <; ②若{}n a 是等比数列,且公比q 满足1q <; ③若()212n nn a n n +=+;④若11a =,()210nn n a a ++-=. 【答案】②③【解析】根据“T 数列”的定义,分别判断四个数列是否满足存在实数A ,使得对任意的*n ∈N ,都有n S A <,从而可选出答案. 【详解】①若{}n a 是等差数列,且10a >,公差0d <, 则2122n d d S n a n ⎛⎫=+- ⎪⎝⎭, 当n →+∞时,n S →+∞, 所以数列{}n a 不是“T 数列”;②若{}n a 是等比数列,且公比q 满足1q <,所以()11111112111111n n n n a q a a q a a q a S qq q q q q-==-≤+<------, 所以数列{}n a 是“T 数列”; ③若()()121112212n n n n n a n n n n ++==-+⋅+⋅,所以()1223111111112222232212n n n S n n +=-+-++-⨯⨯⨯⨯⋅+⋅ ()11112122n n +=-<+⋅, 则数列{}n a 是“T 数列”;④在数列{}n a 中,11a =,()210nn n a a ++-=,当n 是奇数时,20n na a +-=,数列{}n a 中奇数项构成常数列,且各项均为1; 当n 是偶数时,20nna a ,即任意两个连续偶项和为0,显然当n →+∞时,n S →+∞, 所以数列{}n a 不是“T 数列”; 故答案为:②③. 【点睛】本题考查数列新定义,考查等差数列、等比数列的前n 项和公式的应用,考查裂项相消求和法的运用,考查学生的推理能力与计算求解能力,属于中档题.三、解答题17.已知ABC 的内角,,A B C 的对边分别为,,a b c ,且99cos c a b A -=. (1)求cos B ;(2)若角B 的平分线与AC 交于点D ,且1BD =,求11a c+的值. 【答案】(1)19;. 【解析】【详解】试题分析:()1方法一:根据余弦定理可得222992b c a c a b bc+--=⋅,化简求出结果即可;方法二:利用正弦定理得99sinC sinA sinBcosA -=,化简即可求得结果()2先求出23sin ABD ∠=,利用面积法,12S S S +=,结合面积公式求出结果 解析:(1)方法一:由99cos c a b A -=及余弦定理得222992b c a c a b bc +--=⋅,整理得22229a c b ac +-=,所以2221cos 29a cb B ac +-==.方法二:由99cos c a b A -=及正弦定理得9sin 9sin cos sinC A B A -=, 又()sinC sin A B sinAcosB cosAsinB =+=+, 所以1909sinAcosB sinA cosB -=⇒=. (2)由(1)可知21cos cos212sin 9ABC ABD ABD ∠=∠=-∠=,且sin 0ABD ∠>,所以2sin 3ABD ∠=, 同理可得2sin 3CBD ∠=,设,,ABC ABD CBD 的面积分别为12,,S S S ,则22111125sin 1cos 12229S ac ABC ac ABC ac ac ⎛⎫=∠=-∠=-= ⎪⎝⎭, 111sin 23S c BD ABD c =⋅∠=,211sin 23S a BD CBD a =⋅∠=,由12S S S +=得112533c a ac +=,所以1125a c +=. 18.某公司为了提高职工的健身意识,鼓励大家加入健步运动,要求200名职工每天晚上9:30上传手机计步截图,对于步数超过10000的予以奖励.图1为甲乙两名职工在某一星期内的运动步数统计图,图2为根据这星期内某一天全体职工的运动步数做出的频率分布直方图.(1)在这一周内任选两天检查,求甲乙两人两天全部获奖的概率;(2)请根据频率分布直方图,求出该天运动步数不少于15000的人数,并估计全体职工在该天的平均步数;(3)如果当天甲的排名为第130名,乙的排名为第40名,试判断做出的是星期几的频率分布直方图.【答案】(1)27,(2)80人,13.25千步,(3)星期二【解析】(1)根据统计图统计出甲乙两人合格的天数,再计算全部获奖概率; (2)根据频率分布直方图求出人数及平均步数;(3)根据频率分布直方图计算出甲乙的步数从而判断出星期几. 【详解】(1)由统计图可知甲乙两人步数超过10000的有星期一、星期二、星期五、星期天设事件A 为甲乙两人两天全部获奖,则24272()7C P A C ==(2)由图可知()0.020.030.040.0651m ++++⨯=,解得0.05m = 所以该天运动步数不少于15000的人数为()0.050.03520080+⨯⨯=(人) 全体职工在该天的平均步数为:2.50.1+7.50.2+12.50.317.50.2522.50.1513.25⨯⨯⨯+⨯+⨯=(千步)(3)因为402000.2,1302000.65÷=÷= 假设甲的步数为x 千步,乙的步数为y 千步 由频率分布直方图可得:10.650.3(10)0.06x --=-⨯,解得656x =0.20.15(20)0.05y -=-⨯,解得19y =所以可得出的是星期二的频率分布直方图. 【点睛】本题考查利用频率分布直方图来求平均数和概率,要注意计算的准确性,较简单. 19.如图,三棱柱111ABC A B C -中,平面11ACC A ⊥平面ABC ,1AA AC =,90ACB ∠=︒.(1)求证:平面11AB C ⊥平面11A B C ;(2)若160A AC ∠=︒,22AC CB ==,求四棱锥11A BCC B -的体积. 【答案】(1)见解析;(223【解析】(1)根据面面垂直性质可证得BC ⊥平面11ACC A ,从而可得1BC A C ⊥,利用平行关系可得111AC B C ⊥;根据四边形11ACC A 是菱形,可得11A C AC ⊥;根据线面垂直判定定理可得1A C ⊥平面11AB C ,根据面面垂直判定定理可证得结论;(2)由图形可知11111122A BCC B A CC B B ACC V V V ---==,可利用三棱锥体积公式求得11B ACC V -,代入可求得结果. 【详解】 (1)平面11ACC A ⊥平面ABC ,平面11ACC A 平面ABC AC =,BC ⊂平面ABC ,90ACB ∠= BC ∴⊥平面11ACC A1A C ⊂平面11ACC A 1BC AC ∴⊥ 11//B C BC 111AC B C ∴⊥ 四边形11ACC A 是平行四边形,且1AA AC = ∴四边形11ACC A 是菱形11AC AC ∴⊥ 1111AC B C C = 1A C ∴⊥平面11AB C又1AC ⊂平面11A B C ∴平面11AB C ⊥平面11A B C (2)四边形11ACC A 是菱形,160A AC ∠=,2AC =1122sin 6032ACC S ∆∴=⨯⨯⨯=11//B C BC ,11B C BC =,BC ⊥平面11ACC A ,1BC =11111111333B ACC ACC V S B C -∆∴=⨯⨯==,111111223A BCCB A CC B B ACC V V V ---∴===即四棱锥11A BCC B -【点睛】本题考查面面垂直关系的证明、四棱锥体积的求解问题,涉及到面面垂直判定定理和性质定理、线面垂直判定定理和性质定理、棱锥体积公式、体积桥求解体积的问题,属于常规题型.20.已知椭圆C :22221x y a b +=(0a b >>)的左焦点为(2,0)F -,离心率为3.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设O 为坐标原点,T 为直线3x =-上一点,过F 作TF 的垂线交椭圆于P ,Q .当四边形OPTQ 是平行四边形时,求四边形OPTQ 的面积.【答案】(1)22162x y +=;(2)【解析】【详解】试题分析:(1)由已知得:c a =2c =,所以a =再由222a b c =+可得b ,从而得椭圆的标准方程. 椭圆方程化为2236x y +=.设PQ 的方程为2x my =-,代入椭圆方程得:22(3)420m y my +--=.面积121222OPTQ OPQ S S OF y y ==⨯⋅-,而12y y -==所以只要求出m 的值即可得面积.因为四边形OPTQ 是平行四边形,所以OP QT =,即1122(,)(3,)x y x m y =---.再结合韦达定理即可得m 的值.试题解析:(1)由已知得:c a =2c =,所以a =又由222a b c =+,解得b =22162x y +=.(2)椭圆方程化为2236x y +=.设T 点的坐标为(3,)m -,则直线TF 的斜率03(2)TF m k m -==----.当0m ≠时,直线PQ 的斜率1PQ k m=,直线PQ 的方程是2x my =- 当0m =时,直线PQ 的方程是2x =-,也符合2x my =-的形式. 将2x my =-代入椭圆方程得:22(3)420m y my +--=. 其判别式22168(3)0m m ∆=++>. 设1122(,),(,)P x y Q x y , 则121212122224212,,()4333m y y y y x x m y y m m m --+==+=+-=+++. 因为四边形OPTQ 是平行四边形,所以OP QT =,即1122(,)(3,)x y x m y =---.所以1221221233{43x x m my y mm -+==-++==+,解得1m =±.此时四边形OPTQ 的面积121222OPTQ OPQ S S OF y y ==⨯⋅-==【考点定位】1、直线及椭圆的方程;2、直线与圆锥曲线的位置关系;3、三角形的面积.21.已知函数()()()2ln 11af x x a x a=++>+. (1)()f x 的导函数记作f x ,且fx 在()1,-+∞上有两不等零点,求a 的取值范围;(2)若()f x 存在两个极值点,记作1x ,2x ,求证:()()124f x f x +>. 【答案】(1)1,2;(2)证明见解析. 【解析】(1)先求fx ,令0f x ,转化为二次方程根的分布问题,结合二次函数的性质即可得出结论;(2)由(1)知,12a <<,1x ,2x 是0fx的两个不同实根,由韦达定理可得1x ,2x 的关系式,把要证明的结论()()124f x f x +>等价化简变形后换元转化为证明不等式()22ln 1201a a -+->-,构造函数()22ln 2g t t t=+-,利用导数判断单调性即可证明结论成立. 【详解】解:(1)()()()()()22221211x a a af x x x a x x a +-=-=+'+++,1x >-, ()()()()22201x a a f x x x a +-==++',令()()22h x x a a =+-.由题意,()0{10h ∆>->,解得:12a <<.所以a 的取值范围为1,2. (2)由(1)知,12a <<, 由()()()()22201x a a f x x x a +-==++',即()220x a a +-=,得()12120{2x x x x a a +==-,()()()()12121222ln 11a af x f x x x a x a x ⎡⎤+=++++⎣⎦++ ()()()1212122121222ln 1a x x a x x x x x x a x x a ++=++++++()()2224ln 12a a a a a =-+-+()22ln 121a a ⎡⎤=-++⎣⎦-,要证明()()124f x f x +>,则只需证明()22ln 1201a a -+->-, 令1a t -=,由()1,2a ∈可得()0,1t ∈, 当()0,1t ∈时,()22ln 2g t t t =+-,()()2210t g t t-'=<, 所以g t 在0,1上是减函数,所以()()10g t g >=,适合题意. 综上,()()124f x f x +>. 【点睛】本题考查函数的零点分布和极值不等式证明,关键在于等价变形转化为常见的问题,属于难题.22.在平面直角坐标系xOy 中,曲线C 的参数方程为cos 1sin x r y r ϕϕ⎧=⎪⎨=+⎪⎩(0r >,ϕ为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的坐标方程为sin 13πρθ⎛⎫-= ⎪⎝⎭,若直线l 与曲线C 相切. (1)求曲线C 的极坐标方程;(2)在曲线C 上取两点M 、N 于原点O 构成MON ∆,且满足6MON π∠=,求面积MON ∆的最大值.【答案】(1)4sin 3πρθ⎛⎫=+ ⎪⎝⎭; (2)2.【解析】(1)求出直线l 的直角坐标方程为y =+2,曲线C ,1),半径为r 的圆,直线l 与曲线C 相切,求出r =2,曲线C 的普通方程为(x 2+(y ﹣1)2=4,由此能求出曲线C 的极坐标方程.(2)设M (ρ1,θ),N (ρ2,6πθ+),(ρ1>0,ρ2>0),由126MON S OM ON sin π==2sin (23πθ+)MON 面积的最大值.【详解】(1)由题意可知将直线l 的直角坐标方程为2y =+,曲线C 是圆心为),半径为r 的圆,直线l 与曲线C 相切,可得:2r ==;可知曲线C 的方程为(()2214x y +-=,∴曲线C 的极坐标方程为2cos 2sin 0ρθρθ--=,即4sin 3πρθ⎛⎫=+ ⎪⎝⎭. (2)由(1)不妨设()1,M ρθ,2,6N πρθ⎛⎫+ ⎪⎝⎭,()120,0ρρ>>21211sin ?4sin ?sin 2sin cos 26432MON S OM ON πππρρθθθθθ∆⎛⎫⎛⎫===++=+ ⎪ ⎪⎝⎭⎝⎭sin22sin 23πθθθ⎛⎫=+=++ ⎪⎝⎭当12πθ=时,2MON S ∆≤MON ∴∆面积的最大值为2+.【点睛】本题考查曲线的极坐标方程的求法,考查三角形的面积的最大值的求法,考查参数方程、极坐标方程、直角坐标方程的互化等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.23.已如函数()()2,f x x ax b a b =++∈R . (1)2a =,0b =,解不等式()4f x x >-;(2)m ,n 是()f x 的两个零点,若1a b +<,求证:1m <,1n <.【答案】(1){4x x <-或1}x >;(2)证明见解析.【解析】(1)由条件可知不等式等价于224x x x +>-,根据公式去绝对值解不等式;(2)根据韦达定理表示,m n a mn b +=-=,代入1a b +<后,利用含绝对值三角不等式变形证明不等式.【详解】(1)当2a =,0b =时,224x x x +>-⇔22242x x x x x --<-<+, 222424x x x x x x⎧--<-⎨+>-⎩ 不等式的解集为{}41x x x <->或. (2)依题意得m n a mn b +=-⎧⎨=⎩, ∴m n a +=,mn b =.∵1a b +<,∴1m n mn ++<.又∵m n m n -≤+, ∴10m n mn -+-<,()()110m n -+<. ∴1m <. 同理可证,1n <.【点睛】本题考查解含绝对值不等式,含绝对值三角不等式的应用,重点考查转化与化归的思想,计算能力,属于中档题型.。

安徽省合肥市第一中学2022届高三下学期最后一卷文科数学试题(高频考点版)

安徽省合肥市第一中学2022届高三下学期最后一卷文科数学试题(高频考点版)

一、单选题二、多选题1. 若复数满足,则实数的取值范围是( )A.B.C.D.2. 算盘是中国传统的计算工具,是中国人在长期使用算筹的基础上发明的,是中国古代一项伟大的、重要的发明,在阿拉伯数字出现前是全世界广为使用的计算工具.“珠算”一词最早见于东汉徐岳所撰的《数术记遗》,其中有云:“珠算控带四时,经纬三才.”北周甄鸾为此作注,大意是:把木板刻为3部分,上、下两部分是停游珠用的,中间一部分是作定位用的.下图是一把算盘的初始状态,自右向左,分别是个位、十位、百位……,上面一颗珠(简称上珠)代表5,下面一颗珠(简称下珠)代表1,即五颗下珠的大小等于同组一颗上珠的大小.现在从个位和十位这两组中随机选择往下拨一颗上珠,从个位、十位和百位这三组中随机往上拨2颗下珠,算盘表示的数能被5整除的概率是()A.B.C.D.3. 记号[x ]表示不超过实数x 的最大整数,若,则的值为( )A .899B .900C .901D .9024.如图,圆柱内有一个三棱柱,三棱柱的底面在圆柱底面内,且底面是正三角形.圆柱侧面积为,其底面直径与母线长相等,则此三棱柱的体积为()A.B .12C.D. 5.的定义域是A.B.C.D.6.若函数的定义域为R ,则实数m 的取值范围是A.B.C.D.7.已知函数,则下列说法正确的是( )A.的定义域为B.将的图象经过适当的平移后所得的图象可关于原点对称C .若在上有最小值-2,则安徽省合肥市第一中学2022届高三下学期最后一卷文科数学试题(高频考点版)安徽省合肥市第一中学2022届高三下学期最后一卷文科数学试题(高频考点版)三、填空题四、解答题D .设定义域为的函数关于中心对称,若,且与的图象共有2022个交点,记为(,2,…,2022),则的值为08. 甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球,先从甲罐中随机取出一球放入乙罐,分别以事件,和表示从甲罐取出的球是红球,白球和黑球;再从乙罐中随机取出一球,以事件B 表示从乙罐取出的球是红球,则下列结论中正确的是( )A .事件B 与事件相互独立B.,,是两两互斥的事件C.D.9. 已知某圆锥的侧面展开图是一个半径为的半圆、则该圆锥的体积为__________.10. 二项式的展开式中,常数项为______(用数值表示).11.已知一组数据:,且,这组数据的中位数是5,则这组数据的平均数的最大可能值是____.12. 函数的最大值为_______,记函数取到最大值时的,,则_______.13. 已知函数,.(1)根据定义证明函数是减函数;(2)若存在两不相等的实数,,使,且,求实数的取值范围.14. 已知函数f (x )=ln x x +1.(1)求f (x )的最大值;(2)设函数g (x )=f (x )+a (x 1)2,若对任意实数b ∈(2,3),当x ∈(0,b ]时,函数g (x )的最大值为g (b ),求a 的取值范围;(3)若数列{a n }的各项均为正数,a 1=1,a n +1=f (a n )+2a n +1(n ∈N +).求证:a n ≤2n1.15. 如图,某地一天从时的温度变化曲线近似满足,其中,,.(1)求,,,;(2)求这一天时的最大温差近似值.参考数据:,.16. 设函数,其中.(1)讨论的单调性;(2)若的图象与轴没有公共点,求a 的取值范围.。

安徽省合肥一中2024届高三下学期最后一卷语文含答案解析

安徽省合肥一中2024届高三下学期最后一卷语文含答案解析

合肥一中2024届高三最后一卷语文试题(考试时间:150分钟满分:150分)注意事项:1、答题前,务必在答题卡和答题卷规定的地方填写自己的姓名、准考证号和座位号后两位。

2、答题时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

3.答题时,必须使用0.5毫米的黑色墨水签字笔在答题卷上书写,要求字体工整、笔迹清晰。

作图题可先用铅笔在答题卷规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。

必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草稿纸上答题无效。

4、考试结束,务必将答题卡和答题卷一并上交。

一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,18分)阅读下面的文字,完成1~5题。

材料一:数字媒介的核心特征之一是互动性。

互动性从根本上改写了传统新闻文本的构成法则——文本不再是一个封闭的、固定的叙事形式,亦不再拥有相对稳定的意义结构,而是在互动的作用下为用户提供了一个自主选择、参与、探索的叙事空间,最大限度地激活了文本的开放性内涵,为用户打开了一个意义协商空间。

不同的互动实践与方法,形成了不同的语义规则,亦形成了不同的意义生成方式。

因此,互动可以在修辞维度上加以认识——互动的语言,即是修辞的语言。

在时间维度上,用户可以自主地选择故事在时间维度的“展开”方式,并从容地处理“沿途”的页面悬停时长,由此决定叙事“前行”的时间结构,如内容呈现的顺序、方向和时间,并在此基础上形成一种独特的时间意识。

当不同的信息模块之间存在一定的时间逻辑时,用户便可以在自由选择中建立特定的时间概念或时间意识。

2023年杭州亚运会期间,央视新闻推出的融媒体产品《亚运山水间》,设置了富春江、良渚、西湖、钱塘江四个“探险”板块,用户点击不同的板块,即可触发漂流、迷宫、龙舟和射箭四个不同场景的游戏,从而体验特定场景的游戏内容。

不同的选择顺序,形成的是不同的内容呈现顺序和结构,这便从根本上改写了传统新闻的内容呈现顺序,由此摆脱了文本意义生成所高度依赖的时间逻辑。

安徽省合肥市2024届高三“最后一卷”数学试题含答案

安徽省合肥市2024届高三“最后一卷”数学试题含答案

合肥2024届高三“最后一卷”数学试题(答案在最后)注意事项:1.本试卷分选择题和非选择题两部分,满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.............................4.本卷命题范围:高考范围.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|1,N}A x x x =≤∈,{}|=>B x x a ,若A B ⊆,则实数a 的取值范围是()A.(],0-∞ B.(),0∞- C.()1,+∞ D.[)1,+∞【答案】B 【解析】【分析】根据几集合中的元素化简集合A ,再根据集合间的关系即可得实数a 的取值范围.【详解】因为集合{}2{|1,N}0,1A x x x =≤∈=,{}|=>B x x a ,若A B ⊆,则a<0,故实数a 的取值范围是(),0∞-.故选:B.2.某校运动会,一位射击运动员10次射击射中的环数依次为:7,7,10,9,7,6,9,10,7,8.则下列说法错误的是()A.这组数据的平均数为8B.这组数据的众数为7C.这组数据的极差为4D.这组数据的第80百分位数为9【答案】D 【解析】【分析】利用众数、中位数、极差、百分位数的定义,根据条件逐一对各个选项分析判断即可得出结果.【详解】这组数据的平均数为771097691078810+++++++++=,故A 正确;这组数据的众数为7,故B 正确;这组数据的极差为1064-=,故C 正确;将这组数据按照从小到大的顺序排列为6,7,7,7,7,8,9,9,10,10,因为80%108⨯=,所以这组数据的第80百分位数为9109.52+=,故D 错误.故选:D .3.若x ,R y ∈,则“112222xyx y ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭”是“ln()0x y ->”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】等价变形112222x yxy⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,然后构造函数得出x y >,解不等式ln()0x y ->得1->x y ,再利用充分条件和必要条件的定义,即可得解.【详解】设命题p :112222x yx y ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,命题q :ln()0x y ->对于命题p ,因为112222xyxy⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,所以,112222xyx y ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,构造函数()122xx f x ⎛⎫=- ⎪⎝⎭,易知()f x 在R 上为增函数,所以x y >;对于命题q ,因为ln()0x y ->,所以1->x y ,即1x y >+;所以p q ⇒为假命题,q p ⇒为真命题;所以p 是q 的必要不充分条件;故选:B.4.已知点P 在圆221x y +=上运动,点,F A 为椭圆22184x y+=的右焦点与上顶点,则PFA ∠最小值为()A.15︒B.30︒C.45︒D.75︒【答案】A【分析】由题意知(2,0),(0,2)F A ,且圆在椭圆内,则确定FP 与圆相切时PFA ∠取得最小值,即可求解.【详解】由题意知,(2,0),(0,2)F A ,且圆在椭圆内,当FP 与圆相切时,PFA ∠取得最小值,此时30,45OFP OFA ︒︒∠=∠=,所以453015PFA OFA OFP ︒︒︒∠=∠-∠=-=,所以PFA ∠的最小值为15︒.故选:A5.球面被平面所截得的一部分叫做球冠,截得的圆面叫做球冠的底,垂直于圆面的直径被截得的一段叫做球冠的高.球冠也可看作圆弧绕过它的一个端点的直径旋转一周所成的曲面.假设球面对应球的半径是R ,球冠的高是h ,那么球冠的表面积公式为2πS Rh =.据中国载人航天工程办公室消息,北京时间2023年12月21日21时35分,经过约7.5小时的出舱活动,航天员汤洪波、唐胜杰已安全返回天和核心舱,神舟十七号航天员乘组第一次出舱活动取得圆满成功.若航天员汤洪波出仓后站在机械臂上,以背后的地球为背景,如图所示,面向镜头招手致意,此时汤洪波距离地球表面约为400km (图中的点A 处),设地球半径约为R km ,则此时汤洪波回望地球时所能看到的地球的表面积为()A.22100π400R km R + B.22200π400R km R + C.22400π400R km R + D.22800π400R km R +【答案】D【分析】由题意可得2400R OO R '=+,结合公式2πS Rh =计算即可求解.【详解】如图,400AB =km ,由~OO C OCA ' ,得OO OCOC OA=',又OC R =,则2(400)R OO OA OO R ''=⋅=+,得2400R OO R '=+,所以222400800π2π2π()2π()2π400400400R R S Rh R R OO R R R R R R '==-=-=⋅+++(2km ).即此时汤洪波回望地球时所能看到的地球的表面积为2800π400R R +(2km ).故选:D6.已知()()()cos 10cos 50cos 50ααα-+︒︒-︒=+,则tan α=()A.33B.33-C.D.【答案】C 【解析】【分析】根据两角和差的余弦公式化简,再根据506010︒=︒-︒结合两角差的余弦公式化简即可得解.【详解】由()()()cos 10cos 50cos 50ααα-+︒︒-︒=+,得cos10cos sin10sin 2cos50cos ααα︒+︒=︒,故sin10sin 2cos50cos cos10cos ααα︒=︒-︒所以2cos50cos10tan sin10α︒-︒=︒()2cos 6010cos10sin10︒-︒-︒=︒cos10cos10sin10︒︒-︒==︒.7.已知数列{}n a 各项为正数,{}n b 满足21n n n a b b +=,112n n n a a b +++=,若12a =,11b =,则122024111a a a +++= ()A.10121013B.10111012C.20242025D.20232024【答案】C 【解析】【分析】由21n n n a b b +=,得n a =,再结合112n n n a a b +++==,进而可得数列是等差数列,即可求出{}nb 的通项,从而可求出数列{}na 的通项,再利用裂项相消法求解即可.【详解】因为0n a >,21n n n a b b +=,所以n a =,因为112n n n a a b +++=,所以0n b >12n b ++=,=,所以数列是等差数列,又12a =,11b =,所以24b =,所以数列1=,首项为1=,n =,所以2n b n =,所以()1n a n n ==+,则()111111n a n n n n ==-++,所以1220241111111112024112232024202520252025a a a +++=-+-++-=-= .故选:C.8.已知双曲线2222:1(0,0)x y C a b a b-=>>,1(,0)F c -、2(,0)F c 分别为左、右焦点,若双曲线右支上有一点P 使得线段1PF 与y 轴交于点E ,2PO PF =,线段2EF 的中点H 满足120F H PF ⋅=uuu r uuu r ,则双曲线的离心率为()A.2B.2C.7+D.7-【答案】A 【解析】【分析】由2PO PF =,设0(,)2cP y ,表示出1PF 的方程求得02(0,)3y E ,则0(,)23y c H ,由120F H PF ⋅=uuu r uuu r 表示出P 的坐标,代入双曲线方程,整理计算即可求解.【详解】由2PO PF =,得P 的横坐标为2c ,设0(,)2cP y ,则直线1PF 的方程为02()3y y x c c =+,令0x =,得023y y =,即02(0,)3yE ,所以线段2EF 的中点0(,)23y c H ,则01203(,),(,)232y c cF H PF y ==- ,由120F H PF ⋅=uuu r uuu r ,得2200033(,)(,)023243y y c c c y ⋅-=-=,则032cy =±,即3(,22c cP ±,代入双曲线方程得22229144c c a b -=,即222229144()c c a c a -=-,整理得421440e e -+=,由1e >,解得32102e +=.故选:A【点睛】思路点睛:解答本题的思路是根据点P 的坐标表示出点E 的坐标,由中点坐标公式表示出点H 的坐标,结合平面向量数量积的坐标表示求得3(,)22c cP ±,代入双曲线方程计算即可.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知复数z ,1z ,2z ,下列结论正确的有()A.若复数z 满足1R z∈,则R z ∈B.若12z z ≠,z 满足12zz zz =,则0z =C.若1212z z z z +=-,则120z z ⋅=D.若复数z 满足228z z ++-=,则z 在复平面内所对应点的轨迹是椭圆【答案】ABD 【解析】【分析】A 根据z R ∈的条件,得出0b =可以判断;B 根据复数相等的充要条件即可求解;C 举反例可求解;D 令z i x y =+,再结合椭圆的定义可以求解.【详解】对于A 选项,令i z a b =+,()()22222211i i i i i i a b a b a b z a b a b a b a b a b a b --====-++-+++因为1R z ∈,所以220b a b -=+,即0b =,所以R z ∈,故A 正确;对于B 选项,令111222i,i,i z a b z x y z x y =+=+=+,因为12z z ≠,所以12x x ≠或22y y ≠,()()()1111111i i i zz a b x y ax by ay bx =++=-++;()()()2222222i i i zz a b x y ax by ay bx =++=-++;因为12zz zz =,所以11221122ax by ax by ay bx ay bx -=-⎧⎨+=+⎩,因为12x x ≠或22y y ≠,所以0a b ==,所以0z =,故B 正确;对于C 选项,令12i z z ==1,,易知1212z z z z +=-,所以12i 0z z ⋅=≠,故C 错误;对于D 选项,令i z x y =+,因为228z z ++-=,84=>,由椭圆定义可得z 在复平面内所对应点的轨迹是椭圆,故D 正确,故选:ABD.10.群论,是代数学的分支学科,在抽象代数中.有重要地位,且群论的研究方法也对抽象代数的其他分支有重要影响,例如一般一元五次及以上的方程没有根式解就可以用群论知识证明.群的概念则是群论中最基本的概念之一,其定义如下:设G 是一个非空集合,“.”是G 上的一个代数运算,如果该运算满足以下条件:①对所有的a 、b G ∈,有a b G ⋅∈;②a ∀、b 、c G ∈,有()()a b c a b c ⋅⋅=⋅⋅;③e G ∃∈,使得a G ∀∈,有e a a e a ⋅=⋅=,e 称为单位元;④a G ∀∈,b G ∃∈,使a b b a e ⋅=⋅=,称a 与b 互为逆元.则称G 关于“·”构成一个群.则下列说法正确的有()A.{}1,1G =-关于数的乘法构成群B.自然数集N 关于数的加法构成群C.实数集R 关于数的乘法构成群D.{},Z G a b a b =+∈关于数的加法构成群【答案】AD 【解析】【分析】根据“⋅”运算的定义,结合集合中元素与集合的关系判断,对每个选项逐一判断即要可.【详解】对于A 选项,对所有的a 、b G ∈,有a b G ⋅∈,且满足①乘法结合律;②1e G ∃=∈,使得a G ∀∈,有11a a a ⋅=⋅=;③a G ∀∈,a G ∃∈,有1a a a a ⋅=⋅=,故A 正确;对于B 选项,①自然数满足加法结合律;②0N e ∃=∈,使得N a ∀∈,有00a a a +=+=;但是对于0N ∈,1N ∈,不存在N b ∈,使110b b +=+=,故B 错误;对于C 选项,对所有的a 、R b ∈,有R a b ⋅∈,①实数满足加法结合律;②1R e ∃=∈,使得R a ∀∈,有11a a a ⋅=⋅=;但对于1R ∈,0R ∈,不存在R b ∈,使001b b ⋅=⋅=,故C 错误;对于D 选项,对所有的a 、b G ∈,可设a x =+,b s =+,(x ,y ,s ,Z)t ∈,则())a b x s y t G +=+++∈,①G 满足加法结合律,即a ∀、b 、c G ∈,有()()++=++a b c a b c ;②0e G ∃=∈,使得a G ∀∈,有e a a e a +=+=;③a G ∀∈,设a x =+,x ,Z y ∈,b x G ∃=--∈,使a b b a e +=+=,故D 正确.故选:AD .11.已知函数()f x ,对任意的,(,0)(0,)x y ∈-∞+∞ 都有()()()f x f y f xy y x =+,且()1e ef =(其中e 为自然对数的底数),则()A.()10f -=B.1e e f ⎛⎫=- ⎪⎝⎭C.()f x 是偶函数D.e x =是()f x 的极小值点【答案】AB 【解析】【分析】由题意,合理巧妙赋值,即可判断ABC ;根据()()()xyf xy xf x yf y =+构造函数()ln xf x x =,利用导数研究()f x 的性质即可判断D.【详解】A :令1x y ==,得(1)(1)(1)f f f =+,解得(1)0f =,令1x y ==-,得(1)(1)(1)f f f =----,解得(1)0f -=,故A 正确;B :令1e,ex y ==,得1((e)e (1)1e ef f f =+,又1(e)e f =,所以1()e ef =-,故B 正确;C :令1y =-,得()(1)()()1f x f f x f x x--=+=--,所以()f x 为奇函数,故C 错误;D :由()()()f x f y f xy y x=+,得()()()xyf xy xf x yf y =+,设函数()ln xf x x =,则ln ,0ln ()ln(),0xx x xf x x x x x⎧>⎪⎪==⎨-⎪<⎪⎩,当0x >时,21ln ()xf x x-'=,令()00e,()0e f x x f x x ''>⇒<<<⇒>,所以()f x 在(0,e)上单调递增,在(e,)+∞上单调递减,所以e x =是()f x 的极大值点,故D 错误.故选:AB【点睛】关键点点睛:本题考查构造函数,利用导数判断函数的单调,本题的关键是:根据()()()xyf xy xf x yf y =+,构造函数()ln xf x x =.三、填空题:本题共3小题,每小题5分,共15分.12.已知向量()2,3a =-r ,()1,2b =- ,若()a b a λ+⊥,则λ=______.【答案】813【解析】【分析】根据平面向量数量积的坐标运算与向量垂直的坐标运算列方程求解即可.【详解】因为()2,3a =-r,()1,2b =- ,由()a b a λ+⊥ 可得()()()()()()21,322,32213321380a b a λλλλλλ+⋅=--+⋅-=-+-⨯-+=-=,解得813λ=.故答案为:813.13.除数函数(divisor function )()()*Ny d n n =∈的函数值等于n 的正因数的个数,例如,()11d =,()43d =.则()2160d =______.【答案】40【解析】【分析】根据定义写出2160的质数因数,即可得解.【详解】因为432160235=⨯⨯,它的因数形如235i j k ⨯⨯,其中{}{}{}0,1,2,3,4,0,1,2,3,0,1i j k ∈∈∈,所以不同的因数有54240⨯⨯=个,即()216040d =.故答案为:40.14.已知函数()21x f x x+=,若()()ln f x f a x >对任意()2e,e x ∈恒成立,则正数a 的取值范围为______.【答案】1,e e ⎡⎤⎢⎥⎣⎦【解析】【分析】一方面,通过题设条件可以证明1e e a ≤≤;另一方面,在1e ea ≤≤的情况下又可证明题设条件成立,这就得到了a 的取值范围是1,e e⎡⎤⎢⎥⎣⎦.【详解】一方面,如果对任意()2e,ex ∈有()()ln f x f a x >:设()()()ln g x f x f a x =-,则对任意()2e,ex ∈有()0g x >,从而由()2e 1e,e +∈知()e 10g +>.假设()e 0g <,则由零点存在定理知存在()e,e 1t ∈+使得()0g t =.但由()()2e,e 1e,et ∈+⊆又有()0g t >,矛盾,所以()e 0g ≥.代入得到()()e 0f f a -≥,从而22e 11e a a++≥,解之,得到1e e a ≤≤;另一方面,如果1e ea ≤≤:设()ln h x x x =,则()ln 1h x x ='+.从而当10e x <<时()0h x '<,当1e x >时()0h x '>.所以()h x 在10,e⎛⎤ ⎥⎝⎦上递减,在1e ,⎡⎫+∞⎪⎢⎣⎭上递增.当()2e,e x ∈时,有11111ln e ln e ln e e e e e a x x x x h x h x x x x x ⎛⎫⎛⎫⎛⎫≤=-⋅=-⋅<-⋅=-⋅-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,且()()111111ln ln ln e e e e e e e a x x x x h x h x x x x x≥=⋅=⋅>⋅=⋅=.所以1ln a x x x <<,这就意味着()1ln ln 0a x x a x x ⎛⎫--< ⎪⎝⎭,展开即()21ln 1ln a x a x x x ⎛⎫+<+ ⎪⎝⎭,此即()2ln 11ln a x x x a x++>,故()()ln f x f a x >.综上,a 的取值范围是1,e e⎡⎤⎢⎥⎣⎦.【点睛】方法点睛:分类讨论是求取值范围的典型方法.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.如图,直四棱柱1111ABCD A B C D -各棱长均为2,π3BAD ∠=,O 是线段BD 的中点.(1)求点O 到平面11AC D 的距离;(2)求直线AB 与平面11AC D 所成角的正弦值.【答案】(1)255(2)55【解析】【分析】(1)连接AC ,11B D 交11A C 于点1O ,连接1OO ,以点O 为原点,建立空间直角坐标系,利用向量法求解即可;(2)利用向量法求解即可.【小问1详解】连接AC ,由题意,点O 为,AC BD 的交点,连接11B D 交11A C 于点1O ,连接1OO ,则1OO ⊥平面ABCD ,因为四边形ABCD 为菱形,则AC BD ⊥,如图,以点O 为原点,建立空间直角坐标系,在ABD △中,π3BAD ∠=,则ABD △为等边三角形,则2,3BD AC ==则()()()()110,0,0,1,0,0,0,3,2,0,3,2O D A C -,故()()()1111,0,0,0,3,0,1,3,2OD A C DA =-==-,设平面11AC D 的法向量为(),,n x y z = ,则有11130320n A C n DA x y z ⎧⋅==⎪⎨⋅=-+=⎪⎩ ,可取()2,0,1n =- ,则点O 到平面11AC D 的距离为555OD n n ⋅== ;【小问2详解】()()0,3,0,1,0,0A B ,故()3,0AB =,则cos,5n ABn ABn AB⋅===,即直线AB与平面11AC D.16.已知函数()π2π1sin sin332f x x x⎛⎫⎛⎫=+⋅+-⎪ ⎪⎝⎭⎝⎭,角A为△ABC的内角,且()0f A=.(1)求角A的大小;(2)如图,若角A为锐角,3AB=,且△ABC的面积SE、F为边AB上的三等分点,点D为边AC的中点,连接DF和EC交于点M,求线段AM的长.【答案】(1)π6A=或5π6A=(2)73【解析】【分析】(1)利用三角恒等变换化简,再根据()0f A=即可得解;(2)先根据三角形的面积公式求出边c,再将AM用,AF AC表示,结合数量积的运算律即可得解.【小问1详解】()π2π1sin sin332f x x x⎛⎫⎛⎫=+⋅+-⎪ ⎪⎝⎭⎝⎭13131sin cos sin22222x x x x⎛⎫⎛⎫=+-+-⎪⎪⎪⎪⎝⎭⎝⎭22311cos sin442x x=--21sin4x=-,则()21sin 04f A A =-=,因为()0,πA ∈,所以sin 0A >,所以1sin 2A =,所以π6A =或5π6A =;【小问2详解】若角A 为锐角,则π6A =,设角,,A B C 的对边分别为,,a b c ,则13sin 244S bc A b ===,所以b =如图,连接CF ,因为点E 、F 为边AB 上的三等分点,所以E 为AF的中点,因为点D 为边AC 的中点,所以点M 为ACF △的重心,则()222112333233CM CE AE AC AF AC AF AC ⎛⎫==-=-=- ⎪⎝⎭,所以()13AM AC CM AF AC =+=+,又2,AF AC ==,所以73AM ==== ,即线段AM 的长为73.17.混养不仅能够提高水产养殖的收益,还可以降低单一放养的病害风险,提高养殖效益.某鱼塘中有A 、B 两种鱼苗.为了调查这两种鱼苗的所占比例,设计了如下方案:①在该鱼塘中捕捉50条鱼苗,统计其中鱼苗A 的数目,以此作为一次试验的结果;②在每一次试验结束后将鱼苗放回鱼塘,重复进行这个试验n次(其中*n ∈N ),记第i 次试验中鱼苗A 的数目为随机变量)i 1,2,(,X n =⋯;③记随机变量11ni i X X n ==∑,利用X 的期望()E X 和方差()D X 进行估算.设该鱼塘中鱼苗A 的数目为M ,鱼苗B 的数目为N ,其中M N <,每一次试验都相互独立...........(1)在第一次试验中,若捕捉的50条鱼苗中鱼苗A 的数目有20条,记录员逐个不放回的记录鱼苗的种类,求第一次记录的是鱼苗A 的条件下,第二次记录的仍是鱼苗A 的概率;(2)已知()()()i j i j E X X E X E X +=+,()()()i j i j D X X D X D X +=+,(i )证明:()()1E X E X =,()()11D X D X n=;(ii )试验结束后,记i X 的实际取值分别为()1,2,,i x i n = ,平均值和方差分别记为x 、2s ,已知其方差2758s n=.请用x 和2s 分别代替()E X 和()D X ,估算M N 和x .【答案】(1)1949(2)(i )证明见解析,(ii )13M N =,252x =【解析】【分析】(1)设事件M :“第一次记录的是鱼苗A “,事件N :“第二次记录的是鱼苗A ”,然后根据题意求出()P M 和()P MN ,再利用条件概率公式即可求得所求概率;(2)(i )由题意可得,(1i X i =,2,L ,)n 都近似服从完全相同的二项分布,则12()()()n E X E X E X === ,12()()()n D X D X D X === ,然后利用期望和方差的公式计算即可得证;(ii )由(i )可知1~(50,)M X B M N +,则1X 的均值150()M E X M N =+,1X 的方差1()50M ND X M N M N=⨯⋅++,然后结合题意即可求解.【小问1详解】设事件M :“第一次记录的是鱼苗A “,事件N :“第二次记录的是鱼苗A ”,由题意可得,120150C 2()C 5P M ==,220250C 38()C 245P MN ==,所以5()938242519(|)()4P MN P N M P M ===;【小问2详解】(i )证明:由题可得,(1i X i =,2,L ,)n 都近似服从完全相同的二项分布,则12()()()n E X E X E X === ,12()()()n D X D X D X === ,11111111()()()()()()n nn i i i i i i i E X E x E X E X nE X E X n n n n=======⨯=∑∑∑,1122211111111()()()()()()n nn i i i i i i D X D X D X D X nD X D X n n n n n ========∑∑∑,所以1()()E X E X =,11()()D X D X n=;(i i )解:由(i )可知1~(50,)M X B M N +,则1X 的均值150()ME X M N=+,1X 的方差1()50M N D X M N M N=⨯⨯++,所以25075()()8MN D X n M N n ==+,解得13M N =或3MN=,又0M N ≤<,则01MN≤<,所以13M N =,15025()()2M x E X E X M N ====+.18.已知抛物线2:2y x Γ=,点000(,)(0)R x y y ≠在抛物线Γ上.(1)证明:以R 为切点的Γ的切线的斜率为1y ;(2)过Γ外一点A (不在x 轴上)作Γ的切线AB 、AC ,点B 、C 为切点,作平行于BC 的切线11B C (切点为D ),点1B 、1C 分别是与AB 、AC 的交点(如图).(i )若直线AD 与BC 的交点为E ,证明:D 是AE 的中点;(ii )设三角形△ABC 面积为S ,若将由过Γ外一点的两条切线及第三条切线(平行于两切线切点的连线)围成的三角形叫做“切线三角形”,如11AB C △.再由点1B 、1C 确定的切线三角形221B B C △,133C B C △,并依这样的方法不断作1,2,4,…,12n -个切线三角形,证明:这些“切线三角形”的面积之和小于13S .【答案】(1)证明过程见解析(2)(i )证明过程见解析;(ii )证明过程见解析【解析】【分析】(1)设出切线方程并和抛物线联立,再由方程有唯一解得到结论;(2)使用(1)的结论即可直接得到(i )的结论;求出每次作的切线三角形的面积与前一次作的切线三角形的面积的比值,从而确定每个切线三角形的面积,然后即可证明(ii ).【小问1详解】设()00y k x x y =-+是以R 为切点的Γ的切线,则0k ≠.由于该直线和Γ有唯一公共点()00,R x y ,故联立后的方程组()0022y k x x y y x⎧=-+⎨=⎩只有唯一解00x x y y =⎧⎨=⎩.从而将第一个方程代入第二个,得到的方程2002y y y x k -⎛⎫=⋅+⎪⎝⎭只有唯一解0y y =.此方程展开即为2002220y y y x k k -+-=,从而002y y k=+,所以01k y =.【小问2详解】(i )设211,2y B y ⎛⎫ ⎪⎝⎭,222,2y C y ⎛⎫ ⎪⎝⎭,则12y y ≠.根据上一小问的结论,可知Γ在B 和C 处的切线分别是2112y y y x =+和2222y y y x =+.联立两直线解得121222y y x y y y ⎧=⎪⎪⎨+⎪=⎪⎩,所以1212,22y y y y A +⎛⎫ ⎪⎝⎭.由于A 不在x 轴上,所以120y y +≠,故1112221212222B C BC y y k k y y y y -===+-,所以D 的纵坐标是122y y +,从而212121,222y y y y D ⎛⎫++⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭.而1212,22y y y y A +⎛⎫⎪⎝⎭,A 在Γ外,D 在Γ上,所以直线AD 的方程是122y y y +=.这表明该直线通过BC 的中点221212,42y y y y ⎛⎫++ ⎪⎝⎭,所以直线AD 与BC 的交点E 就是BC 的中点,即221212,42y y y y E ⎛⎫++ ⎪⎝⎭.而1212,22y y y y A +⎛⎫ ⎪⎝⎭,2221212121124222y y y y y y ⎛⎫++⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,故AE 的中点坐标为212121,222y y y y ⎛⎫++⎛⎫ ⎪ ⎝⎭⎝⎭,这就是点D 的坐标,所以D 是AE 的中点.(ii )由于D 是AE 的中点,11B C 和BC 平行,故11,B C 分别是,AB AC 的中点.所以()1121213,44y y y y y B ⎛⎫++⎪⎝⎭,()2121213,44y y y y y C ⎛⎫++ ⎪⎝⎭.首先有3322312121212121111224282ABC B C y y y y S AE y y y y y y y y ⎛⎫+⎛⎫=⋅-=-⋅-=-=-= ⎪ ⎪⎝⎭⎝⎭ .从而3ABCS S ==,1131144AB C ABC S S == .而1212,22y y y y A +⎛⎫⎪⎝⎭,故根据点的一般性可知对Γ外的任意一点(),T x y ,该点确定的切线三角形的面积为314.再由()1121213,44y y y y y B ⎛⎫++ ⎪⎝⎭,()2121213,44y y y y y C ⎛⎫++ ⎪⎝⎭,可知1221133311114448B BC AB C S S ⎛ ==== ⎝,同理1331118C B C AB C S S = .这就表明,不断作11,2,4,...,2n -个切线三角形后,第()2,3,...,k k n =次作的所有切线三角形的面积均为任意一个第1k -次作的切线三角形的面积的18.而1114AB C S S =,所以第()1,2,...,k k n =次作的切线三角形的面积均为28k S .设所有切线三角形的面积之和为t S ,由于第()1,2,...,k k n =次作的切线三角形的个数为12k -,故11112221884k k nn nt k k kk k k S S S S -===⋅==⋅=⋅∑∑∑.从而2111 (44)4t n S S ⎛⎫=+++⎪⎝⎭,这就得到21444114...1 (44)444t nn S S S -⎛⎫⎛⎫=+++=+++ ⎪ ⎪⎝⎭⎝⎭121111111 (44444)4t n n nS S S S S -⎛⎫⎛⎫<++++=++++=+ ⎪ ⎪⎝⎭⎝⎭,所以3t S S <,即13t S S <,结论得证.【点睛】关键点点睛:本题的关键点在于对抛物线性质的使用和探究.19.贝塞尔曲线(Be'zier curve )是一种广泛应用于计算机图形学、动画制作、CAD 设计以及相关领域的数学曲线.它最早来源于Bernstein 多项式.引入多项式()C (1)niin ii n B x x x -=-(0,1,2,,)i n =L ,若()f x 是定义在[]0,1上的函数,称()0;()()nnn ii iB f x f Bx n ==∑,[0,1]x ∈为函数()f x 的n 次Bernstein 多项式.(1)求()202B x 在()0,1上取得最大值时x 的值;(2)当()f x x =时,先化简();n B f x,再求2n B f ⎛⎫⎪ ⎪⎝⎭的值;(3)设()00f =,()f x x 在()0,1内单调递增,求证:();n B f x x在()0,1内也单调递增.【答案】(1)110(2)();n B f x x =,22;n B f ⎛⎫= ⎪ ⎪⎝⎭(3)证明见解析【解析】【分析】(1)求导,进而可求出函数的单调区间,即可得解;(2)根据Bernstein 多项式及函数()f x 的n 次Bernstein 多项式的定义化简即可求出();n B f x ,再令2x =即可得解;(3)根据()00f =及函数()f x 的n 次Bernstein 多项式的定义求导并化简,再根据()f x x在()0,1内单调递增,可得11i i f f n n i i n n+⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭>+,即可得出结论.【小问1详解】由题意()()182022220C 1B x x x =-,()0,1x ∈,则()()()()()()1817172022222020C 21181C 21110B x x x x x x x x '⎡⎤=---=⋅--⎣⎦令()()2020B x '=,得110x =,当1010x <<时,()()2020B x '>,当1110x <<时,()()2020B x '<,所以()202B x 在10,10⎛⎫ ⎪⎝⎭上单调递增,在1,110⎛⎫⎪⎝⎭上单调递减,所以当110x =时,()202B x 在()0,1上取得最大值;【小问2详解】()()()0;;nn n i i n i B x x B B f x n x =⎛⎫== ⎪⎝⎭∑()()0!1!1!nn ii i i n x x n i n -==⋅--∑()()()()01!11!1!n n ii i n x x i n -=-=---∑()()()111!1!1!n n i i i n x x x i n i ---=-=---∑()()11101n n n i i x B x x x x x ---===+-=∑,所以2233;n B f ⎛⎫= ⎪ ⎪⎝⎭;【小问3详解】()()()200;1nn n nni i i i B f x i i x fB x f B x x x n n =='⎡⎤'⎛⎫⎛⎫⎛⎫⎛⎫⎢⎥=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦∑∑()()11120011C 1C 1n nn i n i i ii i n n i i i i i x n f f x x f x x xn n n -----==⎡⎤⎛+⎫⎛⎫⎛⎫⎛⎫=⋅----⎢⎥ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦∑∑由()00f =,上式()()11120111C 1C 1n nn i n i i ii in n i i i i i x n f f x x f x x x n n n -----==⎡⎤⎛+⎫⎛⎫⎛⎫⎛⎫=⋅----⎢⎥ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦∑∑()()1111111200111C 1C 1n n n i n i i ii i n n i i i i i x n f f x x f x x xn n n ------++-==⎡⎤⎛+⎫+⎛⎫⎛⎫⎛⎫=⋅----⎢⎥ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦∑∑()()()()()11101!1!11!1!1!1!n n i i i n i i n i x x n f f f i n i n n i n i n ----=⎡⎤-⎛+⎫+⎛⎫⎛⎫⎛⎫=-⋅--⎢⎥ ⎪ ⎪ ⎪ ⎪--+--⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦∑()()1110!1111!1!1n n i i i n i i i x x f f f i n i n n i n ----=⎡++⎤⎛⎫⎛⎫⎛⎫=--- ⎪ ⎪ ⎪⎢⎥--+⎝⎭⎝⎭⎝⎭⎣⎦∑()()1110!11,0,1,,1!1!1n n i i i n ii i x x f f i n i n i i n n ----=⎡+⎤⎛⎫⎛⎫=--=- ⎪ ⎪⎢⎥--+⎝⎭⎝⎭⎣⎦∑ ,而()f x x 在()0,1内单调递增,所以11i i f f n n i i n n+⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭>+,所以11i i i f f i n n +⎛⎫⎛⎫> ⎪ ⎪+⎝⎭⎝⎭,故();0n B f x x '⎛⎫> ⎪⎝⎭,所以();n B f x x在()0,1内也单调递增.【点睛】关键点点睛:理解Bernstein 多项式及函数()f x 的n 次Bernstein 多项式的定义是解决本题的关键.。

合肥一中 2024 届高三最后一卷语文参考答案

合肥一中 2024 届高三最后一卷语文参考答案

合肥一中 2024 届高三最后一卷语文参考答案1. (3 分)A【解析】“其意义完全由用户动态生成”绝对化。

2.(3 分)C【解析】“因资本因素带来的大众化、娱乐化、碎片化趋向”于文无据。

3.(3 分)C【解析】从两则材料中可知,媒介“修辞”指的是在媒介与用户的互动中提供的场景空间及价值影响因素。

C 选项体现是AI 技术在动画设计中的应用,不能体现“修辞”之意。

4.(3 分)C【解析】“从长远来看,新媒体传播方式前景不容乐观”与材料观点不符,正确与否要看使用的目的和方式。

且表一的相关内容与表二部分人的不满意态度不构成论证关系。

5.(6 分)①材料一侧重论述在融合新闻中,基于新媒体打造的自主时空,用户对新闻文本的意义构建作用(2 分),互动着眼点偏向于用户(1 分)。

②材料二侧重于论述在文学经典传播中,新媒体传播方式对受众价值观的影响,指出新媒体传播方式应观照人的精神世界(2 分),互动着眼点偏向于新媒体传播(1分)。

评分参考:每答出一点给3 分,给满6 分为止。

意思答对即可。

6.(3 分) A【解析】 B 项说管理主任“不认可王德胜的能力”错误。

管理主任的询问表现出他对王德胜的关心,而非不认可其能力。

C 项王德胜“全然不顾可能会有敌人前来袭扰’错误,王德胜是在做好各项准备后才睡觉,充分考虑了敌人袭扰的问题。

D 项“意在表现王德胜独特性”错误,小说是通过“王德胜’这一人物形象展现解放军战士群体的优秀品质,揭示解放军战斗力的根源。

7.(3 分) D【解析】《百合花》的语言是清新淡雅,本小说的风格是平实质朴。

8.(5 分)①惊喜之情。

王德胜竟然能在和队伍失散后很快归队,并且所负责的钱财也安然带回,令人惊讶,让人惊喜。

②钦佩之情。

王德胜克服迷路、大雨、敌袭、困饿等重重困难,独自一人安全归队,表现了他的顽强、忠诚等美好品质和丰富的战斗经验,令人钦佩。

评分参考:如答“赞美”亦可,答出一点给2 分,答对两点给5 分。

2021年安徽省合肥一中高考数学最后一卷(文科)(6月份)(附答案详解)

2021年安徽省合肥一中高考数学最后一卷(文科)(6月份)(附答案详解)

2021年安徽省合肥一中高考数学最后一卷(文科)(6月份)一、单选题(本大题共12小题,共60.0分)1.(2021·安徽省合肥市·模拟题)若集合A={x|x+2x−1≤0},B={x|x2−x−2<0},则(∁R A)∩B=()A. (1,2)B. [1,2)C. (−1,2)D. [−1,2)2.(2021·安徽省合肥市·模拟题)下列有关回归分析的论断不正确的是(),A. 若相关系数r满足|r|越接近1,则这两个变量相关性越强B. 若相关指数R2越大,则模型的拟合效果越好C. 若所有样本点都在ŷ=b̂x+â上,则线性相关系数r=1D. 残差图的带状区域的宽度越窄,模型拟合的精度越高,回归方程的预报精度越高3.(2021·安徽省合肥市·模拟题)若0<x1<x2,则下列函数①f(x)=x;②f(x)=x2;③f(x)=x3;④f(x)=√x;⑤f(x)=1x 满足条件f(x1+x22)≤f(x1)+f(x2)2(x2>x1>0)的有()A. 1个B. 2个C. 3个D. 4个4.(2021·安徽省合肥市·模拟题)设z1,z2,z3为复数,z1=≠0.下列命题中正确的是()A. 若|z2|=|z3|,则z2=±z3B. 若z2−=z3,则z2z3=0C. 若z1z2=z1z3,则z2=z3D. 若z1z2=|z1|2,则z1=z25.(2021·安徽省合肥市·模拟题)已知顶点在原点的锐角α,始边在x轴的非负半轴,始终绕原点逆时针转过π3后交单位圆于P(−13,y),则sinα的值为()A. 2√2−√36B. 2√2+√36C. 2√6−16D. 2√6+166.(2021·安徽省合肥市·模拟题)函数f(x)=2|x|⋅xcosx ,x∈(−π2,π2)的部分图象大致是()A. B.C. D.7.(2021·安徽省合肥市·模拟题)“−12≤k≤32”是“直线l:y=kx与圆C:(x−2)2+y2=3相交”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件8.(2021·安徽省合肥市·模拟题)已知实数a,b满足lna+lnb=ln(a+b+3),则a+b的最小值为()A. 2√3B. 4C. 6D. 2√59.(2021·安徽省合肥市·模拟题)《九章算术》中给出了解方程的“遍乘直除”的算法解方程组.比如对于方程组{3x+2y+z=392x+3y+z=34x+2y+3z=26,将其中数字排成长方形形式,然后执行如下步骤:第一步,将第二行的数乘以3,然后不断地减第一行,直到第二行第一个数变为0;第二步,对第三行做同样的操作,其余步骤都类似.其本质就是在消元.那么其中的a,b的值分别是()A. 24,4B. 17,4C. 24,0D. 17,010.(2021·安徽省合肥市·模拟题)已知等差数列{a n}满足a12+a32=2,且a1≥1,则2a2+a3a1+2a2的取值范围为()A. (−1,1)B. [−1,1]C. (−∞,−1)∪(1,+∞)D. (−∞,−1]∪[1,+∞)11.(2021·安徽省合肥市·模拟题)已知双曲线C:x2a2−y2b2=1(a>0,b>0),直线l:bx−ay+3a=0,若l上存在点P(x0,y0)使圆(x−x0)2+(y−y0)2=3与双曲线C的右支有公共点,则双曲线C的离心率取值范围为()A. (1,√3]B. (1,√3)C. (√3,+∞)D. [√3,+∞)12.(2021·安徽省合肥市·模拟题)已知函数f(x)满足xf′(x)lnx+f(x)>0(其中f′(x)是f(x)的导数),若a=f(e12),b=f(e),c=f(e2),则下列选项中正确的是()A. 4c<2b<aB. 2b<4c<aC. a<2b<4cD. a<4c<2b二、单空题(本大题共4小题,共20.0分)13.(2021·安徽省合肥市·模拟题)已知向量a⃗=(1,√3),b⃗ =(3,m),若向量a⃗,b⃗ 的夹角为π6,则实数m=______ .14.(2021·安徽省合肥市·模拟题)某个微信群在某次进行的抢红包活动中,若某人所发红包的总金额为15元,被随机分配为3.50元,4.75元,5.37元,1.38元共4份,甲、乙、丙、丁4人参与抢红包,每人只能抢一次,则甲、乙二人抢到的金额之和不低于8元的概率为______ .15.(2021·安徽省合肥市·模拟题)自新冠病毒爆发以后,各国科技人员都在攻关疫苗的难题,近日我国在这一领域取得重大突破,国产疫苗在国际上受到广泛认可.我国在实验阶段为了研究T型病毒的变化规律,将T型病毒注入一个健康的小白鼠体内,根据观测统计的数据分析,小白鼠体内的病毒数y与天数n近似满足y=3n−1(n∈N∗).已知T型病毒在体内超过109个时,小白鼠就会死亡,但如果注射了某种药物可有效杀死体内的T型病毒,为使小白鼠在实验过程中不会死亡,第一次注射该种药物最迟应在第______ 天(参考数据:lg3=0.477).16.(2021·安徽省合肥市·模拟题)半正多面体(semiregular solid)亦称“阿基米德多面体”,是由边数不全相同的正多边形围成的多面体,体现了数学的对称美.以正方体每条棱的中点为顶点构造一个半正多面体,它由八个正三角形和六个正方形构成,若它的所有棱长都为1,则该半正多面体外接球的体积为______ ;若该半正多面体可以在一个正四面体内任意转动,则该正四面体表面积最小值为______ .三、解答题(本大题共7小题,共82.0分)17.(2021·安徽省合肥市·模拟题)在锐角△ABC中,内角A,B,C对边分别为a,b,c,且直线x=A是函数f(x)=√3sin2x−2cos2x图象的一条对称轴(1)求A;(2)若bcosC=2−ccosB,求2c−b取值范围.18.(2021·安徽省合肥市·模拟题)某省为了备战全国射击锦标赛,分别在A,B两支队伍中采用甲、乙两种方法培训,为观测其成绩情况,在两支队伍中各随机抽取60名队员,对每名队员进行综合评分,将每名队员所得的综合评分制成如图所示的频率分布直方图,其中m=2q.记综合评分为80及以上的队员为五星队员.(Ⅰ)求图中m,q的值,并求综合评分的中位数;(Ⅱ)填写下面的列联表,能否在犯错误的概率不超过0.1的情况下认为优质队员与培训方法有关.五星队员非五星队员合计甲培训法40乙培训法合计附:P(K20.150.100.050.0250.0100.0050.001≥k0)k0 2.072 2.706 3.841 5.024 6.6357.87910.828 (参考公式:K2=n(ad−bc)2,其中n=a+b+c+d.)(a+c)(b+d)(a+b)(c+d)19. (2021·安徽省合肥市·模拟题)已知直角梯形ABCE 中,∠ABC =90°,AB//CE ,AB =2,BC =√3,CE =3,ED ⃗⃗⃗⃗⃗ =2DC ⃗⃗⃗⃗⃗ ,以AD 为折痕将△EAD 折至△PAD 处,得到四棱锥P −ABCD . (1)求证:AD ⊥PB ;(2)连接AC 、BD 交于点F ,当三棱锥F −PCD 体积最大时,求点F 到平面PCD 的距离.20. (2021·安徽省合肥市·模拟题)已知焦距为2的椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点(−1,32). (1)求椭圆C 的方程;(2)求椭圆C 的外切矩形(即矩形的四条边所在直线均与椭圆相切)ABCD 的面积的最大值.21. (2021·安徽省合肥市·模拟题)已知函数f(x)=sinx −xcosx . (1)当x ∈[0,2π]时,求f(x)的最大值;(2)若x ∈[0,π]时,f(x)≥ax −sinx 恒成立,求实数a 的取值范围.22. (2021·安徽省合肥市·模拟题)在平面直角坐标系xOy 中,曲线C 的参数方程为{x =1+sinα+2cosαy =4sinα−2cosα(α为参数),以O 为极点,以x 轴的非负半轴为极轴的极坐标系中,直线l 的极坐标方程为θ=π6(ρ∈R). (1)求曲线C 的极坐标方程;(2)设直线l 与曲线C 相交于A ,B 两点,求|AB|的值.23. (2021·安徽省合肥市·模拟题)已知函数f(x)=|x −1|+|2x +4|. (1)解不等式f(x)≥6;(2)记函数f(x)的最小值为t ,若实数a ,b ,c 满足a +b +c =t ,求3a 2+2b 2+c 2的最小值.答案和解析1.【答案】B【知识点】交、并、补集的混合运算【解析】解:∵x+2x−1≤0,∴{(x+2)(x−1)≤0x−1≠0,∴−2≤x<1,∴∁RA=(−∞,−2)∪[1,+∞),∵B={x|−1<x<2},∴(C R A)∩B=[1,2).故选:B.先解分式不等式求出A,再求出A的补集,最后求出A的补集与B的交集即可.本题考查了交集,补集的运算,考查了分式不等式的解法,属于基础题.2.【答案】C【知识点】相关系数【解析】解:A、线性相关系数r的绝对值越接近1,表示两变量的相关性越强,不符合题意;B、相关指数R2越大,模型的拟合效果越好,不符合题意;C、若所有样本点都在ŷ=b̂x+â上,则线性相关系数r=1或−1,符合题意;D、残差图中,残差点的带状区域的宽度越窄,说明模型拟合精度越高,回归方程的预报精度越高不符合题意;故选:C.根据相关系数的定义与性质,对选项中的命题判断正误即可.本题考查了相关系数的定义与性质的应用问题,是基础题.3.【答案】D【知识点】函数的单调性与单调区间【解析】解:若满足条件f(x1+x22)≤f(x1)+f(x2)2(x2>x1>0),则函数图像在y轴右侧为下凸函数,根据函数图象易得④f(x)=√x不满足,其余都可以,故选:D.本题要数形结合,通过图像观察.理解f(x1+x22)≤f(x1)+f(x2)2(x2>x1>0)的本质,能画出函数图像.4.【答案】C【知识点】复数的模、复数的概念、复数的四则运算【解析】解:由复数模的概念可知,|z2|=|z3|不能得到z2=±z3,例如z2=1+i,z3= 1−i,故A错误;若z2−=z3,则z2z3为实数,故B错误;由z1z2=z1z3,可得z1(z2−z3)=0,∵z1≠0时,∴z2−z3=0,即z2=z3,故C正确;取z1=1+i,z2=1−i,显然满足z1z2=|z1|2,但z1≠z2,故D错误.故选:C.举例说明A错误;由z⋅z−=|z|2判断B;由复数的运算推出z2=z3判断C;举例说明D 错误.本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.5.【答案】B【知识点】任意角的三角函数、两角和与差的三角函数公式【解析】解:由题意得cos(α+π3)=−13(α为锐角),∵sin2(α+π3)+cos2(α+π3)=1,∴sin(α+π3)=2√23,∵sinα=sin[(α+π3)−π3]=2√23×12−(−13)×√32=2√2+√36.故选:B.由已知可得cos(α+π3)=−13(α为锐角),结合三角函数的同角公式,以及正弦函数的两角差公式,即可求解.本题考查了三角函数的同角公式,以及正弦函数的两角差公式,需要学生熟练掌握公式,属于基础题.6.【答案】A【知识点】函数图象的作法【解析】解:根据题意,f(x)=2|x|⋅xcosx ,x∈(−π2,π2),有f(−x)=−f(x),即函数f(x)为奇函数,排除B、D,又由y=cosx,y=2x,y=x在(0,π2)上分别为减函数、增函数、增函数,且函数值均为正数,所以f(x)在(0,π2)上为增函数,排除C,故选:A.根据题意,先分析函数的奇偶性,排除BD,再分析函数的单调性,排除C,即可得答案.本题考查函数的图象分析,注意用排除法分析,属于基础题.7.【答案】A【知识点】必要条件、充分条件与充要条件的判断【解析】【分析】根据题意“直线l:y=kx与圆C:(x−2)2+y2=3相交”,可得圆心C(2,0)到直线l:y=kx的距离小于等于半径,由此求得k的范围,利用充分条件和必要条件的定义进行判断即可.本题考查了充要条件及其判断,直线和圆的位置关系,点到直线的距离公式的应用,属于基础题.【解答】解:由题意可得圆C:(x−2)2+y2=3,圆心C(2,0)半径为√3,根据题意“直线l:y=kx与圆C:(x−2)2+y2=3相交”,可得圆的圆心到直线l:y=kx的距离小于等于半径√3,即√1+k2≤√3,解得k∈[−√3,√3].故由“−12≤k≤32”可推出“直线l:y=kx与圆C:(x−2)2+y2=3相交”,由“直线l:y=kx与圆C:(x−2)2+y2=3相交”不能推出“−12≤k≤32”,故“−12≤k≤32”是“直线l:y=kx与圆C:(x−2)2+y2=3相交”的充分不必要条件,故选:A.8.【答案】C【知识点】对数与对数运算【解析】解:∵ln(ab)=ln(a+b+3),且a>0,b>0,∴ab=a+b+3≤(a+b2)2,∴(a+b)2−4(a+b)−12≥0,且a+b>0,∴解得a+b≥6,∴a+b的最小值为:6.故选:C.根据条件可得出ab=a+b+3,然后根据基本不等式即可得出a+b+3≤(a+b2)2,然后可解出a+b的范围,从而得出a+b的最小值.本题考查了对数的运算性质,基本不等式的应用,一元二次不等式的解法,考查了计算能力,属于基础题.9.【答案】A【知识点】合情推理(归纳、类比推理)【解析】解:由题意可知,将2,3,4,34每个数字都乘以3,分别得到6,9,3,102,再将6,9,3,102分别与3,2,1,39对应相减可得3,7,2,63,再将3,7,2,63分别与3,2,1,39对应相减可得0,5,1,24,所以a=24;再将1,2,3,26每个数字乘以3,得到3,6,9,78,再将3,6,9,78分别与3,2,1,39对应相减可得0,4,8,39,所以b=4.故选:A .根据题中给出的新定义,按照其要求计算,即可求的答案.本题考查了简单的合情推理的应用,考查了新定义问题,理解新定义并运用新定义是解题的关键,属于基础题.10.【答案】B【知识点】等差数列的通项公式、等差数列的性质 【解析】解:令{a 1=√2cosθa 3=√2sinθ,则√22≤cosθ≤1,根据题意得2a 2+a 3a1+2a 2=a 1+2a 32a1+a 3=√2cosθ+2√2sinθ2√2cosθ+√2sinθ=cosθ+2sinθ2cosθ+sinθ=1+2tanθ2+tanθ=2+−32+tanθ,由√22≤cosθ≤1⇒−1≤tanθ≤1⇒13≤12+tanθ≤1⇒−3≤−32+tanθ≤−1⇒−1≤2+−32+tanθ≤1.故选:B .根据题设可令{a 1=√2cosθa 3=√2sinθ,则2a 2+a 3a 1+2a 2=a 1+2a 32a 1+a 3=√2cosθ+2√2sinθ2√2cosθ+√2sinθ,即可转化为三角函数问题进行求解.本题主要考查等差数列的性质与数列的综合问题,引入三角函数工具是本题解题的关键,属于中档题.11.【答案】C【知识点】直线与双曲线的位置关系、双曲线的性质及几何意义【解析】解:由题意可知渐近线y =ba x 与其平行线y =ba x +3间的距离要小于√3⇒√b 2+(−a)2<√3可得:ac <√33⇒e >√3,故选:C .判断直线与双曲线的渐近线的关系,利用已知条件,结合点到直线的距离推出离心率即可.本题考查双曲线的简单性质的应用,点到直线的距离公式的应用,考查转化思想以及计算能力,是中档题.12.【答案】C【知识点】利用导数研究函数的单调性【解析】解:xf′(x)lnx+f(x)>0(x>0)⇒f′(x)lnx+1xf(x)>0⇒[f(x)lnx]′>0,令g(x)=f(x)lnx,则g′(x)>0在(0,+∞)上恒成立⇒g(x)在(0,+∞)上为增函数⇒g(e12)<g(e)<g(e2)⇒12a<b<2c⇒a<2b<4c,故选:C.构造函数g(x)=f(x)lnx(x>0),由题意可得,∀x∈(0,+∞),g′(x)>0⇒g(x)在(0,+∞)上为增函数,从而可得答案.本题考查利用导数研究函数的单调性,考查构造法的运用,考查运算求解能力,是中档题.13.【答案】√3【知识点】向量的夹角【解析】解:∵向量a⃗=(1,√3),b⃗ =(3,m),若向量a⃗,b⃗ 的夹角为π6,则a⃗⋅b⃗ =|a⃗|⋅|b⃗ |⋅cosπ6,即3+√3m=2⋅√9+m2⋅√32,求得m=√3,故答案为:√3.利用两个向量的数量积的定义以及两个向量的数量积公式,求得实数m的值.本题主要考查两个向量的数量积的定义以及两个向量的数量积公式,属于基础题.14.【答案】12【知识点】古典概型的计算与应用【解析】解:某人所发红包的总金额为15元,被随机分配为3.50元,4.75元,5.37元,1.38元共4份,甲、乙、丙、丁4人参与抢红包,每人只能抢一次,甲、乙两人抢到的金额之和包含的基本事件有个数m=C42=6,甲、乙二人抢到的金额之和不低于8元包含的基本事件有:(3.5,4.75),(3.5,5.37),(4.75,5.37),共3个,∴甲、乙二人抢到的金额之和不低于8元的概率P=36=12.故答案为:12.甲、乙两人抢到的金额之和包含的基本事件有个数m=C42=6,利用列举法求出甲、乙二人抢到的金额之和不低于8元包含的基本事件有3个,由此能求出甲、乙二人抢到的金额之和不低于8元的概率.本题考查概率的求法,考查古典概型、列举法等基础知识,考查推理论证能力,是基础题.15.【答案】19【知识点】函数模型的应用【解析】解:由题意可得,病毒细胞关于时间n的函数关系为y=3n−1(n∈N∗),则3n−1≤109,两边同时取对数可得,log33n−1≤log3109,解得n≤19.87,故第一次注射该种药物最迟应在第19天.故答案为:19.由题意可知,病毒细胞关于时间n的函数关系为y=3n−1(n∈N∗),列出不等式求解n 的范围,即可得到答案.本题考查了指数函数的实际应用问题,解题的关键是掌握指数不等式的求解,考查了逻辑推理能力与化简运算能力,属于基础题.16.【答案】43π24√3【知识点】球的表面积和体积【解析】解:由题意,正方体每条棱的中点为顶点构造一个半正多面体,它由八个正三角形和六个正方形构成,所有棱长都为1,可得正方体的边长为√2,那么正多面体外接球的半径为平面对角线的长,即2R=2,可得R=1,∴外接球的体积为V=43r3π=43π.该半正多面体可以在一个正四面体内任意转动,只需正四面体内接球半径为r=1,即可满足,设正四面体的边长a,则√612a=1,解得a=2√6,正四面体的四个面均为正三角形,可得面积为S=12×2√6×2√6×sin60°×4=24√3.故答案为:43π,24√3.根据正方体每条棱的中点为顶点构造一个半正多面体,它由八个正三角形和六个正方形构成,所有棱长都为1,可得正方体的边长为√2,那么正多面体外接球的半径为平面对角线的长,即2R=2,可得R=1,可得外接球的体积;该半正多面体可以在一个正四面体内任意转动,只需正四面体内接球半径为r=1,即可满足,从而求解正四面体的边长,可得答案.本题考查了利用正方体性质解决外接球全面体问题,和正四面体内接球的应用.属于中档题.17.【答案】解:(1)f(x)=√3sin2x−2cos2x=√3sin2x−cos2x−1=2sin(2x−π6)−1,∴直线x=A为函数f(x)图像的一条对称轴,∴2A−π6=π2+kπ(k∈Z),即A=π3+12kπ(k∈Z),又0<A<π2,∴当k=0时,A=π3.(2)∵ccosB+bcosC=c⋅a2+c2−b22ac +b⋅a2+b2−c22ab=a=2,A=π3,∴由正弦定理得2sinπ3=bsinB=csinC=√3⇒2c−b=√3[2sin(23π−B)−sinB]=√3[2(√32cosB+12sinB)−sinB]=4cosB,∵△ABC为锐角三角形,A=π3,∴π6<B<π2,∴0<cosB<√32⇒2c−b范围为(0,2√3).【知识点】三角恒等变换、正弦定理【解析】(1)直接利用三角函数关系式的恒等变换和正弦型函数的性质的应用求出结果;(2)利用正弦定理的应用求出结果.本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,正弦定理的应用,主要考查学生的运算能力和数学思维能力,属于基础题.18.【答案】解:(I)由频率分布直方图,可得0.05+10q+0.25+0.4+10m=1,∴10q+10m=0.3,∵m=2q,∴m=0.02,q=0.01,∵各组频率依次为0.05,0.1,0.25,0.4,0.2,∴中位数在[80,90)内,设中位数为x,则0.05+0.1+0.25+(x−80)×0.04=0.5,∴x =82.5,∴中位数为82.5. (Ⅱ)填写列联表如下,五星队员 非五星队员合计 甲培训法 40 20 60 乙培训法 32 28 60 合计7248120∵k =120(40×28−20×32)260×60×72×48≈2.22<2.706,所以不能在犯错误的概率不超过0.1情况下认为优质学生与培训方法有关.【知识点】独立性检验、频率分布直方图 【解析】(I)由频率分布直方图即可求出.(Ⅱ)根据题目所给的数据填写2×2列联表,计算K 2,对照题目中的表格,得出统计结论.本题考查了频率分布直方图,独立性检验的应用问题,也考查了计算能力的应用问题,是基础题.19.【答案】(1)证明:由ED ⃗⃗⃗⃗⃗ =2DC ⃗⃗⃗⃗⃗ ,可知点D 为线段EC 靠近点C 的三等分点,⇒ED =2,DC =1,∠ABC =90°,AB//CD ,BC =√3,⇒Rt △BCD 中,BD =2,∠BDC =60°,⇒∠DBA =60°, 而AB =2=BD ,⇒△ABD 为等边三角形, ⇒AD =2=DE ,∠EDA =∠DAB =60°, ⇒△ADE 也是等边三角形.取AD 中点M ,连接MB 、MP ,则MB ⊥AD ,MP ⊥AD ,而MB ∩MP =M ,∴AD ⊥平面MBP ,BP ⊂平面PMB , ∴AD ⊥BP .(2)解:∵AC 与BD 交于点F , ∴FCFA =DCAB =12,⇒S △FCDS△ADC=FC AC =13,⇒S △FCD =13S △ADC =13×12×1×√3=√36,∵V F−PCD=V P−FCD,∴当三棱锥F−PCD体积最大时,平面PAD⊥平面ABCD,由(1)可知等边△PAD中PM⊥AD,而平面PAD∩平面ABCD=AD,PM⊂平面PAD,∴PM⊥平面ABCD,∴PM⊥MC,而等边△PAD中,PD=2,PM=√3,⇒(V F−PCD)max=(V P−DFC)max=13×S△FCD×PM=13×√36×√3=16,△CDM中,CD=1,DM=1,∠CDM=180°−∠ADE=120°,⇒CM=√3,∴Rt△PCM中,PC=√PM2+CM2=√6,在△PCD中,cos∠PDC=22+12−(√6)22×2×1=−14,⇒sin∠ADC=√154,⇒S△PDC=12×1×2×√154=√154,⇒点F到平面PCD的距离ℎ=3(V P−DFC)maxS△PDC =3×16√154=√15=2√1515.【知识点】利用空间向量求点、线、面之间的距离【解析】(1)说明点D为线段EC靠近点C的三等分点,推出△ABD为等边三角形,△ADE 也是等边三角形.取AD中点M,连接MB、MP,证明MB⊥AD,MP⊥AD,得到AD⊥平面MBP,即可证明AD⊥BP.(2)求出△FCD的面积,通过V F−PCD=V P−FCD,说明当三棱锥F−PCD体积最大时,平面PAD⊥平面ABCD,转化求解CM,PC,求出三角形PDC的面积,利用体积公式,转化求解点F到平面PCD的距离.本题考查直线与平面垂直的判断定理的应用,几何体的体积的求法,考查空间想象能力,转化思想以及计算能力,是中档题.20.【答案】解:(1)因为椭圆C的焦距为2,所以2c=2,解得c=1,①又因为椭圆C:x2a2+y2b2=1(a>b>0)经过点(−1,32).所以1a2+(32)2b2=1,即1a2+94b2=1,②又a2=b2+c2,③由①②③得a2=4,b2=3,所以椭圆方程为x24+y23=1.(2)当矩形ABCD的一组对边斜率不存在时,此时矩形ABCD与椭圆相切于椭圆的四个顶点,所以矩形ABCD的面积S=2a×2b=4×2√3=8√3,当矩形ABCD四边斜率都存在时,不妨设AB,CD所在直线斜率为k,则BC,AD斜率为−1k,设直线AB方程为y=kx+m,与椭圆联立可得(4k2+3)x2+8kmx+4m2−12=0,由△=(8km)2−4(4k2+3)(4m2−12)=0,得m2=4k2+3.由对称性知直线CD的直线方程为y=kx−m,直线AB,CD间的距离d1=√k2+1=2√m2k2+1=2√4k2+3k2+1同理可求得BC,AD间的距离为d2=2√4k2+31 k2+1=2√4+3k2k2+1,所以四边形ABCD面积为S ABCD=d1d2=4√3+4k2k2+1√4+3k2k2+1=4√12k4+25k2+12k4+2k2+1=4√12+k2k4+2k2+1=4√12+1k2+1k2+2≤4√12+14=14(等号当且仅当k=±1时成立).因为8√3=√192<√196=14,所以椭圆C的外切矩形面积最大值为14.【知识点】直线与椭圆的位置关系【解析】(1)由椭圆C的焦距为2,且经过点(−1,32),列方程组,解得a,b即可得出答案.(2)分两种情况:当矩形ABCD的一组对边斜率不存在时,当矩形ABCD四边斜率都存在时,计算S四边形ABCD最大值.本题考查椭圆的方程,直线与椭圆的相交问题,解题中需要一定的计算能力,属于中档题.21.【答案】解:(1)f(x)=sinx−xcosx,f′(x)=cosx−(cosx−xsinx)=xsinx,则由x∈[0,2π]可知f′(x)在(0,π)上为正,在(π,2π)上为负,f(x)在[0,π]上为增函数,在[π,2π]上为减函数,∴当x∈[0,2π]时,f max(x)=f(π)=π.(2)f(x)≥ax−sinx对∀x∈[0,π]恒成立即2sinx−xcosx−ax≥0对∀x∈[0,π]恒成立.设ℎ(x)=2sinx −xcosx −ax ,x ∈[0,π],ℎ′(x)=2cosx −cosx +xsinx −a =cosx +xsinx −a , ℎ′′(x)=xcosx ,∴x ∈[0,π2],ℎ′′(x)>0,x ∈[π2,π],ℎ′′(x)<0.∴ℎ′(x)≤ℎ′(π2)=π2−a ,又ℎ′(0)=1−a ,ℎ′(π)=−1−a .(i)π2−a ≤0即a ≥π2时,ℎ′(x)≤0,ℎ(x)在[0,π]上递减,ℎ(x)≤0,舍. (ii)π2−a >0即a <π2时,①当−1−a <0,1−a <0即1<a <π2时,∃x 0∈(0,π2),使得ℎ′(x 0)=0.且0<x <x 0,ℎ′(x 0)<0,ℎ(x)在(0,x 0)内递减,ℎ(x)≤ℎ(0)=0,出现矛盾,故舍去;②当−1−a <0,1−a ≥0即−1<a ≤1时,∃x 0∈(π2,π),使得ℎ′(x 0)=0,且0≤x <x 0,ℎ′(x 0)≥0,x 0<x ≤π,ℎ′(x 0)<0,∴ℎ(x)在(0,x 0)上递增,在(x 0,π)上递减,又ℎ(0)=0,ℎ(π)=(1−a)π>0, 所以ℎ(x)≥0成立.③−1−a ≥0,1−a ≥0即a ≤−1,ℎ′(x)>0,ℎ(x)在[0,π]上递增,则ℎ(x)≥ℎ(0)=0.满足题意. 综上,a ≤1.【知识点】利用导数研究闭区间上函数的最值、三角函数的最值 【解析】(1)直接利用三角函数的求导的应用求出结果. (2)利用二次求导和函数中的参数的讨论的应用求出结果.本题考查的知识要点:函数的导数的应用,函数的导数和单调性的关系,参数的分类讨论,主要考查学生的运算能力和数学思维能力,属于中档题.22.【答案】解:(1)由曲线C 的参数方程{x =1+sinα+2cosαy =4sinα−2cosα(α为参数),两式平方后相加可得(x −1)2+y 24=5⇒4(x −1)2+y 2=20,∴曲线C 的普通方程为4x 2+y 2−8x −16=0根据{x =ρcosθy =ρsinθx 2+y 2=ρ2,曲线C 的极坐标方程为(3cos 2θ+1)ρ2−8ρcosθ−16=0(2)法一:由题意知直线l 普通方程为y =√33x ,联立曲线C 的普通方程4x 2+y 2−8x −16=0消去y 可得13x 2−24x −48=0⇒|AB|=(√33)2−x 1|=√3√(x 1+x 2)2−4x 1x 2=√3⋅√△13=√3√242+4×1|3×4813=√3⋅8√9+3×1313=6413.法二:设A ,B 两点的极坐标分别为(ρ1,π6),(ρ2,π6)由{(3cos 2θ+1)ρ2−8ρcosθ−16=0θ=π6,消去θ得13ρ2−16√3ρ−64=0,根据题意可得ρ1,ρ2是方程13ρ2−16√3ρ−64=0的两根, ∴ρ1+ρ2=16√313,ρ1ρ2=−6413⇒|AB|=|ρ1−ρ2|=√(ρ1+ρ2)2−4ρ1ρ2=√△13=√162×3+4×13×6413=6413.【知识点】简单曲线的极坐标方程、曲线的参数方程【解析】(1)直接利用转换关系,在参数方程极坐标方程和直角坐标方程之间进行转换; (2)利用一元二次方程根和系数关系式的应用和极径的应用求出结果.本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,一元二次方程根和系数关系式的应用,极径的应用,主要考查学生的运算能力和数学思维能力,属于中档题.23.【答案】解:(1)f(x)=|x −1|+|2x +4|={−3x −3,x ≤−25+x,−2<x <13x +3,x ≥1,由f(x)≥6,可得{x ≤−2−3x −3≥6或{−2<x <15+x ≥6或{x ≥13x +3≥6,解得x ≤−3或x ≥1,∴原不等式的解集为(−∞,−3]∪[1,+∞).(2)由(1)可知当x =−2时,f(x)取得最小值为3,即t =3=a +b +c , 由柯西不等式得[(√3a)2+(√2b)2+(c)2]⋅[(√3)2+(√2)2+12] =(3a 2+2b 2+c 2)(13+12+1)≥(√3a √3+√2b √2+c ⋅1)2=32=9, ∴3a 2+2b 2+c 2≥5411(当且仅当3a =2b =c 即a =611,b =911,c =1811时取等号),∴3a2+2b2+c2最小值为54.11【知识点】不等式和绝对值不等式【解析】(1)对f(x)去绝对值改写为分段函数的形式,然后分别解不等式,从而得到不等式的解集;(2)根据(1)求出f(x)的最小值,然后由柯西不等式即可求出a2+b2+c2的最小值.本题考查了绝对值不等式的解法和利用柯西不等式求最值,考查了转化思想和分类讨论思想,属于中档题.第21页,共21页。

安徽省合肥市合肥一中、合肥六中2024届高三最后一模语文试题含解析

安徽省合肥市合肥一中、合肥六中2024届高三最后一模语文试题含解析

安徽省合肥市合肥一中、合肥六中2024届高三最后一模语文试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.1、下列句子中,所写内容与“琴、棋、书”无关的一项是()A.张旭三杯草圣传,脱帽露顶王公前。

B.黑白胜负无已时,目送孤鸿出云外。

C.子期何处,漫高山流水,又逐新声彻。

D.半亩方塘一鉴开,天光云影共徘徊。

2、在下面一段文字横线处补写恰当的语句,使整段文字语意完整连贯,内容贴切,逻辑严密。

每处不超过15个字。

药品可以帮我们预防、治疗疾病,但若使用不当,①__________________,以口服药为例,药物进入胃肠道后逐渐被吸进血液,随着时间推移,②__________________,当药物浓度高于某一数值时就开始发挥疗效,然而,③__________________,超过一定限度就可能产生毒性,危害身体健康。

3、下列各项中,没有错别字且加点字的注音全都正确的一项是A.从古都长安出发的驼队翻越崇山峻岭,驰骋朔.(shuò)漠绿洲,用脚步丈量广袤.(mào)地域、崎岖道路。

那商旅络绎不绝、穿流不息的商贸通道,成了融汇东西方文明的桥梁。

B.眺望远处,烟霭苍茫,山路蜿蜒,阒.(qù)然无人,不禁浮想联翩:春看妩媚,夏见丰腴,秋赏缤纷,而今冬窥骨气—一舍弃过眼繁花,留下铮.铮(zhēng)铁骨与浩然正气。

C.那朝天举着喇叭的玉米、高粱,那地上匍匐前进的豆苗、瓜蔓.(màn),无不迸.(bèng)发出盎然生机、蓬勃活力,不知道那有闲情逸志的文人们是否喜欢这夏日热烈急促的旋律。

安徽合肥一中2022高三冲刺高考最后1卷-数学(文)word版

安徽合肥一中2022高三冲刺高考最后1卷-数学(文)word版

安徽合肥一中2022高三冲刺高考最后1卷-数学(文)word 版数学(文)一.选择题:(本大题共10小题,每小题5分,共50分)1.设{}{}2,=|20,|1U R M x x x N x x =-<=≥集合,则U M N =( )A .{}|1x x < B. {}|01x x << C. {}|2x x < D. {}|12x x ≤<2.已知i 为虚数单位,a 为实数,复数21a i z i -=-在复平面内对应的点在y 轴上,则a 的值是( ) A .2- B. 12- C. 12D. 2 3.已知向量(1,0),(1,1)a b ==,向量a b a λ+与垂直,则实数λ的值为( )A.2-B.2C.1-D.14.已知函数221,1()1log ,1x x f x x x ⎧-≤=⎨+>⎩则函数()f x 的零点为( ) A.1,02 B.2,0- C.12D.0 5.在ABC ∆中,022,30AB BC A ==∠=,则ABC ∆的面积等于( )A.12B.32C.1D.3 6.如图为一个几何体的三视图,则该几何体的体积为( )A.103B.6C.143D.737.等比数列{}n a 的前n 项和为n S ,已知121,2,3S S S 成等差数列,则{}n a 的公比为( )A.12 B.14 C.3 D.13 8.函数,(,0)(0,)sin x y x xππ=∈-的图像可能是下列图像中的( )9.设圆C 的圆心与双曲线2221(0)2x y a a -=>的右焦点重合,且该圆与此双曲线的渐近线相切,若直线:30l x y -=被圆截得的弦长等于2,则的值为( )A.2B.3C.2D.310.将一颗骰子投掷两次,第一次显现的点数记为a ,第二次显现的点数记为b ,设两条直线1:2,l ax by +=2:22l x y +=平行的概率为1p ,相交的概率为2p ,试问点P 12(,)p p 与直线2:22l x y +=的位置关系是( )A.P 在直线2l 的右下方B.P 在直线2l 的左下方C.P 在直线2l 的右上方D.P 在直线2l 上二.填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置.11.函数(4)y x x =-的定义域是__________________.12.青年歌手大赛共有10名选手参赛,并请了7名评委,如右茎叶图是7名评委给参加最后决赛的两位选手甲、乙评定的成绩,依照以上茎叶图,对甲乙两人成绩作比较,写出两个统计结论:1)_____________________________________________________.2)______________________________________________________.13.若实数,x y 满足不等式组330,230,10.x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩则x y +的最大值为____.14.如图所示的程序框图,若输入5n =,则输出的n 值为___________.15.已知正方体1111ABCD A B C D -的棱长为1,,,E F G 分别是11,,AB BC B C 的中点. 下列命题正确的是______(写出所有正确命题的编号).1) 以正方形的顶点为顶点的三棱锥的四面体最多只有三个面是直角三角形;2) P 在直线FG 上运动时,AP DE ⊥;3) Q 在直线1BC 上运动时,三棱锥1A D QC -的体积不变;4) M 是正方体的面1111A B C D 内到点D 和1C 距离相等的点,则M 点的轨迹是一条线段.三.解答题:本大题共6小题,共75分16.在ABC ∆中,角,,A B C 所对的边分别是,,,a b c 且222c a b ab =+-, (Ⅰ)若3tan tan (1tan tan ),3A B A B -=+⋅求角B . (Ⅱ)设(sin ,1),(3,cos 2)m A n A ==,试求m n ⋅的最大值.17.某县有甲、乙、丙、丁四所高中的5000学生参加了高三调研考试,为了考察数学学科的成绩情形,现从中随机抽出若干名学生在这次测试中的数学成绩作为样本(其中甲学校抽取了30人),制作如下频率分布直方表并得到相应的频率分布直方图:(Ⅰ)该次统计中抽取样本的合理方法是什么,甲学校共有多少人参加了调研考试;(Ⅱ)从样本在[80,100)的个体中任意抽取2个个体,求至少有一个个体落在[90,100)的概率.18.已知四棱锥A BCDE -,其中1,2AB BC AC BE CD =====,CD ABC ⊥平面,,BE CD F 为AD 的中点.(Ⅰ)求证:EF ABC 平面;(Ⅱ)求证:ADE ACD ⊥平面平面;(Ⅲ)求四棱锥A BCDE -的体积.19.已知()f x =,数列{}n a 的前n 项和为n S ,点11(,)n n n P a a +-在曲线()y f x =上()n N +∈且11,0.n a a =>(Ⅰ)求数列{}n a 的通项公式;(Ⅱ) 数列{}n b 的前n 项和为n T ,且满足212211683n n n n T T n n a a ++=+--,确定1b 的值使得数列{}n b 是等差数列.20.已知椭圆2222:1(0)x y C a b a b+=>>的离心率2e =,左、右焦点分别为12,F F ,抛物线2y =的焦点F 恰好是该椭圆的一个顶点.(Ⅰ)求椭圆C 的方程;(Ⅱ)已知圆222:3M x y +=的切线l 与椭圆相交于,A B 两点,那么以AB 为直径的圆是否通过顶点?假如是求出定点的坐标;假如不是请说明理由.21.已知32()(1)41()3ax f x a x x a R =-+++∈. (Ⅰ)当1a =-时,求函数的单调性;(Ⅱ)当a R ∈时,讨论函数的单调增区间; (Ⅲ)是否存在负实数a ,使[1,0]x ∈-,函数有最小值3-?。

合肥一中 2024 届高三最后一卷数学答案修改

合肥一中 2024 届高三最后一卷数学答案修改

合肥一中2024届高三最后一卷数学参考答案1 2 3 4 5 6 7 D A C D B A C 8 9 10 11 12 1314 C ADBDACD0或11x =或34110x y +−=(5)1.选D【答案解析】2(2,3)(2,6)(4,3),25a b a b −=−−=−−=,选D 2. 选A【答案解析】2131312222i z i z i i −==−=++,,∴选A 3.选C【答案解析】22223,9,927,197x y a a b c a =====−=+=,选C4.选D【答案解析】由3S =14,3a =2,12q ∴=或41,3q a =−∴=23−或1,∴选D 5.选B【答案解析】sin2α= B 6.选A【答案解析】先考虑甲乙不相邻的不同排列方式数,再减去甲站在一端且甲乙不相邻的排列方式数,所以总数为321133423336A A A A A −=种,选A7.选C.【答案解析】如图,2OE FG AE ===,222221323R OE AE ∴=+=+=, 25243S R ππ∴==,故选C. 8.选C【答案解析】如图设00(,)N x y ,则AB l 为00()x xp y y =+且过(0,)M p ,0y p ∴=−且, 又设'2tan pk x β==−,'2k k ∴=− , tan tan tan()1tan tan αβαβαβ−∴−=+, 当且仅当k ==”成立,故选C 9. 选AD【答案解析】30.14.37y ==,A 正确; 21.9610.490.010.250.812.567.081.277s ++++++==≠,B 错误;70.75 5.25×=,所以上四分位数为5.2,C 错误; 0.5 4.30.54 2.3ay x =−=−×=,D 正确; 故选AD 10.选BD【答案解析】1()sin(2)62f x x πω=+− 对于A ,当2ω=时,1()sin(4)62f xx π=+−,51()242f π=−, 0tanx k pα==''2()()1k k k k k k−==−+−≥+524x π∴= 不是()y f x =的一条对称轴,对于B ,由题意知,2T π=,对于C ,11()sin(2())sin(2)662362g x x x ππωππωω=++−=++−, 若()g x 为偶函数,则362k ωππππ+=+,∴,矛盾对于D ,令t =2[,2]666x πππωωπ+∈+,由题意知,2529[,)66ππ∈7[2,)3ω∴∈故选BD11.选ACD 【答案解析】对于A ,由()g x ax ≥得,令,则'2ln 1()x h x x−= ∴ ()y h x =在(0,)e 单调递减,(,)e +∞单调递增,∴min 1()()a h x h e e≤==−对于B ,设切点为00(,)xP x e ,则切线方程为000()xxy e e x x −=−,即000(1)x x y e x e x =+−,又1y ax =−,000(1)1x x e ae x = ∴ −=− ,(1ln )1()a a ∴−=−∗ 2a e = 不满足式,∴B 错,对于C ,易知当1a =时()y f x ax =−和()y g x ax =+有相同最小值1,对于D ,令()()x h x f x x e x =−=−,令()()ln x g x x x x ϕ=+=−,则(),()h x x ϕ的图象大致如下:12ω∴=13k ω=+26πωπ+ln x a x ≤−ln ()x h x x =−()∗的设交点为(,())M m h m ,易知01m <<,由图象知,当直线y a =与曲线()y h x =和曲线()y x ϕ=共有三个不同的交点时,直线y a =必经过点(())M m h m ,,即().a h m =因为()()h m m ϕ=,所以ln m e m m m −=−,即2ln 0m e m m −+=.令()()()h x x a h m ϕ===,得x m ln e x x x e m −=−=−,解得m x m x e ==或.由01m <<得1m m e <<.所以当直线y a =与曲线()y h x =和()y x ϕ=共有三个不同的交点时, 从左到右的三个交点的横坐标依次为ln m ,m ,m e .因为2+ln =0m e m m −,即+ln =2m e m m ,所以ln m ,m ,m e 成等差数列, 故选ACD12.【答案解析】{0,1,2}A =,{,1}B a a =+,由B A ⊆得0a =或1a =13.【答案解析】当斜率不存在时1x =满足题意;当斜率存在时,设直线l :2(1)y k x −=−,由题意知圆心到直线的距离为1得34k =−∴1x =或34110x y +−=14.【答案解析】222222222222222222222222222,2,cos cos ()cos 2cos ()cos ,cos ()(1cos )0,0,cos cos ()cos 2cos ,,2a a b c b c bc A A a b c A bc A b c A b c a Aa abc A b c A Aa b c A bc A b c a b c a a =+=++=++=+++−+−+=+−==+>=+−+>>15.【答案解析】(1)证明:由题,1DD ⊥面1111A B C D ,四边形1111A B C D 为正方形,所以1111111,A C B D A C DD ⊥⊥,而111111,B D DD D B D ∩=⊂面11BDD B ,1DD ⊂面11BDD B ,所以11AC ⊥面11BDD B ,而11AC ⊂面11A BC ,所以平面11BDD B ⊥平面11A BC .…………………………………………………………………………6分(2)设1B 在面11A BC 上的射影点为E ,连接1,EP EB ,11A BC S ∆=, 111111B A BC B A B C V V −−=,即1111222332EB ×=××××,得1EB =设1PB 与平面11A BC 所成的角的大小为θ,则11sin EB PB θ==,所以1PB =,在1BPB ∆中,由余弦定理得,2221112cos4PB BB PB BB PB π=+−××,即224PB =+−,解得PB =.…………………………………………13分16.【答案解析】(1)()0.20.20.20.80.20.80.20.20.104P A =×+××+××=, 所以()0.20.20.820.20.2()23 2.615 2.60.1040.104E X ××××=×+×≈≈.………………7分 (2)设00.2p =,则2112131402000300040005000223400000()[(1)][(1)][(1)][(1)][12(1)3(1)4(1)5(1)]0.048.6160.34464.P A p C p p p C p p p C p p p C p p p p p p p p =+−+−+−+−=+−+−+−+−=×=……………………………………………………………………………………………15分17. 【答案解析】(1)()x af x e −′=,所以00000()0x a x ae f x e x −−−′==−,所以01x =;………………5分(2)即()sin 00x aex x −−≥∀≥,令()sin x a g x e x −=−,若0a ≤,则0,1,()sin 1sin 0,x a x a x a e g x e x x −−−≥≥=−≥−≥合题;…………7分若0,()cos ,x a a g x e x −′>=− 令()(),h x g x ′=则()sin ,x a h x e x −′=+当0x π≤≤时,()0,()h x g x ′′>递增,而2(0)10,()0,2aag e g e ππ−−′′=−<=>所以,存在唯一的0(0,)[0,],2x ππ∈⊆使得000()cos 0,x a g x e x −′=−= 所以,当00x x <<时,()0,()g x g x ′<递减,当0x x π<<时,()0,()g x g x ′>递增,故00000()()sin cos sin 0,x ag x g x ex x x −==−=−≥极小所以00,4x π<≤此时,00ln cos ,x a x −=故00ln cos 4a x x π=−≤−即ln 2042a π<≤+; ……………………………………………………………………………………………11分当x π>时,ln 2142()sin 1110x x ax ag x e x eee π−−−−=−≥−≥−≥−>,因而ln 2042a π<≤+合题; 综上所述,a 的取值范围是求ln 2(,].42π−∞+………………………………………15分 18.【答案解析】(1)由题,222ac a b c b==+=,解得2242a b ==,,所以C 的方程为221.42y x −=…………………………………………………………4分(2)(方法一)设11222(,),(,),:3P x y Q x y PQ y kx =+,代入22142y x −=,化简整理得22432(2)039k x kx −+−=,有222122016324(2)0990k k k x x −≠∆=−−−>>,解得21629k <<, 112:2y AP yx x +=−,令23y =得11836M x x y =+,同理22836N x x y =+, 12121212121221212128864||||36369(2)(2)6464168649(2)(2)99()39x x x x BM BN y y y y x x x x y y k x x k x x =×=++++===+++++,2216||||(2),||||||||,339BO BA BO BA BM BN =×+==所以,,,M N O A 四点共圆.……………………………………………………………………………………12分(2)(方法二)设,OM AN 的倾斜角分别为,αβ.由对称性,不妨设PQ 的斜率0k >,此时,αβ均为锐角,所以,,,M N O A 四点共圆AOM ANM π⇔∠+∠=()2παβπ⇔++=,,(0,)22ππαβαβ⇔+=∈tan tan 1αβ⇔=1OM AN k k ⇔=设11222(,),(,),:3P x y Q x y PQ y kx =+,代入22142y x −=,化简整理得 22432(2)039k x kx −+−=,有222122016324(2)0990k k k x x −≠∆=−−−>>,解得21629k <<, 122329(2)x x k =−−,12243(2)kx x k +=−−, 112:2y AP yx x +=−,令23y =得11836M x x y =+,同理22836N x x y =+, 1124OM y k x +=,222AN AQy k k x +==, 1212121288()()223344OM AN kx kx y y k k x x x x ++++== 2121212864()3914k x x k x x x x +++==, 所以,,,M N O A 四点共圆.……………………………………………………………12分(3)设圆心为T ,则121212121212212121,444882363633382()438643()39T M N T y x x x x x x x y y kx kx kx x x x k k x x k x x =−+==+=+++++++=+++(,1),5(3T k r ∴−=…………………………………………………………17分19.【答案解析】(1)()2312(),()0,(0,1)(1)1f x f x x x x ′′′==>∈−−,所以()f x 在(0,1)上为凸函数.…………………………………………………………………………………………4分(2)(1,2,,)ii x y i n T == 为正数,11111n n n i i i i i i x y x T T ======∑∑∑,即11ni i y ==∑, 由11n i n i i n x x T x T x −==−−∑,得11,11inn i n i x x TT x x T T−==−−∑ 即1111n i ni i n y y y y −==−−∑,所以11111111111111()(1)()(1)111111111n in n n n ii n i i n n i i i n ii i y y y y n f y n f y n y y y n y n n −−−−=−====−−==≥−=−=−−−−−−−−∑∑∑∑∑, 01(1,2,,)i y i n <<= ,所以111111111nn n n n y y n y y y n −−−−≤=−−−−, 即111111n n y y n −≤−−−,所以111111n n y y n −≤−−−.……………………………10分(3)11111nn n n n n n x x y T x T x y y T===−−−−−关于n y 在(0,1)递增, 由(2)解得min ()3)n y n =≥;当2n =时,12n y ≥.所以min 3)n n x n T x=≥−;当2n =时也成立.当3n ≥时,当且仅当12111nn y y y y n −−=====− 时取“=”;当2n =时,当且仅当1212y y ==时取“=”. 所以n n x T x −分。

2020年安徽省合肥一中高考数学最后一卷(文科) (解析版)

2020年安徽省合肥一中高考数学最后一卷(文科) (解析版)

2020年安徽省合肥一中高考数学最后一卷(文科)一、选择题(共12小题).1.记全集U=R,集合A={x|x2≥16},集合B={x|2x≥2},则(∁U A)∩B=()A.[4,+∞)B.(1,4]C.[1,4)D.(1,4)2.若复数z的共轭复数满足(1﹣i),则|z|=()A.B.C.D.3.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.如图是源于其思想的一个程序框图,若输入的a,b分别为5,2,则输出的n=()A.5B.4C.3D.24.从区间[0,1]内随机抽取2n个数x1,x2,…x n,y1,…,y n构成n个数对(x1,y1),…,(x n,y n),其中两数的平方和不小于1的数对共有m个,则用随机模拟的方法得到圆周率π的近似值为()A.B.C.D.5.已知x,y满足不等式组,则的最大值为()A.0B.C.D.66.已知log2x=log3y=log5z<0,则、、的大小排序为()A.B.C.D.7.点M,N分别是棱长为1的正方体ABCD﹣A1B1C1D1中棱BC,CC1的中点,动点P在正方形BCC1B1(包括边界)内运动,且PA1∥面AMN,则PA1的长度范围为()A.B.C.D.8.已知双曲线C的离心率,过焦点F作双曲线C的一条渐近线的垂线,垂足为M,直线MF交另一条渐近线于N,则=()A.2B.C.D.9.已知函数f(x)=A sin(ωx+φ),(A>0,)的部分图象如图所示,则使f(2a+x)+f(﹣x)=0成立的a的最小正值为()A.B.C.D.10.已知数列{a n}的前n项和为S n,S n=2a n﹣2,若存在两项a n,a m,使得a n•a m=64,则的最小值为()A.B.1C.3+2D.E.【无选项】111.已知函数f(x)=e x﹣1,,若f(a)=g(b)成立,则b﹣a的最小值为()A.B.C.1+ln2D.1﹣ln212.已知点A,B关于坐标原点O对称,|AB|=1,以M为圆心的圆过A,B两点,且与直线2y﹣1=0相切,若存在定点P,使得当A运动时,|MA|﹣|MP|为定值,则点P的坐标为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分.13.设向量,不平行,向量与平行,则实数λ=.14.若圆(x﹣3)2+(y﹣4)2=1上存在两点A、B,使得∠APB=60°,P为圆外一动点,则P点到原点距离的最小值为.15.如图,在四棱锥P﹣ABCD中,顶点P在底面的投影O恰为正方形ABCD的中心且,设点M,N分别为线段PD,PO上的动点,已知当AN+MN取得最小值时,动点M恰为PD的中点,则该四棱锥的外接球的表面积为.16.设数列{a n}的前n项和为S n,若存在实数A,使得对于任意的n∈N*,都有|S n|<A,则称数列{a n}为“T数列”.则以下{a n}为“T数列”的是.①若{a n}是等差数列,且a1>0,公差d<0;②若{a n}是等比数列,且公比q满足|q|<1;③若;④若a1=1,.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.已知△ABC的内角A,B,C的对边分别为a,b,c,且9c﹣a=9b cos A.(1)求cos B;(2)若角B的平分线与AC交于点D,且BD=1,求的值.18.某公司为了提高职工的健身意识,鼓励大家加入健步运动,要求200名职工每天晚上9:30上传手机计步截图,对于步数超过10000的予以奖励,图1为甲乙两名职工在某一星期内的运动步数统计图,图2为根据这星期内某一天全体职工的运动步数做出的频率分布直方图.(1)在这一周内任选两天检查,求甲乙两人两天全部获奖的概率(2)请根据频率分布直方图,求出该天运动步数不少于15000的人数,并估计全体职工在该天的平均步数;(3)如果当大甲的排名为第130名,乙的排名为第40名,试判断做出的是星期几的频率分布直方图.19.如图,三棱柱ABC﹣A1B1C1中,平面ACC1A1⊥平面ABC,AA1=AC,∠ACB=90°.(1)求证:平面AB1C1⊥平面A1B1C;(2)若∠A1AC=60°,AC=2CB=2,求四棱锥A﹣BCC1B1的体积.20.已知椭圆C:+=1(a>b>0)的左焦点为F(﹣2,0),离心率为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设O为坐标原点,T为直线x=﹣3上一点,过F作TF的垂线交椭圆于P、Q,当四边形OPTQ是平行四边形时,求四边形OPTQ的面积.21.已知函数.(1)f(x)的导函数记作f'(x),且f'(x)在(﹣1,+∞)上有两不等根,求a的取值范围;(2)若f(x)存在两个极值点,记作x1,x2,求证:f(x1)+f(x2)>4.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,曲线C的参数方程为(r>0,φ为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为,若直线l与曲线C相切;(Ⅰ)求曲线C的极坐标方程;(Ⅱ)在曲线C上取两点M,N与原点O构成△MON,且满足,求面积△MON的最大值.[选修4-5:不等式选讲]23.已知函数f(x)=x2+ax+b(a,b∈R).(1)a=2,b=0,解不等式f(x)>|4﹣x|;(2)m,n是f(x)的两个零点,若|a|+|b|<1,求证:|m|<1,|n|<1.参考答案一、选择题(共12小题).1.记全集U=R,集合A={x|x2≥16},集合B={x|2x≥2},则(∁U A)∩B=()A.[4,+∞)B.(1,4]C.[1,4)D.(1,4)【分析】求出集合A,集合B,从而求出∁U A,由此能求出(∁U A)∩B.解:∵全集U=R,集合A={x|x2≥16}={x|x≥4或x≤﹣4},集合B={x|6x≥2}={x|x≥1},∴(∁U A)∩B={x|1≤x<4}=[7,4).故选:C.2.若复数z的共轭复数满足(1﹣i),则|z|=()A.B.C.D.【分析】把已知等式变形求得,再由,结合商的模等于模的商求解.解:由(1﹣i),得,则|z|=||=||=.故选:B.3.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.如图是源于其思想的一个程序框图,若输入的a,b分别为5,2,则输出的n=()A.5B.4C.3D.2【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量n的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.解:当n=1时,a=,b=4,满足进行循环的条件,当n=2时,a=,b=8满足进行循环的条件,当n=4时,a=,b=32不满足进行循环的条件,故选:B.4.从区间[0,1]内随机抽取2n个数x1,x2,…x n,y1,…,y n构成n个数对(x1,y1),…,(x n,y n),其中两数的平方和不小于1的数对共有m个,则用随机模拟的方法得到圆周率π的近似值为()A.B.C.D.【分析】以面积为测度,建立方程,即可求出圆周率π的近似值.解:由题意,两数的平方和小于1,对应的区域的面积为π•12,从区间[7,1】随机抽取2n个数x1,x2,…,x n,y6,y2,…,y n,∴=故选:D.5.已知x,y满足不等式组,则的最大值为()A.0B.C.D.6【分析】作出不等式组对应平面区域,利用z的几何意义即可得到结论.解:作出不等式组对应的平面区域如图:则则的几何意义为动点Q到原点连线的斜率,由图象可知当P位于A(,3)时,直线AP的斜率最大,故选:D.6.已知log2x=log3y=log5z<0,则、、的大小排序为()A.B.C.D.【分析】设k=log2x=log3y=log5z<0,0<x,y,z<1.x=2k,y=3k,z=5k.可得=21﹣k,=31﹣k,=51﹣k.由函数f(x)=x1﹣k在(0,1)上单调递增,即可得出.解:设k=log2x=log3y=log5z<8,∴0<x,y,z<1.则=27﹣k,=31﹣k,=58﹣k.∴21﹣k<31﹣k<51﹣k.故选:A.7.点M,N分别是棱长为1的正方体ABCD﹣A1B1C1D1中棱BC,CC1的中点,动点P在正方形BCC1B1(包括边界)内运动,且PA1∥面AMN,则PA1的长度范围为()A.B.C.D.【分析】取B1C1的中点E,BB1的中点F,连结A1E,A1F,EF,取EF中点O,连结A1O,推导出平面AMN∥平面A1EF,从而点P的轨迹是线段EF,由此能求出PA1的长度范围.解:取B1C1的中点E,BB1的中点F,连结A1E,A1F,EF,取EF中点O,连结A6O,∵点M,N分别是棱长为1的正方体ABCD﹣A1B1C1D1中棱BC,CC1的中点,∵AM∩MN=M,A1E∩EF=E,∵动点P在正方形BCC1B7(包括边界)内运动,且PA1∥面AMN,∵A1E=A1F==,EF==,∴当P与O重合时,PA1的长度取最小值:A1O==,∴PA1的长度范围为[,].故选:B.8.已知双曲线C的离心率,过焦点F作双曲线C的一条渐近线的垂线,垂足为M,直线MF交另一条渐近线于N,则=()A.2B.C.D.【分析】画出图形,利用已知条件转化求解即可.解:由题意双曲线的离心率为:,可得,可得,所以=,渐近线方程为:y=,如图:所以MN=,故选:B.9.已知函数f(x)=A sin(ωx+φ),(A>0,)的部分图象如图所示,则使f(2a+x)+f(﹣x)=0成立的a的最小正值为()A.B.C.D.【分析】根据条件求出函数的解析式,由f(2a+x)+f(﹣x)=0得f(2a+x)=﹣f(﹣x),得函数关于(a,0)对称,利用三角函数的对称性进行求解即可.解:由f(2a+x)+f(﹣x)=0得f(2a+x)=﹣f(﹣x),得函数关于(a,0)对称,则f(x)=2sin(ωx+),得ω=7,由2x+=kπ,得x=﹣,即函数的对称中心为(﹣,0),即此时a=,故选:C.10.已知数列{a n}的前n项和为S n,S n=2a n﹣2,若存在两项a n,a m,使得a n•a m=64,则的最小值为()A.B.1C.3+2D.E.【无选项】1【分析】首先求出数列的通项公式,进一步利用基本不等式的应用求出结果.解:由S n=2a n﹣2,当n≥2时,可得S n﹣5=2a n﹣1﹣8,故(常数),所以,,但是mn都为整数解得当m=n=3时,最小值为1.故选:B.11.已知函数f(x)=e x﹣1,,若f(a)=g(b)成立,则b﹣a的最小值为()A.B.C.1+ln2D.1﹣ln2【分析】求出b﹣a=2﹣lny﹣1,根据函数的单调性求出b﹣a的最小值即可.解:设y=e a﹣1,则a=1+lny,则b=2,则(b﹣a)′=2﹣,∴y=时,(b﹣a)′=6,∴y=时,b﹣a取最小值,故选:C.12.已知点A,B关于坐标原点O对称,|AB|=1,以M为圆心的圆过A,B两点,且与直线2y﹣1=0相切,若存在定点P,使得当A运动时,|MA|﹣|MP|为定值,则点P的坐标为()A.B.C.D.【分析】设M的坐标为(x,y),然后根据条件得到圆心M的轨迹方程为x2=﹣y,把|MA|﹣|MP|转化后再由抛物线的定义求解点P的坐标.解:∵线段AB为⊙M的一条弦O是弦AB的中点,∴圆心M在线段AB的中垂线上,设点M的坐标为(x,y),则|OM|2+|OA|2=|MA|2,∴|y﹣|2=|OM|7+|OA|2=x2+y2+,∴M的轨迹是以F(7,﹣)为焦点,y=为准线的抛物线,=|y﹣|﹣|MP|+=|MF|﹣|MP|+,∴存在定点P(0,﹣)使得当A运动时,|MA|﹣|MP|为定值.故选:C.二、填空题:本题共4小题,每小题5分,共20分.13.设向量,不平行,向量与平行,则实数λ=.【分析】利用向量平行即共线的条件,列出关系式,利用向量相等解答.解:因为向量,不平行,向量与平行,所以=μ(),所以,解得λ=μ=;故答案为:.14.若圆(x﹣3)2+(y﹣4)2=1上存在两点A、B,使得∠APB=60°,P为圆外一动点,则P点到原点距离的最小值为5﹣2.【分析】根据题意,点P在以(3,4)为圆心,半径为(,2)的圆环内运动,求出P到原点的最小距离即可.解:对于点P,若圆上存在两点A,B使得∠APB=60°,只需由点P引圆的两条切线所夹的角不小于60°即可,故动点P在以(3,4)为圆心,半径为(,2)的圆环内运动,故答案为:5﹣3.15.如图,在四棱锥P﹣ABCD中,顶点P在底面的投影O恰为正方形ABCD的中心且,设点M,N分别为线段PD,PO上的动点,已知当AN+MN取得最小值时,动点M恰为PD的中点,则该四棱锥的外接球的表面积为..【分析】将折线转化为直线外一点与直线上一点的连线段,求出侧棱的长度解:如图,在PC上取点M',使得|PM'|=|PM|∵顶点P在底面的投影O恰为正方形ABCD的中心,∴PA=PB=PC=PD,∴AN+MN=AN+NM'∵M为PD的中点,∴PA=AC=4又∵顶点P在底面的投影O恰为正方形ABCD的中心,设外接球的半径为r,则.解得.故答案为:.16.设数列{a n}的前n项和为S n,若存在实数A,使得对于任意的n∈N*,都有|S n|<A,则称数列{a n}为“T数列”.则以下{a n}为“T数列”的是②③.①若{a n}是等差数列,且a1>0,公差d<0;②若{a n}是等比数列,且公比q满足|q|<1;③若;④若a1=1,.【分析】写出等差数列的前n项和结合“T数列”的定义判断①;写出等比数列的前n 项和结合“T数列”的定义判断②;利用裂项相消法求和判断③;由数列递推式分n为奇数与偶数判断数列的特性,再求前n项和判断④.解:①若{a n}是等差数列,且a1>0,公差d<0,则,当n→+∞时,|S n|→+∞,②若{a n}是等比数列,且公比q满足|q|<1,∴数列{a n}是“T数列”;③若=,∴|S n|=|+…+|=||<,④若a1=2,,当n为偶数时,有a n+2+a n=3,即数列{a n}中任意两个连续偶数项的和为0.∴数列{a n}不是“T数列”.故答案为:②③.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.已知△ABC的内角A,B,C的对边分别为a,b,c,且9c﹣a=9b cos A.(1)求cos B;(2)若角B的平分线与AC交于点D,且BD=1,求的值.【分析】(1)方法一:由已知利用余弦定理可求cos B的值;方法二:由已知及正弦定理,两角和的正弦函数公式,诱导公式,三角形内角和定理化简可求cos B的值.(2)由已知利用二倍角公式可求,,设△ABC,△ABD,△CBD的面积分别为S,S1,S2,利用三角形的面积公式,根据S1+S2=S,化简可求.解:(1)方法一:由9c﹣a=9b cos A,及余弦定理得:,整理得:,方法二:由9c﹣a=9b cos A,及正弦定理得:9sin C﹣sin A=9sin B cos A,所以:.所以:,设△ABC,△ABD,△CBD的面积分别为S,S1,S7,由S1+S2=S,得:,所以:.18.某公司为了提高职工的健身意识,鼓励大家加入健步运动,要求200名职工每天晚上9:30上传手机计步截图,对于步数超过10000的予以奖励,图1为甲乙两名职工在某一星期内的运动步数统计图,图2为根据这星期内某一天全体职工的运动步数做出的频率分布直方图.(1)在这一周内任选两天检查,求甲乙两人两天全部获奖的概率(2)请根据频率分布直方图,求出该天运动步数不少于15000的人数,并估计全体职工在该天的平均步数;(3)如果当大甲的排名为第130名,乙的排名为第40名,试判断做出的是星期几的频率分布直方图.【分析】(1)根据统计图统计出甲乙两人合格的天数,再计算全部获奖概率;(2)根据频率分布直方图求出人数及平均步数;(3)根据频率分布直方图计算出甲乙的步数从而判断出星期几.解:(1)由统计图可知甲乙两人步数超过10000的有星期一、星期二、星期五、星期天设事件A为甲乙两人两天全部获奖,则P(A)=∴(0.05+0.03)×5×200=80(人),2.5×0.1+8.5×0.2+12.5×0.3+17.5×3.25+22.5×0.15=13.25(千步)由频率分布直方图可得0.2﹣0.15=(20﹣y)×3.05,∴y=19.(1﹣0.65)﹣0.3=(x﹣10)×3.06,∴x=.19.如图,三棱柱ABC﹣A1B1C1中,平面ACC1A1⊥平面ABC,AA1=AC,∠ACB=90°.(1)求证:平面AB1C1⊥平面A1B1C;(2)若∠A1AC=60°,AC=2CB=2,求四棱锥A﹣BCC1B1的体积.【分析】(1)推导出BC⊥平面ACC1A1,BC⊥A1C,A1C⊥B1C1.从而ACC1A1是菱形,A1C⊥AC1.进而A1C⊥平面AB1C1.由此能证明平面AB1C1⊥平面A1B1C.(2)由,能求出四棱锥A﹣BCC1B1的体积.【解答】证明:(1)因为平面ACC1A1⊥平面ABC,平面ACC1A1∩平面ABC=AC,BC⊂平面ABC,∠ACB=90°,因为A1C⊂平面ACC8A1,所以BC⊥A1C.因为ACC1A1是平行四边形,且AA5=AC,所以ACC1A1是菱形,A1C⊥AC1.又A5C⊂平面A1B1C,所以平面AB1C1⊥平面A1B6C.所以,所以,即四棱锥A﹣BCC3B1的体积为.20.已知椭圆C:+=1(a>b>0)的左焦点为F(﹣2,0),离心率为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设O为坐标原点,T为直线x=﹣3上一点,过F作TF的垂线交椭圆于P、Q,当四边形OPTQ是平行四边形时,求四边形OPTQ的面积.【分析】(Ⅰ)由题意可得,解出即可;(Ⅱ)由(Ⅰ)可得F(﹣2,0),设T(﹣3,m),可得直线TF的斜率k TF=﹣m,由于TF⊥PQ,可得直线PQ的方程为x=my﹣2.设P(x1,y1),Q(x2,y2).直线方程与椭圆方程可得根与系数的关系.由于四边形OPTQ是平行四边形,可得,即可解得m.此时四边形OPTQ的面积S=.解:(Ⅰ)由题意可得,解得c=2,a=,b=.(Ⅱ)由(Ⅰ)可得F(﹣3,0),∵TF⊥PQ,可得直线PQ的方程为x=my﹣2.联立,化为(m2+3)y2﹣4my﹣7=0,∴x1+x2=m(y1+y2)﹣4=.∴,∴(x1,y1)=(﹣3﹣x8,m﹣y2),此时四边形OPTQ的面积S=═=.21.已知函数.(1)f(x)的导函数记作f'(x),且f'(x)在(﹣1,+∞)上有两不等根,求a的取值范围;(2)若f(x)存在两个极值点,记作x1,x2,求证:f(x1)+f(x2)>4.【分析】(1)求出函数的导数,结合函数的性质得到关于a的不等式组,解出即可;(2)求出f(x1)+f(x2)的解析式,问题转化为证明ln(a﹣1)2+﹣2>0,令a ﹣1=t,由a∈(1,2)可得t∈(0,1),当t∈(0,1)时,g(t)=2lnt+﹣2,根据函数的单调性证明即可.解:(1),x>﹣1,,令h(x)=x2+a(a﹣2).由题意,,解得:7<a<2,(2)证明:由(1)知,a的取值范围是(1,2),即x2+a(a﹣2)=6,得,==,令a﹣1=t,由a∈(1,2)可得t∈(0,2),所以g(t)在(0,1)上是减函数,综上,f(x1)+f(x2)>4.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,曲线C的参数方程为(r>0,φ为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为,若直线l与曲线C相切;(Ⅰ)求曲线C的极坐标方程;(Ⅱ)在曲线C上取两点M,N与原点O构成△MON,且满足,求面积△MON的最大值.【分析】(Ⅰ)求出直线l的直角坐标方程为y=+2,曲线C是圆心为(,1),半径为r的圆,直线l与曲线C相切,求出r=2,曲线C的普通方程为(x﹣)2+(y ﹣1)2=4,由此能求出曲线C的极坐标方程.(Ⅱ)设M(ρ1,θ),N(ρ2,),(ρ1>0,ρ2>0),由=2sin(2)+,由此能求出△MON面积的最大值.解:(Ⅰ)∵直线l的极坐标方程为,∴由题意可知直线l的直角坐标方程为y=+2,可得r==2,∴曲线C的普通方程为(x﹣)2+(y﹣1)7=4,即.=sin2θ+=2sin(8)+,所以△MON面积的最大值为2+.一、选择题23.已知函数f(x)=x2+ax+b(a,b∈R).(1)a=2,b=0,解不等式f(x)>|4﹣x|;(2)m,n是f(x)的两个零点,若|a|+|b|<1,求证:|m|<1,|n|<1.【分析】(1)利用绝对值不等式的解法,可得不等式的解集;(2)由函数的零点与方程实数根的关系,以及根与系数的关系得出m+n=﹣a,mn=b;再利用绝对值与不等式证明出结论即可.解:(1)a=2,b=0,则f(x)=x2+2x>|4﹣x|,﹣x6﹣2x<4﹣x<x2+2x,解得不等式的解集为{x|x<﹣4或x>1}.∴|m+n|=|a|,|mn|=|b|.∴|m+n|+|mn|<1.∴|m|﹣|n|+|mn|﹣1<4,(|m|﹣1)(|n|+1)<0.同理可证,|n|<1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档