流体力学第四章
合集下载
4工程流体力学 第四章流体动力学基础
因为 F 沿 y 轴正向,所以 Fy 取正值
Fy F V•n dS = -V0 dS
= =
=
ρ vV n dS ρ vV n dS ρ vV n dS ρ vV n dS
CS
S0
S1
S2
v = -V0 sin
0
0
§4-2 对控制体的流体力学积分方程(续18)
由于V1,V2在y方向上无分量,
忽略粘性摩擦力,控制体所受表面力包括两
端面及流管侧表面所受的压力,沿流线方向总压
力为:
FSl
pS p δpS δS
p
δp 2
δS
Sδ p 1 δpδS 2
流管侧表面所受压力在流 线方向分量,平均压强
§4-2 对控制体的流体力学积分方程(续27z)
控制体所受质量力只有重力,沿流线方向分
Q2
Q0 2
1 cosθ
注意:同一个问题,控制体可以有不同的取法,
合理恰当的选取控制体可以简化解题过程。
§4-2 对控制体的流体力学积分方程(续23)
微元控制体的连续 方程和动量方程
从流场中取一段长度为l 的流管元,因
为流管侧面由流线组成,因此无流体穿过;流 体只能从流管一端流入,从另一端流出。
CS
定义在系统上 的变量N对时 间的变化率
定义在固定控制 体上的变量N对 时间的变化率
N变量流出控制 体的净流率
——雷诺输运定理的数学表达式,它提供了对
于系统的物质导数和定义在控制体上的物理量
变化之间的联系。
§4-2 对控制体的流体力学积分方程 一、连续方程
在流场内取一系统其体积为 ,则系统内
的流体质量为:
根据物质导数的定义,有:
Fy F V•n dS = -V0 dS
= =
=
ρ vV n dS ρ vV n dS ρ vV n dS ρ vV n dS
CS
S0
S1
S2
v = -V0 sin
0
0
§4-2 对控制体的流体力学积分方程(续18)
由于V1,V2在y方向上无分量,
忽略粘性摩擦力,控制体所受表面力包括两
端面及流管侧表面所受的压力,沿流线方向总压
力为:
FSl
pS p δpS δS
p
δp 2
δS
Sδ p 1 δpδS 2
流管侧表面所受压力在流 线方向分量,平均压强
§4-2 对控制体的流体力学积分方程(续27z)
控制体所受质量力只有重力,沿流线方向分
Q2
Q0 2
1 cosθ
注意:同一个问题,控制体可以有不同的取法,
合理恰当的选取控制体可以简化解题过程。
§4-2 对控制体的流体力学积分方程(续23)
微元控制体的连续 方程和动量方程
从流场中取一段长度为l 的流管元,因
为流管侧面由流线组成,因此无流体穿过;流 体只能从流管一端流入,从另一端流出。
CS
定义在系统上 的变量N对时 间的变化率
定义在固定控制 体上的变量N对 时间的变化率
N变量流出控制 体的净流率
——雷诺输运定理的数学表达式,它提供了对
于系统的物质导数和定义在控制体上的物理量
变化之间的联系。
§4-2 对控制体的流体力学积分方程 一、连续方程
在流场内取一系统其体积为 ,则系统内
的流体质量为:
根据物质导数的定义,有:
流体力学第四章:流体阻力及能量损失
减小摩擦阻力的方法
优化物体表面粗糙度、使用润滑剂、改变流体的流速和方 向等。
形状阻力
形状阻力
由于物体形状的不同,流体在绕过物体时产生的阻力。
形状阻力公式
$F_s = frac{1}{2} rho u^2 A C_s$,其中$C_s$为形状阻力系数, 与物体形状、流体性质和流速有关。
减小形状阻力的方法
详细描述
汽车设计中的流体阻力优化主要包括车身形 状设计和空气动力学套件的应用。设计师会 采用流线型设计来减小空气阻力,同时也会 采用导流板、扰流板等空气动力学套件来调 整汽车周围的空气流动,以提高汽车的行驶
稳定性、减小风噪,并降低燃油消耗。
THANKS FOR WATCHING
感谢您的观看
详细描述
船舶航行中的流体阻力主要来自船体与水之间的摩擦力以及水对船体的冲击力。为了减小流体阻力, 船舶设计师通常会采用流线型设计,优化船体表面的光滑度,以及减少不必要的突出物,从而提高航 行效率。
管道流动中的能量损失
总结词
管道中流体流动时,由于流体与管壁之 间的摩擦以及流体内部的湍流等效应, 会产生能量损失。
根据伯努利方程、欧拉方程等计算公式,结合物体的形状、速度和流体密度等 参数进行计算。
02 流体阻力现象
摩擦阻力
摩擦阻力
由于流体与物体表面的相对运动产生摩擦而形成的阻力。
摩擦阻力公式
$F_f = frac{1}{2} rho u^2 A C_f$,其中$rho$为流体密 度,$u$为流速,$A$为流体与物体接触的表面积,$C_f$ 为摩擦阻力系数。
流体力学第四章流体阻力及能量损 失
目录
• 流体阻力的概念 • 流体阻力现象 • 能量损失原理 • 流体阻力的减小方法 • 实际应用案例
优化物体表面粗糙度、使用润滑剂、改变流体的流速和方 向等。
形状阻力
形状阻力
由于物体形状的不同,流体在绕过物体时产生的阻力。
形状阻力公式
$F_s = frac{1}{2} rho u^2 A C_s$,其中$C_s$为形状阻力系数, 与物体形状、流体性质和流速有关。
减小形状阻力的方法
详细描述
汽车设计中的流体阻力优化主要包括车身形 状设计和空气动力学套件的应用。设计师会 采用流线型设计来减小空气阻力,同时也会 采用导流板、扰流板等空气动力学套件来调 整汽车周围的空气流动,以提高汽车的行驶
稳定性、减小风噪,并降低燃油消耗。
THANKS FOR WATCHING
感谢您的观看
详细描述
船舶航行中的流体阻力主要来自船体与水之间的摩擦力以及水对船体的冲击力。为了减小流体阻力, 船舶设计师通常会采用流线型设计,优化船体表面的光滑度,以及减少不必要的突出物,从而提高航 行效率。
管道流动中的能量损失
总结词
管道中流体流动时,由于流体与管壁之 间的摩擦以及流体内部的湍流等效应, 会产生能量损失。
根据伯努利方程、欧拉方程等计算公式,结合物体的形状、速度和流体密度等 参数进行计算。
02 流体阻力现象
摩擦阻力
摩擦阻力
由于流体与物体表面的相对运动产生摩擦而形成的阻力。
摩擦阻力公式
$F_f = frac{1}{2} rho u^2 A C_f$,其中$rho$为流体密 度,$u$为流速,$A$为流体与物体接触的表面积,$C_f$ 为摩擦阻力系数。
流体力学第四章流体阻力及能量损 失
目录
• 流体阻力的概念 • 流体阻力现象 • 能量损失原理 • 流体阻力的减小方法 • 实际应用案例
流体力学第四章
流体力学
动量方程16-运动控制体
已知V = 30m/s,U = 10m/s,忽略重力和摩擦力, 已知V = 30m/s,U = 10m/s,忽略重力和摩擦力, 出口截面A11= 0.003m22,求Rxx和 Ryy 出口截面A = 0.003m ,求R 和 R
解:(1) 坐标系 (2) 控制体
r r r Vr = V − U
流体力学
动量方程15-运动控制体
∂ ∂t
∫
CV
r r r r r ρVr dτ + ∫ ρVrVr ⋅ ndS = ΣF
CS
流体仅在控制面的有限个区域流入流出且 ρ,V 在进出口截面均布,定常流动
r r & ∑ F = ∑ mriVri
(
)
out
−∑
(
r & mriVri
)
in
r r r 其中 Vr = V − VCV
φ
流体力学
雷诺输运方程1
欧拉方法描述系统物理量对时间的变化率
CSIII CSI I
t
r V
II
III
dS3
dS1 r n
r n
r V
t +δ t
DN sys Dt
流体力学
= lim
N sys (t + δt ) − N sys (t )
δt → 0
δt
雷诺输运方程2
DN sys Dt
DN sys Dt
流体力学
质点导数与系统导数
质点导数
r Dφ ∂φ = + (V ⋅ ∇ )φ Dt ∂t
流体质点某物理量随时间的变化率同空 间点上物理量之间的关系 系统导数
DN ∂ = Dt ∂t r r φV ⋅ ndS
动量方程16-运动控制体
已知V = 30m/s,U = 10m/s,忽略重力和摩擦力, 已知V = 30m/s,U = 10m/s,忽略重力和摩擦力, 出口截面A11= 0.003m22,求Rxx和 Ryy 出口截面A = 0.003m ,求R 和 R
解:(1) 坐标系 (2) 控制体
r r r Vr = V − U
流体力学
动量方程15-运动控制体
∂ ∂t
∫
CV
r r r r r ρVr dτ + ∫ ρVrVr ⋅ ndS = ΣF
CS
流体仅在控制面的有限个区域流入流出且 ρ,V 在进出口截面均布,定常流动
r r & ∑ F = ∑ mriVri
(
)
out
−∑
(
r & mriVri
)
in
r r r 其中 Vr = V − VCV
φ
流体力学
雷诺输运方程1
欧拉方法描述系统物理量对时间的变化率
CSIII CSI I
t
r V
II
III
dS3
dS1 r n
r n
r V
t +δ t
DN sys Dt
流体力学
= lim
N sys (t + δt ) − N sys (t )
δt → 0
δt
雷诺输运方程2
DN sys Dt
DN sys Dt
流体力学
质点导数与系统导数
质点导数
r Dφ ∂φ = + (V ⋅ ∇ )φ Dt ∂t
流体质点某物理量随时间的变化率同空 间点上物理量之间的关系 系统导数
DN ∂ = Dt ∂t r r φV ⋅ ndS
流体力学第四章 水头损失
全)。
P59表4-1为不同形状导管的临界雷诺数(水力半径)。
雷诺数的物理意义: Re = V d/ 粘性大、 Re 小、 易层流
13
§4–5 层流的水头损失---圆管中的层流
在这一章节主要讨论粘性力和沿程水头损失 hf 的规律。
假设流体在等截面水平圆管中作层流运动。取出其中半径 为 r 的圆柱体作为研究对象,写出运动方程式:(因为是定常
因此在计算每一个具体流动的水头损失时,首先须要判 别该流体的流动状态,而雷诺数为判别流体是层流还是湍 流提供了准则。
11
§4-4 雷诺数
管中流体的平均流速不是一个独立不变的量。
由实验知:流体平均流速与流体运动粘性成正比、与管道直 径d成反比;则引入一个无量纲比例常数Re 可写为:
V= Re /d
其中 Re 称为雷诺数。
8
(c)继续增大管内流速,则染色流束剧烈地波动,最后个别部 分出现破裂,并失掉原来的清晰的形状,混杂在很多小旋涡中。 染色液体很快充满整个管,如图c。这表明此时管内的流体向前 流动时处于完全无规则的混乱状态,称其为“湍流”,或“紊 流”。
流体由层流转变为湍流时 的平均流速,称之为“上临 界速度VC `”。
长管、短管
不是由管道的长与短来决定,而是由局部水头损失与沿程水头 损失的比例大小来确定。
长管:沿程损失比局部损失和速度水头的和大,局部损失可忽略;
短管:局部损失和速度水头的和比沿程损失大,考虑局部损失;
§4-3 流体流动两种状态
在不同条件下,流体质点的运动可能表现为两种状态。 一是、流体质点作有规则的运动,在运动过程中质点之间
互不混杂、互不干扰。 二是、流体质点的运动非常混乱。 1883年英国科学家雷诺进行了负有盛名的雷诺实验。
P59表4-1为不同形状导管的临界雷诺数(水力半径)。
雷诺数的物理意义: Re = V d/ 粘性大、 Re 小、 易层流
13
§4–5 层流的水头损失---圆管中的层流
在这一章节主要讨论粘性力和沿程水头损失 hf 的规律。
假设流体在等截面水平圆管中作层流运动。取出其中半径 为 r 的圆柱体作为研究对象,写出运动方程式:(因为是定常
因此在计算每一个具体流动的水头损失时,首先须要判 别该流体的流动状态,而雷诺数为判别流体是层流还是湍 流提供了准则。
11
§4-4 雷诺数
管中流体的平均流速不是一个独立不变的量。
由实验知:流体平均流速与流体运动粘性成正比、与管道直 径d成反比;则引入一个无量纲比例常数Re 可写为:
V= Re /d
其中 Re 称为雷诺数。
8
(c)继续增大管内流速,则染色流束剧烈地波动,最后个别部 分出现破裂,并失掉原来的清晰的形状,混杂在很多小旋涡中。 染色液体很快充满整个管,如图c。这表明此时管内的流体向前 流动时处于完全无规则的混乱状态,称其为“湍流”,或“紊 流”。
流体由层流转变为湍流时 的平均流速,称之为“上临 界速度VC `”。
长管、短管
不是由管道的长与短来决定,而是由局部水头损失与沿程水头 损失的比例大小来确定。
长管:沿程损失比局部损失和速度水头的和大,局部损失可忽略;
短管:局部损失和速度水头的和比沿程损失大,考虑局部损失;
§4-3 流体流动两种状态
在不同条件下,流体质点的运动可能表现为两种状态。 一是、流体质点作有规则的运动,在运动过程中质点之间
互不混杂、互不干扰。 二是、流体质点的运动非常混乱。 1883年英国科学家雷诺进行了负有盛名的雷诺实验。
工程流体力学第4章流体在圆管中的流动
流体在圆管中的摩擦系数
定义
表示流体在圆管中流动时, 流体与管壁之间的摩擦力 与压力梯度之间的比值。
影响因素
流体的物理性质、管道的 粗糙度、流动状态等。
测量方法
通过实验测定,常用的实 验设备有摩擦系数计和流 阻仪等。
流体在圆管中的流动效率
定义
表示流体在圆管中流动的能量转 换效率,即流体在流动过程中所 消耗的能量与流体所具有的能量
流速分布受流体粘性和密度的影响, 粘性越大、密度越小,靠近管壁处流 速降低越快。
03
流体在圆管中的流动现象
流体阻力
01
02
03
定义
流体在流动过程中,由于 流体内部以及流体与管壁 之间的摩擦力而产生的阻 力。
影响因素
流体的物理性质、流动状 态、管道的形状和尺寸等。
减小阻力措施
选择适当的流速、优化管 道设计、使用减阻剂等。
之比。
影响因素
流体的物理性质、管道的形状和尺 寸、流动状态等。
提高效率措施
优化管道设计、改善流体物性、降 低流速等。
流体பைடு நூலகம்圆管中的流动稳定性
定义
表示流体在圆管中流动时,流体的速 度和压力等参数随时间的变化情况。
影响因素
流动稳定性控制
通过控制流体物性、流速和管道设计 等措施,保持流体在圆管中的流动稳 定性。
根据输送距离、流量和扬程要求,选择合适的水 泵。
输送效率
优化输送管道布局,降低流体阻力,提高输送效 率。
输送安全性
确保输送过程中不发生泄漏、堵塞等安全问题。
液压系统
液压元件
根据液压系统要求,选择合适的液压元件,如油泵、阀、油缸等。
系统稳定性
确保液压系统在各种工况下稳定运行,避免压力波动和振动。
流体力学课件第四章流动阻力和水头损失
l v hf d 2g
2
r w g J 2
w v 8
定义壁剪切速度(摩擦速度) 则
w v
*
v v
*
8
§4-4 圆管中的层流
层流的流动特征
du dy
du du dy dr
du dr
g J
r 2
r du g J 2 dr
层流 紊流
§4-3 沿程水头损失与剪应力的关系
均匀流动方程式
P G cos P2 T 0 1
P p1 A1 1
P2 p2 A2
T w l
G cos gAl cos gA( z1 z2 )
w l p1 p2 ( z1 ) ( z2 ) g g gA
v2 hj 2g
§4-2 粘性流体的两种流态
两种流态
v小
' c
v小
v > vc
v大 v大
临界流速。 下临界流速 vc ——由紊流转化为层流时的流速称为下 临界流速。
vc' ——由层流转化为紊流时的流速称为上 上临界流速
vv
层流 紊流
' c
紊流 层流
a-b-c-e-f f-e-d-b-a
第四章 流动阻力和水头损失
水头损失产生的原因: 一是流体具有粘滞性, 二是流动边界的影响。
§4-1 流动阻力和水头损失的分类
沿程阻力和沿程水头损失
在边界沿程无变化(边壁形状、尺寸、过 流方向均无变化)的均匀流段上,产生的流动 阻力称为沿程阻力或摩擦阻力。由于沿程阻力 做功而引起的水头损失称为沿程水头损失。均 匀流中只有沿程水头损失 h f 。
流体力学 第4章
模型与原型的流场动力相似,它们的牛顿数必定相等。
4.2 动力相似准则
4.2.1.重力相似准则
在重力作用下相似的流动,其重力场相似。
kF
Fg Fg
V g Vg
k kl3kg
代入
kF k kl2kv2
kv (kl kg )1/ 2
1
v (gl)1/ 2
v (gl)1/ 2
Fr
Fr——弗劳德数,惯性力与重力的比值。
自模化状态 紊流的阻力有两部分
例如:泵与风机的动力相似是自动满足的
如图为弧形闸门放水时的情形,已知水深h=6m, 模型闸门是按比例尺kl=1/20制作,试验时的开度与 原型相同。试求流动相似时模型闸门前的水深。在模 型 上 测 得 收 缩 截 面 的 平 均 流 速 vˊ=2.0m 流 量 qvˊ=30L/s, 水作用在闸门上的力Fˊ=92N,绕闸门的 力矩Mˊ=110N·m,试求原型上收缩截面的平均流速、 流量、以及作用在闸门上的力。
第4章 相似原理和量纲分析
4.1 流动的力学相似
一、几何相似
模型与原形的全部对应线形长度的比例相等
长度比例尺
kl
l l
面积比例尺
kA
A A
l2 l2
kl2
L
体积比例尺
kV
V V
l3 l3
kl3
L
二、运动相似
模型与原形的流场所有对应点上、对应时刻 的流速方向相同而流速大小的比例相等。
速度比例尺 时间比例尺 加速度比例尺 体积流量比例尺 运动粘度比例尺
力的比例尺
kF
FP FP
F F
Fg Fg
Fi Fi
FP ——总压力 F ——切向力 Fg ——重力 Fi ——惯性力
流体力学 第四章 输运公式
例3 水流过一段900的渐缩弯头,进口截面绝对压强p1 221kPa , 横截面积S1 0.01m 2,出口截面面积S 2 0.0025m 2 , 速度V2 16m / s 压强则为大气压强pa 101kPa,水密度=999kg / m 3。流动是 定常的,忽略质量力和摩擦力,求对弯头的支撑力。
CS
假设水速在进出口截面S1 , S 2上均匀分布 (V n )dA V1S1 V2 S 2 0
CS
S2 V1 V2 4m / s S1 (2)定常流动量方程 F V (V n )dA
CS
x轴方向分量方程 Fx u (V n )dA
第四章 流体力学基本方程
主要内容: 1、系统、控制体的基本概念、定义; 2、输运公式; 3、流体力学积分形式基本方程组; 4、流体力学微分形式基本方程组; 5、定解条件方程的应用。
第一节 输运公式
一、基本概念
系统:一团流体质点的集合。引入系统的概念,实际上就是
采用拉格朗日观点来描述流体的运动。
特点:(1)随质点运动而运动,包含质量不变;
Bsys ( d ),BCV ( dv)
sys CV
体积单位;
dBout dBin v dA v dA dt A2 A1 (V n )dA
CS
d d sys ( d ) dt CV ( dv) (V n )dA dt CS
上式第一项: dh dv t ( w Sh) t a S ( H h) w S dt t CV 式中因空气总质量不变,即 a S ( H h)为常量,对时间的导数 为零。h仅是时间t的函数,对时间的偏导数可改写为全导数。 连续方程的第二项: (V n )dS wV2 S 2 wV1S1
工程流体力学-第4章 量纲分析与相似理论
动力相似
原型和模型对应点所受的同名力方向相同,大小 成比例。
FGp FPp F p FI p FGm FPm F m FI m
几何相似是运动相似和动力相似的前提 动力相似是决定流动相似的主要因素 运动相似是几何相似和动力相似的表现
§4-4 相似准则
流动相似的本质 :原型和模型被 同一物理方程所 描述。这个物理 方程即相似准则 。
因为声音在流体中传播速度(音速), a
入柯西数得
Ca v Ma a
Ev
代
§4-4 相似准则
其他相似准则
Ma 称为马赫数,在气流速度接近或超过音速时,要保证
流动相似,还需保证马赫数相等,即
vp vm ap am
或
(Ma) p (Ma) p
§4-5 相似原理应用
模型律的选择
模型律的选择
•从理论上讲, 流动相似应保 证所有作用力 都相似,但难 以实现。
FI
粘性力比尺:
FI
( A ( A
du dy
)
p
du dy
)
m
lv
lv
§4-4 相似准则
惯性力比尺: FI
(Va) p (Va)m
l3a
l 2v2
a v2 l
雷诺准则方程
vl 1
or
(vl
)
p
(vl
)
m
即要保证原型流动和模型流动的粘性力相似,则要求两
者对应的雷诺数 Re 必vl须相等。
相似准则
准则推导依据
动力相似是
决定流动相 似的主要因 素
§4-4 相似准则
弗劳德准则——重力相似
要保证原型和模型任意对应点的流体重力相似, 则据动力相似要求有
原型和模型对应点所受的同名力方向相同,大小 成比例。
FGp FPp F p FI p FGm FPm F m FI m
几何相似是运动相似和动力相似的前提 动力相似是决定流动相似的主要因素 运动相似是几何相似和动力相似的表现
§4-4 相似准则
流动相似的本质 :原型和模型被 同一物理方程所 描述。这个物理 方程即相似准则 。
因为声音在流体中传播速度(音速), a
入柯西数得
Ca v Ma a
Ev
代
§4-4 相似准则
其他相似准则
Ma 称为马赫数,在气流速度接近或超过音速时,要保证
流动相似,还需保证马赫数相等,即
vp vm ap am
或
(Ma) p (Ma) p
§4-5 相似原理应用
模型律的选择
模型律的选择
•从理论上讲, 流动相似应保 证所有作用力 都相似,但难 以实现。
FI
粘性力比尺:
FI
( A ( A
du dy
)
p
du dy
)
m
lv
lv
§4-4 相似准则
惯性力比尺: FI
(Va) p (Va)m
l3a
l 2v2
a v2 l
雷诺准则方程
vl 1
or
(vl
)
p
(vl
)
m
即要保证原型流动和模型流动的粘性力相似,则要求两
者对应的雷诺数 Re 必vl须相等。
相似准则
准则推导依据
动力相似是
决定流动相 似的主要因 素
§4-4 相似准则
弗劳德准则——重力相似
要保证原型和模型任意对应点的流体重力相似, 则据动力相似要求有
流体力学第四章
1.渐变流及其特性
渐变流过水断面近似为平面,即渐变流是流线接近于
平行直线的流动。均匀流是渐变流的极限。
动压强特性:在渐变流同一过水断面上,各点动压强
按静压强的规律式分布,即
注:上述结论只适用于渐变流或均匀流的同一过水断面上 的 各点,对不同过水断面,其单位势能往往不同。
选取:控制断面一般取在渐变流过水断面或其极限情况均匀 流断面上。
即J=JP。 5.总水头线和测压管水头线之间的距离为相应段
的流速水头。
6.如果测压管水头线在总流中心线以上,压强就 是正职;如相反,则压强为负值,则有真空。
4.总流能量方程在推导过程中的限制条件
(1)不可压缩流体;
(2)恒定流;
(3)质量力只有重力,所研究的流体边界是静止 的(或处于平衡状态);
取管轴0-0为基准面,测压管所在断面
1,2为计算断面(符合渐变流),断面的形
心点为计算点,对断面1,2写能量方程(4-
15),由于断面1,2间的水头损失很小,
可视
,取α1=α2=1,得
由此得:
故可解得:
式中,K对给定管径是常量,称为文丘里流 量计常数。
实际流量 : μ——文丘里流量计系数,随流动情况和管
流体力学
第四章 流体动力学基础
本章是工程流体力学课程中最重要的一 章。本章建立了控制流体运动的微分方程, 即理想流体运动微分方程和实际流体的运 动微分方程;并介绍了求解理想流体运动 微分方程的伯努利积分形式;构建了工程 流体力学中应用最广的恒定总流运动的三 大基本方程:连续性方程、伯努利方程 (即能量方程)和动量方程。通过本章的 学习要培养综合运用三大基本方程分析、 计算实际总流运动问题的能力。
道收缩的几何形状而不同。
流体力学-第四章 流体动力学基础
Dt t CV
CS
单位质量流体的能量 e (u V 2 gz) 流体系统的总能量
2
DE ed eV ndS
Dt t CV
CS
E ed
初始时刻系统与控制体重合
Q WSYS Q WCV
ed eV ndS Q W
t CV
CS
§4.2 对控制体的流体力学积分方程
§4.1 系统和控制体,雷诺输运定理
雷诺输运定理:
举例:动量定理运用于流体系统
F Dk Dt
F 是外界作用系统的合力,K 是系统的动量,
k Vd
由于系统不断改变位置、形状大小,组成系统的流体质点的密度和速度随
时间也是变化的,所以系统的动量也是变化的,求其对时间的变化率,即
求该流体系统体积分的物质导数。
取 N M 单位体积的质量
DM 0 Dt
d V ndS 0
t CV
CS
d V ndS 0
t CV
CS
积分形式的连续性方程
§4.2 对控制体的流体力学积分方程
非定常流动情况下:
d V ndS 0
t CV
CS
即单位时间内控制体内流体质量的增加或减少等于同时间内通过控制面流入 或流出的净流体质量。如果控制体内的流体质量不变,则必然同一时间内流 入与流出控制体的流体质量相等。
左端第一项——是控制体内流体动量随时间变化而产生的力,它反映流体运动的非定常性
左端第二项——是单位时间内流体流入和流出控制体的动量之差,它表示流入动量与流出动量
不等所产生的力。
§4.2 对控制体的流体力学积分方程
定常流动条件:
F
FB FS
VV ndS
CS
VV ndS
流体力学第4章流体流动基本原理
mCV qm2 qm1 0 t
28
对稳态流动系统,流体及流动参数均与 时间无关,即
mCV / t 0
因此,质量守恒方程简化为
qm1 qm2
或 1v1 A1 2v2 A2
即稳态流动,输入与输出的质量必然相等。
29
对不可压缩流体的稳态流动,ρ=const,则
v1 A v2 A2 1
CV
vmax
2
R v1R 0
2 2
34
故有
vmax=2v1
例题:一储气罐,罐中空气经管道向外界排出,
已知管道出口处气流密度和压强为均匀分布,而 速度呈抛物线规律分布:
r v vmax (1 2 ) r0
已知排气管r0=0.025m,当储气罐 中p0=0.14MPa,T0=277.8K,测得 管道出口处气流vmax=32m/s,储气 罐和管道的总容积0.32m3。
24
③ 控制体内的质量变化率
对于控制体内密度为ρ的任意微元体积dV,其质 量为ρdV。将ρdV在整个控制体CV积分可得控制体内 的瞬时总质量,再对时间求导得:
控制体内的 质量变化率 =
t
dV
CV
ρ dv
25
④ 质量守恒方程
将上述各式集合在一起即可得到控制体系
统的质量守恒方程:
输出控制体 的质量流量 输入控制体 — 的质量流量
4.2.1 控制体系统的质量守恒方程
根据质量守恒原理,对于质量为m的系统,其质 量守恒方程为
dm ( )系统 0 dt
由输运公式,以控制体为研究对象时质量守恒方程 可表述为
19
输出控制体 的质量流量
—
输入控制体 的质量流量
流体力学第四章 涡旋动力学基础
因此,针对流体的涡旋运动进行分析,介绍涡 旋运动的描述方法、认识涡旋运动的变化规律 及其物理原因是十分必要的
流体涡度:它是反映流体旋转特征或者旋转强度的 一个重要物理量。
涡度为零时,流体运动为无旋的;
涡度不等于零时,则对应流体的涡旋运动。
Chen Haishan NIM NUIST
一般情况:流体运 动可以表示为: V Vr V 无旋运动
涡旋运动
重点讨论涡旋部分 Vr 的变化特征及其产生的原因。
主要内容
第一节 环流定理 第二节 涡度方程
Chen Haishan NIM NUIST
第一节 环流定理
在流场中任取一个封闭的物质
环线 l (形状大小可变,由
流点组成的闭合曲线)。
l
速度环流的定义 V • dl l
它反映了流体沿曲线 l 运动的趋势,是标量,但具有
Chen Haishan NIM NUIST
第四章 涡旋动力学基础
流体的涡旋运动大 量存在于自然界中,如大 气中的气旋、反气旋、龙 卷、台风等,大气中的涡 旋运动对天气系统的形成 和发展有密切的关系。
台风 龙卷
Chen Haishan NIM NUIST
大尺度海洋环流
Chen Haishan NIM NUIST
1
p
dt
l
dV dt
.l
l
F .l
l
1
p.l
环流变化方程:
d dt
l
dV dt
l
l l
l
1
p l
l
l
1
p
右端项的处理主要涉及到 P 与 的关系
Chen Haishan NIM NUIST
正压流体:
流体涡度:它是反映流体旋转特征或者旋转强度的 一个重要物理量。
涡度为零时,流体运动为无旋的;
涡度不等于零时,则对应流体的涡旋运动。
Chen Haishan NIM NUIST
一般情况:流体运 动可以表示为: V Vr V 无旋运动
涡旋运动
重点讨论涡旋部分 Vr 的变化特征及其产生的原因。
主要内容
第一节 环流定理 第二节 涡度方程
Chen Haishan NIM NUIST
第一节 环流定理
在流场中任取一个封闭的物质
环线 l (形状大小可变,由
流点组成的闭合曲线)。
l
速度环流的定义 V • dl l
它反映了流体沿曲线 l 运动的趋势,是标量,但具有
Chen Haishan NIM NUIST
第四章 涡旋动力学基础
流体的涡旋运动大 量存在于自然界中,如大 气中的气旋、反气旋、龙 卷、台风等,大气中的涡 旋运动对天气系统的形成 和发展有密切的关系。
台风 龙卷
Chen Haishan NIM NUIST
大尺度海洋环流
Chen Haishan NIM NUIST
1
p
dt
l
dV dt
.l
l
F .l
l
1
p.l
环流变化方程:
d dt
l
dV dt
l
l l
l
1
p l
l
l
1
p
右端项的处理主要涉及到 P 与 的关系
Chen Haishan NIM NUIST
正压流体:
流体力学 第四章 cn
Ip = = = = = Tm Gm Pm E m S m I m 即λT = λG = λ P = λ E = λ S = λ I Tp Gp Pp Ep Sp
动力相似是运动相似的保证
四、初始条件和边界条件相似
初始条件和边界条件的相似是保证两个流动相似 的充分条件,正如初始条件和边界条件是微分方 程的定解条件一样。 对于非恒定 流,初始条件是必需 的;对于恒定流, 初始条件则失去了实际意义。 边界条件相似是指两个流动相似,其边界性质相 同,如固体 边界上的法线流速 都为零;自由液体 上 压强 均等 于大气压 等等,对于原型和模型 都是 一样的。
为时间比尺(Time Scale)
二、运动相似
w速度相似 意味着各 相应点的 加 速度也是相似的,
即
λl λv λ2 λa = = 2 == = v a m λt λt λl ap
式中λa为加速度比尺(Acceleration Scale) 由此可见,只要速度相似,加速度也必然相似,反 之亦然。 由于速度场的研究是流体力学的重要问题,所以 运动相似通常是模型试验的目的。
四、韦伯准则(Weber Criterion)
当作用力主要为表面张力时
F = S = σl
λ F = λ S = λσ λ l λI = λF
式中λσ为表面张力系数比尺,将上式代入式 得
2 λ ρ λ2 l λ v = λσ λl
化简得
λ ρ λl λ2 v λσ
=1 ρplp v2 p σp ρ mlm v2 m = σm
运动相似是两个流场相应点的速度方向相同,大 up 小成比例,即
um 式中λu为速度比尺(Velocity Scale)
断面平均流速也具有同样比尺,即
动力相似是运动相似的保证
四、初始条件和边界条件相似
初始条件和边界条件的相似是保证两个流动相似 的充分条件,正如初始条件和边界条件是微分方 程的定解条件一样。 对于非恒定 流,初始条件是必需 的;对于恒定流, 初始条件则失去了实际意义。 边界条件相似是指两个流动相似,其边界性质相 同,如固体 边界上的法线流速 都为零;自由液体 上 压强 均等 于大气压 等等,对于原型和模型 都是 一样的。
为时间比尺(Time Scale)
二、运动相似
w速度相似 意味着各 相应点的 加 速度也是相似的,
即
λl λv λ2 λa = = 2 == = v a m λt λt λl ap
式中λa为加速度比尺(Acceleration Scale) 由此可见,只要速度相似,加速度也必然相似,反 之亦然。 由于速度场的研究是流体力学的重要问题,所以 运动相似通常是模型试验的目的。
四、韦伯准则(Weber Criterion)
当作用力主要为表面张力时
F = S = σl
λ F = λ S = λσ λ l λI = λF
式中λσ为表面张力系数比尺,将上式代入式 得
2 λ ρ λ2 l λ v = λσ λl
化简得
λ ρ λl λ2 v λσ
=1 ρplp v2 p σp ρ mlm v2 m = σm
运动相似是两个流场相应点的速度方向相同,大 up 小成比例,即
um 式中λu为速度比尺(Velocity Scale)
断面平均流速也具有同样比尺,即
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 在每一个微元流束的有效截面上,各点的速度可认为是相同的 总流:无数微元流束的总和。
38
2016/12/26
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
均匀流与非均匀流·渐变流和急变流
均匀流——同一条流线上各空间点上的流速相 同的流动,流线是平行直线,各有效截面上的 流速分布沿程不变 非均匀流——同一条流线上各空间点上的流速不 同的流动,流线不是平行直线,即沿流程方向速 度分布不均
迹线· 流线 1、迹线 1)定义:某一质点在某一时段内的运动轨迹 线。 2)迹线的微分方程
dx dy dz dt ux u y uz
烟火的轨迹为迹线
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
25
2016/12/26
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
一维、二维和三维流动
三维流动:流动参数是x、y、z三个坐标的函数
的流动。
二维流动:流动参数是x、y两个坐标的函数的
流动。
一维流动:是一个坐标的函数的流动。
26
2016/12/26
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
x= x (t)
dux ux ux dx ux dy ux dz ax dt t x dt y dt z dt
(1)当地加速度(时变加速度):流动过程中流体 由于速度随时间变化而引起的加速度; (2)迁移加速度(位变加速度):流动过程中流体 由于速度随位置变化而引起的加速度。
1 2 3 4 5 6 7 8
流体及其物理性质 流体静力学 流体运动学和流体动力学基础 相似原理和量纲分析 管内流动和水力计算 气体的一维流动 理想流体的有旋和无旋流动 粘性流体绕过物体的流动
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
描述流体运动的两种方法
二、欧拉法( Eulerian Method )
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
流动空间的坐标变量数目:一维流动,二维流动,三维流动
23
2016/12/26
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
一、定常流动和非定常流动
定常流动:流体的流动参数不随时间而变化的流动。 非定常流动,流体的流动参数随时间而变化的流动。
流体的出流
24
2016/12/26
迹线方程为:
dx dy dz dt ux u y uz
式中时间t为参变量。 流线方程为: dx dy dz ux u y uz 式中时间t为自变量。
迹线
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
流体运动学和动力学基础(Fluid Kinematics and Dynamics) 流管、流束、总流 流管:在流场中任取一条不是流线的封闭曲线,通过曲线上 各点作流线,这些流线组成一个管状表面 流体质点不能穿过流管流入或流出(由于流线不能相交)
管内流动速度分布
27
2016/12/26
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
绕无限翼展的流动
28
2016/12/26
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
绕有限翼展的流动
29
2016/12/26
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
d ux uy uz dt t x y z
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
1、在水位恒定的情况下: (1)AA (2)BB (1)AA (2)BB 不存在时变加速度和位变加速度。 不存在时变加速度,但存在位变加速度。
一、拉格朗日法( Lagrangian Method )
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
写成矢量的形式为:
Du u a u u Dt t
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
Du u a u u Dt t
对于压力和密度,则分别为: dp p p p p ux uy uz dt t x y z
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
欧拉向拉格朗日法的转换
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
在定常流中,流场中任意空间点的运动要素不随时间变化, 当地加速度等于零; 在均匀流中,质点运动速度不随空间位置变化,所以迁移 加速度等于零。
dx dy dz ux , u y , uz dt dt dt
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
2.流线
(1)流线的定义 表示某一瞬时流体各质点流动趋势的曲线,曲线 上任一点的切线方向与该点的流速方向重合。 描述流场中不同空间 质点在同一时刻的运 动情况
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
(2)流线的性质
a、同一时刻的不同流线,不能相交。
L1 L2
A
v
A
udA A
Q A
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
湿周 水力半径
湿周:在总流的有效截面上,流体与固体边界接触的长度
称为,用符号χ表示。
水力半径:总流的有效截面面积与湿周之比。用符号Rh表示
dx dy dz ux u y uz
——流线微分方程 (t是常数)
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
流线、 迹线的比较
概念名 定义 备注
流线
流线是表示流体流动趋势的一条曲线,在 同一瞬时线上各质点的速度向量都与其相 切,它描述了流场中不同质点在同一时刻 的运动情况。 迹线是指某一质点在某一时刻内的运动轨 迹,它描述流场中同一质点在不同时刻的 运动情况。
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
流体运动的一些基本概念
一、流动的分类
流体性质:理想流体的流动和粘性流体的流动 不可压缩流体的流动和可压缩流体的流动
运动状态 : 定常流动和非定常流动,有旋流动和无旋流动 层流流动和紊流流动,亚声速流动和超声速流动
(3)流线的方程
设dr为流线上A处的一微元弧长 dr dxi dyj dzk
u为流体质点在A点的流速 u u x i u y j u z k
流速向量与流线相切 i j dx dy ux u y
k dz 0 uz变加速度,但不存在位变加速度。 既存在时变加速度,又存在位变加速度。
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
拉格朗日向欧拉法的转换
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
U2
U1
根据流线定义,在交点的液体质点的 流速向量应同时与这两条流线相切,即一 个质点不可能同时有两个速度向量。
b、流线不能是折线,而是一条光滑的曲线。 流体是连续介质,各运动要素是空间的连续函数。 c、流线簇的疏密反映了速度的大小(流线密集的地方 流速大,稀疏的地方流速小)。
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
定常流动的流场中,流体质点的速度、压强和密度等流动参 数仅是空间点坐标x、y、z的函数,而与时间t无关,用Φ表 示任一流动参数(即Φ可表示u,v,w,p,ρ等),则 Φ= Φ (x,y,z) 定常流动时流体加速度: a (V )V 在定常流动中只有迁移加速度。
流束:流管内部的流体。 当流束的横截面积趋近于零时,则流束达到它的极限—— 流线。
37
2016/12/26
流体运动学和动力学基础(Fluid Kinematics and Dynamics) 有效截面:在流束中与各流线相垂直的横截面。 • 流线相互平行时,有效截面是平面。 • 流线不平行时,有效截面是曲面。 微元流束和微元流管:有效截面面积为无限小的流束和流管
流体运动学和动力学基础(Fluid Kinematics and Dynamics)