无线发射接收系统设计与实现

合集下载

基于 51 单片机的无线数据收发系统设计

基于 51 单片机的无线数据收发系统设计

基于 51 单片机的无线数据收发系统设计摘要:系统使用 51 单片机通过NRF24L01 模块远程传输数据,接收端通过NRF24L01 模块接收无线数据。

处理后由液晶进行数据显示,可根据需要设置声音提示。

系统接收与发送端模块均单片机、无线发送模块/ 接收、显示、声音提示模块。

关键词:51 单片机;NRF24L01;液晶显示;无线通讯1硬件设计1.1系统组成该系统将数据经过控制器由无线发送模块进行远距离发送,再通过接收端进行无线数据接收。

接收的数据经控制器处理后由液晶显示器显示,并根据需要可以实现一定的声音提示。

1.2无线收发模块本设计使用无线通讯技术实现数据的传送,能够实现此功能的硬件电路模块总类较多。

为符合设计需求,采用以NRF24L01 为核心的无线通讯模块。

该方案可以使系统具有低成本,低功耗,体积小等特点。

NRF24L01 无线模块出至 NORDIC 公司。

其工作频段在 2.4G— 5GHz,该模块正常工作电压为 1.9V—3.6V,内部具有 FSK 调制功能,集成了 NORDIC 公司自创的增强短脉冲协议。

该模块最多可实现 1 对 6 的数据发送与接收。

其每秒最高可传输两兆比特,能够实现地址检验及循环冗余检验。

若使用 SPI 接口,其每秒最高可传输八兆比特,多达 128 个可选工作频道,将该芯片的最小系统集成后,构成NRF24L01 无线通信模块。

1、引脚功能此模块有 6 个数据传输和控制引脚,采用 SPI 传输方式,实现全双工串口通讯,其中 CE脚为芯片模式控制线,工作情况下,CE 端协配合寄存器来决定模块的工作状态。

当4 脚电平为低时,模块开始工作。

数据写入的控制时钟由第 5 脚输入,数据写入与输出分别为 6、7 脚,中断信号放在了第 8 脚。

2、电器特性NRF24L01 采用全球广泛使用的 2.4Ghz 频率,传输速率可达 2Mbps,一次数据传输宽度可达 32 字节,其传输距离空旷地带可达2000M 此模块增强版空旷地带传输距离可达 5000M—6000M, 因内部具有 6 个数据通道,可实现 1 对 6 数据发送,还可实现 6 对 1 数据接收,其工作电压为 1.9V-3.6V,当没有数据传输时可进入低功耗模式运行,微控制器对其控制时可对数据控制引脚输入 5V 电平信号,可实现 GFSK 调制。

红外无线数据传输系统的设计与实现-毕业论文

红外无线数据传输系统的设计与实现-毕业论文

摘要红外无线数据传输系统是一种利用红外线作为传输媒介的无线数据传输方式,它相对于无线电数据通信具有功耗低、价格便宜、低电磁干扰、高保密性等优点,目前发展迅猛,尤其是在近距离无线数据通信中得到广泛的运用.本文主要介绍基于51单片机的红外无线数据传输系统的原理.在硬件设计原理的介绍中,主要分析了系统中NE555数据调制电路、红外发射电路、红外接收电路、DS18B20温度传感器电路、单片机外围电路以及声光报警电路。

在系统软件设计的介绍中,我们主要分析单片机串口通信协议、控制温度传感器采集数据、对数据的编解码;而液晶显示部分软件则是为了具有更好的人机交互界面。

通过调试后,本系统基本达到预期要求,1、正确实现双机通信功能,在2400波特率下通信距离达到7米左右;2、具有在超时通信不畅的情况下进行报警提示功能;3、具有自动搜寻一帧数据起始位的功能,这样可以有效防止外界的干扰;4、通过串口可以与PC机实现正确通信,可以作为计算机的红外无线终端,完成数据的上传和下放.因此本系统具有广阔的实用价值。

关键词:AT89S52单片机;数据采集;红外通信;调制解调;串口通信AbstractInfrared wireless data transmission system is a wireless data transfer method that uses infrared as a transmission medium, Compared with the radio data communication,it has many advantages in power consumption, Production costs,electromagnetic interference,and the confidentiality. At present,this technology is developing rapidly,In particular, It is widely used in short—range wireless data communications,In this paper,we are introduced infrared wireless data transmission system’s theory that based on the single—chip microcomputer 51. In the hardware design principle introduction,We mainly analysis the system's data modulation circuit of NE555, infrared transmitter,IR receiver circuit, DS18B20 temperature sensor circuit,microcontroller peripheral circuits, as well as sound and light alarm circuit。

无线气象传真接收机信号发射系统的设计与实现

无线气象传真接收机信号发射系统的设计与实现

在2 H 一 4 H 之 间,发 出任意频率 的载 波,方便无线气 象传 真接收机 的维修保障 ,实现 装备的 内场调 试的环境 。 MZ 2MZ 关键词: 无线 气象传真机 ;软件无线 电;修 理调试
中图分类号 :T 9 文献标识码 :h 文章编号 :1 7 - 7 9 2 1 )0 1 0 6 0 N1 1 5 7( 0 0 8 0 4 - 2 6
D fn dR do e ie a i,简 称S R ,就 是采 用 数字 信 号处 理技 术 ,在 可编 程 控制 D) 的通用 硬件 平 台上 ,利 用 软件 来 定义 实现 无线 电台的 各部 分功 能 :包 括前 端接 收 、 中频 处理 以及 信号 的基 带 处理 等 等 。即整 个无 线 电 台从 高频 、 中
机 把 模拟 开 关的 档位 切 换 ̄ DP 82 这档 ,并 发送控 制 指令 给 DP8 2 , J IS2 07 S 20 7
频 、基 带直到 控制 协议 部分全 部 由软件 编程 来完 成 。
依据 上述 理念 设 计的信 号 发射 系统 是一 种 为无线 气 象传 真接 收机 即 时 提供 信 号源 的测试 设备 ,它按 照W O 准 ,可 以在2H 一 4H 之 间,发 出任 M标 M Z2M Z
后 再 切换 到 图像 发射 这档 位 置 ,发射 图像的 原理 与 发射 相位 信 号相似 ,单 片 机 把每 行分 为 50 s 0m ,前 5为相 位 信 号 ,其余 9% 图像 信 号 ,单片 机根 % 5为 据 图 像的类 型 分别 选 通黑 白通 道 ,从 而 打印 出 图像 。图像 打 印完 毕 ,单 片
无 线气 象传 真机 是舰 船海 上航 行 时接 收传 真气 象 图的 重要气 象 设备 。

FM无线发射与接收电路的设计,无线音箱设计

FM无线发射与接收电路的设计,无线音箱设计

FM无线发射与接收电路的设计,无线音箱设计毕业设计题目:…FM无线发射与接收电路的设计…学院:信息与电子工程学院专业:应用电子技术填写日期:二零一二年十二月二十五日摘要摘要在现代通信中,简易无线设备是一种近距离的、简单的无线传输通信工具,目前广泛应用于生产、广播电视、野外工程领域的小范围移动通信工程中。

本次毕业设计以BH1417F集成发射芯片、SP7021F 收音机集成芯片、TDA2822M功放芯片为基础,构造了一款立体声FM 无线发射与接收电路的设计的传输系统。

BH1417F是ROHM公司推出的新型FM无线发射芯片,是锁相环调频立体声发射专用集成电路,电路主要分为前级放大电路,高频振荡,高频功率放大三个部分,仅仅需要很少的外围元器件就能够扶僻优异的体声调频信号。

SP7021F内包含有高放、混频、本振、二级有源中频滤波器、中频限幅放大器、鉴频器、低频器、低频放大器、静噪电路以及相关静噪系统等。

低频功放部分用TDA2822M功放芯片。

该无线传输系统,相距可达到5米,通过扬声器播放的声音清晰,厚重,无明显失真。

关键词:无线传输BH1417F SP7021F TDA2822IAbstractAbstractIn modern communications , simple wireless device is one kind of short distance wireless transmission communication tools , simple , widely used in production , radio and television , field engineering in small scope mobile communication project . The graduation design with BH1417F integrated chip launch , SP7021F radio chip , TDA2822M power amplifier chip as the foundation , constructs a stereo radio sound transmission system .BH1417F is ROHM launched the new FM wireless emitting chip , is phase-locked loop FM stereo transmitter integrated circuit , main circuit is divided into a front stage amplifier circuit , high frequency oscillation , frequency power amplifier three parts , only needs few peripheral components can help out-of-the-way excellent sound FM signal .SP7021F contains high discharge , mixing , lo , two stage active filter , if limiter amplifier , discriminator , low frequency , low frequency amplifier , a squelch circuit and associated squelch system . Low frequency power amplifier with TDA2822M power amplifier chip .The wireless transmission system , distance can reach 5 meters , played through a loudspeaker voice clear , thick , no obvious distortion .Keywords: Wireless transmission BH1417F SP7021F TDA2822 II目录目录第1章引言............................................................................................................... (1)第2章设计要求与任务 (2)第3章FM无线发射与接收电路的设计的工作原理 (3)3.1 FM无线发射与接收电路的设计系统方案 (3)3.2 无线调频发射机的设计 (4)3.2.1 无线调频发射机组成框图 (4)3.2.2 BH1417F工作原理 (4)3.3 无线调频收音机的设计 (7)3.3.1 无线调频收音机组成框图 (8)3.3.2 SP7021F工作原理 (8)3.3.3 低频功放电路 (10)第4章硬件的制作和调试及心得体会 (12)4.1 硬件的制作............................................................................................................... .. 124.2 电路的调试............................................................................................................... .. 154.3 心得体会............................................................................................................... (16)结论............................................................................................................... .. (18)参考文献............................................................................................................... (19)附录............................................................................................................... ................................ 20 III引言第1章引言无线通信(Wireless communication)是利用电磁波信号可以在自由空间中传播的特性进行信息交换的一种通信方式。

激光无线通信光发射与接收电路的设计

激光无线通信光发射与接收电路的设计

激光无线通信光发射与接收电路的设计1. 前言激光无线通信作为一种高速、高带宽的通信方式,被广泛应用于各个领域。

在激光无线通信系统中,光发射与接收电路的设计至关重要。

本文将深入探讨激光无线通信光发射与接收电路的设计原理、要求以及设计流程,以期为读者提供一个全面、详细、完整的指南。

2. 设计原理激光无线通信光发射与接收电路的设计原理是基于激光器和光接收器的工作原理。

激光器通过激发激光介质产生激光,而光接收器则接收并解析激光信号。

因此,设计一个有效的光发射与接收电路需要深入理解激光器和光接收器的特性。

2.1 激光器的特性激光器是产生激光的关键组件,它具有以下几个重要特性:1.高单色性:激光器发出的光具有很高的单色性,能够有效避免光信号的色散和干扰。

2.高方向性:激光器发出的光具有很高的方向性,能够将光信号有效地聚焦和传输。

3.高功率输出:激光器能够输出相对较高的功率,以提供足够的信号强度和传输距离。

2.2 光接收器的特性光接收器是接收激光信号的关键组件,它具有以下几个重要特性:1.高灵敏度:光接收器能够对弱光信号进行高效的接收和解析,以提供足够的信噪比。

2.快速响应:光接收器能够迅速响应光信号的变化,以满足高速通信的要求。

3.低噪声:光接收器具有低噪声特性,以提高信号的可靠性和质量。

3. 设计要求激光无线通信光发射与接收电路的设计需要满足以下要求:1.高效传输:设计的光发射与接收电路应能够实现高效的光信号传输,并保持较低的传输损耗。

2.适应不同距离:光发射与接收电路应能够适应不同的传输距离,从近距离到远距离的通信需求。

3.抗干扰能力:光发射与接收电路应具备一定的抗干扰能力,以应对外界环境对信号传输的影响。

4.低功耗设计:光发射与接收电路应具备较低的功耗,以延长激光器和光接收器的使用寿命。

4. 设计流程激光无线通信光发射与接收电路的设计流程可以分为以下几个步骤:4.1 系统需求分析首先,需要进行系统需求分析,明确激光无线通信的具体应用场景、距离要求、传输速率等。

无线通讯系统设计方案

无线通讯系统设计方案

无线通讯系统设计方案随着科技的快速发展和人们对于灵活、便携和高效的需求,无线通讯系统越来越受到人们的和依赖。

无线通讯系统以其无需线路布设,覆盖范围广,数据传输速度快,运行成本低等优点,在军事、工业、商业、教育、交通、医疗等领域得到了广泛应用。

然而,无线通讯系统的设计并非一蹴而就,需要针对特定的应用场景进行优化和选择。

本文将重点探讨无线通讯系统的设计方案,包括系统架构、硬件选择、软件设计、安全策略等方面。

无线通讯系统的架构通常包括发射端、接收端和传输媒介三个部分。

发射端负责将信息转换为电磁波,通过传输媒介发送;接收端则接收电磁波并还原为信息。

根据不同的应用需求,可以选择不同的无线通讯协议和技术,如Wi-Fi、蓝牙、Zigbee、LoRa等。

射频模块:无线通讯系统的核心是射频模块,它负责信号的发射和接收。

射频模块的选择需要根据应用场景和传输距离来决定,同时需要考虑其功率、频率、灵敏度等参数。

微控制器:微控制器是无线通讯系统的控制中心,负责处理用户输入、控制射频模块和其他外设的工作。

在选择微控制器时,需要考虑其处理能力、内存大小、外设接口是否满足系统需求。

天线:天线是无线通讯系统中负责接收和发送电磁波的重要部件。

天线的选择需要考虑其频率范围、增益、阻抗等参数,同时还需要考虑其尺寸和形状是否适合应用场景。

通讯协议:通讯协议是无线通讯系统的关键组成部分,它规定了信息的格式和传输规则。

在选择通讯协议时,需要考虑其数据传输速度、安全性、稳定性等因素。

调度策略:调度策略是无线通讯系统中的重要概念,它决定了各个设备之间的信息传输顺序和时间。

调度策略的设计需要考虑系统的实时性、可靠性和效率。

能量管理:能量管理是无线通讯系统中的重要问题,它涉及到系统的功耗和寿命。

能量管理策略的设计需要考虑系统的运行模式、休眠模式和省电策略等。

加密技术:加密技术是保障无线通讯系统安全的重要手段,它可以防止信息被窃取或篡改。

在选择加密技术时,需要考虑其安全性、效率和对系统性能的影响。

无线接收系统的原理和作用

无线接收系统的原理和作用

无线接收系统的原理和作用无线接收系统是指通过无线电信号接收器接收无线电波,将无线电波转化为可用信号的系统。

无线接收系统主要由天线、射频前置放大器、中频放大器、检波器、滤波器等组成。

无线接收系统的工作原理主要分为如下几个步骤:1. 天线接收信号:无线接收系统通过天线接收到空气中传输的无线电波。

天线是接收无线电波的装置,它能将无线电波转化为综合了空间和时间特性的连续电信号,并将其传送给射频前置放大器。

2. 射频前置放大器:射频前置放大器是无线接收系统中的一个重要组件,主要作用是将来自天线的微弱射频信号放大到适合后续处理的水平。

射频前置放大器在信号传输路径上产生较小的噪声,并提高接收系统的灵敏度。

3. 中频放大器:中频放大器主要用于放大射频前级输出的信号,将其提高到较高的幅度。

通过中频放大器的放大,可以使射频信号的弱信号增加到适合进一步处理的水平。

4. 检波器:检波器主要用于将中频信号转化为原始信号。

检波器可以把调制在高频波上的信息信号恢复出来,并输出为模拟信号,进一步进行处理或转换。

5. 滤波器:在检波器输出的信号进行处理之前,通常需要通过滤波器进行滤波。

滤波器主要用于去除不需要的频率分量,以确保只保留目标信号。

滤波器可以通过选择特定的频带来滤除干扰信号,从而提高信号的质量。

6. 后续处理:无线接收系统在滤波器之后,可以对信号进行进一步的处理和转换。

根据具体的应用需求,可能需要对信号进行放大、调制解调、数据解码等处理,最终将信号输出给使用者。

无线接收系统的作用主要体现在以下几个方面:1. 数据通信:无线接收系统在无线通信中起到关键的作用。

它可以接收到无线电发射设备发送的信号,将信号转化为可用于通信的数据,实现无线通信的功能。

例如,手机接收基站发射的信号,将信号转化为语音、图像等数据,供用户使用。

2. 无线广播和电视:无线接收系统是实现无线广播和电视的关键技术之一。

它可以接收到广播电台和电视台发射的无线电信号,并将信号转化为可用于播放的音视频信号,实现广播和电视节目的播出。

无线通信中的射频收发系统设计

无线通信中的射频收发系统设计

这一章讨论了非线性分析的基本原理和方法,包括互调、干扰屏蔽和频谱再 生及调制等。还介绍了如何利用非线性分析改善无线通信系统的性能。
第六章:移动系统中射频专用集成电路设计方法
这一章针对移动系统中的射频专用集成电路设计进行了深入探讨,包括自动 增益控制、模/数转换动态范围和电源管理等关键技术。还介绍了如何优化这些 集成电路的性能,以满足移动系统的严格要求。
《无线通信中的射频收发系统设计》是一本全面介绍无线通信中射频收发系统设计的书籍,既适 合初学者入门学习,也适合专业人士深入探讨。通过阅读本书,读者可以深入理解射频收发系统 设计的基本原理和核心技术,掌握射频收发系统的设计和优化方法,为进一步研究和开发无线通 信技术打下坚实的基础。
精彩摘录
在无线通信领域,射频收发系统设计是至关重要的一环。它不仅是实现无线 通信的关键,也是决定无线通信质量与效率的重要因素。近年来,随着无线通信 技术的快速发展,射频收发系统设计也变得越来越复杂和精细。在这样的背景下, 一本名为《无线通信中的射频收发系统设计》的书籍为我们提供了宝贵的参考和 指导。
本书还重点介绍了射频收发系统的性能评估。通过理论分析和实验测试,本书详细阐述了如何评 估射频收发系统的性能,包括传输速率、功耗、稳定性等指标。
还介绍了如何通过优化设计和参数调整来提高系统性能。
本书讨论了射频收发系统设计的未来发展趋势。随着技术的不断进步,射频收发系统设计将面临 更多的挑战和机遇。本书展望了未来几年内无线通信技术的发展趋势,并探讨了可能的创新方向。
《无线通信中的射频收发系统设计》这本书的目录覆盖了无线通信中射频收 发系统的各个方面,从基础知识到高级技术,从理论分析到实践应用。这本书对 于从事无线通信工作的工程师和技术人员来说是一本宝贵的参考书,对于相关领 域的研究人员和学生来说也是一本极好的教材。

激光无线通信光发射与接收电路的设计

激光无线通信光发射与接收电路的设计

激光无线通信光发射与接收电路的设计一、激光无线通信的基本原理二、光发射电路的设计1. 激光器驱动电路设计2. 激光器保护电路设计3. 激光调制电路设计三、光接收电路的设计1. 光探测器选择与特性分析2. 前置放大电路设计3. 高频放大电路设计4. 信号解调电路设计一、激光无线通信的基本原理激光无线通信是利用激光作为信息传输的载体,通过空气中的传播实现数据传输。

其基本原理是利用激光器产生高功率狭窄束的激光,将信息转换为脉冲宽度调制(PWM)或强度调制(IM)信号,通过发射机向空气中发送,接收机则通过探测器将接收到的信号转换为电信号进行解码。

二、光发射电路的设计1. 激光器驱动电路设计激光器驱动电路是将直流或交流信号转换为足够高频率和幅度的脉冲,以使得激光器能够正常工作。

其主要组成部分包括信号发生器、放大器和脉冲调制器。

2. 激光器保护电路设计激光器保护电路用于保护激光器免受过电流、过压、过温等因素的损害。

其主要包括过流保护电路、过压保护电路和温度控制电路等。

3. 激光调制电路设计激光调制电路是将输入信号转换为PWM或IM信号,以控制激光的强度或频率。

其主要包括放大器、滤波器和脉冲调制器等。

三、光接收电路的设计1. 光探测器选择与特性分析光探测器是将接收到的激光信号转换为电信号的关键部件。

常用的有PIN型探测器、APD型探测器和PSD型探测器等。

在选择时需要考虑其响应速度、灵敏度和带宽等特性。

2. 前置放大电路设计前置放大电路用于放大从光探测器输出的微弱信号,并消除噪声干扰。

其主要包括低噪声放大器和滤波器等。

3. 高频放大电路设计高频放大电路用于进一步放大信号,并将其转换为可处理的中频或基带信号。

其主要包括中频放大器和混频器等。

4. 信号解调电路设计信号解调电路用于将接收到的PWM或IM信号转换为原始数据。

其主要包括解调器和滤波器等。

总之,在激光无线通信系统中,光发射电路和光接收电路都是至关重要的组成部分,其设计需要考虑多种因素,如功率、带宽、灵敏度、噪声等,以确保系统的稳定性和可靠性。

基于315MHz的数字无线通信(发射,接收)系统实验报告

基于315MHz的数字无线通信(发射,接收)系统实验报告
void main (void)
{ //P1=0x00;
P37=1;
SCON = 0x50;/* SCON:模式1, 8-bit UART,使能接收*/
TMOD |= 0x20; /* TMOD: timer 1, mode 2, 8-bit reload */
TH1 = 0xFD; /* TH1: reload value for 9600 baud @ 11.0592MHz */
图3为发送载波波形
同组同学接收的图像:
图4为接收载波波形
说明射频发射模块工作正常,接收模块正常,与本组同学通信正常。
九、试验中遇到的问题及解决方法
1、电源电路部分输出电压不是5V?
电容接反了,而且小电容不仔细看都一样,但有一个是不同的。
2、串行接口部分连接与电路图不相符?
发现信号地应该与5针脚相连接,可是电路板上却与1针脚相连接,用一根导线将1针脚与5针脚相连,即可正常传输数据。
串口调试图像:
5、实现自发自收
将自发自收程序烧到单片机中,用串口线将电路与计算机相连接,在发送框中输入发送的内容,点击接收,接收框中出现刚才发送的内容。
将程序拷入CPU中,P3.7口线输出10KHZ的方波,说明RS232芯片正常通信,CPU工作正常。
调试图像:
CPU工作正常(P3.7口线输出10KHZ的方波)图像。
通过通信系统方案设计及具体的电路调试和软件编程实践,进一步加深对通信系统的了解,理解所学的专业知识,提高动手能力,提高解决实际问题的综合能力。
三、设计要求
通过亲自设计,动手焊接并调试电路实现315M的数字无线通信系统无线收发数据功能
四、给定条件
电路板(发送)、电阻、电容、发光二级管、晶振、7805、2262、2051单片机、RS232、导线等

基于单片机的无线收发系统设计

基于单片机的无线收发系统设计

基于单片机的无线收发系统设计无线收发系统是指通过无线电波实现信息的传递与接收的一种通讯系统。

它将从传感器或者其他设备中获取的信号转化为电信号,然后通过射频信号进行传输与接收。

在实际的无线收发系统设计中,基于单片机的无线收发系统已经成为广泛应用的一种方案。

下文将从硬件和软件两方面介绍基于单片机的无线收发系统的设计思路。

一、硬件设计基于单片机的无线收发系统包括发送端和接收端两个部分。

其中发送端主要是将电信号转化为射频信号进行传输,而接收端则是将射频信号转化为电信号进行处理。

1、发射模块设计发射模块设计中最核心的是无线电频率,因此需要选择合适的发射模块芯片。

首先需要选择一款可控制衰减的功率放大器,以便根据实际需求对其进行合适的调节。

其次需要选择一款有较多输出功率档位的变频器。

最后需要进行天线设计,根据不同场景选择不同类型的天线。

(如:旋转天线,贴片天线,板载蜂窝天线等)2、接收模块设计接收模块设计中最重要的是接收机芯片。

可以选择具有数字解调功能的芯片,以便将接收到的射频信号转换为数字信号。

通过功率放大器增益的设计,可以使信号幅度调整到最佳值,然后输出给单片机进行处理。

二、软件设计软件设计中需要编写相应的代码程序,对模块控制进行设置,并实现数据的传递。

1、发射模块控制在发射模块控制中,主要是对功率放大器与变频器进行控制。

可以利用单片机的PWM功能模拟模拟电压输出,并实现对变频器的频率和功率的调节。

同时还需要设计相应的信号调制方案,以使数据正确地传输。

2、接收模块控制在接收模块控制中,主要是对解调芯片和功率放大器进行控制,并将解调后的信号数据传输给单片机进行处理。

可以利用单片机的外部中断功能实现接收到数据的中断处理,并利用单片机的USART串口功能实现数据的传输。

综上,基于单片机的无线收发系统的设计需要考虑硬件和软件两个方面。

在硬件设计中需要选择合适的发射与接收模块,并进行天线设计。

在软件设计中需要编写相应的代码程序,实现模块控制与数据传输。

无线收发器设计指南:现代无线设备与系统篇_记录

无线收发器设计指南:现代无线设备与系统篇_记录

《无线收发器设计指南:现代无线设备与系统篇》读书札记目录一、无线收发器基础概念 (2)1.1 无线通信原理简介 (3)1.2 无线收发器的功能与分类 (4)1.3 现代无线收发器的发展趋势 (5)二、无线收发器设计要素 (6)2.1 无线收发器的硬件设计 (8)2.1.1 射频前端设计 (9)2.1.2 模数转换器 (10)2.1.3 数模转换器 (12)2.1.4 天线与射频模块 (13)2.1.5 电源管理与稳压电路 (14)2.2 无线收发器的软件设计 (15)2.2.1 微控制器与嵌入式系统 (16)2.2.2 通信协议与数据处理算法 (17)2.2.3 驱动程序与固件开发 (19)2.3 无线收发器的系统设计与布局 (20)2.3.1 系统架构设计 (22)2.3.2 PCB布局与布线 (23)2.3.3 散热与电磁兼容性设计 (25)三、无线收发器应用案例分析 (26)3.1 无线传感器网络 (27)3.2 蓝牙技术 (29)四、无线收发器设计挑战与解决方案 (30)4.1 信号干扰与抑制技术 (31)4.2 无线收发器的能效优化 (32)4.3 多频段与多标准支持 (34)4.4 安全性与可靠性问题 (35)五、未来展望与建议 (37)5.1 无线收发器技术的未来发展方向 (38)5.2 对无线收发器设计的建议与展望 (40)一、无线收发器基础概念在深入探讨无线收发器的设计与应用之前,我们首先需要明确其基础概念。

无线收发器,作为无线通信的核心组件,它不仅实现了信号的发送与接收,更承载着数据传输的关键任务。

传统的无线收发器常采用分立元件或集成电路来实现信号的调制与解调。

这些技术虽然成熟稳定,但在集成度、功耗和成本等方面存在一定的局限性。

随着技术的不断进步,单片无线收发器应运而生,它集成了多种功能,包括天线、放大器、调制解调器等,大大简化了系统的设计与实现过程。

无线收发器的设计也充分考虑了通信协议的要求,不同的无线标准(如WiFi、蓝牙、ZigBee等)对信号传输的速率、带宽、功耗等参数有着不同的定义。

无线发射接收系统设计与实现

无线发射接收系统设计与实现

无线发射接收系统设计与实现1、引言对于环境信息采集是很普遍的,但是将采集的信息如何传输就是关键,传统的系统都是用有线的方法,不仅要铺设线路,而且不方便,可移植性差。

随着无线技术的不断发展,无线在各个领域中的应用也不断增加,通过嵌入式系统,用无线的方式实现数据的采集和传输是最好的解决方法,不仅简化了实施的难度,而且成本相对较低。

本文主要是以C51单片机为控制核心,用无线接收发射装置来实现环境数据采集系统。

2、系统目的设计并制作一个无线环境监测模拟装置,实现对周边温度和光照信息的探测。

该装置由1个监测终端和不多于255个探测节点组成(实际制作2个)。

监测终端和探测节点均含一套无线收发电路,要求具有无线传输数据功能,收发共用一个天线。

探测节点有编号预置功能,编码预置范围为00000001B~11111111B。

探测节点能够探测其环境温度和光照信息。

温度测量范围为0℃~100℃,绝对误差小于2℃;光照信息仅要求测量光的有无。

探测节点采用三节1.5V干电池串联,单电源供电。

监测终端用外接单电源供电。

探测节点分布示意图如图1所示。

监测终端可以分别与各探测节点直接通信,并能显示当前能够通信的探测节点编号及其探测到的环境温度和光照信息。

每个探测节点增加信息的转发功能,节点转发功能示意图如图2所示。

即探测节点B的探测信息,能自动通过探测节点A转发,以增加监测终端与节点B之间的探测距离D+D1。

该转发功能应自动识别完成,无需手动设置,且探测节点A、B可以互换位置。

3、方案设计与论证3.1、方案设计方案一:采用at89s52单片机,无线发射采用使用LC振荡器,无线接收采用超外差电路,硅光片,DS18B20,8位拨码开关。

方案二:采用at89s52单片机,无线发射采用使用声表器件,无线接收采用超再生电路,硅光片,DS18B20,8位拨码开关。

3.2、方案论证:(1)无线发射电路选择早期的发射机较多使用LC振荡器,频率漂移较为严重。

激光无线通信光发射与接收电路的设计

激光无线通信光发射与接收电路的设计

激光无线通信光发射与接收电路的设计激光无线通信是一种高速、高带宽、高安全性的通信方式,其光发射与接收电路的设计对于通信系统的性能至关重要。

以下是激光无线通信光发射与接收电路的设计内容:一、光发射电路设计1. 激光二极管驱动电路设计激光二极管是激光无线通信系统中最常用的光源,其驱动电路需要满足高速、高稳定性、低噪声等要求。

驱动电路通常采用直流偏置电路和交流调制电路相结合的方式,其中直流偏置电路用于维持激光二极管的工作状态,交流调制电路用于调制激光二极管的输出功率。

2. 光纤耦合电路设计激光二极管的输出光束需要通过光纤进行传输,因此需要设计光纤耦合电路。

光纤耦合电路包括光纤接口、光纤调制器、光纤放大器等部分,其目的是将激光二极管的输出光束耦合到光纤中,并通过光纤进行传输。

3. 光学系统设计光学系统是激光无线通信系统中的重要组成部分,其设计需要考虑光束的聚焦、衍射、散射等问题。

光学系统包括透镜、反射镜、光学滤波器等部分,其目的是将激光二极管的输出光束聚焦到接收器上。

二、光接收电路设计1. 光电探测器设计光电探测器是激光无线通信系统中的重要组成部分,其设计需要考虑灵敏度、响应速度、噪声等问题。

光电探测器通常采用光电二极管、PIN光电二极管、APD 光电二极管等类型,其目的是将接收到的激光信号转换为电信号。

2. 前置放大器设计由于光电探测器输出的电信号较小,需要通过前置放大器进行放大。

前置放大器需要满足高增益、低噪声、高线性等要求,通常采用低噪声放大器、宽带放大器等类型。

3. 信号处理电路设计信号处理电路包括滤波器、放大器、比较器等部分,其目的是对接收到的信号进行处理,以提高系统的性能。

信号处理电路需要根据系统的具体要求进行设计,例如需要进行频率选择、幅度调整、时序恢复等操作。

以上是激光无线通信光发射与接收电路的设计内容,其设计需要充分考虑系统的性能要求和实际应用环境,以提高系统的可靠性和稳定性。

无线收发电路设计报告

无线收发电路设计报告

无线收发电路设计报告一、设计要求设计最简单的无线收发电路,要求通信距离不小于30cm。

通过无线收发电路传送单片机IO口状态。

二、设计方案选择系统框架图2.1控制芯片选择发射和接收端均采用STC12C5A60S2单片机,该单片机是宏晶科技生产的单时钟/机器周期(1T)的单片机,是高速/低功耗/超强抗干扰的新一代8051单片机,指令代码完全兼容传统8051,但速度快8-12倍。

内部集成MAX810专用复位电路,2路PWM,8路高速10位A/D转换(250K/S),针对强干扰场合。

2.2调制方案选择数字通信中常用的调制方式有ASK,FSK,PSK等。

考虑到功耗及技术复杂度方面,由于FSK 或 PSK 调制解调方式需要的供电电压和功耗较高,且实现电路比较复杂,所以我们选用功耗低且易于实现的 ASK调制解调方式。

三、电路设计分析因为要求的通信距离较短,发射功率和功率的稳定度也不是很高,所以设计电路应采用少元件设计,用方便调试的LC电容三点式振荡器来产生发射电路,电路如下图所示。

西勒振荡电路,在幅度和频率稳定性方面比克拉泼振荡电路均有较大的改善。

本系统选择的是改进型的西勒电容三点式振荡器,西勒电容三点式振荡器在电路形式上增加了电容C4,电路中的C1 C2既是谐振电容又承担交流分压反馈的任务,电压的反馈系数为,频率3.1、发射部分直流分析如上图所示的电路,由LC电容三的式振荡器的性质知要使电路起振,震荡稳定稳定,则震荡三极管工作的电流大约为3.5~4mA。

再结合电路图计算出个元器件的参数如下:(1)、调制开关T1参数选择为:C-E极导通电压降小于0.3V的C9013(因为工作在低频的开关状态)。

(2)、电阻R1,R4:当TXD端为3V时。

Vbe=0.8V,T1导通,R1=(3-0.8)V/0.2mA=11k欧,为保证T1的深度饱和,R1取10K,R4是T1的极电流电阻取值范围3~7k欧,实际上去5.1k欧。

(3)、震荡三极管T2的参数的选择为:小功率三极管要求其截至频率fT=300MHZ.最大的功率PCM=500MW,直流的放大B>150。

基于fm调频的双路语音同传无线收发系统设计

基于fm调频的双路语音同传无线收发系统设计

基于FM调频的双路语音同传无线收发系统设计1. 背景介绍双路语音同传无线收发系统是一种用于同传翻译、会议交流等场景的通信系统。

该系统通过无线信号传输双方的语音信息,实现实时的语音传输和接收。

本文将介绍基于FM调频的双路语音同传无线收发系统的设计原理和实现方法。

2. 系统设计原理2.1 FM调频技术FM调频技术是一种常用的调制技术,它通过改变载波频率的方式将音频信号转换成无线信号。

在FM调频中,音频信号的振幅保持不变,而频率会随着音频信号的变化而改变。

这种调制方式能够有效地抵抗噪声干扰,提高音频信号的传输质量。

2.2 双路语音同传系统设计基于FM调频的双路语音同传无线收发系统由两部分组成:发射端和接收端。

发射端负责将语音信号转换成FM调频信号并进行传输,接收端负责接收并解调FM信号,将其转换成原始的语音信号。

发射端的主要组成部分包括:•语音输入模块:用于接收外部的语音信号。

•语音编码模块:将语音信号进行数字化编码,以便进行传输。

•FM调制模块:将数字化的语音信号转换成FM调频信号。

•发射天线:用于将FM调频信号进行无线传输。

接收端的主要组成部分包括:•接收天线:用于接收发射端发送的FM调频信号。

•FM解调模块:将FM调频信号解调成数字化的语音信号。

•语音解码模块:将数字化的语音信号进行解码,恢复成原始的语音信号。

•语音输出模块:用于输出解码后的语音信号。

3. 系统实现方法3.1 发射端实现方法发射端的实现方法如下:1.使用麦克风作为语音输入模块,将外部的语音信号转换成电信号。

2.将电信号经过模数转换器进行模数转换,将其转换成数字化的语音信号。

3.使用编码算法对数字化的语音信号进行编码,将其转换成编码后的语音信号。

4.使用FM调制器将编码后的语音信号进行FM调制,将其转换成FM调频信号。

5.将FM调频信号经过功率放大器放大后,通过发射天线进行无线传输。

3.2 接收端实现方法接收端的实现方法如下:1.使用接收天线接收发射端发送的FM调频信号。

第5章调幅无线收发系统设计与制作

第5章调幅无线收发系统设计与制作

P5 调幅无线收发系统的设计与制作学习目标✧能正确测量各类调幅器的基本特性,能正确记录测量结果并对结果作准确描述。

✧能正确测量各类检波器的基本特性,能正确记录测量结果并对结果作准确描述。

✧能根据设计要求设计调幅发射机,并能进行整机装配与联调。

✧能根据设计要求设计调幅接收机,并能进行整机装配与联调。

✧能对电路中的故障现象进行分析判断并加以解决。

✧理解调幅发射机的电路结构、工作原理和电路中元器件的作用。

✧理解调幅发射机的性能指标及其物理意义。

✧理解调幅接收机的电路结构、工作原理和电路中元器件的作用。

✧理解调幅接收机的性能指标及其物理意义。

工作任务✧调幅器基本特性的测试。

✧检波器基本特性的测试。

✧调幅发射机的设计、调试与整机装配。

✧调幅接收机的设计、调试与整机装配。

✧撰写测试与设计报告。

传输信息是人类生活的重要内容之一。

传输信息的手段很多。

利用无线电技术进行信息传输在这些手段中占有极重要的地位。

这里也许大家会有疑问:为什么不能把信号经过放大之后直接发射出去呢?这里的关键问题是所要传送的信号频率或者太低(例如语言和音乐都限于音频范围内),或者频带很宽(例如电视信号频宽从50Hz至6 .5MHz)。

这些都对直接采用电磁波的形式传送信号十分不利,原因是:1)天线要将低频信号有效地辐射出去,它的尺寸就必须很大。

例如,频率为3000 Hz的电磁波,其波长为100000M,即100KM。

如果采用1/4波长的天线,则天线的长度应为25KM。

显然这是一个非常“艰巨”的任务。

2)为了使发射与接收效率高,在发射机与接收机方面都必须采用天线和谐振同路。

但语言、音乐、图像信号等的频率变化范围很大,因此天线和谐振回路的参数应该在很宽范围内变化。

显然,这又是难以做到的。

3)如果直接发射音频信号,则发射机将工作于同一频率范围。

这样,接收机将同时收到许多不同电台的节目,无法加以选择。

为了克服以上困难,必须利用高频振荡,将低频信号“附加”在高频振荡上。

基于SDR的无线电通信系统设计与实现

基于SDR的无线电通信系统设计与实现

基于SDR的无线电通信系统设计与实现无线电通信是现代社会中不可或缺的一部分,它已经成为我们日常生活中的一个重要组成部分。

而且,随着技术的发展,越来越多的无线电通信系统正在被创造出来。

本文将重点关注基于SDR的无线电通信系统设计与实现。

一、SDR技术的介绍SDR(软件定义无线电)因其具有极高的灵活性和可配置性而备受推崇。

在SDR技术下,硬件和软件是解耦的,因此可以使用一种通用的硬件平台来搭配不同的软件模块进行各种通信协议的实现。

具体的说,SDR可以通过重新编程软件集成电路(FPGA)或现成的数字信号处理器(DSP)来支持新的通信标准或实现新的功能。

因此,SDR是一个重要的技术平台,具有广泛的适应性和应用价值。

二、基于SDR的无线电通信系统设计基于SDR的无线电通信系统包含多个组成部分,如下所述。

1.射频前端射频前端通常包含一个调谐器和一个射频放大器,用于接受发射的无线信号。

这些信号传递给中频通道,中频通道将振荡器和混频器集成在一起,将发射和接收的信号从射频到基带转换。

2.基带信号处理基带信号处理器用于对收到的信号进行解调,并将其转换为数字数据。

然后将数据传输给DSP执行信号处理和特定的通信协议。

3.数字信号处理数字信号处理是无线电通信中不可缺少的一部分,它用于对传输的数字数据进行处理和优化,以达到更快、更可靠和更安全的通信效果。

数字信号处理可以用于信道估计、信号增强、信号捕捉等应用。

4.无线电通信协议无线电通信协议是用于规范通信系统中的数据传输、数据格式、帧结构等相关特征的协议。

无线电通信协议往往需要经过实验和验证、调试等过程进行设计和验证,才能在无线电通信系统中使用。

三、基于SDR的无线电通信系统实现基于SDR的无线电通信系统实现,主要分为以下步骤。

1.硬件平台选择首先需要确定合适的硬件平台,根据不同的应用场景和需求选择相应的硬件平台。

例如,选择广泛应用的USRP设备作为硬件平台,可以实现一个较为稳定、高度可控的无线电通信系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

无线发射接收系统设计与实现
摘要: 此系统采用了无线发射和接受实现双向的全双工无线通信。

通过使用C51单片机实现对系统的数据采集、信号收发进行控制。

用硅光片进行对阳光是否照射的采集,DS18B20进行温度信息采集。

该系统是一个独立系统,能够在一定范围内进行数据采集并且将数据通过无线传输到数据接收模块。

关键词:无线传输;单片机;数据采集
1 引言
对于环境信息采集是很普遍的,但是将采集的信息如何传输就是关键,传统的系统都是用有线的方法,不仅要铺设线路,而且不方便,可移植性差。

随着无线技术的不断发展,无线在各个领域中的应用也不断增加,通过嵌入式系统,用无线的方式实现数据的采集和传输是最好的解决方法,不仅简化了实施的难度,而且成本相对较低。

本文主要是以C51单片机为控制核心,用无线接收发射装置来实现环境数据采集系统。

2 系统目的
设计并制作一个无线环境监测模拟装置,实现对周边温度和光照信息的探测。

该装置由1个监测终端和不多于255个探测节点组成(实际制作2个)。

监测终端和探测节点均含一套无线收发电路,要求具有无线传输数据功能,收发共用一个天线。

探测节点有编号预置功能,编码预置范围为00000001B~B。

探测节点能够探测其环境温度和光照信息。

温度测量范围为0℃~100℃,绝对误差小于2℃;光照信息仅要求测量光的有无。

探测节点采用三节干电池串联,单电源供电。

监测终端用外接单电源供电。

探测节点分布示意图如图1所示。

监测终端可以分别与各探测节点直接通信,并能显示当前能够通信的探测节点编号及其探测到的环境温度和光照信息。

每个探测节点增加信息的转发功能,节点转发功能示意图如图2所示。

即探测节点B的探测信息,能自动通过探测节点A转发,以增加监测终端与节点B之间的探测距离D+D1。

该转发功能应自动识别完成,无需手动设置,且探测节点A、B可以互换位置。

3 方案设计与论证
方案设计
方案一:采用at89s52单片机,无线发射采用使用LC振荡器,无线接收采用超外差电路,硅光片,DS18B20,8位拨码开关。

方案二:采用at89s52单片机,无线发射采用使用声表器件,无线接收采用超再生电路,硅光片,DS18B20,8位拨码开关。

方案论证:
(1)无线发射电路选择
早期的发射机较多使用LC振荡器,频率漂移较为严重。

声表器件的出现解决了这一问题,其频率稳定性与晶振大体相同,而其基频可达几百兆甚至上千兆赫兹。

无需倍频,与晶振相比电路极其简单。

以下图电路为常见的发射机电路,由于使用了声表器件,电路工作非常稳定,即使手抓天线、声表或电路其他部位,发射频率均不会漂移。

所以显然,发射采用使用声表器件的电路。

图3 无线发射装置
(1)无线接收电路选择
接收机可使用超再生电路或超外差电路,超再生电路成本低,功耗小可达100uA 左右,调整良好的超再生电路灵敏度和一级高放、一级振荡、一级混频以及两级
中放的超外差接收机差不多。

然而,超再生电路的工作稳定性比较差,选择性差,从而降低了抗干扰能力。

下图为典型的超再生接收电路。

虽然超生差优势很多,但是根据实际应用,多数普通的无线传输采用超再生电路,主要是由于超生差成本比较高,所以本系统最终还是采用超再生电路。

图4 无线接收装置
设计方案总结:
经过分析,最终选择了方案二,虽然不是最佳方案,但是总体上已经符合了这个系统的要求,从成本上来说,方案二更好。

4 系统设计与实现
硬件电路设计
4.1.1 控制单元电路设计
使用AT89C51单片机,由于各个模块独立,需要用电池供电,由于该单片机的正常工作电压是5V,所以三节电池的电压可以满足其正常工作。

外部接一个12MHZ的晶振。

由于需要编码,所以用一个8位拨码开关,使用该单片机的P1口来进行操作,刚好能够实现256种。

4.1.2 无线收发电路设计
接收发射各需要一个引脚,用P0口能够满足。

采用315MHZ频率的晶振作为载波的频率。

图3 无线收发装置与单片机连接电路
4.1.3 温度采集电路设计
温度采集用DS18B20,直接实现数字的采集。

系统软件设计
所有的控制都是由单片机完成,所以单片机要进行控制和数据处理两项操作。

系统测试
图4 探测节点流程图图5 检测节点流程图
无线传输频率可选高频315MHz,示波器显示传输效果很好;单片机晶振我选的是12MHz,我测得12MHz对无线收发有一定的影响。

无线传输时,由于是电池供电,所以在稳定上还是欠缺一点,在加上电容对电源进行控制时,效果有所改善。

经过以上的系统测试改善,小车能完成要求。

5 结束语
结合我选定的各种模块,通过软件编程与硬件的相互协调,我已经完全实现了设计的要求。

本系统的难点主要在于对无线收发的电路的处理。

还有就是无线收发的规则上。

通过对本系统的设计和实现,虽然系统仍然有不足,但是深刻了解了无线通信的实现。

参考文献
[1]《信号与系统(第二版)》西安交通大学出版社2000年.
[2]《数字与模拟通信系统》Leon ,II电子工业出版社.
[3]《现代通信原理》曹志刚清华大学出版社.
[4] 张俊谟:《单片机中级教程——原理及应用》,北京航天航空出版社,2006年10月第2版。

相关文档
最新文档