[工作]开关电源原理与维修开关电源原理图

合集下载

开关电源工作原理及维修技巧

开关电源工作原理及维修技巧

开关电源工作原理及维修技巧开关电源是一种将交流电转换为稳定直流电的电子设备,广泛应用于各种电子设备和系统中。

了解开关电源的工作原理,对于工程技术人员和维修人员来说至关重要。

本文将介绍开关电源的工作原理,并提供一些常见问题的维修技巧。

一、开关电源的工作原理开关电源通过使用电子器件(如开关管、二极管和电感等)将交流电转换为高频脉冲电流,再通过滤波和稳压电路得到稳定的直流电。

下面将详细介绍开关电源的主要工作原理。

1. 输入滤波:开关电源的输入端会接入交流电源,而交流电源会带有各种干扰信号。

为了保证开关电源的正常工作,需要通过输入滤波电路来滤除这些干扰信号。

输入滤波电路一般由电容器和电感器组成,能够有效地滤除高频和低频的干扰信号。

2. 整流和滤波:经过输入滤波后,交流电会被整流电路转换为直流电。

整流电路通常使用二极管桥整流器来实现。

然后,通过输出滤波电路对整流后的直流电进行滤波处理,以去除直流电中的纹波电压,得到相对稳定的直流电。

3. 高频开关转换:直流电经过滤波后,会进入开关电源的核心部件——开关电路。

开关电路由开关管(如MOSFET、IGBT等)组成,通过快速开关操作将直流电转换为高频脉冲电流。

4. 变压器:高频脉冲电流进一步经过变压器的转换,得到所需的电压大小。

通过变压器的变换比例,可以实现升压、降压或保持电压稳定的功能。

5. 输出调节和稳压:经过变压器转换后的电流会进入稳压电路,稳压电路通常由反馈电路、误差放大器和控制开关管等组成。

利用反馈电路监测输出电压的变化情况,并与设定的参考电压进行比较,在误差放大器和控制开关管的调节下,保持输出电压稳定在设定值。

二、开关电源的常见故障和维修技巧1. 电源无输出或输出电压波动大:可能原因:- 输入端电源线异常,如插头松动或电源线破损。

- 滤波电容故障,需要检查滤波电容是否损坏或漏电。

- 开关管故障,开关管可能损坏或短路,需要更换。

- 控制电路故障,检查反馈电路和误差放大器是否正常工作。

ATX开关电源原理图、维修讲解

ATX开关电源原理图、维修讲解

一、概述ATX开关电源的要紧功能是向计算器系统提供所需的。

一样计算器电源所采纳的都是双管半桥式无工频变压器的脉宽调制变换型稳压电源。

它将市电整流成直流后,通过变换型振荡器变成频率较高的矩形或近似正弦波电压,再通太高频整流滤波变成低压直流电压的目的。

其外观图和内部结构实物图见图1和图2所示。

ATX的功率一样为250W~300W,通太高频滤波电路共输出六组直流电压:+5V(25A)、—5V()、+12V(10A)、—12V(1A)、+(14A)、+5VSB()。

为避免负载过流或过压损坏电源,在交流市电输入端设有保险丝,在直流输出端设有过载爱惜电路。

二、工作原理ATX开关电源,电路按其组成功能分为:输入整流滤波电路、高压反峰吸收电路、辅助电源电路、脉宽调制操纵电路、PS信号和PG信号产生电路、主电源电路及多路直流稳压输出电路、自动稳压稳流与爱惜操纵电路。

参如实物绘出整机电路图,如图3所示。

1、输入整流滤波电路只要有交流电AC220V输入,ATX开关电源不管是不是开启,其辅助电源就会一直工作,直接为开关电源操纵电路提供工作电压。

如图4所示,交流电AC220V通过保险管FUSE、电源互感滤波器L0,经BD1—BD4整流、C5和C6滤波,输出300V左右直流脉动电压。

C1为尖峰吸收电容,避免交流电突变刹时对电路造成不良阻碍。

TH1为负温度系数热敏电阻,起过流爱惜和防雷击的作用。

L0、R1和C2组成Π型滤波器,滤除市电电网中的高频干扰。

C3和C4为高频辐射吸收电容,避免交流电窜入后级直流电路造成高频辐射干扰。

R2和R3为隔离平稳电阻,在电路中对C5和C6起平均分派电压作用,且在关机后,与地形成回路,快速泄放C5、C6上贮存的电荷,从而幸免电击。

2、高压尖峰吸收电路如图5所示,D18、R004和C01组成高压尖峰吸收电路。

当开关管Q03截止后,T3将产生一个专门大的反极性尖峰电压,其峰值幅度超过Q03的C极电压很多倍,此尖峰电压的功率经D18贮存于C01中,然后在电阻R004上消耗掉,从而降低了Q03的C极尖峰电压,使Q03免遭损坏。

开关电源工作原理及维修技巧

开关电源工作原理及维修技巧

开关电源工作原理及维修技巧开关电源是现代电子设备中广泛应用的一种电源供应方式。

它以其高效、稳定、可靠的优点,被广泛应用在通信、计算机、工控等领域。

本文将介绍开关电源的工作原理,并分享一些常见故障的维修技巧。

一、开关电源的工作原理开关电源的工作原理基于开关管的开关动作。

它通过将输入直流电压经过变压器降压、整流滤波后得到直流电源,再通过开关管的开关动作进行调节和控制,最终输出稳定的直流电压。

以下是开关电源的工作原理流程:1. 输入电压调整:开关电源通过输入电路接收来自电网的交流电压,并通过变压器将其降压转换为适合电源内部使用的直流电压。

2. 整流滤波:经过变压器的降压,得到的直流电压仍然存在波动和纹波。

开关电源通过整流电路,将交流电压转换为直流电压,并通过滤波电路去除纹波,从而得到稳定的直流电源。

3. 电压变换:开关电源中的开关管负责对电源输出电压进行调节和控制。

当需要增加输出电压时,开关管关闭,此时磁场储能在变压器中。

而当需要降低输出电压时,开关管打开,此时磁场释放能量,通过变压器将电压降低到所需的输出电压。

4. 输出稳定:开关管通过调节开关动作的频率和占空比,控制输出电压的稳定性。

通过负反馈控制,开关电源可以实现对输出电压的精确控制,从而确保工作在设定的电压范围内。

二、开关电源的常见故障及维修技巧尽管开关电源在工作上具有高效、稳定的特点,但由于工作环境、负载变化等原因,仍然可能出现各种故障。

下面是一些常见的开关电源故障及相应的维修技巧:1. 输出电压异常当开关电源输出电压异常,例如过高或过低,可能是由于电源输出端电容损坏、电感元件损坏或者控制芯片故障导致。

此时,可通过测量输出电压、检查元件损坏情况来确诊故障点,并进行相应的更换或修复。

2. 整流滤波故障整流滤波电路是保证开关电源获得稳定直流电压的关键部分。

若出现纹波过大、输出电压波动较大等问题,可能是整流二极管或滤波电容损坏引起的。

在维修时,可通过测试电容容值,检测二极管正常工作情况,及时更换损坏元件。

开关电源原理与维修

开关电源原理与维修
将交流电源转换为直流电源的电路。
开关器件负责开关电源的来自闭操作,如MOSFET或IGBT。
滤波电路
消除输出电压中的纹波信号,使电压更加稳定。
稳压电路
保持输出电压恒定,克服输入电压的波动。
开关电源的常见故障及维修方法
1 过载保护器失效
更换过载保护器或检查其他保护器是否工作 正常。
2 电解电容损坏
更换损坏的电解电容,并注意极性。
开关器件故障
开关器件烧坏时,会导致开关电 源无法正常开闭。需更换故障的 器件。
焊接不良
焊接不良可能导致电阻、电容等 元件接触不良,影响软、硬开关 电源的工作。
开关电源的预防维护措施
1 定期清洁
定期去除灰尘和杂物,保 持开关电源散热良好。
2 注意环境温度
避免开关电源过热,可通 过合理布局、散热风扇等 方式来调节温度。
3 开关元件故障
检查开关元件是否工作正常,并更换故障元 件。
4 短路故障
检查输出是否短路,并修复短路处。
开关电源维修的注意事项
在维修开关电源时,必须注意安全事项,例如断电、放电等。另外,要仔细 检查电路连接是否牢固,研究故障产生的原因,避免二次故障。
常见的开关电源维修案例
电解电容损坏
电解电容发生爆炸时,可能会导 致开关电源工作异常。需及时更 换电容。
3 定期检测电路
定期检查电路连接是否松 动,电子元件是否发热异 常等。
开关电源维修技巧和实用工具
使用万用表
用于测试电压、电流、电阻等数值,帮助排除 故障。
焊接工具
用于焊接或修复电子元件。
维修手册
包含开关电源的维修方法、电路图等重要信息。
安全手套和护目镜
保护自己的安全工具,避免触电或受伤。

开关电源的工作原理和常见故障分析及维修

开关电源的工作原理和常见故障分析及维修

开关电源的工作原理和常见故障分析及维修开关电源的主要电路是由:防雷电路,输入电磁干扰滤波器(Electromagnetic Interference,简称EMI),输入整流滤波电路,功率变换电路,脉宽调制(PWM)控制器电路,输出整流滤波电路组成。

辅助电路有输入过压,欠压保护电路, 输出过压,欠压保护电路,输出过流保护电路,输出短路保护电路等。

开关电源的电路组成方框图如下:高频脉冲电压。

把高频脉冲电压送给高频变压器,高频变压器的次级(二次侧)就会感应出一定的高频脉冲交流电,并送给高频整流滤波电路进行整流,滤波。

经高频整流滤波后便可得到我们所需的各种直流电压。

输出电压下降或者上升时,由取样电路将取样信号通过光电耦合器(PC817),送入控制电路,经过其内部调制,由控制电路的输出端将变宽的或者变窄的驱动脉冲送到开关功率管的栅极(G 极),使变换电路产生的高频脉冲方波也随之变宽或者变窄,由此改变输出电压平均值的大小,从而使直流电压基本稳定在所须的电压值上。

开关电源的电路原理图如下:开关电源电路原理图开关电源的常见故障分析及维修由于开关电源的输入部份工作在高压,大电流的状态下,故障率最高,如高压大电流整流二极管,滤波电容,开关功率管等较易损坏。

其次就是输出整流部分的整流二极管,保护二极管,滤波电容,限流电阻等较易损坏;再就是脉宽调制控制器的反馈部份和保护部份。

下面就对开关电源常见故障产生的原因作一分析及如何排除这些故障的维修方法。

一.保险丝熔断普通情况下,保险丝熔断说明开关电源的内部电路存在短路或者过流的故障。

由于开关电源工作在高电压,大电流的状态下,直流滤波和变换振荡电路在高压状态工作时间太长,电压变化相对大。

电网电压的波动,浪涌都会引起电源内电流瞬间增大而使保险丝熔断。

重点应检查电源输入端的整流二极管,高压滤波电解电容,开关功率管,UC3842本身及外围元器件等。

检查一下这些元器件有无击穿,开路,损坏,烧焦,炸裂等现象。

开关电源电路结构及工作原理

开关电源电路结构及工作原理

开关电源电路结构及工作原理主回路—开关电源中,功率电流流经的通路。

主回路一般包含了开关电源中的开关器件、储能器件、脉冲变压器、滤波器、输出整流器、等所有功率器件,以及供电输入端和负载端。

开关电源(直流变换器)的类型很多,在研究开发或者维修电源系统时,全面了解开关电源主回路的各种基本类型,以及工作原理,具有极其重要的意义。

开关电源主回路可以分为隔离式与非隔离式两大类型。

1. 非隔离式电路的类型:非隔离——输入端与输出端电气相通,没有隔离。

1.1. 串联式结构串联——在主回路中开关器件(下图中所示的开关三极管T)与输入端、输出端、电感器L、负载RL四者成串联连接的关系。

开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T 及电感器L对负载供电,并同时对电感器L充电,当开关管T关断时,电感器L中的反向电动势使续流二极管D自动导通,电感器L中储存的能量通过续流二极管D形成的回路,对负载R继续供电,从而保证了负载端获得连续的电流。

串联式结构,只能获得低于输入电压的输出电压,因此为降压式变换。

1.2. 并联式结构并联——在主回路中,相对于输入端而言,开关器件(下图中所示的开关三极管T)与输出端负载成并联连接的关系。

开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T 对电感器L充电,同时续流二极管D关断,负载R靠电容器存储的电能供电;当开关管T关断时,续流二极管D导通,输入端电源电压与电感器L中的自感电动势正向叠加后,通过续流二极管D对负载R供电,并同时对电容器C充电。

由此可见,并联式结构中,可以获得高于输入电压的输出电压,因此为升压式变换。

并且为了获得连续的负载电流,并联结构比串联结果对输出滤波电容C的容量有更高的要求。

1.3.极性反转型变换器结构极性反转——输出电压与输入电压的极性相反。

电路的基本结构特征是:在主回路中,相对于输入端而言,电感器L与负载成并联。

变频器开关电源的原理及维修

变频器开关电源的原理及维修

检查并联在开关变压器一次绕组的尖峰电压吸收网络(由电阻与电容并联后与二极管串联),用指针式万用表测量二极管正反向电阻均为15欧姆,感觉异常。将两只并联二极管拆开检测,正常。细观察,电容器有细微裂纹,测其引脚,查出为2kV 103电容击穿短路。更换后,机器恢复正常。
此电容短路引起开关电源起振困难的故障殊不多见。
顺便说明一下,该机的启动支出路电阻为300k,再加上其它环节的电阻,实际加到开关管栅极的启动电流仅1mA多一点。虽然场效应管为电压控制器件,理论上不吸取电流,但能使其导通的结电容充电电流,恰恰是使其导通的硬指标。从此一角度来讲,场效应管仍为电流驱动器件。当电路参数产生变动后,原启动支路的供给电流不足以使开关管导通乃至微导通,所以电路不能起振。将此启动电流值稍稍加大,电路便有可能起振。300k启动电阻有阻值偏大之嫌,我认为稍稍减小其阻值有利无弊。
只有乙机的故障稍微有趣,试分析如下:
表面看起来,乙机查不出一个坏件,致使维修陷入困境。但减小启动支路的电阻值后,则能正常工作。乙机的“异常之处”到底在哪里呢?可能是元器件性能的微弱变化导致电器参数的的变动,如开关管放大能力的些微降低、或开关变压器因轻度受潮使Q值变化、或3844B输出内阻有所增大,或阻容元件有轻微变异,上述原因的查找与确认委实不易,或者是有一种,甚至有可能是数种原因参与其中。但上述多种原因只导致了一个后果:开关管不能被有效启动,电路不能起振!解决的办法是转变掉现有状态,往促成开关管起振的方面下力气,在起动支路并联电阻是最省力也是最有效的一个方法。
变频器开关电源的原理及维修
维修部 杨海涛
电源是每一个电路的重要组成部分,担负着为电路提供能量的重要作用,它是设备能够正常运行的重要保障。电源的种类很多,开关电源由于体积小、重量轻、效率高、动态稳压效果好,因此被广泛应用到了各种电子设备中。下面就以UC3844开关电源芯片为例讲述一下开关电源的基本原理和在变频电路中的作用。右图a-1所示为开关电源PWM波形调制芯片。该图为8脚双列直插封装。 7脚是芯片的电源输入端,该端在内部集成了稳压器和最低门限电压控制器,所以该芯片不用在外围设置稳压电路,只要接一只降压电阻即可。最低门限值为10V,当7脚输入电压低于10V,该芯片将禁止输出,处于保护状态。正常工作时该端电压约为12V—16V之间。 4脚是内部压控振荡器的定时端,通过接上合适的RC网络,使输出的PWM波控制在20KHZ—100KHZ之间。 a—1 2脚、3脚是输出取样反馈端,用于检测开关电源的输出,以便进行PWM调制控制,从而达到稳压的目的。 在变频器系统中,开关电源需要输出:一组5V/DC、一组±12V/DC、四组20V/DC等多组电压。其中5V/DC 主要用作主板及控制板的供电,±12V/DC用作霍尔检测器件的供电,四组20V/DC用作IGBT的触发供电。变频器的型号及品牌不同,其开关电源的电压值也不尽相同,但基本构架是一样的,在此仅以下图为例讲一讲开关电源的工作原理。 a—2 如图a—2所示:电源经D1—D4、C1、C2整流滤波之后,通过降压电阻R3到了UC3844的7脚电源正端,为其供电,UC3844通过检测当7脚电压大于10V时,控制内部压控振荡器开始工作,通过R8、C5将PWM的频率控制在要求范围之内。此时6脚输出PWM信号去控制开关管Q1的通断,R10是开关管的电流检测电阻,通过检测R10的电压值来实时调整PWM的脉冲度,从而达到自动稳压的目的。在图中变压器的副绕组通过D6、C7、C8整流滤波之后到了UC3844的7脚,增强了UC3844的驱动能力。C9、R11、D5是开关管的滤波吸收网络,目的在于吸收变压器的反向脉冲,保护开关管。AC-1——AC-4是开关变压器的次级输出绕组,通过D7、D8、D9、D10、C10、C11---C17进行整流滤波后输出对后级电路进行供电。了解了开关电源的原理之后,让我们来看看如果开关电源出现问题应该怎样进行维修。开关电源的几个维修步骤如下: 1、检测整流电路D1—D4是否击穿或断路,滤波电路的电容是否损坏,平衡电阻R1、R2是否正常,降压电阻R3是否烧断或阻值增大失效(断电情况下测试)。 2、检测开关管b-e结、c-e结是否有击穿短路现象、测量开关变压器各个绕组是否有短路现象,以确定开关管、及开关变压器的好坏(断电情况下测试)。 3、检测次级输出绕组的整流滤波元件,重点察看滤波电容是否鼓包或损坏,以排除次级电路短路的可能。 4、检测吸收回路D5、R11、C9是否正常(断电情况下测试)。 5、在确定上述元件正常的情况下,我们可以把开关电源板从变频器上取下单独对其进行加电试验。用调压器缓缓地调至开关电源的额定电压值,此时应能听到变压器起振时的吱吱声,如没有听到起振的声音,用万用表检测UC3844的电源正、负级之间是否有12V—16V左右的直流电压。 6、在确定UC3844的供电端电压正常后,可用示波器察看一下UC3844的6脚是否有PWM波输出到开关管的触发端(根据电路设计的不同,PWM波的频率一般在20KHZ—100KHZ之间)。 7、如果没有PWM波输出,则更换定时元件C5、R8、C6或UC3844。经过上述几个步骤的排除,开关电源应该可以正常工作了。在变频器中,开关电源的种类很多,但基本原理都是一样的,比如说每个PWM管理芯片都有供电端、定时元件RC网络、输出PWM波的端口等,只要我们了解了它们的工作原理,按照一定的方法步骤都能够把故障排除掉。下面就把实际维修中遇到的问题和解决办法列举出来,供大家参考一下。案例1:台达变频器(故障现象:上电无显示)经检测发现电源主回路、充电电阻、主回路接触器都正常,因此确定为开关电源板故障。按照上述维修步骤对开关电源板进行测量。在进行第一步测量时,发现直流母线560V到PWM调制芯片之间的的330KΩ/2W的降压电阻损坏,标称330KΩ/2W的电阻,实际测量值达2MΩ以上,因此PWM调制芯片得不到启动的电源,所以无法起振工作。为谨慎起见又检测了开关管、变压器、整流二极管及滤波电容等关键器件,在确定没问题之后上电试验,OK!开关电源起振,输出各组电压正常,装回变频器后开机试验正常,此变频器修复完毕(注:维修人员在维修中,一定要养成习惯:发现坏元件后不要急于更换试机,一定要把功率大的、容易坏的元件都测一下,确定没问题后再试机,这样既安全又保险)。案例2:台安变频器(故障现象:上电无显示)经检测发现电源主回路、充电电阻、主回路接触器都正常,故障确定在电源板。按照维修步骤对开关电源板进行测量。第一步测量通过,第二步测量时发现开关管c-e结击穿,将其拆下,然后检测变压器、及整流二极管、滤波电容等关键器件,在确定没问题之后上电试验,输出各组电压正常,装机测试正常,故障排除。案例3:西门子变频器(故障现象:上电无显示)经检测发现电源主回路、充电电阻、主回路接触器都正常,故障确定在电源板。按照维修步骤对开关电源板进行测量。第一步测量通过,第二步测量通过,第三步测量通过,第四步测量通过,然后单独对电源板加电测量PWM调制芯片的电源端对地有12.5V左右的电压,说明供电正常。用示波器看芯片的PWM输出端,发现没有PWM调制波形。更换PWM调制芯片后,上电试验正常,故障排除。案例4:施耐德变频器(故障现象:上电无显示)屡烧开关管经检测发现电源主回路、充电电阻、主回路接触器都正常,故障确定在电源板。按照维修步骤对开关电源板进行测量。第一步测量通过,第二步测量发现开关管击穿,第三步测量通过,第四步测量通过,更换新的开关管,单独对电源板加电,管子又烧了。把开关管拆下后不装管子,通电试验,测量PWM调制芯片的电源端对地有12V左右的电压,也正常。用示波器看芯片的PWM输出端,发现PWM波只有5-6 KHZ左右,断电后把定时元件拆下测量,发现定时电阻阻值变大,更换定时电阻、开关管后上电正常,不再烧电源管,故障排除。案例5:伦茨变频器(故障现象:上电无显示)屡烧开关管按照维修步骤对开关电源板进行测量。第一步测量通过,第二步测量时发现开关管c-e结击穿,第三、四、五、六、七步都测量通过。装上新的开关管上电试验,随着调压器电压的升高,可以听到起振的吱吱声,就是有点响,把电压调到额定电压后测量输出电压低于正常值,不到2分钟,突然闻到一股烧焦的味,保险丝就断了,赶快断电发现开关管很烫手,测量发现其已经击穿。拆下开关管通电试验,测量PWM调制芯片的电源端对地有12V左右的电压,用示波器看芯片的PWM输出端,发现有PWM波输出且频率在30 KHZ左右,也正常。因此怀疑刚换的开关管质量不行,又换上一只,上电试验,结果又把管子给烧了,断电后无意之间碰到了吸收回路的元件,发现烫手,可是在测量的时候正常啊,于是又测一遍,还是正常。干脆把吸收回路先拆了,又换上一只管子通电试验,发现变压器的吱吱声小了,测量各组输出电压也正常。运行了20分钟开关管也没再烧,断电后触摸开关管微热,属正常起热状态,因此判断故障在吸收回路,更换吸收回路元件,故障排除。有的元件老化后虽然我们在冷态测量是好的,可能加电一起热就不行了。以上是一些维修的小经验,在此和大家分享。

ATX电源检修(电路图)

ATX电源检修(电路图)

《资料一》ATX电源工作原理及检修电路图ATX电源工作原理及检修检修ATX开关电源,从+5VSB、PS-ON和PW-OK信号入手来定位故障区域,是快速检修中行之有效的方法。

一、+5VSB、PS-ON、PW-OK控制信号ATX开关电源与AT电源最显著的区别是,前者取消了传统的市电开关,依靠+5VSB、PS-ON控制信号的组合来实现电源的开启和关闭。

+5VSB是供主机系统在ATX待机状态时的电源,以及开闭自动管理和远程唤醒通讯联络相关电路的工作电源,在待机及受控启动状态下,其输出电压均为5V高电平,使用紫色线由ATX插头9脚引出。

PS-ON为主机启闭电源或网络计算机远程唤醒电源的控制信号,不同型号的ATX开关电源,待机时电压值为3V、3.6V、4. 6V各不相同。

当按下主机面板的POWER开关或实现网络唤醒远程开机,受控启动后PS-ON由主板的电子开关接地,使用绿色线从ATX插头14脚输入。

PW-OK是供主板检测电源好坏的输出信号,使用灰色线由ATX插头8脚引出,待机状态为零电平,受控启动电压输出稳定后为5V高电平。

脱机带电检测ATX电源,首先测量在待机状态下的PS-ON和PW-OK信号,前者为高电平,后者为低电平,插头9脚除输出+5VSB外,不输出其它电压。

其次是将ATX开关电源人为唤醒,用一根导线把ATX插头14脚PS-ON信号,与任一地端(3、5、7、13、15、16、17)中的一脚短接,这一步是检测的关键,将ATX电源由待机状态唤醒为启动受控状态,此时P S-ON信号为低电平,PW-OK、+5VSB信号为高电平,ATX插头+3.3V、±5V、±12V有输出,开关电源风扇旋转。

上述操作亦可作为选购ATX开关电源脱机通电验证的方法。

二、控制电路的工作原理ATX开关电源,电路按其组成功能分为:交流输入整流滤波电路、脉冲半桥功率变换电路、辅助电源电路、脉宽调制控制电路、PS-ON和PW-OK产生电路、自动稳压与保护控制电路、多路直流稳压输出电路。

tl494开关电源维修和原理

tl494开关电源维修和原理

tl494开关电源维修和原理TL494充电器原理与维修电动自行车充电器多采用开关电源,型号虽多,但电路结构大同小异,主要区别在于所选的脉宽调制(PWM)芯片不同如(UC3845、UC3842、SG3524、TL494)。

现以佳腾牌充电器为例,介绍其原理和故障检修方法。

一、电路原理根据实物测绘的佳腾牌充电器电路原理如图1所示。

整机可分为PWM产生和推动电路、功率开关变换电路、充电状态指示电路和交流输入电路四个部分。

图11.PWM产生和推动电路PWM产生电路由IC1TL494和外围元件构成。

TL494是PWM开关电源集成电路。

引脚功能和内部框图如图2所示。

IC1的第5、6脚外接的C10、R19是定时元件,决定锯齿波振荡器的振荡频率,F=1.1/RC,按图中数值为50KHz。

第14脚是+5V基准电压输出端,除芯片内部使用外,还直接或分压后供第2、4、13脚和IC2使用。

第13脚为输出方式控制端,该脚接低电平时为单端输出方式,图中接第14脚+5V高电平,为双端输出方式。

第4脚为死区电压控制端,该脚电压决定死区时间。

电位升高,死区时间延长,输出脉宽变窄,当电压大于锯齿波电压时,输出脉宽将变得很窄,甚至停振。

凡输出端采用全桥或半桥式的开关电路,都要正确设置死区时间,以免两个开关管同时导通,发生电源短路的危险。

图中该脚电位由基准电压经R24和R20分压取得,实测电压为0.46V。

第1 、2脚和第16、15脚是IC1内部的两个电压比较器的正、反相输入端,分别用作充电电压取样和充电电流取样。

+44V充电电压经R28、R27和R26分压反馈至第1脚。

C15是软启动电容。

第2脚电位由基准电压经R23和R3分压取得,实测为3.2V。

第1脚电压越高,输出脉宽越窄,充电电压越低;反之脉宽增宽,充电电压升高。

从而实现+44V充电电压的目的。

Ra是充电电压调试电阻,Ra和R26并联值越小,充电电压越高。

R29是脚充电电流取样电阻,由该电阻上取得的电压变化,经R13送入IC1的第15脚。

开关电源的原理及维修方法

开关电源的原理及维修方法

2、判断故障方法与步骤 (1)假负载法 (2)测量保护元件是否击穿 (3)断开法 (4)降压法
3、各功能电路的检测方法 通过上述方法判断故障在开关电源的哪个部分后,对各个部分的检查方法 如下: (1)对脉宽调制电路和正反馈电路的检查。对正反馈电路中的电解电容直接 更换 目前开关电源的正反馈电路中的振荡电容有两种,一是0。016UF 0。039UF 胆电容,其故障率很低,检修这种电容可以排除,另一种是10UF左右的电 解电容,故障率使用数年后有可能,检修时直接更换此电容,
3、判断故障的方法和步骤 检修这类故障的首要任务是判断鼓障在上述三个部位中的哪个部位, 具体方法是测开关管集电极,基极电压,可能有以下几种情况: (1)开关管集电极电压为0V和低于市电1.4倍,开关管没有正常的工 作电压,如果有1.4倍的电压,说明开关管集电极具备了正常的工 作电压,说明AC220V及整流滤波电路工作正常。
(2)开关管的基极电压为0V(包括开机瞬间)这种情况说明启动电路对开关管 基极未提供启动(导通)电压,或基极与发射极之间相关元件击穿,应对启 动电路和开关管发射极及相关元件进行检查,若电压为0.6~0.7(包括开几瞬 间),说明启动电路和开关管发射极元件正常,若在0.7V以上说明启动电路 正常,但开关管发射结或其元件断路或阻值变大。
(4)开/关机接口电路末端因故工作于开机或待机之间的状态,从而导致开关 电源工作于待机与开机状态之间的工作频率,造成开关电源输出电压高于 待机值,低于开机值。
(5)保护电路端因故障工作于导通状态6)整流输出电路中的二极管和滤波电容,限流电阻损坏引起输出电压变低。 (7)脉宽调制电路有问题,不能对开关电源输出电压的变化做出正切的响应, 对电源开关管基极电压调整方向大小不对,从而造成开关电源输出电压低。

开关电源的工作原理与维修

开关电源的工作原理与维修

开关电源的工作原理与维修在现代电子设备中,开关电源作为一种常见的电源供应模块,被广泛应用于各种设备中,如电脑、手机充电器、电视等。

开关电源相比于传统的线性电源具有更高的效率和稳定性,因此备受青睐。

本文将介绍开关电源的工作原理以及常见的维修方法。

工作原理开关电源的工作原理主要基于三个关键元件:变压器、整流器和滤波器。

当输入交流电压被整流器转换为直流电压后,变压器通过开关管(如晶体管)来控制电流的开闭,进而实现将直流电压转换为高频脉冲信号。

这些脉冲信号经过变压器的变压作用,最终输出所需的稳定直流电压。

开关电源的高频工作使得其输出更为稳定、效率更高。

通过控制开关管的导通时间,可以调整输出电压的大小,实现对电压的精确控制。

同时,开关电源内部还配备了保护机制,如过流保护、过压保护等,确保设备和用户的安全。

维修方法尽管开关电源具有高效稳定的特点,但在长时间使用过程中仍可能出现各种故障。

以下是一些常见的开关电源故障及其维修方法:1.电容故障:开关电源中的电容可能会出现漏液、爆裂等情况,导致输出电压不稳定甚至无法正常工作。

此时需要更换损坏的电容并进行电源校准。

2.开关管故障:开关管长时间工作后可能会损坏,导致整个电源无法正常工作。

此时需要测量开关管的导通情况,确认是否需要更换新的开关管。

3.滤波器故障:滤波器在使用过程中可能会被过载、过压等问题影响而损坏,导致输出的电压波动较大。

对于此类故障,需要检查并更换损坏的滤波器。

4.散热系统故障:开关电源长时间工作会产生一定的热量,如果散热系统不良,可能导致电源温度过高而引发故障。

因此,定期清洁和确保散热系统正常工作至关重要。

在进行开关电源的维修时,应首先确保断开电源并排除电容器电压,避免触电危险。

同时,维修人员需要具备一定的电子知识和技能,以便更好地识别和解决各种故障。

总的来说,开关电源作为现代电子设备中不可或缺的部件,其工作原理和维修方法都需要得到深入理解和熟练掌握。

开关电源原理与维修 开关电源原理图

开关电源原理与维修 开关电源原理图

开关电源原理与维修开关电源原理图开关电源原理与维修开关电源原理图电源是各种电子设备必不可缺的组成部分,其性能优劣直接关系到电子设备的技术指标及能否安全可靠地工作。

由于开关电源内部关键元器件工作在高频开关状态,功耗小,转化率高,且体积和重量只有线性电源的20%—30%,故目前它已成为稳压电源的主流产品。

电子设备电气故障的检修,本着从易到难的原则,基本上都是先从电源入手,在确定其电源正常后,再进行其他部位的检修,且电源故障占电子设备电气故障的大多数。

故了解开头电源基本工作原理,熟悉其维修技巧和常见故障,有利于缩短电子设备故障维修时间,提高个人设备维护技能。

二(开关电源的组成开关电源大至由主电路、控制电路、检测电路、辅助电源四大部份组成,见图1。

1( 主电路冲击电流限幅:限制接通电源瞬间输入侧的冲击电流。

输入滤波器:其作用是过滤电网存在的杂波及阻碍本机产生的杂波反馈回电网。

整流与滤波:将电网交流电源直接整流为较平滑的直流电。

逆变:将整流后的直流电变为高频交流电,这是高频开关电源的核心部分。

输出整流与滤波:根据负载需要,提供稳定可靠的直流电源。

2( 控制电路一方面从输出端取样,与设定值进行比较,然后去控制逆变器,改变其脉宽或脉频,使输出稳定,另一方面,根据测试电路提供的数据,经保护电路鉴别,提供控制电路对电源进行各种保护措施。

3( 检测电路提供保护电路中正在运行中各种参数和各种仪表数据。

4( 辅助电源实现电源的软件(远程)启动,为保护电路和控制电路(PWM等芯片)工作供电。

开关电源原理图三(开关电源的工作原理开关电源就是采用功率半导体器件作为开关元件,通过周期性通断开关,控制开关元件的占空比来调整输出电压。

开关元件以一定的时间间隔重复地接通和断开,在开关无件接通时输入电源Vi通过开关S和滤波电路向负载RL提供能量,当开关S断开时,电路中的储能装置(L1、C2、二极管D组成的电路)向负载RL释放在开关接通时所储存的能量,使负载得到连续而稳定的能量。

开关电源的工作原理和常见故障分析及维修

开关电源的工作原理和常见故障分析及维修

开关电源的工作原理和常见故障分析及维修开关电源的主要电路是由:防雷电路,输入电磁干扰滤波器(Electromagnetic Interference,简称EMI),输入整流滤波电路,功率变换电路,脉宽调制(PWM)控制器电路,输出整流滤波电路组成。

辅助电路有输入过压,欠压保护电路, 输出过压,欠压保护电路,输出过流保护电路,输出短路保护电路等。

开关电源的电路组成方框图如下:高频脉冲电压。

把高频脉冲电压送给高频变压器,高频变压器的次级(二次侧)就会感应出一定的高频脉冲交流电,并送给高频整流滤波电路进行整流,滤波。

经高频整流滤波后便可得到我们所需的各种直流电压。

输出电压下降或上升时,由取样电路将取样信号通过光电耦合器(PC817),送入控制电路,经过其内部调制,由控制电路的输出端将变宽的或变窄的驱动脉冲送到开关功率管的栅极(G 极),使变换电路产生的高频脉冲方波也随之变宽或变窄,由此改变输出电压平均值的大小,从而使直流电压基本稳定在所须的电压值上。

开关电源的电路原理图如下:开关电源电路原理图开关电源的常见故障分析及维修由于开关电源的输入部分工作在高压,大电流的状态下,故障率最高,如高压大电流整流二极管,滤波电容,开关功率管等较易损坏。

其次就是输出整流部分的整流二极管,保护二极管,滤波电容,限流电阻等较易损坏;再就是脉宽调制控制器的反馈部分和保护部分。

下面就对开关电源常见故障产生的原因作一分析及如何排除这些故障的维修方法。

一.保险丝熔断一般情况下,保险丝熔断说明开关电源的内部电路存在短路或过流的故障。

由于开关电源工作在高电压,大电流的状态下,直流滤波和变换振荡电路在高压状态工作时间太长,电压变化相对大。

电网电压的波动,浪涌都会引起电源内电流瞬间增大而使保险丝熔断。

重点应检查电源输入端的整流二极管,高压滤波电解电容,开关功率管,UC3842本身及外围元器件等。

检查一下这些元器件有无击穿,开路,损坏,烧焦,炸裂等现象。

开关电源工作原理图解

开关电源工作原理图解

开关电源工作原理图解开关电源是一种将输入电压转换为稳定输出电压的电源装置,它通过开关管的导通和截止来控制输入电压的变化,从而实现对输出电压的稳定调节。

接下来,我们将通过图解的方式,详细解析开关电源的工作原理。

首先,我们来看一下开关电源的基本结构。

开关电源主要由输入滤波电路、整流电路、功率器件、控制电路和输出滤波电路等组成。

其中,输入滤波电路用于对输入电压进行滤波和去除杂波,整流电路将交流电转换为直流电,功率器件用于控制电压的变化,控制电路则是控制开关管的导通和截止,输出滤波电路则是对输出电压进行滤波和去除杂波。

接下来,我们来看一下开关电源的工作原理。

当输入电压加到输入滤波电路中时,首先经过滤波电路的处理,去除掉输入电压中的杂波,然后进入整流电路,将交流电转换为直流电。

接着,直流电经过功率器件的控制,通过开关管的导通和截止来控制电压的变化,最终实现对输出电压的稳定调节。

同时,控制电路起到了控制开关管的导通和截止的作用,确保输出电压的稳定性。

最后,经过输出滤波电路的处理,去除输出电压中的杂波,得到稳定的输出电压。

在开关电源的工作过程中,功率器件起着至关重要的作用。

它可以是晶体管、场效应管、双向可控硅等,根据不同的工作原理和特性,选择不同的功率器件来实现对输出电压的稳定调节。

控制电路中的控制器则是开关电源的大脑,它通过对输入电压、输出电压和电流等参数的监测和控制,来实现对开关管的精确控制,确保输出电压的稳定性和可靠性。

总的来说,开关电源通过对输入电压的控制和调节,实现了对输出电压的稳定调节,具有体积小、效率高、稳定性好的特点,被广泛应用于各种电子设备中。

通过本文的图解,相信大家对开关电源的工作原理有了更深入的了解,希望对大家有所帮助。

开关电源的原理与维修

开关电源的原理与维修

开关电源的原理与维修电源是电子产品的重要组成部分,开关电源就是采用功率半导体器件作为開关元件,通过周期性通断开关,控制开关元件的占空比来调整输出电压,开关元件以一定的时间间隔重复地接通和断开,接通时输入电源通过开关、滤波电路向负载提供能量,断开时电路中储能装置向负载释放开关接通时储存的能量,使负载得到连续而稳定的能量。

开关电源节材、省电、效率高、体积和重量小,基本上取代了线性电源,是目前稳压电源的主导产品。

本文将介绍一款开关电源的工作原理及其故障维修。

标签:开关电源;原理;维修1 开关电源的工作原理(1)自激振荡电路:通电后AC220V电压经过整流滤波得300V直流电压,一路经开关变压器T1①②绕组加至开关管Q1D极,另一路经启动电阻R2加至Q1G极,Q1导通。

T1①②绕组电流增加,反馈绕组产生③正④负的感应电动势,经C10、R3加至Q1G极,Q1饱和导通,由于T1①②绕组电流不能突变,产生①负②正的电动势,反馈绕组产生③负④正的电动势,经过C10、R3加至Q1G 极,Q1截止,300V直流电压经过R2、R3对C10充电,随着充电的不断进行,C10上端电位逐渐上升,Q1管G极电压上升,当达到一定数值时,Q1管导通,Q1进入下一轮的振荡状态,周而复始。

在Q1管截止期间,T1通过次级绕组释放储存的能量,通过整流滤波电路获得所需的直流电压。

(2)稳压电路:稳压电路由Q101、ZD101、PCI等电路组成。

当开关电源输出电压升高时,通过取样电阻R104、R105加至Q101管b极的电压随之升高,由于Q101e极电压恒定,Q101的集电极电流增加,PCI①②脚的发光二极管亮度增加,PCI③④脚的等效电阻减小,T1反馈绕组③④电压经过D2整流,C13滤波后,经过R6、PCI加至Q2管b极电压增加,Q1管提前进入截止状态,T1储存的能量减少,使次级输出电压下降,反之则过程相反。

(3)保护电路:D1、R1、C7组成脉冲吸收回路,可以减小Q1截止时D 极的反峰电势,防止Q1被击穿。

开关电源的原理分析与维修ppt课件(共95张PPT)

开关电源的原理分析与维修ppt课件(共95张PPT)
通过变压器和整流器,把交流电变成直流电的 反之,输出电压下降引起设置电压下降,当输出电压低于设置电压时,TL431的输出电压升高,最终使得UC3842的脚2的补偿输入电流随之变
化,促使片内对PWM比较器进行调节,改变占空比,达到稳压的目的。 高频信号噪声,开关电源中对直流输入进行高频的斩波,然后通过高频的变压器进行传输,在这个过程中,必然会掺入高频的噪声干扰。
三、【以UC3842芯片为核心控 制部件的开关电源原理分析】
UC3842的概述与特点
UC3842是一种高性能的固定频率电流型 控制器,单端输出,可直接驱动晶体管 和场较应管,具有管脚数量少、外围电 路简单、安装与调试简便、性能优良、 价格低廉等优点,在100W以下的开关电 源中有很好的应用前景。
1脚外接阻容元件,用来补 偿误差放大器的频率特性。
2脚是反馈电压输入端,将 取样电压加到误差放大器 的反相输入端,再与同相 输入端的基准电压进行比 较,产生误差电压。
3脚是电流检测输入端,与电 阻配合,构成过流保护电路。
4脚外接锯齿波振荡器外部定 时电阻与定时电容,决定振 荡频率。
5脚是接地脚。
短路保护
如果人为意外地将输出端短路,这时输出电流将成倍增 大,使得自动恢复开关RF内部的热量激增,它立即断开 电路,起到过压保护作用。一旦故障排除,自动恢复开 关RF在5s之内快速恢复阻抗。
过压保护
如果供电电压发生过压(在265V以上),UC3842无法调节占 空比,变压器的初级绕组电压大大提高,UC3842的脚7 供电电压也急剧上升,关闭输出。
线性电源的组成
电源变压器
将电网交流电压〔220V〕变换成符合需 要的交流电压,此交流电压经过整流后 可获得电子板卡所需的直流电压。

开关电源原理与维修开关电源原理图

开关电源原理与维修开关电源原理图

开关电源原理与维修开关电源原理图
电源是各种电子设备必不可缺的组成部分,其性能优劣直接关系到电子设备的技术指标及能否安全可靠地工作。由于开关电源内部关键元器件工作在高频开关状态,功耗小,转化率高,且体积和重量只有线性电源的20%—30%,故目前它已成为稳压电源的主流产品。电子设备电气故障的检修,本着从易到难的原则,基本上都是先从电源入手,在确定其电源正常后,再进行其他部位的检修,且电源故障占电子设备电气故障的大多数。故了解开头电源基本工作原理,熟悉其维修技巧和常见故障,有利于缩短电子设备故障维修时间,提高个人设备维护技能。
如果电源启动一下就停止,则该电源处于保护状态下,可直接测量PWM芯片保护输入脚的电压,如果电压超出规定值,则说明电源处于保护状态下,应重点检查产生保护的原因。
2.常见故障
保险丝熔断
一般情况下,保险丝熔断说明电源的内部线路有问题。由于电源工作在高电压、大电流的状态下,电网电压的波动、浪涌都会引起电源内电流瞬间增大而使保险丝熔断。重点应检查电源输入端的整流二极管,高压滤波电解电容,逆变功率开关管等,检查一下这此元器件有无击穿、开路、损坏等。如果确实是保险丝熔断,应该首先查看电路板上的各个元件,看这些元件的外表有没有被烧糊,有没有电解液溢出,如果没有发现上述情况,则用万用表测量开关管有无击穿短路。需要特别注意的是:切不可在查出某元件损坏时,更换后直接开机,这样很有可能由于其它高压元件仍有故障又将更换的元件损坏,一定要对上述电路的所有高压元件进行全面检查测量后,才能彻底排除保险丝熔断的故障。
按TRC控制原理,有三种方式:
1.脉冲宽度调制(PulseWithModulation,缩写为PWM)
开关周期恒定,通过改变脉冲宽度来改变占空比的方式。
2.脉冲频率调制(PulseFrequencyModulation,缩写为PFM)

液晶显示器开关电源电路原理与维修

液晶显示器开关电源电路原理与维修
早期,冠捷电子采用Adapter和Inverter分开的方式实现对显示器的供电。Adapter采用 的PWM IC为UC3842或UC3843、Inverter采用的PWM IC为TL1451。后来,出于Cost down的考虑,采用Adapter和Inverter一体化的方案,Adapter部分采用的PWM IC为 SG6841、Inverter部分采用的PWM IC为TL1451。随着灯管的增加及所需的功率不断增 加,Inverter部分回路的设计方案得到转变,由原来的Royer回路变为全桥式回路,为此 应用到OZ960IC。
恒定,通过改变开关工作频率来改变占空比的方式。
3)混合调制导通脉冲宽度和开关工作频率均不固定,彼此都能改变的方式, 它是以上二种方式的混合。
在目前开发和使用的开关电源集成电路中,绝大多数也为脉宽调制型。本设 计采用的就是脉宽调制型(PWM)开关稳压电源,其基本原理可参见右图。
对于单极性矩形脉冲来说,其直流平均电压Uo取决于矩形脉冲的宽度,脉 冲越宽,其直流平均电压值就越高。直流平均电压Uo可由公式计算,即 Uo=Um×T1/T 式中Um —矩形脉冲最大电压值; T —矩形脉冲周期; T1 —矩形脉冲宽度。
20寸TV POWER方框图
液晶显示器开关电源电路原理与维 修
第一讲 ADAPTER 原理讲解
2.1 PWM控制器SG6841简介 目前,开关电源的集成化与小型化已成为现实,早期的PWM IC大多采用UC384X系列(如 UC3842、UC3843),但由于新产品越来越积体化及环保和安规要求越来越严苛的趋势下,出现 了384XG及684X等具有Green Function的IC。Green Function为环保功能的意思,亦称之为Blue Angel,其要求是在满载70W以下的电源产品,当负载没有输出功率的情况下,输入电源仍照常供 应时,电路消耗功率必需小于1W以下。欧系的Infineon Coolset ICE2AXXX及ICE2BXXX系列不仅 具有Green Function,并且把以往外加的功率开关集成在8DIP的IC内,以节省空间和制造流程。 SG6841是由System General崇贸科技开发的一款高性能固定频率电流模式控制器,专为离线 和DC-DC变换器应用而设计。它属于电流型单端PWM调制器,具有管脚数量少、外围电路简单、 安装调试简便、性能优良、价格低廉等优点,可精确地控制占空比,实现稳压输出,还拥有低待 机功耗和众多保护功能,所以,为设计人员提供只需最少的外部元件就能获得成本效益高的解决 方案,在实际中得到广泛的应用。SG6841有下列性能特点:

开关电源电路图及工作原理

开关电源电路图及工作原理

开关电源电路图及工作原理
以下是一种常见的开关电源电路图及其工作原理:
该电路图包括输入端(Vin)、输出端(Vout)、开关管(Q)、变压器(T)、二极管(D)和滤波电容(C)。

工作原理如下:
1. 当输入电压Vin为正常工作范围时,通过开关管Q的导通
和截止,实现开关管Q的开关,从而实现电流的导通和截止。

当开关管Q截止时,开关电源工作于不工作(断开)状态。

2. 当开关管Q导通时,输入电压Vin通过变压器T的反馈,
经过变换,输出到输出端Vout。

输出端Vout的电压将根据变
压器T的变压比进行转换。

变压器T的变压比可以通过设计
和调整变压器T的结构和参数来实现。

3. 在开关管Q导通时,二极管D导通,使电流流过滤波电容C,从而实现电流的稳定和平滑输出。

当开关管Q截止时,二
极管D截止,断开电流通路。

通过以上工作原理,开关电源能够以高效率实现输入电压到变换输出电压的转换。

由于开关管Q的开关动作,可以快速控
制电流的导通和截止,从而实现高效的电能转换和节能效果。

电路中的各个元器件相互配合,实现了开关电源的正常工作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[工作]开关电源原理与维修开关电源原理图开关电源原理与维修开关电源原理图
电源是各种电子设备必不可缺的组成部分,其性能优劣直接关系到电子设备的技术指标及能否安全可靠地工作。

由于开关电源内部关键元器件工作在高频开关状态,功耗小,转化率高,且体积和重量只有线性电源的20%—30%,故目前它已成为稳压电源的主流产品。

电子设备电气故障的检修,本着从易到难的原则,基本上都是先从电源入手,在确定其电源正常后,再进行其他部位的检修,且电源故障占电子设备电气故障的大多数。

故了解开头电源基本工作原理,熟悉其维修技巧和常见故障,有利于缩短电子设备故障维修时间,提高个人设备维护技能。

二(开关电源的组成
开关电源大至由主电路、控制电路、检测电路、辅助电源四大部份组成,见图1。

1( 主电路
冲击电流限幅:限制接通电源瞬间输入侧的冲击电流。

输入滤波器:其作用是过滤电网存在的杂波及阻碍本机产生的杂波反馈回电网。

整流与滤波:将电网交流电源直接整流为较平滑的直流电。

逆变:将整流后的直流电变为高频交流电,这是高频开关电源的核心部分。

输出整流与滤波:根据负载需要,提供稳定可靠的直流电源。

2( 控制电路
一方面从输出端取样,与设定值进行比较,然后去控制逆变器,改变其脉宽或脉频,使输出稳定,另一方面,根据测试电路提供的数据,经保护电路鉴别,提供控制电路对电源进行各种保护措施。

3( 检测电路
提供保护电路中正在运行中各种参数和各种仪表数据。

4( 辅助电源
实现电源的软件(远程)启动,为保护电路和控制电路(PWM等芯片)工作供电。

开关电源原理图
三(开关电源的工作原理
开关电源就是采用功率半导体器件作为开关元件,通过周期性通断开关,控制开关元件的占空比来调整输出电压。

开关元件以一定的时间间隔重复地接通和断开,在开关无件接通时输入电源Vi通过开关S和滤波电路向负载RL提供能量,当开关S断开时,电路中的储能装置(L1、C2、二极管D组成的电路)向负载RL释放在开关接通时所储存的能量,使负载得到连续而稳定的能量。

VO=TON/T*Vi
VO 为负载两端的电压平均值
TON 为开关每次接通的时间
T 为开关通断的工作周期
由式可知,改变开关接通时间和工作周期的比例,VO间电压平均值也随之改变,因此,随着负载及输入电源电压的变化自动调整TON和T的比例便使输出电压VO维持不变。

改变接通时间TON和工作周期比例亦即改变脉冲的占空比,这种方法称为“时间比率控制”(TimeRationControl,缩写为TRC)。

按TRC控制原理,有三种方式:
1( 脉冲宽度调制(PulseWithModulation,缩写为PWM) 开关周期恒定,通过改变脉冲宽度来改变占空比的方式。

2( 脉冲频率调制(PulseFrequencyModulation,缩写为PFM) 导通脉冲宽度恒定,通过改变开关工作频率来改变占空比的方式。

3( 混合调制
导通脉冲宽度和开关工作频率均不固定,彼此都能改变的方式,它是以上二种方式的混合。

四(开关电源的维修技巧和常见故障
1(维修技巧
开关电源的维修可分为两步进行:
断电情况下,“看、闻、问、量”
看:打开电源的外壳,检查保险丝是否熔断,再观察电源的内部情况,如果发现电源的PCB板上有烧焦处或元件破裂,则应重点检查此处元件及相关电路元件。

闻:闻一下电源内部是否有糊味,检查是否有烧焦的元器件。

问:问一下电源损坏的经过,是否对电源进行违规操作。

量:没通电前,用万用表量一下高压电容两端的电压先。

如果是开关电源不起振或开关管开路引起的故障,则大多数情况下,高压滤波电容两端的电压未泄放悼,此电压有300多伏,需小心。

用万用表测量AC电源线两端的正反向电阻及电容器充电情况,电阻值不应过低,否则电源
内部可能存在短路。

电容器应能充放电。

脱开负载,分别测量各组输出端的对地电阻,正常时,表针应有电容器充放电摆动,最后指示的应为该路的泄放电阻的阻值。

加电检测
通电后观察电源是否有烧保险及个别元件冒烟等现象,若有要及时切断供电进行检修。

测量高压滤波电容两端有无300伏输出,若无应重点查整流二极管、滤波电容等。

测量高频变压器次级线圈有无输出,若无应重点查开关管是否损坏,是否起振,保护电路是否动作等,若有则应重点检查各输出侧的整流二极管、滤波电容、三通稳压管等。

如果电源启动一下就停止,则该电源处于保护状态下,可直接测量PWM芯片保护输入脚的电压,如果电压超出规定值,则说明电源处于保护状态下,应重点检查产生保护的原因。

2(常见故障
保险丝熔断
一般情况下,保险丝熔断说明电源的内部线路有问题。

由于电源工作在高电压、大电流的状态下,电网电压的波动、浪涌都会引起电源内电流瞬间增大而使保险丝熔断。

重点应检查电源输入端的整流二极管,高压滤波电解电容,逆变功率开关管等,检查一下这此元器件有无击穿、开
路、损坏等。

如果确实是保险丝熔断,应该首先查看电路板上的各个元件,看这些元件的外表有没有被烧糊,有没有电解液溢出,如果没有发现上述情况,则用万用表测量开关管有无击穿短路。

需要特别注意的是:切不可在查出某元件损坏时,更换后直接开机,这样很有可能由于其它高压元件仍有故障又将更换的元件损
坏,一定要对上述电路的所有高压元件进行全面检查测量后,才能彻底排除保险丝熔断的故障。

无直流电压输出或电压输出不稳定
如果保险丝是完好的,在有负载情况下,各级直流电压无输出。

这种情况主要是以下原因造成的:电源中出现开路、短路现象,过压、过流保护电路出现故障,辅助电源故障,振荡电路没有工作,电源负载过重,高频整流滤波电路中整流二极管被击穿,滤波电容漏电等。

在用万用表测量次级元件,排除了高频整流二极管击穿、负载短路的情况后,如果这时输出为零,则可以肯定是电源的控制电路出了故障。

若有部分电压输出说明前级电路工作正常,故障出在高频整流滤波电路中。

高频滤波电路主要由整流二极管及低压滤波电容组成直流电压输出,其中整流二极管击穿会使该电路无电压输出,滤波电容漏电会造成输出电压不稳等故障。

用万用表静态测量对应元件即可检查出其损坏的元件。

例:某一24伏直流电机供电电源通电后无直流24伏输出,拆开电源外壳,观察保险丝未烧断且电路板无明显的烧焦处或破裂元件,在未通电情况下量AC输入端阻值和DC输出端阻值正常,量开关管、整流桥、整流管等重要元件正常,故判断不存在内部严重短路的可能,估计保护电路动
作。

经检查此开关电源采用U3842 PWM控制芯片,经查找相关的资料得知,当U3842芯片的3端电压高于1伏时,内部电流敏感比较器输出高电平,将PWM锁存器复位使输出关闭。

通电测量U3842的3端高于1伏,6端无输出,经检查相关电路,发现稳压管D2击穿,如图3,故PC1导通,致使U3842的3端为高电平,故6端无输出,开关管不工作,直流侧无直流输出。

更换同型号稳压管D2,故障解除。

电源负载能力差
电源负载能力差是一个常见的故障,一般都是出现在老式或工作时间长的电源中,主要原因是各元器件老化,开关管的工作不稳定,没有及时进行散热等。

应重点检查稳压二极管是否发热漏电,整流二极管损坏、
高压滤波电容损坏等。

例:我厂近红处激光光谱仪(VECTOR 22),开机后无法完成自检并报警且主板指示灯不断闪烁。

经检查,供光谱仪主板的直流5V电源仅剩2.3伏左右,脱开5V直流电源的负载,通电再次测量5V直流电源,这时则有5V,初步判断此5V直流电源带载能力差,拆开电源外壳进行检修,由于没有带负载时,通电有直流5V输出,故重点检查次级线圈侧的输出整流电路,给5伏电源接上假负载通电进行测量发现三通稳压7805的1、2脚之间电压为5.2伏,2、3脚之间却剩2.3伏,如图4,故判断三通稳压管7805性能变坏,更换三通稳压管7805故障解决。

五(结束语
目前,开关电源以小型、轻量和高效率的特点被广泛应用几乎所有的电子设备,是当今电子信息产业飞速发展不可缺少的一种电源方式。

作为设备维护专业人员,有必要了解开关电源的基本工作原理,掌握其维修技能,熟悉其常见故障,这样才有利于减少电子设备的维修费用,缩短其故障维修时间,提高自身技能水平。

相关文档
最新文档