四年级奥数--速算巧算(一)
(完整版)四年级奥数速算与巧算
四年级奥数知识点:速算与巧算(一)例1计算9+99+999+9999+99999解:在涉及所有数字都是9的计算中,常使用凑整法.例如将999化成100 0—1去计算.这是小学数学中常用的一种技巧.9+99+999+9999+99999=(10-1)+(100-1)+(1000-1)+(10000-1)+(100000-1)=10+100+1000+10000+100000-5=111110-5=111105.例2计算199999+19999+1999+199+19解:此题各数字中,除最高位是1外,其余都是9,仍使用凑整法.不过这里是加1凑整.(如 199+1=200)199999+19999+1999+199+19=(19999+1)+(19999+1)+(1999+1)+(199+1)+(19+1)-5=200000+20000+2000+200+20-5=222220-5=22225.例3计算(1+3+5+...+1989)-(2+4+6+ (1988)解法2:先把两个括号内的数分别相加,再相减.第一个括号内的数相加的结果是:从1到1989共有995个奇数,凑成497个1990,还剩下995,第二个括号内的数相加的结果是:从2到1988共有994个偶数,凑成497个1990.1990×497+995—1990×497=995.例4计算 389+387+383+385+384+386+388解法1:认真观察每个加数,发现它们都和整数390接近,所以选390为基准数.389+387+383+385+384+386+388=390×7—1—3—7—5—6—4—=2730—28=2702.解法2:也可以选380为基准数,则有389+387+383+385+384+386+388=380×7+9+7+3+5+4+6+8=2660+42=2702.例5计算(4942+4943+4938+4939+4941+4943)÷6解:认真观察可知此题关键是求括号中6个相接近的数之和,故可选4940为基准数.(4942+4943+4938+4939+4941+4943)÷6=(4940×6+2+3—2—1+1+3)÷6=(4940×6+6)÷6(这里没有把4940×6先算出来,而是运=4940×6÷6+6÷6运用了除法中的巧算方法)=4940+1=4941.例6计算54+99×99+45解:此题表面上看没有巧妙的算法,但如果把45和54先结合可得99,就可以运用乘法分配律进行简算了.54+99×99+45=(54+45)+99×99=99+99×99=99×(1+99)=99×100=9900.例7计算9999×2222+3333×3334解:此题如果直接乘,数字较大,容易出错.如果将9999变为3333×3,规律就出现了.9999×2222+3333×3334=3333×3×2222+3333×3334=3333×6666+3333×3334 =3333×(6666+3334)=3333×10000=33330000.例81999+999×999解法1:1999+999×999 =1000+999+999×999=1000+999×(1+999)=1000+999×1000=1000×(999+1)=1000×1000=1000000.解法2:1999+999×999 =1999+999×(1000-1) =1999+999000-999=(1999-999)+999000=1000+999000=1000000.有多少个零.总之,要想在计算中达到准确、简便、迅速,必须付出辛勤的劳动,要多练习,多总结,只有这样才能做到熟能生巧.四年级奥数知识点:速算与巧算(二)例1比较下面两个积的大小:A=987654321×123456789,B=987654322×123456788.分析经审题可知A的第一个因数的个位数字比B的第一个因数的个位数字小1,但A的第二个因数的个位数字比B的第二个因数的个位数字大1.所以不经计算,凭直接观察不容易知道A和B哪个大.但是无论是对A或是对B,直接把两个因数相乘求积又太繁,所以我们开动脑筋,将A和B先进行恒等变形,再作判断.解:A=987654321×123456789=987654321×(123456788+1)=987654321×123456788+987654321.B=987654322×123456788=(987654321+1)×123456788=987654321×123456788+123456788.因为 987654321>123456788,所以 A>B.例2不用笔算,请你指出下面哪道题得数最大,并说明理由.241×249 242×248 243×247244×246 245×245.解:利用乘法分配律,将各式恒等变形之后,再判断.241×249=(240+1)×(250—1)=240×250+1×9;242×248=(240+2)×(250—2)=240×250+2×8;243×247=(240+ 3)×(250—3)= 240×250+3×7;244×246=(240+4)×(250—4)=240×250+4×6;245×245=(240+5)×(250—5)=240×250+5×5.恒等变形以后的各式有相同的部分240 × 250,又有不同的部分1×9,2×8,3×7,4 ×6,5×5,由此很容易看出245×245的积最大.一般说来,将一个整数拆成两部分(或两个整数),两部分的差值越小时,这两部分的乘积越大.如:10=1+9=2+8=3+7=4+6=5+5则5×5=25积最大.例3求 1966、 1976、 1986、 1996、 2006五个数的总和.解:五个数中,后一个数都比前一个数大10,可看出1986是这五个数的平均值,故其总和为:1986×5=9930.例4 2、4、6、8、10、12…是连续偶数,如果五个连续偶数的和是320,求它们中最小的一个.解:五个连续偶数的中间一个数应为320÷5=64,因相邻偶数相差2,故这五个偶数依次是60、62、64、66、68,其中最小的是60.总结以上两题,可以概括为巧用中数的计算方法.三个连续自然数,中间一个数为首末两数的平均值;五个连续自然数,中间的数也有类似的性质——它是五个自然数的平均值.如果用字母表示更为明显,这五个数可以记作:x-2、x—1、x、x+1、x+2.如此类推,对于奇数个连续自然数,最中间的数是所有这些自然数的平均值.如:对于2n+1个连续自然数可以表示为:x—n,x—n+1,x-n+2,…, x —1, x, x+1,…x+n—1,x+n,其中 x是这2n+1个自然数的平均值.巧用中数的计算方法,还可进一步推广,请看下面例题.例5将1~1001各数按下面格式排列:一个正方形框出九个数,要使这九个数之和等于:①1986,②2529,③1989,能否办到?如果办不到,请说明理由.解:仔细观察,方框中的九个数里,最中间的一个是这九个数的平均值,即中数.又因横行相邻两数相差1,是3个连续自然数,竖列3个数中,上下两数相差7.框中的九个数之和应是9的倍数.①1986不是9的倍数,故不行;②2529÷9=281,是9的倍数,但是281÷7=40×7+1,这说明281在题中数表的最左一列,显然它不能做中数,也不行;③1989÷9=221,是9的倍数,且221÷7=31×7+4,这就是说221在数表中第四列,它可做中数.这样可求出所框九数之和为1989是办得到的,且最大的数是229,最小的数是213.这个例题是所谓的“月历卡”上的数字问题的推广.同学们,小小的月历卡上还有那么多有趣的问题呢!所以平时要注意观察,认真思考,积累巧算经验.四年级奥数习题:速算与巧算(一)1.计算899998+89998+8998+898+882.计算799999+79999+7999+799+793.计算(1988+1986+1984+…+6+4+2)-(1+3+5+…+1983+1985+1987)4.计算1—2+3—4+5—6+…+1991—1992+19935.时钟1点钟敲1下,2点钟敲2下,3点钟敲3下,依次类推.从1点到1 2点这12个小时内时钟共敲了多少下?6.求出从1~25的全体自然数之和.7.计算 1000+999—998—997+996+995—994—993+…+108+107—106—105 +104+103—102—1018.计算92+94+89+93+95+88+94+96+879.计算(125×99+125)×1610.计算3×999+3+99×8+8+2×9+2+911.计算999999×7805312.两个10位数1111111111和9999999999的乘积中,有几个数字是奇数?习题解答1.利用凑整法解.899998+89998+8998+898+88=(899998+2)+(89998+2)+(8998+2)+(898+2)(88+2)-10=900000+90000+9000+900+90-10=999980.2.利用凑整法解.799999+79999+7999+799+79=800000+80000+8000+800+80-5=888875.3.(1988+1986+1984+…+6+4+2)-(1+3+5+…+1983+1985+1987) =1988+1986+1984+…+6+4+2-1-3-5…-1983-1985-1987=(1988-1987)+(1986-1985)+…+(6-5)+(4-3)+(2-1)=994.4.1-2+3—4+5-6+…+1991-1992+1993=1+(3-2)+(5-4)+…+(1991-1990)+(1 993-1992)= 1+1×996=997.5.1+2+3+4+5+6+7+8+9+10+11+12=13×6=78(下).6.1+2+3+…+24+25=(1+25)+(2+24)+(3+23)+…+(11+15)+(12+14)+13=26×12+13=325.7.解法1:1000+999—998—997+996+995—994-993+…+108+107—106—10 5+104+103—102—101=(1000+999—998—997)+(996+995—994-993)+…+(108+ 107—106—105)+(104+103—102—101)解法 2:原式=(1000—998)+(999—997)+(104—102)+(103—101)=2 × 450=900.解法 3:原式=1000+(999—998—997+996)+(995—994 -993+992)+…+(107—106—105+104)+(103—102—101+100)-100=1000—100=900.9.(125×99+125)×16=125×(99+1)×16= 125×100×8×2=125×8×100×2=200000.10.3×999+3+99×8+8+2×9+2+9= 3×(999+1)+8×(99+1)+2×(9+1)+9=3×1000+8×100+2×10+9=3829.11.999999×78053=(1000000—1)×78053=78053000000—78053=78052921947.12.1111111111×9999999999=1111111111×(10000000000—1)=11111111110000000000—1111111111 =11111111108888888889.这个积有10个数字是奇数.四年级奥数习题:速算与巧算(二)1.右图的30个方格中,最上面的一横行和最左面的一竖列的数已经填好,其余每个格子中的数等于同一横行最左边的数与同一竖列最上面的数之和(如方格中a=14+17=31).右图填满后,这30个数的总和是多少?2.有两个算式:①98765×98769,②98766 × 98768,请先不要计算出结果,用最简单的方法很快比较出哪个得数大,大多少?3.比较568×764和567×765哪个积大?4.在下面四个算式中,最大的得数是多少?① 1992×1999+1999② 1993×1998+1998③ 1994×1997+1997④ 1995×1996+19965.五个连续奇数的和是85,求其中最大和最小的数.6.45是从小到大五个整数之和,这些整数相邻两数之差是3,请你写出这五个数.7.把从1到100的自然数如下表那样排列.在这个数表里,把长的方面3个数,宽的方面2个数,一共6个数用长方形框围起来,这6个数的和为81,在数表的别的地方,如上面一样地框起来的6个数的和为429,问此时长方形框子里最大的数是多少?习题解答1.先按图意将方格填好,再仔细观察,找出格中数字的规律进行巧算. 解法1:先算每一横行中的偶数之和:(12+14+16+18)×6=360.再算每一竖列中的奇数之和:(11+13+15+17+19)× 5=375最后算30个数的总和=10+360+375=745.解法2:把每格的数算出填好.先算出10+11+12+13+14+15+16+17+18+19=145,再算其余格中的数.经观察可以列出下式:(23+37)+(25+35)× 2+(27+33)×3+(29+31)× 4= 60 ×(1+ 2+ 3+4)=600最后算总和:总和=145+600=745.2.① 98765 × 98769= 98765 ×(98768+ 1)= 98765 × 98768+98765.② 98766 × 98768=(98765+1)× 98768= 98765 × 98768+ 98768.所以②比①大3.3.同上题解法相同:568×764>567×765.4.根据“若保持和不变,则两个数的差越小,积越大”,则1996×1996=3 984016是最大的得数.5.85÷5=17为中数,则五个数是:13、15、17、19、21最大的是21,最小的数是13.6.45÷5=9为中数,则这五个数是:3,6,9,12,15.7.观察已框出的六个数,10是上面一行的中间数,17是下面一行的中间数,10+17=27是上、下两行中间数之和.这个中间数之和可以用81÷3=27求得.利用框中六个数的这种特点,求方框中的最大数.429÷3=143(143+7)÷2=75 75+1=76最大数是76.。
小学数学四年级奥数基础教程目录
小学奥数基础教程(四年级)第1讲速算与巧算(一)第2讲速算与巧算(二)第3讲高斯求和第4讲 4,8,9整除的数的特征第5讲弃九法第6讲数的整除性(二)第7讲找规律(一)第8讲找规律(二)第9讲数字谜(一)第10讲数字谜(二)第11讲归一问题与归总问题第12讲年龄问题第13讲鸡兔同笼问题与假设法第14讲盈亏问题与比较法(一)第15讲盈亏问题与比较法(二)第16讲数阵图(一)第17讲数阵图(二)第18讲数阵图(三)第19将乘法原理第20讲加法原理(一)第21讲加法原理(二)第22讲还原问题(一)第23讲还原问题(二)第24讲页码问题第25讲智取火柴第26讲逻辑问题(一)第27讲逻辑问题(二)第28讲最不利原则第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲速算与巧算(一)计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。
准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。
我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。
例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。
求这10名同学的总分。
分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。
观察这些数不难发现,这些数虽然大小不等,但相差不大。
我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。
于是得到总和=80×10+(6-2-3+3+11-=800+9=809。
实际计算时只需口算,将这些数与80的差逐一累加。
为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。
四年级奥数知识点:速算与巧算(一)
四年级奥数知识点:速算与巧算(一)例1 计算9+99+999+9999+99999解:在涉及所有数字都是9的计算中,常使用凑整法.例如将999化成10001去计算.这是小学数学中常用的一种技巧.9+99+999+9999+99999=(10-1)+(100-1)+(1000-1)+(10000-1)+(100000-1)=10+100+1000+10000+100000-5=111110-5=111105.例2 计算201999+20199+2019+199+19解:此题各数字中,除最高位是1外,其余都是9,仍使用凑整法.不过这里是加1凑整.(如199+1=200)201999+20199+2019+199+19=(20199+1)+(20199+1)+(2019+1)+(199+1)+(19+1)-5=201900+20190+2019+200+20-5=222220-5=22225.例3 计算(1+3+5++1989)-(2+4+6++1988)解法2:先把两个括号内的数分别相加,再相减.第一个括号内的数相加的结果是:从1到1989共有995个奇数,凑成497个1990,还剩下995,第二个括号内的数相加的结果是:从2到1988共有994个偶数,凑成497个1990.1990497+9951990497=995.例4 计算389+387+383+385+384+386+388解法1:认真观察每个加数,发现它们都和整数390接近,所以选390为基准数.389+387+383+385+384+386+388=3907137564=273028=2702.解法2:也可以选380为基准数,则有389+387+383+385+384+386+388=3807+9+7+3+5+4+6+8=2660+42=2702.例5 计算(4942+4943+4938+4939+4941+4943)6解:认真观察可知此题关键是求括号中6个相接近的数之和,故可选4940为基准数.(4942+4943+4938+4939+4941+4943)6=(49406+2+321+1+3)6=(49406+6)6(这里没有把49406先算出来,而是运=494066+66运用了除法中的巧算方法)=4940+1=4941.副标题#e#例6 计算54+9999+45解:此题表面上看没有巧妙的算法,但如果把45和54先结合可得99,就可以运用乘法分配律进行简算了.54+9999+45=(54+45)+9999=99+9999=99(1+99)=99100=9900.例7 计算99992222+33333334解:此题如果直接乘,数字较大,容易出错.如果将9999变为33333,规律就出现了.99992222+33333334=333332222+33333334=33336666+33333334=3333(6666+3334)=333310000=33330000.例8 2019+999999解法1:2019+999999=1000+999+999999=1000+999(1+999)=1000+9991000=1000(999+1)=10001000=1000000.解法2:2019+999999=2019+999(1000-1)=2019+999000-999=(2019-999)+999000=1000+999000=1000000.观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。
四年级奥数知识点:速算与巧算(一)
四年级奥数知识点:速算与巧算(一)四年级奥数知识点:速算与巧算(一)例1 计算9+99+999+9999+99999解:在涉及所有数字都是9的计算中,常使用凑整法.例如将999化成10001去计算.这是小学数学中常用的一种技巧. 9+99+999+9999+99999=(10-1)+(100-1)+(1000-1)+(10000-1)+(100000-1)=10+100+1000+10000+100000-5=111110-5=111105.例2 计算201999+20199+2019+199+19解:此题各数字中,除最高位是1外,其余都是9,仍使用凑整法.不过这里是加1凑整.(如 199+1=200)201999+20199+2019+199+19=(20199+1)+(20199+1)+(2019+1)+(199+1)+(19+1)-5=201900+20190+2019+200+20-5=222220-5=22225.例3 计算(1+3+5++1989)-(2+4+6++1988)解法2:先把两个括号内的数分别相加,再相减.第一个括号内的数相加的结果是:=494066+66运用了除法中的巧算方法)=4940+1=4941.副标题#e#例6 计算54+9999+45解:此题表面上看没有巧妙的算法,但如果把45和54先结合可得99,就可以运用乘法分配律进行简算了.54+9999+45=(54+45)+9999=99+9999=99(1+99)=99100=9900.例7 计算 99992222+33333334解:此题如果直接乘,数字较大,容易出错.如果将9999变为33333,规律就出现了.99992222+33333334=333332222+33333334=33336666+33333334=3333(6666+3334)=333310000=33330000.例8 2019+999999解法1:2019+999999=1000+999+999999=1000+999(1+999)=1000+9991000=1000(999+1)=10001000=1000000.解法2:2019+999999=2019+999(1000-1)=2019+999000-999=(2019-999)+999000=1000+999000=1000000.有多少个零.总之,要想在计算中达到准确、简便、迅速,必须付出辛勤的劳动,要多练习,多总结,只有这样才能做到熟能生巧.。
《举一反三》四年级奥数:速算与巧算1
《举一反三》四年级奥数:速算与巧算1 计算是数学的基础,准确、快速地计算是一种能力,它能提高分析能力、推理能力,促进思维的发展。
速算与巧算的关键是认真审题,熟练掌握运算性质,并能灵活运用,这包括性质的直接运用、逆向运用、推广运用、变式运用、综合运用等,掌握这些,计算就能化繁为简、化难为易,达到准确、快速、灵活的目的。
题1:234+432-4×8+330÷5
敏捷思维:此题可以先按计算顺序,将乘、除部分先计算出来,则剩余的为同一级运算,就可以灵活处理。
234+432-4×8+330÷5
=234+432-32+66
=(234+66)+(432-32)
=700
拓展探究:此题先观察数与符号的特点,同级运算,可以带着符号“搬家”,能“凑整”的可先算。
练习:
1.748+416-2×8+156÷3
2.4567-3456+1056-167
3.1999-99-1899+2001。
小学数学四年级奥数1、速算与巧算
小学数学——四年级奥数1.速算与巧算知识回顾1、数学中的速算与巧算主要是利用乘、除法的运算定律和性质来进行的,我们已经学习了四则混合运算的各种运算律,包括交换律、结合律、分配率、去括号和添括号的法则等等。
加法交换律:a+b=b+a乘法交换律:axb=bxa加法结合律:(a+b)+c=a+(b+c)乘法结合律:(axb)xc=ax(bxc)乘法分配律(a+b)xc=axc+bxc 或a-b)xc=axc-bxc减法的性质:a-b-c=a-(b+c)除法的性质:a÷b=(axn)÷(bxn)=(a÷n)÷(b÷n)(n≠0)2、去(添)括号规律:1.加、减法去(添)括号:括号前面是“+”,去(添)括号后不变号;括号前面是“-”,去(添)括号后要变号例如:234+(345-123)=234+345-123、345-(234-123)=345-234+1232.乘、除法去(添)括号:括号前面是“x”,去(添)括号后不变号;括号前面是“÷”(添)括号后要变号例如:8x(5÷8)=8×5÷8、93+(31+3)=93+31+33、带符号搬家同级运算时,可以带符号搬家,改变运算顺序,加、减法同为第一级运算,乘、除法同为第二级运算例如:241-164+59=241+59-164;165×29+5=165+5×29四则混合运算时要先算乘除法、后算加减法,同级运算按照从左到右的顺序计算,有括号时先算括号内的。
以上这些运算法则和性质在整数与小数中同样适用。
第一课时整数的速算与巧算经典题型一25+138+175解析:25+175=200,200+138=338,通过观察不难看出25+75正好可以得到一个整百数,所以我们利用加法交换律和结合律先算25+175的和,再和175相加,可以使运算变得简便。
练一练1、56+27+442、603+138+973、88+27+73+124、1+3+5+7+…+199+2015、1+2+3+4+…+48+49+50+49+48+…+4+3+2+1经典题型二125 x71 x8解析:125 x8=1000,1000 x71=71000,利用乘法交换律和结合律可以先算125 x8得到一个整千数,再乘71,可以直接口算出结果。
四年级奥数第一讲-速算与巧算含答案
第一讲 速算与巧算一、 知识点:1. 要认真观察算式中数的特点,算式中运算符号的特点。
2. 掌握基本的运算定律:乘法交换律、乘法结合律、乘法分配律。
3. 掌握速算与巧算的方法:如等差数列求知、凑整、拆数等等。
二、典例剖析:例(1) 19199199919999199999++++分析:运用凑整法来解十分方便,也不容易出错误。
解:原式()()()() =(201)+2001+20001+200001+2000001 -----=20+200+2000+20000+2000005 =2222205 =222215--练一练:898998999899998999998+++++=答案:1111098例(2)10099989796321+-+-++-+分析:暂不看头尾两个数,就会发现中间都是先加后减,并且加数与减数相差1,所以就算这题可以先把中间部分分组凑成若干个1,再与其余部分进行计算。
解:原式100(9998)(9796)(32)1=+-+-++-+ 100491=++150=练一练:989796959493929190894321+--++--++---++答案:99例(3) 1111111111⨯分析:111,1111121,11111112321⨯=⨯=⨯= 解:1111111111123454321⨯=练一练:2222222222⨯答案:493817284例(4) 1234314243212413+++分析:数字1、2、3、4,在个位、十位、百位、千位上均各出现一次。
解:原式1111222233334444=+++ 1111(1234)=⨯+++ 111110=⨯ 11110=练一练:5678967895789568956795678++++答案:388885例(5) 339340341342343344345++++++分析:这七个数均差1,且个数为7个,所以中间数就是七个数的中位数。
四年级上册奥数专题(第3版修订)
时,6*5=3×6—2×5=8 (1)计算(5*4)*2
(2)已知 x*(4*1)=7,求 x。
试一试:规定 A*B=B×B+A,计算(2*3)*(4*1)。
例 3:如果 2△3=2+3+4,5△4=5+6+7+8,请按此规律计算 3△5=?
17
四年级上册奥数专题
例 4:规定 a△b=a+(a+1)+(a+2)+…+(a+b—1),其中 a,b 表示自然数。
知 3 年后哥哥的年龄将是弟弟年龄的 2 倍。今年父亲的年龄是多少岁?哥哥呢? 弟弟呢?
试一试:今年,丹丹和父亲,母亲,弟弟的年龄和是 120 岁。当父亲的年龄是
丹丹年龄的 3 倍时,母亲的年龄恰好是弟弟年龄的 3 倍。当时弟弟年龄是 12 岁, 那么丹丹今年多少岁?
例 2:在一个家庭里,现在所有成员的年龄加在一起是 73 岁,家庭成员里有父
4、计算:38 82 18 38
5、计算:347 31 652 31 31
6、计算:1 -3 5 - 7 9 -11 13-15
-39
41
5
7、计算: (2 4 6 1999)
四年级上册奥数专题
1998 2000)(- 1 3 5
1997
8、计算:99999 77778 33333 66666
9、计算: 2008 2006 2007 2005 2007 2006 2008 2005 10、计算:7 77 777 7777 77777
2
四年级上册奥数专题
1、速算与巧算(1)
知识要点:
在三年级时,我们已经学习了速算与巧算的一种方法——凑整,本讲重点讲 解如何利用乘法运算定律进行速算和巧算。
四年级《速算与巧算》奥数教案
师:那也就是说,我们得想个办法把这两个括号给去掉。
师:在要去括号之前,先认真观察这个式子,说说这个式子的特点是什么?生:偶数的和减去奇数的和。
师:唉,他说的对吗?生:对。
师:没错,我们通过观察可以发现,减号左边的括号里,都是像2、4、6一直到96、98、100的偶数相加的,而减号右边的则是1、3、5一直到99这样的奇数相加的。
两个括号里都是加号,而括号外面的则是减号,那如果把括号去掉,我们该怎么办呢?生:第二个括号里的加号都变成减号。
师:他说的没错吧?生:没错。
师:很好,但是先别急,当我们把两个括号都去掉之后,前面的偶数都是相加,到后面的奇数都变成相减的,这个已经没问题了,那最后还有一个,去掉括号之后,两两数字之间可以交换位置的吗?生:可以。
师:很好,如果我把2跟这个减1配对,等于多少?生:等于1。
师:把4跟减3配对呢?生:也等于1。
师:6减5?生:还是等于1。
师:所以你们发现了吗?生:相减之后都是等于1的。
师:没错,通过去括号,再交换位置之后,我们可以发现,原来偶数减去奇数的差是等于1的。
这样题目就变简单了吗?生:变简单了。
师:那最后到底有多少个1呢?生:50个。
师:你怎么知道的?生:因为1到100中有50个偶数,50个奇数。
师:说得非常好。
因为1到100中有50个偶数,50个奇数,所以最后就是有50个偶数减去奇数,就可以得出有50个1相加了,所以这道题的答案是多少?生:50师:很好。
【教师在讲解时,要配合课件演示整个解题过程,在讲解这道题时,注意要把话语权交给学生,教师适时引导就可以了。
】师:既然你们都理解了,那就一起来计算一下练习五的两道题吧。
师:我请两位同学上台板演,其他同学写在课堂练习本上。
【课件出示练习五,教师请两位中上的学生上台板演,教师下台巡视观察学生的解题情况。
】(2+4+6+…+96+98+100)-(1+3+5+…+95+97+99)= (2-1)+(4-3)+(6-5)+…+(96-95)+(98-97)+(100-99)= 1+1+1+…+1+1+1(50个1)。
四年级奥数第一讲速算与巧算
延伸拓展
用“组合法”巧算
812-593+193-647+247-374+174+200 =812-400-400-200+200 =12 1-2+3-4+5-6+……+1991-1992+1993
= 1+(3-2)+(5-4)+(7-6)+ ……+(1991-1990)+(1993-1992) =1+(1992÷2)×1 =1+996 =997
一、速算与巧算
记住它们的特色 2×5=10 25×4=100 125×8=1000 625×8=5000 625×16=10000
简便计算加减篇
例1、 8+98+998+9998+99998+999998
=(8+2)+(98+2)+(998+2)+(9998+2)+(99998+2)+(999998+2)-2×6 = 10+100+1000+10000+100000+1000000 = 1111110-12 = 1111098
例3、99…9× 99…9+199…9的末尾有多少个零?
1992个9 1992个9 1992个9
因为99…9接近100…0,所以把99…9转化成100…0
1992个9 19根据乘法分配率将99…9 × 99…9变成99…9 × 100…0- 99…9
1992个9 1992个9 1992个9 1992个9 1992个9
347×69+653×31+306×19
四年级思维拓展-速算与巧算(一)
速算与巧算(一)☜知识要点速算与巧算是学习数学、解决生活中数学问题的基础,只有掌握了速算与巧算才能又快又准的计算出正确的结果。
如何掌握此类问题的特征,并能熟练、灵活地加以运用,是研究此类问题所要思考的。
1.找互补数:两个数相加和是10、100、1000、10000、、、、、、我们就称这两个数互为补数。
☜精选例题【例1】(1)72+28 ;(2)654+346;(3)8742+42+1258;(4)2345+3243+7655+6757;☝思路点拨:对于算式(1)72+28 、(2)654+346,同学们会很快得出答案为100、1000。
对于算式(3)、(4)我们可以运用加法交换律:a+b=b+a 和加法结合律:(a+b)+c=a +(b+c),先把相加能得到10000的加起来再和其它数相加。
☝标准答案:解:(1)72+28=100 (2)654+346=1000(3)8742+42+1258 (4)2345+3243+7655+6757=8742+1258+42 =(2345+7655)+(3243+6757)=10000+42 =10000+10000=10042 =20000✌活学巧用1. 327+43+6732. 8973+342+1027+6583. 785342+________=10000004. 3270+______=10000总结:找互补数的方法:知道一个互补数求另一个互补数,如果知道的这个互补数个位不为零,它的互补数就等于用10来减去这个数的最高位与最低位,其它位上的数字用9来减。
注意个位为零时看前一位。
2.凑整:把相加能得到整十、整百、整千、整万、、、、、、的数先加起来有利于我们的计算简便。
【例2】简便计算:(1)48+54;(2)3999+5+456+539+5+6;(3)79998+7998+798+78+8;☝思路点拨:题目中没有能够凑成整十、整百、整千、、、、、的数,但是有些数很接近,我们可以把(1)的48分成2+46,这样46就可以和54凑成整百了,(2)中的5可以分解成1+4,分别加到前后的数上凑整,(3)式可以分别给这五个数添加上他们凑整所需的2,最后再减去5个2就行了。
四年级奥数
速算与巧算(一)计算在人们日常生活中无处不用,人们在生活中买东西要用到;学习活动中,同学求数要用到;科学研究中统筹设计要用到……为了提高我们的工作效率,人们总想算得快些、再快些。
为此,人们总结了不少精彩的简算方法和技巧,还发明了各式各样的计算工具,如古代的算筹和今天超高速的电子计算机。
在计算数学题时,有的同学算得又快又准,赢得同学们的羡慕,都说他解题有窍门,其实“窍门”就是一种速算、巧算的方法和技巧。
在千姿百态的数学计算百花园中,速算与巧算是其最为艳丽的奇葩,同学们也一定希望自己在计算时,算得既正确、迅速又合理灵活吧!那么怎样才能做到这些呢?首先我们要熟练掌握加、减、乘、除基本计算法则和混合运算顺序;其次,还要根据具体题目的持点,灵活应用运算定律、性质及巧算方法。
同学们,为了提高自已的计算正确性和计算速度,你有兴趣试一试吗?金牌例题例1 用简便方法计算下面各题。
(1)375+127+125 (2)27+321+179例2 用简便方法计算下面各题。
(1)685-237-163 (2)824-(197+124)例3 用简便算法计算下列各题(1)543+988 (2)732-97例4 用简便算法计算下列各题。
(1)497+56-297 (2)623-86+177例5 用简便方法计算下面各题。
(1)538+(462-397)(2)767-(467-289)(3)429+654-354 (4)612-493+293小结:加减法中的巧算方法,一般有:1、运用定律和性质。
2、借数凑整。
3、拆小补大。
4、找基准数。
5、数列求和。
加减法中常用的运算定律和性质:1、a+b=b+a2、(a+b)+c=a+(b+c)3、a-b-c=a-(b+c)4、a-(b+c)=a-b-c5、a+b-c=a-c+b6、a+(b-c)=a+b-c7、a-(b-c)=a-b+c=a+c-b【课后作业】一、对应训练1、用简便方法计算下列各题(1)625+187+375 (2)542+97+2032、用简便方法计算下列各题。
四年级奥数第一讲_速算与巧算含答案
四年级奥数第⼀讲_速算与巧算含答案第⼀讲速算与巧算⼀、知识点:1. 要认真观察算式中数的特点,算式中运算符号的特点。
2. 掌握基本的运算定律:乘法交换律、乘法结合律、乘法分配律。
3. 掌握速算与巧算的⽅法:如等差数列求知、凑整、拆数等等。
⼆、典例剖析:例(1) 19199199919999199999++++分析:运⽤凑整法来解⼗分⽅便,也不容易出错误。
解:原式()()()() =(201)+2001+20001+200001+2000001 -----=20+200+2000+20000+2000005 =2222205 =222215--练⼀练:898998999899998999998+++++=例(2)10099989796321+-+-++-+分析:暂不看头尾两个数,就会发现中间都是先加后减,并且加数与减数相差1,所以就算这题可以先把中间部分分组凑成若⼲个1,再与其余部分进⾏计算。
解:原式100(9998)(9796)(32)1=+-+-++-+100491=++150=练⼀练:989796959493929190894321+--++--++---++例(3) 1111111111?分析:111,1111121,11111112321?=?=?= 解:1111111111123454321?=练⼀练:2222222222?可以探索⼀下11×11,11×12,…11×19,11×21…11×29…例(4) 1234314243212413+++分析:数字1、2、3、4,在个位、⼗位、百位、千位上均各出现⼀次。
解:原式1111222233334444=+++ 1111(1234)=?+++ 111110=? 11110=练⼀练:5678967895789568956795678++++例(5) 339340341342343344345++++++分析:这七个数均差1,且个数为7个,所以中间数就是七个数的中位数。
速算与巧算一(四年级)
速算与巧算一(凑、拆、换、找基准数)996+548 9898+203 567+558+562+555+563 4996+3993+2992+1991+98 876+(321-176)1980-245-155 61352-6734+2734 1800-90-176-10-24 987-178-222-390 1-2+3-4+5-6+7-8+….+99-100+1011+2+3+4+5+…+100 123+234+345+456+567+678+789(1+11+21+31+41)+(9+19+29+39+49)1234+2341+3412+41231+2-3+4+5-6+7+8+9+…+601+602-603+604+605-606速算与巧算二465×2×125×25×5×4×8 1200÷2553×54+54×16+69×25+21×69 1999+999×999(702-186-414)÷3 7227÷73 1999×125×16885×33+85×15+52×85 4004×25 25÷4+75÷4 304×312÷198÷312×198÷304 303×540-54×30369×123-123×9-360×23 654321×909090+654321×90909 99999×2222+33333×3334简单的数列问题数列和=(首项+末项)×项数÷2 项数=(末项-首项)÷公差+1 末项=首项+公差×(项数-1)1+2+3+…+50 101+102+103+…+198+199 40+41+42+…+80 1+3+5+7+…+49 10+11+12+13+…+98+99 5+6+7+8+…+96+97 1+2+3+…+49+50+49+…+3+2+1 3000-1-2-3-…-57-58在等差数列2,5,8,11,…中,第108个数是多少?1,5,9,13,17,21,…中,2921是它的第几项?新定义运算a〇b=5×a×b-(a+b)。
四年级奥数 速算与巧算(1)
第1讲速算与巧算(一)【例1】计算9+99+999+9999+99999思路点拨:凑整(答案:111105)【例2】计算199999+19999+1999+199+19思路点拨:凑整(答案:222215)【例3】计算(1+3+5+...+1989)-(2+4+6+ (1988)思路点拨:配对、打包(答案:995)【例4】计算389+387+383+385+384+386+388思路点拨:基准数(答案:2702)【例5】计算(4942+4943+4938+4939+4941+4943)÷6思路点拨:基准数(答案:4941)【例6】计算54+99×99+45思路点拨:观察数的特征(答案:9900)【例7】计算9999×2222+3333×3334思路点拨:等积变形(答案:33330000)【例8】计算1999+999×999思路点拨:多9数的特征(答案:1000000)思路点拨:多9数的特征(答案:)巩固练习1:1.计算899998+89998+8998+898+88(答案:999980)2.计算799999+79999+7999+799+79(答案:888875)3.计算(1988+1986+1984+…+6+4+2)-(1+3+5+…+1983+1985+1987)(答案:994)4.计算1-2+3-4+5-6+…+1991-1992+1993(答案:997)5.时钟1点钟敲1下,2点钟敲2下,3点钟敲3下,依次类推。
从1点到12点这12个小时内时钟共敲了多少下?(答案:78)6.求出从1→25的全体自然数之和。
(答案:325)7.计算1000+999-998-997+996+995-994-993+…+108+107-106-105+104+103-102-101(答案:900)8.计算92+94+89+93+95+88+94+96+87(答案:828)9.计算(125×99+125)×16(答案:200000)10.计算3×999+3+99×8+8+2×9+2+9(答案:3829)11.计算999999×78053(答案:78052921947)12.两个10位数1111111111和9999999999的乘积中,有几个数字是奇数?(答案:11111111108888888889)13.已知被乘数是888…8,乘数是999…9,它们的积是多少?(答案:888…87111…12)。
小学四年级奥数-快速计算与巧算
小学四年级奥数-快速计算与巧算
本文将为大家介绍快速计算和巧算的方法,帮助孩子们更轻松地研究奥数。
1. 快速计算
(1)乘法口诀法
教孩子们背乘法口诀表是一种简单有效的方法。
而且,掌握了乘法口诀,孩子可以快速计算出乘积,非常实用。
(2)近似数法
孩子们学会了近似数法就可以快速计算整数数值的乘除法,它是有一定逼近意义的计算方法,准确率不高,但速度快。
2. 巧算
巧算是学奥数的一种特色,它是要求我们通过多种解题方法、不同的思路、巧妙的分析和推理,达到运算目的。
(1)巧用交换律和结合律
交换律和结合律是孩子们研究算数时已经学过的概念,但它们在巧算中有着非常重要的应用。
(2)数位分解法
巧妙地进行数位分解,可以更容易地解决问题。
例如,对于一个大的数字,可以拆分成两个适当的数字,这样既方便计算,也能够减少出错的概率。
总之,快速计算和巧算是小学奥数中必不可少的方法。
学好快速计算和巧算,不仅可以提高孩子们的计算速度和准确率,也可以锻炼孩子们的逻辑思维能力和分析能力。
四年级上奥数第13讲 速算与巧算(一)
四秋第13讲 速算与巧算(一)一、教学目标速算与巧算是小学数学竞赛永恒的话题,每个杯赛都会有1-2道题目考察学生的运算能力,主要集中在整数的巧算,极少涉及小数。
掌握速算与巧算的技巧,往往能够在极短的时间内解决运算问题。
巧算的方法主要有:提取公因式、凑整、拆分、分组、换元,同学们需根据具体情况具体分析,选择合适的方法。
二、例题精选加减凑整:【例1】 计算:1、699999+69999+6999+699+692、1000-91-1-92-2-93-3-94-4-95-5-96-6-97-7-98-8-99-9【巩固1】计算:1、199+298+397+496+595+202、987654-151-269-149-31+346【例2】 计算:10020092000920000920009++++L L 14243个【巩固2】计算:98+998+9998+......+99 (98)乘除凑整:【例3】 计算:(1)125428525⨯⨯⨯⨯⨯ (2)2100425÷÷10个9【巩固3】计算:(1)125258÷÷⨯ (2)456⨯⨯÷⨯⨯36825()乘法分配律:【例4】 计算:(1)2748+5227⨯⨯ (2)329+2999⨯ (3)10199⨯【巩固4】计算:(1)3426+2666⨯⨯ (2)13250+25870⨯⨯ (3)9835⨯重叠数:【例5】 计算:123123123321321321321123⨯-⨯位值原理:【例6】 用7、8、9可以组成6个各位数字不相同的三位数,那么这6个数的和是多少?三、回家作业【作业1】计算:458+356+289+244-58+711【作业2】计算:11+12+13+14+21+22+23+24+31+32+33+34++91+92+93+94L【作业3】计算:197+1997+19997+......+199 (97)【作业4】计算:67200254335467_______⨯+⨯+⨯=【作业5】计算:82198219821919818119811981191983⨯-⨯10个9。
小学四年级奥数第20讲 速算与巧算(一)后附答案
第20讲速算与巧算(一)一、知识要点速算与巧算是计算中的一个重要组成部分,掌握一些速算与巧算的方法,有助于提高我们的计算能力和思维能力。
这一讲我们学习加、减法的巧算方法,这些方法主要根据加、减法的运算定律和运算性质,通过对算式适当变形从而使计算简便。
在巧算方法里,蕴含着一种重要的解决问题的策略。
转化问题法即把所给的算式,根据运算定律和运算性质,或改变它的运算顺序,或减整从而变成一个易于算出结果的算式。
乘、除法的巧算方法主要是利用乘、除法的运算定律和运算性质以及积、商的变化规律,通过对算式适当变形,将其中的数转化成整十、整百、整千…的数,或者使这道题计算中的一些数变得易于口算,从而使计算简便。
二、精讲精练【例题1】计算9+99+999+9999练习1:计算(1)99999+9999+999+99+9 (2)9+98+996+9997(3)19999+2998+396+497 (4)198+297+396+495【例题2】计算489+487+483+485+484+486+488练习2:计算(1)50+52+53+54+51 (2)262+266+270+268+264 (3)89+94+92+95+93+94+88+96+87 (4)381+378+382+383+379【例题3】计算下面各题。
(1)632-156-232 (2)128+186+72-86练习3:计算下面各题(1)1208-569-208 (2)283+69-183(3)132-85+68 (4)2318+625-1318+375【例题4】计算下面各题。
(1)248+(152-127)(2)324-(124-97)(3) 283+(358-183)练习4:计算下面各题(1)348+(252-166)(2)629+(320-129)(3)462-(262-129) (4) 662-(315-238)【例题5】计算下面各题。
(1)286+879-679 (2)812-593+193练习5:计算下面各题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算下面各题 1,1208-569-208 2,283+69-183 3,132-85+68 4,2318+625-1318+375
1. 248+(152-127) 2. 324-(124-97) 3. 283+(358-183)
在计算有括号的加减混合运算时,有时为 了使计算简便可以去括号,如果括号前面 是“+”号,去括号时,括号内的符号不变; 如果括号前面是“-”号,去括号时,括 号内的加号就要变成减号,减号就要变成 加号。
(2)812-593+193
分析与解答:
在计算没有括号的加减法混合运算式题时, 有时可以根据题目的特点,采用添括号的 方法使计算简便,与前面去括号的方法类 似,我们可以把这种方法概括为:
括号前面是加号,添上括号不变号; 括号前面是减号,添上括号要变号。
(1)286+879-679 =286+(879-679) =286+200 =868 (2)812-593+193 =812-(593-193) =812-400 =412
我们可以把上面的计算方法概括为:括号 前面是加号,去掉括号不变号;括 号前面是减号,去掉括号要变号。
1.248+(152-127) 2 . 324-(124-97)
=248+152-127
=324-124+97
=400-127
=200+97
=273
=297
3. 283+(358-183) =283+358-183 =283-183+358 =100+358=458
认真观察每个加数,发现 它们都和整数490接近, 所以选490为基准数。
489+487+483+485+484+486+488 =490×7-1-3-7-5-6-4-2 =3430-28 =3402
想一想: 如果选480为基准数,可以怎样计算?
1,50+52+53+54+51 2,262+266+270+268+264 3,89+94+92+95+93+94+88+96+87 4,381+378+382+383+379 5,1032+1028+1033+1029+1031+1030 6,2451+2452+2446+2453
计算下面各题
1,348+(252-166) 2,629+(320-129) 3. 462-(262-129) 4. 662-(315-238) 5,5623-(623-289)+452-(352-211) 6,736+678+2386-(336+278)-186
(1)286+879-679
分析与解答:
在一个没有括号的算式中,如 果只有第一级运算,计算时可 以根据运算定律和性质调换加 数或减数的位置。
(1)632-156-232 =632-232-156 =400-156 =244
(2)128+186+72-86 =128+72+186-86 =(128+72)+(186-86) =200+100 =300
计算下面各题。
1,368+1859-859 2,582+393-293 3,632-385+285 4,2756-2748+1748+244 5,612-375+275+(388+286) 6,756+1478+346-(巧算(一)
专题简析:
速算与巧算是计算中的一个重要组成部分, 掌握一些速算与巧算的方法,有助于提高我 们的计算能力和思维能力。这一周我们学习 加、减法的巧算方法,这些方法主要根据加、 减法的运算定律和运算性质,通过对算式适 当变形从而使计算简便。
在巧算方法里,蕴含着一种重要的解决问题 的策略。转化问题法即把所给的算式,根据 运算定律和运算性质,或改变它的运算顺序, 或减整从而变成一个易于算出结果的算式。
=11106
1,计算99999+9999+999+99+9 2,计算9+98+996+9997 3,计算1999+2998+396+497 4,计算198+297+396+495 5,计算1998+2997+4995+5994 6,计算19998+39996+49995+69996
分析与解答:
分析与解答:
这四个加数分别接近10、100、 1000、10000。在计算这类题目时, 常使用减整法,例如将99转化为 100-1。这是小学数学计算中常用 的一种技巧。
9+99+999+9999 =(10-1)+(100-1)+ (1000-1)+(10000-1) =10+100+1000+10000-4