开发评估板使用说明

合集下载

LM5020评估板用户指南说明书

LM5020评估板用户指南说明书

User's GuideSNVA082B–March2004–Revised May2013AN-1314LM5020Evaluation Board1IntroductionThe LM5020evaluation board is designed to provide the design engineer with a fully functional non-isolated flyback power converter to evaluate the LM5020controller.The performance of the evaluation board is as follows:•Input range:30V to75V(100V peak)•Output voltage:3.3V•Output current:0.2to4.5A•Measured efficiency:85%at1.5A,83%at4.5A•Board size:1.25×2.5×0.5inches•Load Regulation:1.5%•Line Regulation:0.1%•Line UVLO,Current LimitThe printed circuit board consists of2layers of2ounce copper on FR4material with a total thickness of0.050inches.Soldermask has been omitted from some areas to facilitate cooling.The unit is designed forcontinuous operation at rated load at<40°C with normal convection cooling.2Theory of OperationThe flyback converter is an inductive based converter in which inductive energy is stored by applying a voltage across an inductor in a similar manner to that of a boost converter.Here the similarity ends.Asecond coupled winding of the inductor transfers the energy to a secondary side rectifier after the voltage has been removed from the first winding.This allows the converter input and output grounds to beconfigured either isolated or non-isolated.There is also a voltage/current ratio change possible by altering the winding ratio between the first winding and the second winding.A semi-regulated auxiliary winding can also be provided.The flyback transformer is actually a coupled inductor with multiple windings wound on a single core.For simplification,we will refer to the first,driven winding,as the primary and the main output winding as the secondary winding of the flyback transformer.The transformer’s primary inductance is typically made as large as is practical.However,the airgapnecessary to store the cycle energy lowers the obtainable inductance.The higher the primary inductance, the less input ripple current will be generated and the less input filtering will be required.As shown,the LM5020directly drives a MOSFET switch to apply voltage across the primary.When the switch turns off,the secondary applies a forward current to the output rectifier and charges the outputcapacitor.In applications where the input voltage is considerably higher than the output voltage,the turns ratio between primary and secondary will reflect the input/output voltage ratio and the duty cycle.The LM5020is a full-featured controller providing an internal start-up regulator,soft start,over-current and under-voltage lockout.All trademarks are the property of their respective owners.1 SNVA082B–March2004–Revised May2013AN-1314LM5020Evaluation Board Submit Documentation FeedbackCopyright©2004–2013,Texas Instruments IncorporatedPowering and Loading Considerations Figure1.Simplified Flyback Converter3Powering and Loading ConsiderationsWhen applying power to the LM5020evaluation board certain precautions should be followed.TheLM5020evaluation board is quite forgiving of load and input power variations.The possibility of shipping damage or infant failure is always a concern at first power-up.4Proper ConnectionsBe sure to choose the correct wire size when attaching the source supply and the load.Monitor thecurrent into and out of the UUT.Monitor the voltages in and out directly at the terminals of the UUT.The voltage drop across the connecting wires will yield inaccurate measurements.For accurate efficiencymeasurements,these precautions are especially important.5Source PowerAt low input line voltage(30V)the input current will be approximately0.63A,while at high input linevoltage the input current will be approximately0.23.Therefore to fully test the LM5020evaluation board a DC power supply capable of at least75V and1A is required.The power supply must have adjustments for both voltage and current.An accurate readout of output current is desirable since the current is not subject to loss in the cables as voltage is.The power supply and cabling must present a low impedance to the UUT.Insufficient cabling or a high impedance power supply will cause droop during power supply application with the UUT inrush current.If large enough,this droop will cause a chattering condition upon power up.This chattering condition is an interaction with the UUT undervoltage lockout,the cabling impedance and the inrush current.6LoadingAn appropriate electronic load specified for operation down to2.0V is desirable.The maximum loadcurrent is specified as4.5A.Minimum load is specified at5%or0.23A.The resistance of a maximum load is0.73Ω(including cables).The resistance of a minimum load is14.4Ω.2AN-1314LM5020Evaluation Board SNVA082B–March2004–Revised May2013Submit Documentation FeedbackCopyright©2004–2013,Texas Instruments Incorporated Powering Up7Powering UpUsing the shutdown feature provided on the UUT will allow powering up the source supply initially with a low current level.It is suggested that the load be kept reasonably low during the first power up.Set the current limit of the source supply to provide about 1½times the wattage of the load.As you remove the connection from the shutdown pin to ground,immediately check for 3.3volts at the output.If more than a couple of seconds pass without seeing an output voltage,remove input power.A quick efficiency check is the best way to confirm that the UUT is operating properly.If something is amiss you can be reasonably sure that it will affect the efficiency adversely.Few parameters can beincorrect in a switching power supply without creating additional losses and potentially damaging heat.An efficiency above 80%is expected.After the unit is verified operationally,it can be powered up without use of the shutdown pin.8Typical Evaluation SetupFigure 2.Typical Evaluation Setup9Performance Characteristics 9.1Turn-on WaveformsWhen applying power to the LM5020evaluation board a certain sequence of events must occur.The soft-start feature allows for a minimal output voltage for a short time until the feedback loop can stabilize without overshoot.Figure 3,Figure 4,and Figure 5show typical turn-on waveforms at no load,5%load,and at full load.Input voltage,output voltage and output current are shown.Figure 6shows the initial ramp-up of the Vcc pin to 7.7volts through the internal regulator.The auxiliary winding starts to supply a higher voltage as the output voltage rises.The resulting second ramp is shown following the soft-start delay.This sequence is nearly identical for all loads and input voltages.Trace 1:Input Voltage,at 30VDC.Volts/div =20.0V Trace 2:Trace 1:Input Voltage,at 30VDC.Volts/div =20.0V Trace 2:Output Voltage,no load.Volts/div =2.0V Trace 3:Output Output Voltage,at 5%load.Volts/div =2.0V Trace 3:Output Current,no load.Amps/div =100mA Horizontal Resolution =Current,at 5%load.Amps/div =100mA Horizontal 1.0ms/div Resolution =1.0ms/divFigure 3.Typical Turn-on Waveforms at No LoadFigure 4.Typical Turn-on Waveforms at 5%Load3SNVA082B–March 2004–Revised May 2013AN-1314LM5020Evaluation BoardSubmit Documentation FeedbackCopyright ©2004–2013,Texas Instruments IncorporatedPerformance Characteristics Trace 1:Input Voltage,at 30VDC.Volts/div =20.0V Trace 2:Trace 1:VCC pin with VIN =30VDC,Load =4.5A Volts/div Output Voltage,at full load.Volts/div =2.0V Trace 3:Output =5.0V Trace 2:VIN approaching 30VDC Volts/div =20.0V Current,at full load.Amps/div =2.0A Horizontal Resolution Horizontal Resolution =2.0ms/div=1.0ms/divFigure 5.Typical Turn-on Waveforms at Full LoadFigure 6.Initial Ramp-up of the Vcc Pin to 7.7VThrough the Internal Regulator9.2Load Step ResponseFigure 7shows the load step response at Vin =30VDC for an instantaneous load change from 5%to full load.The input voltage,output voltage and output current are shown.9.3Ripple Voltage and Ripple CurrentFigure 8shows the output ripple voltage,the output ripple current and the input ripple current relative to the LM5020gate drive.Trace 1:Input Voltage,at 30VDC Volts/div =20.0V Trace 2:Trace 1:Q1gate drive at Vin =48VDC Volts/div =20.0V Output Voltage,at 3.3VDC Volts/div =2.0V Trace 3:Load Trace 2:Output ripple voltage Volts/div =100mV Trace 3:changing from 0.23A to 4.5A instantaneously Amps/div =Output ripple current Amps/div =20.0mA Trace 4:Input 2.0A Horizontal Resolution =1.0ms/divripple current Amps/div =100mA Horizontal Resolution =2.0µs/divFigure 7.Load Step Response at Vin =30VDC for an Figure 8.Output Ripple Voltage,Output RippleInstantaneous Load Change from 5%to Full Load Current,and Input Ripple Current4AN-1314LM5020Evaluation BoardSNVA082B–March 2004–Revised May 2013Submit Documentation FeedbackCopyright ©2004–2013,Texas Instruments Incorporated Performance Characteristics 9.4Transformer WaveformsFigure9,Figure10,and Figure11show typical waveforms at the junction of Q1MOSFET and thetransformer primary winding.Also shown are typical waveforms at the junction of the transformersecondary and the output rectifier,D3.Figure9reflects an input voltage of30VDC and a load of4.5A.Figure10reflects an input voltage of50VDC with the same load.Figure11reflects an input voltage of 75VDC,also at full load.Trace1:Drain of Q1at Vin=30VDC;Volts/div=50.0VTrace2:Anode of D3;Volts/div=10.0VHorizontal Resolution=0.5µs/divFigure9.Typical WaveformsTrace1:Drain of Q1at Vin=50VDC;Volts/div=50.0VTrace2:Anode of D3;Volts/div=10.0VHorizontal Resolution=0.5µs/divFigure10.Typical WaveformsTrace1:Drain of Q1at Vin=75VDC;Volts/div=50.0VTrace2:Anode of D3;Volts/div=10.0VHorizontal Resolution=0.5µs/divFigure11.Typical Waveforms5 SNVA082B–March2004–Revised May2013AN-1314LM5020Evaluation Board Submit Documentation FeedbackCopyright©2004–2013,Texas Instruments IncorporatedBill of Materials 10Bill of MaterialsThe Bill of Materials is listed in Table1and includes the manufacturer and part number.Table1.Bill of MaterialsDesignator Description Manufacturer Part Number C1 2.2µF,100V,CER,X7R,1812TDK C4532X7R2A225MC2 2.2µF,100V,CER,X7R,1812TDK C4532X7R2A225MC30.01µF,50V,CER,X7R,0805TDK C2012X7R1H103KC40.1µF,100V,CER,X7R,1206TDK C3216X7R2A104KC50.01µF,50V,CER,X7R,0805TDK C2012X7R1H103KC6220pF,50V,CER,COG,0805TDK C2012COG1H221JC73300pF,50V,CER,COG,0805TDK C2012COG1H332KC8100pF,50V,CER,COG,0805TDK C2012COG1H101JC90.1µF,50V,CER,X7R,0805TDK C2012X7R1H104KC10 4.7µF,16V,CER,X7R,1206TDK C3216X7R1C475KC111000pF,50V,CER,COG,0805TDK C2012COG1H102JC12470pF,50V,CER,COG,0805TDK C2012COG1H471JC13100µF,4V,CER,X7S,1812TDK C4532X7S0G107MC14100µF,4V,CER,X7S,1812TDK C4532X7S0G107MC15270µF,4V,ALUM ORG,3018PKG KEMET A700X277M0004ATD1DUAL,SIGNAL,COM CATH,SOT-23CENTRAL SEMICONDUCTOR CMPD2838E-NSAD2DUAL,SIGNAL,COM CATH,SOT-23CENTRAL SEMICONDUCTOR CMPD2838E-NSAD3SCHOTTKY RECT,8A,35V,D2PAK ON SEMICONDUCTOR MBRD835LJ1TERMINAL BLOCK,SCREW,2POS PHOENIX CONTACT MKDS½-3.81J2TERMINAL BLOCK,SCREW,2POS PHOENIX CONTACT MKDS½-3.81Q1MOSFET,N-CH,150V,85mΩ,PWR SO8VISHAY/SILICONIX Si7898DPR110.0Ω,1%,THICK FILM,1206VISHAY CRCW120610R0JR261.9K,1%,THICK FILM,1206VISHAY CRCW12066192FR3 2.87K,1%,THICK FILM,0805VISHAY CRCW08052871FR4 1.00K,1%,THICK FILM,0805VISHAY CRCW08051001FR515.0K,1%,THICK FILM,0805VISHAY CRCW08051502FR612.4K,1%,THICK FILM,0805VISHAY CRCW08051242FR7100Ω,1%,THICK FILM,0805VISHAY CRCW08051000FR80.47Ω,1%,THICK FILM,1206VISHAY CRCW12060R47FR90.47Ω,1%,THICK FILM,1206VISHAY CRCW12060R47FR1010.0Ω,1%,1W,THICK FILM,2512VISHAY CRCW251210R0JR11 2.43K,1%,THICK FILM,0805VISHAY CRCW08052431FR12 1.47K,1%,THICK FILM,0805VISHAY CRCW08051471FR1320.0Ω,1%,THICK FILM,0805VISHAY CRCW080520R0FSD TERMINAL,SMALL TEST POINT KEYSTONE5002SYNC TERMINAL,SMALL TEST POINT KEYSTONE5002T1TRANSFORMER,FLYBACK,EFD20COILCRAFT B0695-AOR T1TRANSFORMER,FLYBACK,EFD20PULSE PA0751U1CONTROLLER,SINGLE OUT,PWM,VSSOP-10TEXAS INSTRUMENTS LM5020Z1ZENER,30V,SMB PKG.ON SEMICONDUCTOR1SMB5936B6AN-1314LM5020Evaluation Board SNVA082B–March2004–Revised May2013Submit Documentation FeedbackCopyright©2004–2013,Texas Instruments Incorporated PCB Layouts 11PCB LayoutsThe layers of the printed circuit board are shown in top down order.View is from the top down.Scale is approximately X2.0.The printed circuit board consists of2layers of2ounce copper on FR4material witha total thickness of0.050inches.7 SNVA082B–March2004–Revised May2013AN-1314LM5020Evaluation Board Submit Documentation FeedbackCopyright©2004–2013,Texas Instruments IncorporatedPCB Layouts 8AN-1314LM5020Evaluation Board SNVA082B–March2004–Revised May2013Submit Documentation FeedbackCopyright©2004–2013,Texas Instruments Incorporated PCB Layouts9 SNVA082B–March2004–Revised May2013AN-1314LM5020Evaluation Board Submit Documentation FeedbackCopyright©2004–2013,Texas Instruments IncorporatedIMPORTANT NOTICETexas Instruments Incorporated and its subsidiaries(TI)reserve the right to make corrections,enhancements,improvements and other changes to its semiconductor products and services per JESD46,latest issue,and to discontinue any product or service per JESD48,latest issue.Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.All semiconductor products(also referred to herein as“components”)are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.TI warrants performance of its components to the specifications applicable at the time of sale,in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products.Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty.Except where mandated by applicable law,testing of all parameters of each component is not necessarily performed.TI assumes no liability for applications assistance or the design of Buyers’products.Buyers are responsible for their products and applications using TI components.To minimize the risks associated with Buyers’products and applications,Buyers should provide adequate design and operating safeguards.TI does not warrant or represent that any license,either express or implied,is granted under any patent right,copyright,mask work right,or other intellectual property right relating to any combination,machine,or process in which TI components or services are rmation published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement e of such information may require a license from a third party under the patents or other intellectual property of the third party,or a license from TI under the patents or other intellectual property of TI.Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties,conditions,limitations,and notices.TI is not responsible or liable for such altered rmation of third parties may be subject to additional restrictions.Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.Buyer acknowledges and agrees that it is solely responsible for compliance with all legal,regulatory and safety-related requirements concerning its products,and any use of TI components in its applications,notwithstanding any applications-related information or support that may be provided by TI.Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures,monitor failures and their consequences,lessen the likelihood of failures that might cause harm and take appropriate remedial actions.Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.In some cases,TI components may be promoted specifically to facilitate safety-related applications.With such components,TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements.Nonetheless,such components are subject to these terms.No TI components are authorized for use in FDA Class III(or similar life-critical medical equipment)unless authorized officers of the parties have executed a special agreement specifically governing such use.Only those TI components which TI has specifically designated as military grade or“enhanced plastic”are designed and intended for use in military/aerospace applications or environments.Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk,and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.TI has specifically designated certain components as meeting ISO/TS16949requirements,mainly for automotive use.In any case of use of non-designated products,TI will not be responsible for any failure to meet ISO/TS16949.Products ApplicationsAudio /audio Automotive and Transportation /automotiveAmplifiers Communications and Telecom /communicationsData Converters Computers and Peripherals /computersDLP®Products Consumer Electronics /consumer-appsDSP Energy and Lighting /energyClocks and Timers /clocks Industrial /industrialInterface Medical /medicalLogic Security /securityPower Mgmt Space,Avionics and Defense /space-avionics-defense Microcontrollers Video and Imaging /videoRFID OMAP Applications Processors /omap TI E2E Community Wireless Connectivity /wirelessconnectivityMailing Address:Texas Instruments,Post Office Box655303,Dallas,Texas75265Copyright©2013,Texas Instruments Incorporated。

MB9054X 评估板用户手册

MB9054X 评估板用户手册

富士通微型电子亚太有限公司FMALMCU-UG-20030001-10用户手册F²MC-16LX FAMILYMB90F54X评估板用户手册版本历史日期 版本 更改内容/备注 更改人2003年5月15日 1.0 1.0 版完成 David目 录版本历史目录1 总论 (1)1.1 概况 (1)1.2 简介 (1)2 板上功能 (2)3 评估板支持的单片机 (2)4 评估板的配置 (2)4.1 基本配置 (2)4.2 CAN控制器配置 (2)4.3 A/D功能的使用配置 (3)5 用Accemic MDE调试评估板 (3)6 接口 (4)6.1电源接口(X1) (4)6.2 引脚排针(J1, J2, J3, J4) (4)6.3 UART通用异步口 (X2, X3) (4)6.4 CAN 接口 (X4, X5) (4)7 物品清单 (5)8 相关网址及联系方式 (6)附录:A. PCB丝印图 (7)B. 电路原理图............................................................ (8)1 总论1.1 概况本手册概括介绍了MB90F54X 评估板。

本板可以用来评估富士通的16LX系列单片机中的MB90F540、MB90F545系列, MB90F443和MB90F598。

1.2 简介MB90F54X 评估板是为了支持开发人员进行低成本和快速开发而设计的。

其特性如下:• 支持Accemic MDE调试环境。

Accemic MDE这是一个低成本的并简单易用的硬件调试环境,由富士通的第三方公司Accemic开发,支持富士通的大多数16位和部分32位单片机。

• 内部集成的CAN控制器。

CAN是一个串行、异步、多主通讯协议,在汽车和工业控制中被广泛应用于电子控制单元之间的通讯。

• 支持Flash的在线烧写。

不需烧写器,可方便进行软件在线升级。

• 支持Flash加密。

凌拓MAX1464EVKIT评估板使用手册说明书

凌拓MAX1464EVKIT评估板使用手册说明书

General DescriptionThe MAX1464 evaluation kit (EV kit) is designed to evaluate the MAX1464 high-performance, low-power, low-noise multichannel sensor signal processor. The EV kit includes: an evaluation PCB, the EV board that contains a MAX1464 signal conditioner with a typical application circuit, and potentiometers that act as sensor inputs to the MAX1464; an interface PCB, KEY, which acts as a voltage level translator between the EV kit and the com-puter; a parallel-port extension cable; plus, supporting software, program examples,and related documenta-tion and application notes.The DB25 pin connector allows a PC’s parallel port to provide the interface. Two Windows ®-based software (hardware debugger and control program) provide a friendly graphics user interface (GUI) to utilize the fea-tures of the MAX1464, as well as to perform sensor compensation of one device. The Hardware Debugger program includes multiple tabs for accessing relevant registers and ports, writing programs to the on-chip flash memory, downloading flash memory contents into a file,etc. Use the Hardware Debugger program to learn the MAX1464 functions and see the significance of individ-ual registers and ports. The Control program includes functional buttons to have the chip perform a series of predefined lower level operations, such as pushing sin-gle buttons to read the ADC. The Control program can be used to perform 2nd-order sensor compensation and calibration.The EV board can be powered by either a fixed +5V supply or by an +8V to +40V supply that is regulated to +5V by a regulator present on the EV kit board before it is applied to the MAX1464 chip. J umper J U1 must be set consistently with the used power supply.Order the MAX1464 EV kit for comprehensive evaluation of the MAX1464 using a PC with an available parallel port.Windows is a registered trademark of Microsoft Corp.Features♦Proven PCB Layout♦Windows 98/NT/2000/XP Compatible♦On-Board Potentiometers Act as Sensor Inputs ♦Spare Area for Simple-Circuit Breadboarding ♦LEDs for Visual Verification ♦+5V or +8V to +40V Possible Supply ♦Included Interconnect Cables ♦Included Additional SamplesEvaluates: MAX1464MAX1464 Evaluation Kit________________________________________________________________Maxim Integrated Products 119-0582; Rev 0; 12/06For pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at1-888-629-4642, or visit Maxim’s website at .Ordering InformationComponent SuppliersMAX1464 EV Kit FilesComponent ListEV Kit Component Listing these component suppliers.E v a l u a t e s : M A X 1464MAX1464 Evaluation Kit 2Component List (continued)Interface Board (KEY) Component ListQuick StartRequired Equipment •MAX1464 EV kit• A fixed +5VDC power supply•Computer running Windows 98/NT/2000/XP with an available parallel port (USB-to-parallel-port convert-ers not supported)•A multimeter•One parallel (printer) cableNote:In the following sections, software-related items are identified by bolding. Text in bold refers to items directly from the EV kit software. Text in bold and underlined refers to items from the Windows 98SE/2000/XP operating system.Procedures Applying Power to the MAX1464 EV Board 1)Verify that all jumpers on the EV kit board are setper the default setting shown in Table 1.2)Connect a fixed +5V power supply to the EV kitboard TB2 +5V terminal.3)The LEDs on the EV kit board start blinking. TheMAX1464 EV kit is shipped with a program, EVTEST1.hex, preloaded in the MAX1464 flash memory. This program alternatively flashes the two LEDs on the EV board.Setting Up for Digital Communication 1)Download the latest MAX1464 software from theMaxim website.2)Start the INSTALL.EXE program and follow theinstructions to install all MAX1464 applications pro-grams and to copy supporting files to your computer.3)Set up the MAX1464 EV kit by connecting the EVboard and the KEY using the 16-pin ribbon cable.Connect the KEY to the PC’s parallel port using a 25-pin straight-through, female-to-male cable.Example of Using the Hardware Debugger 1)Start the Hardware Debugger program from Start |MAX1464 EV kit | Hardware Debugger.2) A window (Figure 1) appears on the monitor.3)Read the text in the window next to the Check CPUstatus on the top row and verify that it reads Running or Halted. Any other reading indicates a hardware and/or setup problem. Fix the problem before continuing to the next step. The next few steps detail loading a new LED double blinking pro-gram to the MAX1464 flash memory and running it.4)Press the Flash Memory tab in the HardwareDebugger window.5)Press Load Buffer from file tab.6)Select … | MAX1464 | examples | cctmr1-64.hexfile to read the .hex file and save it in the temporarybuffer.7)Press Write to device tab to write the cctmr1-64.hexprogram to the flash memory.8)Press Verify device against buffer to verify that theflash memory write operation is successful.9)Execute the LED double-blinking program bypressing on the Run CPU button. The LEDs startblinking. This process verifies that the EV kit con-nections are correct, the EV board jumpers are setcorrectly, and the computer interface is working.Example of Using the Control Program Note:Exit the Hardware Debugger before starting theControl program.This section demonstrates how to start the Controlprogram and make the basic measurement of the inputvoltage.1)Start the Control program from Start | MAX1464EV kit | Control Program.2) A window (Figure 2) appears on the monitor.3)The DUT?button turns green if the hardware setupis correct and communication with the MAX1464 isestablished. A red button indicates a hardwareand/or setup problem. The next few steps detailreading the signal applied on the MAX1464 inputand write to the Data Array, which is the input tothe compensation algorithm.4)Set the value of This Temp Point and This PressPoint to match one of the test conditions displayedin the Data Array.5)Press the Read ADC button to convert the on-chiptemperature sensor output and channel 1 input volt-age and display the results of both conversions inthe Data Array.6)To read other input voltages, adjust VR1 and VR2potentiometers and repeat steps 5 and 6.7)Refer to the MAX1464 Control program manual fora full description of Control program capabilities.Evaluates: MAX1464 MAX1464 Evaluation Kit_______________________________________________________________________________________3E v a l u a t e s : M A X 1464Detailed Software DescriptionTwo independent programs have been provided for the MAX1464 to aid the user in evaluating and designing in the MAX1464 signal conditioner into a product.Hardware DebuggerThe hardware debugger program includes multiple tabs for accessing the relevant registers and ports,writing programs to the on-chip flash memory, down-loading flash memory contents into a file, etc. Use the hardware debugger program to learn the MAX1464functions, registers, and ports.CPU Registers r0..rf, p0..pfIn this window, users can read/write the CPU (module)registers, program counter r0, r1. Users can also read/write the CPU ports p0 through pf when the CPU is halted.ADC ModuleIn this window, users can access the ADC control, ADC configuration, and ADC data registers for all three chan-nels (channel 1, channel 2, and temperature sensor).DOP ModuleIn this window, users can access the DOP control, DOP configuration, and DOP data registers for both output channels and the op amp configuration register.Other ModulesIn this window, users can access registers related to the timer, power control, oscillator, and GPIOs.Flash MemoryThis window can be used for all flash-memory opera-tions, such as writing flash memory to/from a file.Program ListingIn this window, users can view the list file of an assem-bly program. Select the filename from the File pulldown menu.MAX1464 Evaluation Kit 4_______________________________________________________________________________________Figure 1. Hardware Debugger WindowControl Program (MAX1464 Main.exe) The Control program includes functional buttons to have the MAX1464 perform a series of predefined lower level operations, such as reading the ADC, loading a file into flash memory, etc. The Control program can be used to perform a 2nd-order temperature compensation.The main purpose of the Control program is to provide the user with a tool to easily compensate a sensor. The compensation algorithm defined in Application Note 3649, MAX1464 Signal-Conditioner, Sensor Compensation Algorithm, has been implemented. All the user needs to do is to properly set up the EV kit/sensor and the environment condition for the sensor, and press the Read ADC and Characterize DAC buttons at each environment condition to fill the Data Array with valid data. Then by pressing three more buttons, the compen-sation coefficients are created and copied into the MAX1464 flash memory, creating a compensated sensor. Refer to the Control Program User Manual for a detailed description of each function/button and how to perform sensor compensation.Detailed Hardware DescriptionA complete set of hardware is included in the MAX1464EV kit package. A MAX1464 EV board, a MAX1464KEY, a 16-pin ribbon cable, a parallel-port extensioncable, and a few MAX1464 samples are included in theMAX1464 EV kit package. The MAX1464 EV kit board isdesigned to give the user the most flexibility and con-trol over the MAX1464. The user can use a fixed +5V oran +8V to +40V power supply to power up the EV kitboard. All critical pins are easily accessible. Twopotentiometers are provided to emulate a sensor outputand allow positive and negative input signals to theMAX1464, eliminating the need for an actual sensorwhile checking the functionality of the MAX1464. A smallarea with plated-through holes is intended to facilitatebuilding a small application circuit. And, wherever pos-sible, jumpers have been added to offer flexibility for configuring the EV kit board for user applications.Evaluates: MAX1464 MAX1464 Evaluation Kit_______________________________________________________________________________________5 Figure 2. Control Software WindowE v a l u a t e s : M A X 1464MAX1464 Evaluation Kit 6_______________________________________________________________________________________Table 1. EV Board Jumpers ConfigurationNote:Default settings appear in bold.Jumpers SettingEvaluates: MAX1464MAX1464 Evaluation Kit_______________________________________________________________________________________7Figure 3. MAX1464 EV Kit Schematic (Sheet 1 of 2)E v a l u a t e s : M A X 1464MAX1464 Evaluation Kit 8_______________________________________________________________________________________Figure 3. MAX1464 EV Kit Schematic (Sheet 2 of 2)Evaluates: MAX1464MAX1464 Evaluation Kit_______________________________________________________________________________________9Figure 4. MAX1464 EV Kit Component Placement Guide—Component SideE v a l u a t e s : M A X 1464MAX1464 Evaluation Kit 10______________________________________________________________________________________Figure 5. MAX1464 EV Kit PCB Layout—Component SideEvaluates: MAX1464MAX1464 Evaluation Kit______________________________________________________________________________________11Figure 6. MAX1464 EV Kit PCB Layout—Solder SideE v a l u a t e s : M A X 1464MAX1464 Evaluation Kit 12______________________________________________________________________________________Figure 7. MAX1464 Interface Board (KEY) SchematicEvaluates: MAX1464MAX1464 Evaluation Kit______________________________________________________________________________________13Figure 8. MAX1464 Interface Board (KEY) Component Placement Guide—Component SideFigure 9. MAX1464 Interface Board (KEY) Layout—Component SideMaxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.14____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©2006 Maxim Integrated Productsis a registered trademark of Maxim Integrated Products, Inc.E v a l u a t e s : M A X 1464MAX1464 Evaluation Kit Figure 10. MAX1464 Interface Board (KEY) Layout—Solder Side。

PN5190评估板快速起步指南说明书

PN5190评估板快速起步指南说明书

AN12550PNEV5190B 评估板快速起步指南版本 1.6 — 2021年12月9日应用笔记公司公开文件文档信息信息内容关键字PN5190、PNEV5190B、PNEV5190M、PN5190评估板、PN5190客户板、PN5190 GUI、PN5190支援工具、NFC Cockpit摘要该文档介绍了PNEV5190B V1.0(PN5190评估板)及其使用方法。

它描述了NFC Cockpit(PN5190 GUI 版本 5.5.0 或更高版本),其结合基本读取器功能,允许对 PN5190 寄存器和 EEPROM 进行简单的基本访问。

1 修订记录修订记录版本日期说明1.6 20211209 • 简介中错别字订正。

• 简介中更新为“EMVCo 3.1”。

• 章节3.1阐明电路板供应选项。

• 章节3.1中添加 OpenSDA。

• 章节3.5.2中更正电源选项。

• 更正章节 3.3的默认配置。

• 章节3.4更新 LED 狀態信息。

• 章节3.5.3添加建议。

• 章节4.3.1添加有关 OpenSDA 信息。

• 章节 5.2.5添加有關不同 K82 FW 的信息。

1.5 20210423 • 本应用笔记的格式已经重新设计过,以符合恩智浦半导体的新标识指南。

• 第6章节: 更新1.4 20201218 更新软件部分1.3 20200929 更新PN5190 CQS1版本号1.2 20200109 图 6 布局更正1.1 20191217 AN号码更正, 删除错别字1.0 20191128 初版PNEV5190B 评估板快速起步指南2 简介本文档介绍了 PNEV5190B(PN5190 评估板),可轻松评估 PN5190 的特性和功能。

它提供了使用 NFC Cockpit(PN5190 GUI 版本 5.5.0 或更高版本)操作开发板的第一步。

默认天线为 45 mm x 45 mm 天线,天线区域内有一些金属层。

MAXIM MAX17094 评估板 (EV 板) 使用手册 2说明书

MAXIM MAX17094 评估板 (EV 板) 使用手册 2说明书

General DescriptionThe MAX17094 evaluation kit (EV kit) is a fully assem-bled and tested surface-mount PCB that provides the voltages and features required for active-matrix, thin-film transistor (TFT), liquid-crystal displays (LCDs). The EV kit contains a high-performance step-up switching regulator, a 250mA low-dropout (LDO) linear regulator,a high-speed op amp, a digitally adjustable VCOM cali-brator, and seven high-voltage level-shifting buffers for scan-driver applications.The EV kit operates from a DC supply voltage from +1.8V to +5.5V. The step-up switching regulator is con-figured for a +8V output providing at least 300mA from a +2.5V input. The positive charge pump is configured for a +21.5V output providing up to 30mA. The negative charge pump is configured for a -6.5V output providing up to 30mA. The op amp is capable of providing up to ±150mA peak and features a programmable output voltage initially configured for +3.2V. The low-voltage,low-dropout linear regulator can provide at least 250mA. The high-voltage, level-shifting scan driver buffers seven logic inputs and shifts them to a desired level to drive TFT LCD row logic.The MAX17094 EV kit demonstrates low quiescent cur-rent and high efficiency (> 85%) for maximum battery life. Operation at 1.2MHz allows the use of tiny surface-mount components. The MAX17094 thin QFN package (0.8mm max height), with low-profile external compo-nents, allows this circuit to be less than 2mm high.The MAX17094 EV kit provides an on-board I 2C/SMBus™ interface and connects to the computer through the universal serial bus (USB) port. The EV kit includes Windows ®2000/XP ®and Windows Vista ®-compatible software that provides a graphical user interface (GUI) for control of the MAX17094’s programmable features.Featureso +1.8V to +5.5V Input Rangeo Adjustable 450kHz to 1.2MHz Step-Up Switching Frequencyo Output Voltages+8V Output at 300mA (Step-Up Switching Regulator)+21.5V Output at 30mA (Positive Charge Pump)-6.5V Output at 30mA (Negative Charge Pump)+2.5V at 250mA (Linear Regulator)±150mA High-Current Op-Amp Outputo Resistor-Adjustable Switching Regulator and Op-Amp Output Rangeo Digitally Programmable Op-Amp Output Voltage o +30V to -10V High-Voltage Level-Shifting Drivers o > 85% Efficiency (Step-Up Switching Regulator)o On-Board I 2C/SMBus Interface Control through USBo Windows 2000/XP- and Windows Vista (32-Bit)-Compatible Softwareo 2mm Low-Profile Surface-Mount Components o Lead(Pb)-Free and RoHS Compliant o Fully Assembled and TestedEvaluates: MAX17094MAX17094 Evaluation Kit________________________________________________________________Maxim Integrated Products119-4451; Rev 0; 2/09For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,or visit Maxim’s website at .trademarks of Microsoft Corp.Ordering Information+Denotes lead(Pb)-free and RoHS compliant.E v a l u a t e s : M A X 17094MAX17094 Evaluation KitEvaluates: MAX17094MAX17094 Evaluation Kit_______________________________________________________________________________________3µMAX is a registered trademark of Maxim Integrated Products, Inc.E v a l u a t e s : M A X 17094Quick StartRecommended Equipment• 1.8V to 5.5V, 2A DC power supply•User-supplied Windows 2000/XP or Windows Vista PC with a spare USB port •VoltmeterNote: In the following sections, software-related items are identified by bolding. Text in bold refers to items directly from the EV kit software. Text in bold and underlined refers to items from the Windows operating system.ProcedureThe MAX17094 EV kit is fully assembled and tested.F ollow the steps below to verify board operation.Caution: Do not turn on the power supply until all connections are completed.1)Verify that a shunt is installed across jumper JU2.2)Set an external power supply to ≈+3.3V. Connectthe positive terminal of the power supply to the VIN pad. Connect the negative terminal of the power supply to the PGND pads closest to VIN.3)Turn on the power supply and verify that the step-up switching regulator output (MAIN) is +8V.4)Verify that the positive charge-pump supply (VP) isapproximately +24V.5)Verify that the negative charge-pump supply (VN) isapproximately -8.8V.6)Verify that the linear regulator output (VLOGIC) isapproximately 2.5V.7)Visit /evkitsoftware to down-load the latest version of the MAX17094 EV kit soft-ware, MAX17094Rxx.ZIP. Save the EV kit software to a temporary folder and uncompress the ZIP file.8)Install the EV kit software on your computer by run-ning the INSTALL.EXE program inside the tempo-rary folder. The program files are copied and icons are created in the Windows Start | Programs menu.9)Connect the USB cable from the PC to the EV kitboard. A Building Driver Database window pops up in addition to a New Hardware Found message when installing the USB driver for the first time. If you do not see a window that is similar to the onedescribed above after 30 seconds, remove the USB cable from the board and reconnect it.Administrator privileges are required to install the USB device driver on Windows 2000/XP/Vista.10)F ollow the directions of the Add New Hardware Wizard to install the USB device driver. Choose the Search for the best driver for your device option.Specify the location of the device driver to be C:\Program Files\MAX17094(default installation directory) using the Browse button. During device driver installation, Windows may show a warning message indicating that the device driver Maxim uses does not contain a digital signature. This is not an error condition and it is safe to proceed with instal-lation. Refer to the TROUBLESHOOTING_USB.PDF document included with the software for additional information.11)Start the MAX17094 EV kit software by opening its icon in the Start | Programs menu.12)Normal device operation is verified when MAX17094 device connected appears in the status bar on the MAX17094 EV kit main window (Figure 1).13)Verify that the output of the high-speed op amp (VCOM) is approximately +3.2V.MAX17094 Evaluation Kit 4_______________________________________________________________________________________Figure 1. MAX17094 EV Kit Software Main WindowDetailed Description of HardwareThe MAX17094 EV kit contains a high-performance step-up switching regulator, a 250mA LDO, a positive two-stage charge pump, a negative single-stage charge pump, a high-speed op amp, and seven high-voltage level-shifting buffers for scan-driver applica-tions. The EV kit operates from a DC power supply between +1.8V and +5.5V that provides at least 2A.As configured, the step-up switching regulator (VMAIN)generates a +8V output and provides at least 300mA.The step-up switching-regulator output voltage can be adjusted up to +14V with different feedback resistors (see the Output-Voltage Selection section).The GON consists of two positive charge-pump stages to generate approximately +21.5V and provides up to 30mA. The GOF F consists of a single negative charge-pump stage to generate approximately -6.5V and provides up to 30mA. Loading GON and GOF F reduces the available VMAIN current proportionally.The op-amp output (VCOM) is SMBus programmable and is configured for a +2.4V to +4V output-voltage range. VCOM can source or sink peak current up to 150mA. The output-voltage range can be reconfigured to other voltages with voltage-divider resistors R16 and R17. Refer to the Setting the VCOM Adjustment Range section in the MAX17094 IC data sheet for more details.The seven logic-level to high-voltage level-shifting buffers can buffer seven logic inputs (A2–A8) and shift them to a desired level (Y2–Y8) to drive TF T LCD row logic. Each buffer outputs the voltage on the GOFF pin (set through JU1) when its respective input is logic-low.Each buffer (Y2–Y6) outputs the voltage-on GON1 (set through JU3) when its respective input is logic-high.Similarly, Y7 and Y8 output the voltage on GON2 (set through JU4).The seven switches within SW1 are used to select logic levels on A2–A8 for testing purposes. Set each switchopen when driving A2–A8 with external logic. Use jumpers JU14–JU18 to select between capacitive loads on outputs Y2–Y8 and YDCHG for testing purposes.GOFF Power Supply (JU1)The MAX17094 EV kit incorporates jumper JU1 to pro-vide an option to supply the gate-off (GOF F ) supply.GOF F can be supplied either through the on-board negative charge pump (VN) or with an externally applied voltage at the GOF F pad. See Table 1 for jumper JU1 configuration.Enable (JU2)The MAX17094 EV kit incorporates jumper JU2 to enable/disable the IC outputs. When EN is pulled low,the DC-DC converter and op amp are disabled. The high-voltage drivers and LDO will remain active if suffi-cient voltage is available for operation. See Table 2 for jumper JU2 configuration.GON1, GON2 Power Supply (JU3, JU4)The MAX17094 EV kit incorporates jumpers JU3 and JU4 to provide an option to supply the gate-on (GON1,GON2) supplies. GON1 and GON2 can be supplied either through the on-board positive charge pump (VP)or with an externally applied voltage at the respective GON_ pad. See Table 3 for jumpers JU3 and JU4 con-figuration.Evaluates: MAX17094MAX17094 Evaluation Kit_______________________________________________________________________________________5E v a l u a t e s : M A X 17094Level-Shifter Logic-Level Inputs(JU5–JU11)The MAX17094 level-shifter inputs can be supplied either using the on-board logic or from an externally applied signal through configuration of jumpers JU5–JU11. Additionally, when using on-board logic,SW1 controls the logic levels based on its own settings.When SW1 is on, the logic input is high. When SW1 is off, the logic input is pulled low through a 100k Ωpull-down resistor. See Table 4 for jumpers JU5–JU11 con-figuration.Level-Shifter Output Loading (JU14–JU21)The MAX17094 EV kit incorporates jumpers JU14–JU21to provide loading options at the level-shifter outputs,YDCHG and Y2–Y8. See Table 5 for jumpers JU14–JU21configuration.Output-Voltage SelectionThe MAX17094 EV kit’s step-up switching-regulator out-put (VMAIN) is set to +8V by feedback resistors R2 and R3. To generate output voltages other than +8V (up to +14V), select different external voltage-divider resis-tors, R2 and R3. Note that changing the VMAIN voltage setting changes the VN and VP charge-pump output voltages. Refer to the Main Step-Up Regulator and Output-Voltage Selection sections in the MAX17094 IC data sheet for more information.Detailed Description of SoftwareThe MAX17094 device includes a calibrator used for adjusting an LCD’s backplane voltage (VCOM) in TF T LCD displays. The VCOM voltage is adjusted by con-trolling the amount of sink current from a current source connected to the POS terminal of the op amp. This is accomplished by programming the desired setting into the device’s 7-bit internal DAC. The MAX17094 sup-ports four different I 2C slave addresses; configure SW2to select between different addresses. Refer to the MAX17094 IC data sheet for further details.Loading 7-Bit DAC SettingThe DAC setting corresponds to a certain sink-current level, which in turn corresponds to a specific VCOM voltage. With the MAX17094 EV kit software, the device’s 7-bit internal DAC is configured by entering an appropriate DAC setting into the Load DAC edit box.The DAC setting can be set from 0x00 (VCOM MIM ) to 0x7F (VCOM MAX ). The DAC setting is written to the device by pressing the Load DAC button (Figure 1).Reading 7-Bit DACThe MAX17094 7-bit DAC is read by either pressing the Read DAC button or by checking the DAC polling checkbox. When checked, the software continuously reads and displays the DAC’s current setting.Access Control RegisterThe Write To group box is used to select whether volatile (WR) or nonvolatile (IVR) memory is accessed during read and write cycles involving the data register.When the WR/IVR radio button is selected, data on the data register is written to both the WR and IVR. When the WR Only radio button is selected, data on the data register is written to the WR only.Simple SMBus CommandsThere are two methods for communicating with the MAX17094: through the MAX17094 EV kit software main window (F igure 1), or through the interface win-dow available by selecting the Action | Interface Diagnostic Window menu item from the menu bar. The Maxim command module interface window (F igure 2)includes a 2-wire interface tab that allows for execu-tion of the SMBusSendByte(), SMBusReceiveByte(),and SMBusQuick()commands. See Table 6 for details regarding SMBus commands.The Command byte and Data Out combo boxes accept numeric data in binary, decimal, or hexadeci-mal. Hexadecimal numbers should be prefixed by $ or 0x. Binary numbers must be exactly eight digits. See Figure 2 for an illustration of this tool.MAX17094 Evaluation Kit 6_______________________________________________________________________________________Evaluates: MAX17094MAX17094 Evaluation Kit_______________________________________________________________________________________7Figure 2. Command Module Interface WindowTable 6. SMBus CommandsCONTROL SMBus COMMAND FORMATLoad DAC SMBusWriteByte Input the desired 7-bit DAC setting into the Data Out combo box. The 7-bit DAC value should be stored in the lower 7 bits (b6–b0) of the byte; the MSB is ignored.Read DAC SMBusReadByte Receives 8 bits from the device. The lower 7 bits correspond to the current DAC setting and the MSB is ignored.Device searchSMBusQuickSearch for device address shown in the Target Device Address combo box. The MAX17094 device address can be 50, 52, 54, or 56.E v a l u a t e s : M A X 17094MAX17094 Evaluation Kit 8_______________________________________________________________________________________Figure 3a. MAX17094 EV Kit Schematic (Sheet 1 of 3)Evaluates: MAX17094MAX17094 Evaluation Kit_______________________________________________________________________________________9Figure 3b. MAX17094 EV Kit Schematic (Sheet 2 of 3)E v a l u a t e s : M A X 17094MAX17094 Evaluation Kit 10______________________________________________________________________________________Figure 3c. MAX17094 EV Kit Schematic (Sheet 3 of 3)Evaluates: MAX17094MAX17094 Evaluation Kit______________________________________________________________________________________11Figure 4. MAX17094 EV Kit Component Placement Guide—Component SideE v a l u a t e s : M A X 17094MAX17094 Evaluation Kit12______________________________________________________________________________________Figure 5. MAX17094 EV Kit PCB Layout—Component SideMaxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________13©2009 Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products, Inc.Evaluates: MAX17094MAX17094 Evaluation KitFigure 6. MAX17094 EV Kit PCB Layout—Solder Side。

STM32F103ZE手册

STM32F103ZE手册

EM-STM3210E评估板用户手册V1.0深圳市英蓓特信息技术有限公司Embest info & Tech Co., Ltd.地址:深圳市罗湖区太宁路85号罗湖科技大厦509室(518020) Telephone: 86-755-25532557 25638952 25535753 25505451Fax: 86-755-25616057E-mail: sales@ support.realview@ Website: 第一章概述EM-STM3210E是英蓓特公司新推出的一款基于ST意法半导体STM32系列处理器(Cortex-M3内核)的全功能评估板。

功能接口丰富,是一个用于应用开发很好的平台,也是学习者的首选。

配合本公司的调试工具ULINK2一起使用,更是为大家提供了一个良好的开发环境,从而为自己的应用开发节省了时间,提高的效率。

EM-STM3210E评估板主要性能:◆处理器:STM32F103ZE,主频:72MHz◆2MB NOR FLASH◆128KB SRAM◆128MB NAND FLASH◆8M byte SPI Flash◆RTC( 带后备电池)◆启动跳线设置◆两路可选电源:5VDC供电,USB供电◆一个SD存储卡接口◆TFT- LCD屏接口◆一个温度传感器◆一路DAC音频输出◆20Pin JTAG调试接口◆2个三线RS232串行口◆一个USB Device接口◆一个具有控制四个方向和确定功能的摇杆手柄◆四个功能按键:Reset,Wakeup,Temper和User按键◆四个Led灯◆四位八段数码管输出◆一个CAN总线接口,通过DB9接口引出◆一路AD输入◆四个26Pin用户扩展接口第二章EM-STM3210E硬件介绍EM-STM3210E功能模块图如下图所示:2.1接口一览表SPI FLASH输入旋钮五维摇杆按键电源跳线选择SPEAKER2.2跳线一览表2.3电源EM-STM3210E评估板有两种供电方式,通过JP5选择以下其中一种方式供电。

LMP7211多功能评估板使用说明(中文版)

LMP7211多功能评估板使用说明(中文版)

LMP7721多功能评估板使用说明1 引言LMP7721评估板提供了一个平台,用来测试LMP7721放大器的性能和输入偏流。

利用芯片内保护驱动器和一个封装外引脚将放大器的输入与电源和输出引脚相隔离,优化LMP7721放大器获得极低的输入偏流,典型值为3fA。

图1为LMP7721评估板。

图1 LMP7721评估板2评估板的清洗2.1清洗材料和工具(1) 新鲜的异丙醇(“外用酒精”或“IPA”)。

(2) 将酸刷子的刷毛修剪至1cm(将刷毛向手柄内推或剪短刷毛)。

(3) 一次性低皮棉湿巾(小号“低尘擦拭纸”)。

(4) 压缩空气(喷雾喷粉罐或空气枪)。

(5) 热风枪,〜200℃(吹风机通常不够热,但可以使用)。

2.2清洗步骤(1) 按正常的清洗程序清洗电路板以消除焊剂、指纹以及其他主要污染物(水洗)。

(2) 用一双钳子或镊子按住板子,缓慢移动板子到热风枪前面一两分钟,以蒸发掉任何剩余的水分(距离喷嘴处不小于5cm)。

(3) 让板子冷却到室温,用新鲜、干净的异丙醇清洗板子且浸泡数秒钟。

(4) 立即用酸刷擦洗电路板,特别是周围区域以及U1引脚和RS焊盘之间。

像“裸露”区域和保护线路区域等关键区域应该清洁、擦洗彻底。

用小毛巾快速擦拭整个板子和吸收掉大部分的多余酒精。

不要忘了电路板的底部也要擦洗。

(5) 用新鲜的酒精再次冲洗以上区域,用一条新的小毛巾快速擦拭过量的酒精。

然后,立即用压缩空气吹干剩余的酒精,不要用水。

水分会在SMT设备下隐藏。

(注:SMT表面组装技术)(6) 吹完板子后,立即用新鲜的小毛巾擦拭以除去残留的任何酒精残留物。

用新的小毛巾擦拭板子顶部和板子底部。

(7) 重复步骤2,用加热枪以消除剩余的多余酒精。

如果有任何白色残留物,重复步骤2。

如果白点依然存在,所用酒精被水污染。

(8) 在不使用时,存放板子在一个密封的容器中。

可以用干燥剂包裹板子。

如果干燥剂不可用,换两汤匙干生米用无尘纸包裹也可。

3防护装置和保护罩防护装置是分微微安培电流设计中的重要概念。

STM32V100评估板用户手册

STM32V100评估板用户手册

引脚
ST8024 信号 信号描述
对应 STM32 引脚
5V/3V
Smart card 电源选择脚
PD11
I/OUC
MCU 数据输入和输出口
PB10
XTAL1
晶振或外部时钟输入
PB12
OFF
检测 Smart Card 插入,产生中断 PE14
到 MCU
RSTIN
卡复位信号输入
PB11
CMDVCC
PE7
2.12 SD 卡接口
STM32 评估板具有 SD 卡接口,支持 SD 卡的读写。SD 卡和 STM32 接口的连接信号如下:
引脚
S D 卡 接 口 信 信号描述 号
对应 STM32 引脚

CD/DAT3
片选
PE3

CMD
MOSI
PA7

VSS
GND

VDD
+3V3

CLK

VSS

DAT0

DAT1
2.15 模拟输入
BNC 接头
引脚号 1 2 3
功能描述 GND GND GND
引脚号 4 5
功能描述 GND Analog input/PC1
2.16 IrDA
STM32 开发板支持红外接收,STM32 评估板上的 IrDA 接收器连接到的UART3上,可 以通过条线JP5来设置使能或禁止红外接收。
短接
电机电流抽样控制被使能
断开
电机电流抽样控制不被使能
短接 断开
连接Reset和调试口的TRST线 不连接Reset和调试口的TRST线
供电电源选择 USB短接 选择USB供电

AL8863EV1评估板用户指南说明书

AL8863EV1评估板用户指南说明书

General DescriptionThe DIODES™ AL8863 is a step-down DC-DC controller de-signed to drive LEDs with high output current. The device oper-ates at an input supply voltage from 4.5V to 60V. Series connec-tion of the LEDs provides identical LED currents resulting in uni-form brightness and eliminating the need for ballast resistors. The switching frequency range of AL8863 is from 50kHz to 1MHz. The wide operating frequency range allows more flexibility on compo-nent selection, and also with operating up to 1MHz, it allows the use of smaller size external components, hence minimizing the PCB size and driver board.The output current of AL8863 is set via an external resistor con-nected between the VIN and CSN input pins. Dimming is achieved by applying a PWM signal at the DIM input pin. The soft-start time can be adjusted using an external capacitor from the DIM pin to ground.The AL8863 is available in the thermally enhanced SO-8EP pack-age. Applications∙Commercial & Industrial Lighting∙Architecture Lighting∙External LED Drivers and Smart LightingKey Features∙Wide Input Voltage Range: 4.5V to 60V∙Operating Frequency Range: 50kHz to 1MHz∙1000:1 PWM Dimming Resolution at 100Hz∙Single Pin for On/Off and Brightness Control by PWM Sig-nal∙Fault Status Indication for Abnormal Operation∙LED Shorted Protection∙Inherent Open-Circuit LED Protection∙Programmable Thermal Fold-Back Operation Through NTC Pin∙Overtemperature Shutdown∙Thermally Enhanced SO-8EP Package∙Totally Lead-Free & Fully RoHS CompliantAL8863EV1 SpecificationsEVB Physical PictureFigure 1: Top ViewFigure 2: Bottom Vie wConnection InstructionsPower Supply Input: 5~60VDC (VIN, GND);DIM: Multi-function On/Off and brightness control pin, this pin can be used to achieve dimming and for switching the output current off. Leave floating for normal operation;PWM Signal Input: Remove C15 and connect 0Ω for R6, apply PWM signal to DIM (DIM, GND);Analog Signal Inpu t: A low−pass filtered (R6 and C15) be added, apply analog signal to DIM (DIM, GND);LED A: LED A connects to the external LED anode;LED K: LED K connects to the external LED cathode.Evaluation Board SchematicFigure 3: Evaluation Board SchematicEvaluation Board LayoutFigure 4:PCB Board Layout Top ViewFigure 5:PCB Board Layout Bottom ViewQuick Start Guide1. By default, the evaluation board is preset at 3A LED current by R1, R2 and R3.2. Non-dimming operation: Leave DIM pin floating for normal operation.3. Power Supply: Connect the 5~60VDC to VIN & GND pin to supply the system.4. PWM Dimming: Remove C15, apply a PWM signal (Low level <0.3V, High level >2.6V, transition time less than 1μs) to PWM pin todim the LEDs. The recommended PWM signal frequency is from 100Hz to 20 kHz.5. Analog Dimming: Add a low−pass filtered (R6 and C15) DC signal converted from DC source, the DIM pin can be driven between0.3V and 2.6V adjusting over a wide full range.6. Soft-start: Connect a capacitor (C15) to increase soft-start time.Bill of MaterialNote: The component part numbers are correct at the time of publication. Diodes Inc. reserves the right to substitute other parts where nec-essary, without further notification.Functional WaveformsSwitching waveform(Vin=40V, 6LEDs) (Y-Vin, R-SW, G-DIM, B-I L) Start-up waveform(Vin=40V, 6LEDs) (Y-Vin, R-SW, G-DIM, B-I L)Soft Start waveform (Vin=40V, 6LEDs, C15=100nF) (Y-Vin, R-SW, G-DIM, B-I L) PWM Dimming waveform(Vin=40V, 6LEDs) (PWM frequency=1KHz, Duty=80%)(Y-Vin, R-SW, G-DIM, B-I L)Functional WaveformsPWM Dimming waveform(Vin=40V, 6LEDs) (PWM frequency=1KHz, Duty=50%)(Y-Vin, R-SW, G-DIM, B-I L) PWM Dimming waveform(Vin=40V, 6LEDs) (PWM frequency=1KHz, Duty=20%)(Y-Vin, R-SW, G-DIM, B-I L)LED open protection(Vin=40V, 6LEDs) (Y-V FAULT, R-DIM, G- I L, B-SW) LED short protection(Vin=40V, 6LEDs) (Y-Vin, R-SW, G-V out , B-I L)Functional WaveformsLED short protection_1 (Vin=40V, 6LEDs)(Y-VFAULT, R-SW, G- I L, B-V out) LED open protection_FAULT (Vin=40V, 6LEDs)_start up (Y-VFAULT, R-Vdrive, B-V out)LED short protection_FAULT (Vin=40V, 6LEDs)_start up(Y- V FAULT, R-SW, B- V out)Functional Data CurvesEfficiency vs. Input VoltageLED Current vs. Input VoltageE f f i c i e n c y (%)Vin(V)IL E D (m A )Vin(V)PWM Dimming(Vin=40V, 6LEDs)I L E D (m A )PWM Duty(%)CISPR15 EMI PerformanceFigure 6 presents the EMI performance of the AL8863EV1 EVB at 20V input with 6LEDs load. Conducted emissions are measured over a frequency range of 150 kHz to 30 MHz according to the CISPR 15 low-frequency specification. CISPR15 peak and average limit lines are denoted in red. The blue and black spectra are measured using peak and average detection, respectively.Figure 6: CISPR 15 Conducted Emissions Plot, 150 kHz to 30 MHz,VIN = 40 V, IOUT = 3A, 6LEDsThermal TestFigure 7: Top(Vin=40V, 6LEDs, Burn-in time=60min)Figure 8: Bottom(Vin=40V, 6LEDs, Burn-in time=60min)。

CH559 评估板使用说明书

CH559 评估板使用说明书

USB单片机CH559的评估板说明版本:V1.51、硬件部分1.1开发板图1.1.3CH558&9MINIEVT图1.1.1CH559EVT图1.1.2CH559MINIEVT1.2开发板主芯片及功能说明(1)、芯片工作电源选择:芯片电压选择,VCC和+5V短接,VDD33悬空,CH559的工作电压选为5V;VCC 和3V3短接,VDD33和3V3短接,CH559工作电压选为3.3V;(2)、评估板电源输入:通过P1电源适配器插口输入8-15V的电压,如图1.1.1的P1口;通过USB直接输入5V电压,如图1.1.1和图1.1.2的USB口;通过VCC和GND插针直接输入5V或者3.3V电压,图1.1.1和图1.1.2都可以通过VCC和GND供电;(3)、复位:C15默认不焊,若焊接则延长复位时间;(4)、TF卡使用SPI方式进行操作,使用时R1需焊接0Ω电阻;(5)、串行Flash使用SPI0操作,使用时R6需焊接0Ω电阻;(6)、LED指示灯连接P4.0~P4.3,引脚输出低电平点亮相应的LED;(7)、P5.4/P5.5支持iRS485数据收发,使用时R16/R18焊20K电阻,R17接120Ω电阻;(8)、外扩RAM物理连接采用直接地址方式,用法参考例程XBUS.C,使用时需短接J4;2、评估板资料包说明来源:搜索CH559文件名:CH559EVT.ZIP资料包:头文件(C、汇编)评估板原理图PCB图例程2.1CH559.uvproj功能:CH559keil4工程文件,头文件、延时函数、串口0初始化等常用函数定义;2.2ADC文件夹功能:ADC中断(查询)方式手动和自动采集,ADC采样时钟设置,电压比较功能函数定义;2.3CHIP_ID文件夹功能:芯片唯一ID号获取函数定义;2.4DataFlash文件夹功能:DataFlash擦除读写函数定义;2.5Encryption文件夹功能:芯片常用加密方法介绍和说明;2.6GPIO文件夹功能:GPIO设置和GPIO中断使用说明;2.7IAP文件夹功能:CH559用户程序跳转至IAP升级演示和说明文档,提供上位机软件和源码;2.8LED_CTRL文件夹功能:CH559LED控制卡演示,支持U盘更新显示内容和掉电数据不丢失;2.9PWM文件夹功能:PWM1&2初始化,PWM占空比设置函数;2.10SPI0文件夹功能:SPI0主机从机模式初始化和数据收发演示,主机操作CH376,从机连接其他C51MCU;2.11SPI1文件夹功能:SPI0主机模式初始化和数据收发演示,主机操作CH376;2.12Timer0文件夹功能:定时器0初始化和定时器、计数器使用函数定义;2.13Timer1文件夹功能:定时器1初始化和定时器、计数器使用函数定义;2.14Timer2文件夹功能:定时器2初始化和定时器、计数器使用函数定义,定时器2捕捉功能函数定义;2.15Timer3文件夹功能:定时器3初始化和定时器、计数器使用函数定义,定时器3捕捉功能函数定义和PWM3设置及使用;2.16UART0文件夹功能:串口0初始化和中断收发示例;2.17WDOG文件夹功能:看门狗初始化和喂狗;2.18XBUS文件夹功能:并行总线初始化和数据收发函数定义;2.19USB_LIB文件夹功能:USB文件系统库;2.20USB文件夹A.DEVICE文件夹模拟USB键鼠例程,支持部分类命令;模拟厂商自定义设备,需要安装CH372驱动,可以通过372test.exe调试(批量数据收发,中断传输);B.HOST文件夹USB主机应用例子,初始化和枚举USB端口连接的设备,支持一级外部HUB,可以操作USB键鼠和HUB,打印机,包含HID类命令处理;C.U_DISK字节方式读写文件,包括文件创建、删除、修改文件属性,修改文件名;扇区方式读写文件,包括文件创建、删除、修改文件属性,修改文件名;创建文件夹和文件创建;枚举根目录或者指定目下的文件;2.21PUB评估板说明功能:评估板说明、评估板原理图3、MCU ISP下载软件说明3.1下载前准备3.1.1ISP变更重要:因为ISP工具升级更新,芯片BOOT版本V2.30以前的版本需要在V2.40及以上版本ISP工具上选择支持的BOOT版本,以下以ISPTool(V2.40)为例,默认支持最新BOOT。

SC8701 评估板用户指南说明书

SC8701 评估板用户指南说明书

SC8701 EVM用户指南SC8701 EVM User Guide——上海南芯半导体科技有限公司目录1基本信息 (4)2功能参数设置 (5)2.1默认设置 (5)2.1.1输入输出电压 (5)2.1.2输入输出限流值 (5)2.1.3大电流能力 (5)2.1.4开关频率 (6)2.1.5死区时间 (6)2.1.6PWM和IPWM动态控制 (6)2.2测试SETUP (7)3原理图和物料表 (8)4PCB版图 (10)5性能测试 (14)5.1效率测试 (14)5.2输出电压纹波 (14)5.3Startup and shutdown (15)5.4切换负载测试 (16)5.5充电限流测试 (17)5.6静态电流 (17)图录Figure 1.SC8701评估板 (4)Figure 2.放电模式测试示意图 (7)Figure 3.PCB原理图 (8)Figure 4.PCB版图 (10)Figure 5.Top layer (11)Figure 6.Top Overlay (11)Figure 7.Mid-Layer 1 (12)Figure 8.Mid-Layer 2 (12)Figure 9.Bottom Layer (13)Figure 10.效率测试(vs I_OUT),VOUT=5V (14)Figure 11.效率测试(vs I_OUT),VOUT=9V (14)Figure 12.输出纹波;VIN=8V,VOUT=12V,IBUS=1A (15)表录Table 1.EVM参数 (4)Table 2.I/O口说明 (4)Table 3.开关频率设定 (6)Table 4.死区时间设置 (6)Table 5.物料表 (9)Table 6.不同VOUT和VIN情况下纹波大小(IBUS=1A) (15)Table 7.Startup and shutdown (15)Table 8.负载切换测试,Slew-Rate=1A/uS,10Hz (16)Table 9.负载切换测试,Slew-Rate=0.25A/uS,1kHz (17)Table 10.不同VIN对应的I_IN值,VOUT=9V (17)Table 11.不同VIN对应的I_IN值,VOUT=5V (17)Table 12./CE=high,不同VIN下的电流 (17)Table 13.VOUT=20V,不同VIN下的电流 (17)Table 14.VOUT=5V,不同VIN下的电流 (17)1 基本信息SC8701是一款宽电压范围、高效率DC-DC转换器。

德州仪器MAX16826评估板使用手册说明书

德州仪器MAX16826评估板使用手册说明书

Evaluates: MAX16826MAX16826 Evaluation KitGeneral DescriptionThe MAX16826 evaluation kit (EV kit) provides a proven design to evaluate the MAX16826, a four-string, I 2C programmable high-brightness LED (HB LED) driver with PWM dimming control. The EV kit also includes Windows ® 2000/XP/Vista ®-compatible software that pro-vides a simple graphical user interface (GUI) for exercis-ing the features of the MAX16826. The MAX16826 EV kit PCB comes with a MAX16826ATJ+ installed. The EV kit is configured in a boost application.This EV kit can be modified by changing component val -ues on the board for other configurations (including RGB LED applications). Refer to the MAX16826 IC data sheet for more information.Features●Four Independently Controllable LED Strings ●7 LEDs Per String Configuration●Independently Programmable 50mA to 150mAString Current●7.5V to 22V Input Voltage●Can Withstand Automotive Load Dump Up to 40Vfor 400ms●0% to 100% DIM Duty Cycle Range ●Shorted LED Protection and Detection ●Open LED String Detection●Adaptive Boost-Stage Voltage Optimization●Convenient Breakaway LED Driver Board EasilyAdaptable to End Application ●Low Mechanical Profile●Windows 2000/XP/Vista (32-Bit)-Compatible Software ●USB-PC Interface●USB-to-I 2C On-Board Circuitry ●Fully Assembled and Tested ●Lead-Free and RoHS Compliant19-4271; Rev 1; 12/20Windows and Windows Vista are registered trademarks of Microsoft Corp.+Denotes lead-free and RoHS compliant.#Denotes RoHS compliant.PARAMETERDESCRIPTION Configuration 7 white LEDs/stringNumber of Strings4 strings LED Current Adjustment Range 50mA to 150mATotal Maximum LED Power 16.8W V IN (min)7.5V V IN (max)22V Load Dump40V for < 400ms Nominal Boost Voltage Adjustment Range22.4V to 32VNominal OVP Trip Threshold 35V Boost Stage Switching Frequency350kHzPARTTYPE MAX16826EVKIT+EV Kit MAX16826EVKIT#EV KitDESIGNATION QTY DESCRIPTIONC1, C2, C3, C5–C8, C12, C15,C17, C23, C2412100nF ±10%, 16V X7R ceramic capacitors (0603)TDK C1608X7R1C104K C9133nF ±10%, 50V X7R ceramic capacitor (0603)TDK C1608X7R1H333K C10, C11222pF ±5%, 50V C0G ceramic capacitors (0603)TDK C1608C0G1H220J C13, C14,C18–C2161μF ±10%, 16V X7R ceramic capacitors (0603)TDK C1608X7R1C105K C16, C25210μF ±10%, 10V X5R ceramic capacitors (1210)Murata GRM32FR61A106KDESIGNATION QTY DESCRIPTIONC26, C28210μF ±20%, 50V X5R ceramic capacitors (2220)Murata GRM55DR61H106K C27110μF ±20%, 50V X7S ceramic capacitor (1210)Taiyo Yuden UMK325BJ106MM-T C2912.2nF ±5%, 50V C0G ceramic capacitor (0603)Murata GRM1885C1H222K C3011μF ±10%, 50V X7R ceramic capacitor (1210)Murata GRM32RR71H105K C3214.7μF ±10%, 6.3V X5R ceramic capacitor (0603)Murata GRM188R60J475KLED Driver Board SpecificationOrdering InformationComponent ListClick here to ask about the production status of specific part numbers.DESIGNATION QTY DESCRIPTIONC3312200pF ±10%, 50V X7R ceramic capacitor (0402)Murata GRM155R71H222KC34, C35247μF ±20%, 50V electrolytic capacitorsPanasonic EEE-FK1H470XPC36, C370Not installed, capacitors (0603)C3811000pF ±5%, 50V C0G ceramic capacitor (0402)Murata GRM1555C1H102JA01DC391220pF ±5%, 50V C0G ceramic capacitor (0402)Murata GRM1555C1H221JC401100pF ±5%, 50V C0G ceramic capacitor (0402)Murata GRM1555C1H101JC41–C4440.01μF ±10%, 50V X7R ceramic capacitors (0402)Murata GRM155R71H103KC450Not installed, capacitor (0402)D1160V, 1A Schottky diode (SMB) Diodes, Inc. B160B-13-FJ11USB series-B right-angle PC-mount receptacleJ2, J30Not installed JU2–JU873-pin headersL11Ferrite bead (0603) TDK MMZ1608R301AL2122μH ±20%, 5A, 52mΩ inductor Coilcraft MSS1260-223MlLED11Red LED (0603) Panasonic LNJ208R8ARAP1, P22Connectors, FFC/FPC 18-pos, 1mm P31Connector, FFC/FPC 6-pos, 1mmQ1140V, 9A, 2.5W n-channel MOSFET (8 SO)International Rectifier IRF7469Q2–Q5455V, 1.9A, 160mΩ n-channel MOSFET s (SOT223) International Rectifier IRFL014NPbFR11220Ω ±5% resistor (0603)R21 2.2kΩ ±5% resistor (0603)R3, R9, R103 1.5kΩ ±5% resistors (0603) R4, R5227Ω ±5% resistors (0603)R61470Ω ±5% resistor (0603)R71100kΩ ±5% resistor (0603)R817.5kΩ ±1% resistor (0603)R11168Ω ±1%, 0.25W resistor (1206)DESIGNATION QTY DESCRIPTION R1210.04Ω ±1%, 0.5W sense resistor(2010)Vishay/Dale WSL2010R0400FEA R131215kΩ ±1% resistor (0402) R14, R16210kΩ ±1% resistors (0402) R151249kΩ ±1% resistor (0402)R171 1.27kΩ ±1% resistor (0603)R181182kΩ ±1% resistor (0603)R1912kΩ ±1% resistor (0402) R20, R22,R24, R264100kΩ ±1% resistors (0402) R21, R23,R25, R27416.5kΩ ±1% resistors (0402) R28–R3142.2Ω ±1%, 100mW sense resistors(0603)Panasonic ECG ERJ-3RQF2R2V R32, R3320Ω ±5% resistors (0603)R34–R3740Ω ±5% resistors (0402)R38112.1Ω ±1% resistor (0805)R391470Ω ±5% resistor (0402)R40110kΩ ±5% resistor (0603) R41–R444237kΩ ±1% resistors (0603) U11LED driver (32 TQFN)Maxim MAX16826ATJ+ U2, U82Microcontrollers (68 QFN-EP*)Maxim MAXQ2000-RAX+ U31UART-to-USB converter (32 TQFP)FTDI FT232BLU4193C46A 3-wire EEPROM (8 SO)Atmel AT93C46A-10SU-2.7 U51p-channel MOSFET power switch(8 SO)Maxim MAX890LESA+U61LDO regulator (5 SC70)Maxim MAX8511EXK25+T U71LDO regulator (5 SC70)Maxim MAX8511EXK33+T Y1120MHz crystal oscillatorY216MHz crystalHong Kong X’talsSSL6000000E18FAF—1Cable, flat flex 18-position, 1mm, 5in—7Shunts—1USB high-speed A-to-B cable,5ft (1.5m)—1PCB: MAX16828 Evaluation Kit+Component List (continued)*Exposed pad.Quick StartRecommended EquipmentBefore beginning, the following equipment is needed: ●MAX16826 EV kit (USB cable included)● A user-supplied Windows 2000/XP/Vista PC with a spare USB port●7V to 24V, 5A DC power supply●Four strings of white LEDs (7 LEDs/string)Note: In the following sections, software-related items are identified by bolding. Text in bold refers to items directly from the EV kit software. Text in bold and underlined refers to items from the Windows operating systemProcedureThe MAX16826 EV kit is fully assembled and tested. Follow the steps below to verify board operation:1) Visit /evkitsoftware to down-load the latest version of the EV kit software,16826Rxx.ZIP (xx in the filename denotes the soft -ware version number). Save the EV kit software to a temporary folder and uncompress the ZIP file.2) Install the EV kit software on your computer by run -ning the INSTALL.EXE program inside the temporary folder. The program files are copied and icons are created in the Windows Start | Programs menu.3) Verify that all jumpers (JU2–JU8) are in their defaultpositions, as shown in Table 1.4) Connect the USB cable from the PC to the EV kitboard. A New Hardware Found window pops up when installing the USB driver for the first time. If you do not see a window that is similar to the one described above after 30 seconds, remove the USB cable from the board and reconnect it. Administra-tor privileges are required to install the USB device driver on Windows.5) Follow the directions of the Add New HardwareWizard to install the USB device driver. Choose the Search for the best driver for your device option. Specify the location of the device driver to be C:\Program Files\MAX16826 (default installation direc-tory) using the Browse button. During device driver installation, Windows may show a warning message indicating that the device driver Maxim uses does not contain a digital signature. This is not an error condi-tion and it is safe to proceed with installation. Refer to the USB_Driver_Help.PDF document included with the software for additional information.6) Set the output of the power supply to 12V. Turn offthe power supply.7) Connect the positive terminal of the power supply tothe VIN pad of the LED driver board.Note: Indicate that you are using the MAX16826 when contacting these component suppliers.SUPPLIERPHONE WEBSITECoilcraft, Diodes, Inc.Hong Kong X’tals Ltd.852-******** International RectifierMurata Electronics North America, Panasonic Taiyo Yuden TDK Vishay/Dale402-563-6866FILE DESCRIPTIONINSTALL.EXE Installs the EV kit files on your computerMAX16826.EXE Application program FTDIBUS.INF USB device driver file FTDIPORT.INF VCP device driver file UNINST.INI Uninstalls the EV kit software USB_Driver_Help.PDFUSB driver installation help fileComponent SuppliersMAX16826 EV Kit Files8) Connect the negative terminal of the power supply tothe PGND pad of the LED driver board.9) Ensure that the supplied ribbon cable is firmly con -nected to the P1 and P2 connectors.10) Connect the anode ends of the LED strings to theP3-1 pin of the P3 connector.11) Connect the cathode ends of the LED strings to theP3-2 to P3-5 pins of the P3 connector.12) Turn on the power supply13) Start the MAX16826 EV kit software by opening itsicon in the Start | Programs menu. The EV kit soft-ware main window appears, as shown in Figure 1.14) Press the Start button to start the LED driver.15) Verify that all of the LEDs are lit.Table 1. MAX16826 EV Kit Jumper Descriptions (JU2–JU8)*Default position.JUMPER SHUNT POSITIONDESCRIPTIONJU21-2*On-board PWM signal for Ch12-3Connect user-supplied PWM signal for Ch1 to the on-board DIM1 pad JU31-2*On-board PWM signal for Ch22-3Connect user-supplied PWM signal for Ch2 to the on-board DIM2 pad JU41-2*MAX16826 SDA signal connected to on-board microcontroller 2-3Connect user-supplied SDA signal to the on-board SDA pad JU51-2*MAX16826 SCL signal connected to on-board microcontroller 2-3Connect user-supplied SCL signal to the on-board SCL pad JU61-2*MAX16826 SYNC/EN signal connected to on-board microcontroller 2-3Connect user-supplied SYNC/EN signal to the on-board SYNC/EN pad JU71-2*On-board PWM signal for Ch32-3Connect user-supplied PWM signal for Ch3 to the on-board DIM3 pad JU81-2*On-board PWM signal for Ch42-3Connect user-supplied PWM signal for Ch4 to the on-board DIM4 padDetailed Description of SoftwareThe MAX16826 evaluation kit software has all the functions to evaluate the MAX16826 IC. To start the MAX16826 EV kit software, click Start | Programs | Maxim MAX16826 Evaluation Kit | Maxim MAX16826 Evaluation Kit that is created during installation. The GUI main window appears as shown in Figure 1.Figure 1. MAX16826 EV Kit Software Main WindowString Current SetThe String Current Set group box is located at the upperleft corner of the main window. Use the scrollbars toadjust the current of the LED strings. The correspondingvalues of the current will be shown in the adjacent editboxes. Press the Read button to read the values from thelinear regulator output registers of the MAX16826. Theequivalent values of the output current will be shown inthe edit boxes.Boost Output ControlThe Boost Output Control Mode group box has thefunctions to control the boost output voltage.To control the boost output voltage manually, click on theradio button next to the Manual Control group box. Usethe scrollbar to adjust the output voltage, and the volt-age value will be displayed in the adjacent edit box. Theactual boost output voltage can be seen in the Read BackValues group box.To use the software automatic control, click on the radiobutton next to the Software Control group box. The editbox next to the Set button is used to change the Drain toGND regulated voltage of the current sink FETs on the LEDstring with the highest voltage drop. This voltage setting willdepend on how much overhead the user is willing to have.If the set value is too low, the LED currents will no longerbe well regulated and may indeed drop because the boostvoltage might fall too low. The scrollbar in this mode willmove automatically to compensate and regulate the outputvoltage. The update rate is approximately once per second.In any case, the channel with the lowest voltage across thesink FET will be regulated to the value in the edit box. DIM Pulse Width Modulation (DPWM)The DPWM group box is located at the center of the mainwindow. The four DIM PWM signals generated by theon-board MAXQ2000 microcontrollers are used to controlthe brightness of the LEDs. Adjust the scrollbars in theDPWM Duty Cycle group box to change the duty cycles of the PWM signals and the values of the duty cycle (%)are shown in the adjacent edit boxes. Check the Set AllChannels to 100% Duty Cycle checkbox to force all channel duty cycles to 100%.In the DPWM Frequency group box, change the DPWMfrequency by adjusting the scrollbar position and pressthe Set button. The frequency value will be shown in theedit box.To guarantee that the leading edge of all the DIM signalsare synchronized, press the Set button in the DPWMFrequency group box.Press the Start button to start to generate the PWM signals.Press the Stop button to stop all PWM signals.StatusThe Status group box is located at the right of the main window. The software reads the external FET drain voltage measurements, and the boost output voltage measurement from the ADC output registers of the MAX16826. The software multiplies the measured values by the appropriate scaling factor and then displays them in the Read Back Values group box.Enter the values into the edit boxes in the Fault Level Set group box to set the fault-detection values. When the value in the Read Back Values group box is less than the fault-detection value, then the color of the read-back value changes to dark green. When the read-back value is 0 to 10% higher than the fault-detection value, the read-back value turns a lime color. If the read-back value is more than 10% higher than the fault-detection value, then the read-back value turns purple. The read-back value turns red when it is more than 20% higher than the fault-detection value.The software also reads the fault register to detect the fault conditions. If a fault condition exists, it will be shown in the String Fault Status group box. See Table 2 for the fault-condition explanations.Press the Read button to update the Status group box. By checking the Automatic Read checkbox, the Status group box will be automatically updated every second. Enable/DisableThe Enable/Disable group box controls the signal on the SYNC/EN pin. Click on the Enable radio button to set the signal high and enable the MAX16826. Click on the Disable radio button to set the signal low and disable the MAX16826.StandbyCheck the Standby checkbox to set the MAX16826 to standby mode. Refer to the MAX16826 IC data sheet for more information regarding standby mode.Table 2. Fault Conditions*Open LED string detection may require multiple flag examination. FAULT NAME CONDITIONTOADC conversion timeout; alsocorresponds to open string condition* Open LED string openShort LED string shortedOVP OvervoltageScaling FactorsThe calculations for the LED string current, boost output voltage, and the read-back values are based on the scal-ing factors. You can change the scaling factor by select-ing the Scaling Factor menu item under the Scaling Factors menu bar. In the pop-up window shown in Figure 2, enter the appropriate scaling factor.See Table 3 for the formulas for the scaling factors. These values can be used for calibration against actual read values with external instruments.When the default values are changed, they are stored in the software. Re-enter the default values to bring the software back to the default setting.Table 3. Scaling FactorFigure 2. Scaling Factor WindowSCALING FACTOR FORMULADEFAULTVALUE DR1 (ADC read-back voltageacross Drain and GND for thesink FET on Ch1)1 + (R20/R21)7.046DR2 (ADC read-back voltageacross Drain and GND for thesink FET on Ch2)1 + (R22/R23)7.046DR3 (ADC read-back voltageacross Drain and GND for thesink FET on Ch3)1 + (R24/R25)7.046DR4 (ADC read-back voltageacross Drain and GND for thesink FET on Ch4)1 + (R26/R27)7.046Read Back VBoost (ADC read-back boost output voltage)1 + (R15/R16)25.900 String Current Set Ch1 (LEDstring current for Ch1)R31 2.200 String Current Set Ch2 (LEDstring current for Ch2)R30 2.200 String Current Set Ch3 (LEDstring current for Ch3)R29 2.200 String Current Set Ch4 (LEDstring current for Ch4)R28 2.200 VBoost (Boost output voltage) 1 + (R13/R14)22.500Detailed Description of HardwareThe MAX16826 EV kit board provides a proven layout for evaluating the MAX16826 IC. This EV kit consists of a controller board and an LED driver board. The break-away slots at the center of the EV kit make it easier for the user to break and separate the controller board from the LED driver board. This is done so that once the evaluation is complete with the included software, the driver board can easily be used in the target application environment with the target system microcontroller.To connect the power, ground, PWM, and the I2C inter-face signals of the boards, attach the ribbon cable to the P1 connector of the controller board and attach the other end of the ribbon cable to the P2 connector of the LED driver board.Controller BoardThe controller board acts as the bridge between the soft-ware in the PC and the actual LED driver board containing the MAX16826. In addition to the USB connectivity, it gen-erates the four adjustable PWM DIM signals that control the brightness of the LEDs. The controller board com-municates with the driver board through the I2C interface, and is able to read or change the values of the registers in the MAX16826.The user can use the MAX16826 evaluation kit software to control the controller board.See Table 1 to control the MAX16826 with a user-supplied PWM signal.LED Driver BoardThe LED driver board is able to drive up to four LED strings (7 LEDs/string). LED strings can be connected to the LED driver board through the P3 connector by using a ribbon cable. Connect all of the anode ends of the LED strings to the P3-1 pin (which connects to the boost out-put) of the P3 connector. Then connect the cathode ends of the LED strings to the P3-2 to P3-5 pins (that connects to the drains of the sink FETs) of the P3 connector. User-Supplied I2C InterfaceTo use the MAX16826 EV kit with a user-supplied I2C interface, install the shunts on pins 2-3 of JU4 and JU5. Connect SDA, SCL, and GND lines from the usersupplied I2C interface to the SDA, SCL, and PGND pads on the MAX16826 controller board.After the LED driver board has broken away from the controller board, the user may connect their supplied I2C, DIM, and power signals to the LED driver board through the P2 connector using a ribbon cable. See Table 4 for the pin description of the P2 connector.Table 4. Pin Description for P2 Connector PIN NUMBER DESCRIPTIONP2-1 to P2-5Connect to the VIN pin of the MAX16826 P2-6Not connectedP2-7 to P2-11Connect to the groundP2-12Connects to the SYNC/EN pin of theMAX16826P2-13Connects to the SDA pin of the MAX16826P2-14Connects to the SCL pin of the MAX16826P2-15Connects to the DIM4 pin of the MAX16826P2-16Connects to the DIM3 pin of the MAX16826P2-17Connects to the DIM2 pin of the MAX16826P2-18Connects to the DIM1 pin of the MAX16826Figure 3. MAX16826 EV Kit LED Driver Board SchematicFigure 4a. MAX16826 EV Kit Controller Board Schematic (Sheet 1 of 2)Figure 4b. MAX16826 EV Kit Controller Board Schematic (Sheet 2 of 2)Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time.REVISIONNUMBERREVISION DATE DESCRIPTION PAGES CHANGED 009/08Initial release —112/20Updated Ordering Information 1Revision HistoryFor pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https:///en/storefront/storefront.html.。

EBSGCN、EKSGCN评估板使用手册说明书

EBSGCN、EKSGCN评估板使用手册说明书

EVALUATION BOARD MANUALEBSGCN SeriesEVALUATION KIT MANUALEKSGCN Seriesfor EYSGCN series BluetoothⓇlow energy ModuleIntroductionThis evaluation board is applicable for Taiyo Yuden’s Bluetooth ® 4.2 low energy module, EYSGCN Series.Mounted moduleEYSGCN (9.6mm x 12.9mm x 2.0mm_MAX)Nordic nRF51822 / ARM® Cortex™-M0 32 bit processor 49-pin Land Grid Array / 29GPIOs / SWD - Basic Module - Taiyo Yuden writes firmware for S120 (EYSGCNZWY) SoftDevice to this product. The user can develop unique application for the module.Serial UART interface and power supply are possible with one USB cable. And this board has the SWD connector terminal for software development. EBSGCN Series USBEvaluation board circuit schematic Evaluation board layout1)All pin headers are 2.54mm pitch. And distance between CN3and CN4 is 15.24mm.2) CN3-CN6, C4, C6, L1, JP3, JP4, SB1-5, TP1-4 are not mounted (N.M.).3) D1 (LED): USB VBUS 5V LED Indicator4) D2 (LED): UART TX Indicator5) D3 (LED): UART RX Indicator6) SW1 (Push button): Module Reset (active low)U2EYSGCNSilkscreen PrintingPin DescriptionsHow to useIt is very easy just to tie this board to the PC with a USB cable. It is not necessary to change the setting of the board. The power supply of the module supplies by default 3.3V from 3V3OUT of FT232RQ.For software development Nordic-DK and Use caseNordic-DK/eng/Products/nRF51-DKminiUSBSWDEBSGCN SeriesCN1 supports the connection of the 10 pin Nordic-nRF51DK NordicMaster control panel etc. nRF51-DongleMEMO1) Current measurmentTo measure the current, please cut the shorting 1pin and 2 pin of CN6. And connect an ampere-meter between the pins of connector CN6 to monitor the current directly.2) About the power supply of the moduleWhen you use external power supply, please supply power from 9pin and 10pin of CN3. On this configuration, you cut short circuit 1pin and 2pin of CN5 and should separate 3V3OUT of FT232RQ.3) USB to serial UART interfaceIt needs to install driver of FT232RQ to use USB for UART interface. The drivers are available on FTDI website./Drivers/D2XX.htmIn addition, by the application development, please assign GPIO as follows.92 24) Size and Coordinate informationImportant notesThe evaluation board included with the Nordic Development Kit uses a 16MHz clock. Therefore the sample code from Nordic is designed to be used with a 16MHz clock. On the other hand, the EYSGCN series module uses a 32MHz system clock, making it incompatible with the Nordic sample code (i.e. sample code does not configure HFCLK: XTALFREQ register for 32MHz). To fix this issue, we need to write the value 0xFFFFFF00 to the UICR (User Information Configuration Register) at address 0x10001008. Please note that the UICR is erased whenever you download a SoftDevice.The UICR can be written by using the debug tools:nrfjprog.exe --snr <your_jlink_debugger_serial_number> --memwr 0x10001008 --val 0xFFFFFF00 Or the following code can be added to the SystemInit function in the system_nRF51.c file, right before launching the TASK_HFCLKSTART task:if (*(uint32_t *)0x10001008 == 0xFFFFFFFF){NRF_NVMC->CONFIG = NVMC_CONFIG_WEN_Wen << NVMC_CONFIG_WEN_Pos;while (NRF_NVMC->READY == NVMC_READY_READY_Busy){}*(uint32_t *)0x10001008 = 0xFFFFFF00;NRF_NVMC->CONFIG = NVMC_CONFIG_WEN_Ren << NVMC_CONFIG_WEN_Pos;while (NRF_NVMC->READY == NVMC_READY_READY_Busy){}NVIC_SystemReset();while (true){}}TY ’s App or TY’s App Lite Installation modelTY’s App (Taiyo Yuden Standard Application for BLE) BLE Embedded SoftwareEYSGCNA Series. (9.6mm x 12.9mm x 2.0mm_MAX)TY’s App and TY’s App LiteTY’s AppNordic nRF51822 / ARM® Cortex™-M0 32 bit processor TY’s App is installed. Development of the application software in the module is unnecessary.EBSGCNAWY-1X EBSGCNAWY-WX TY’s AppSlave EBSGCNAWY-1X EBSGCNAWY-WX TY’s AppMaster Peripheral Side Central SideUARTUARTUART UART。

龙芯 2K1000 评估板 产品说明书

龙芯 2K1000 评估板 产品说明书

龙芯2K1000评估板产品说明书龙芯中科技术有限公司2017年7月1声明本手册包含的内容并不代表本公司的承诺,本公司保留对此手册更改的权利。

本手册版权归龙芯中科技术有限公司所有,手册内容更新恕不另行通知。

对于任何因安装、使用不当而导致的直接、间接、有意或无意的损坏及隐患概不负责。

订购产品前,请向经销商详细了解产品性能是否符合您的要求。

2注意事项1、产品使用前请务必仔细阅读该产品说明书;2、对未准备应用的板卡,应将其保存在防静电保护袋中;3、在从防静电保护袋中拿出板卡前,应将手先置于接地金属物体上一会儿(比如 10 秒钟),以释放身体及手中的静电;4、在拿板卡时,需佩戴静电保护手套,并且应该养成只触及其边缘部分的习惯;5、为避免人体被电击或产品被损坏,在每次对主板、板卡进行拔插或重新配置时,须先关闭交流电源或将交流电源线从电源插座中拔掉;6、在需对板卡或整机进行搬动前,务必先将交流电源线从电源插座中拔掉关掉;7、对整机产品,需增加/减少板卡时,务必先拔掉交流电源;8、当您需连接或拔除任何设备前,须确定所有的电源线事先已被拔掉;9、为避免频繁开关机对产品造成不必要的损伤,关机后,应至少等待 30 秒后再开机。

3文档更新记录质量编号: LS-JL-0835-06-A文档名: 龙芯2K1000评估板产品说明书版本号V1.0创建人: 芯片研发部创建日期 : 2017年7月更新历史序号. 更新日期更新人更新内容1 2017.7 芯片研发部初版发行41概述 (7)1.1应用领域 (7)1.2硬件规格 (7)1.3软件系统 (8)1.4附件 (8)2评估板快速使用指南 (9)2.1评估板布局图 (9)2.2评估板连接器管脚信号定义及说明 (10)2.2.1DDR3 SODIMM (10)2.2.2电源插座 (10)2.2.3BMC卡插槽 (10)2.2.4电流测试接口 (11)2.2.5WIFI接口 (11)2.2.6MINI PCIE插槽 (11)2.2.7PCIE插槽 (11)2.2.8DVI+VGA接口 (11)2.2.9串行接口 (12)2.2.10EJTAG接口 (12)2.2.11拨码开关 (12)2.2.12F_PANEL (13)2.3使用所需要的设备 (13)5图表 1龙芯2K1000评估板系统框图 (7)图表 2 龙芯2K1000评估板布局及接口示意图 (9)图表 3 ATX电源插座信号定义 (10)图表 4 电流测试插槽信号定义 (11)图表 5 SDIO WIFI插座定义 (11)图表 6 2K1000 UART0 ( J11 ) (12)图表 7 2K1000 UART0 ( J11 ) 引脚定义 (12)图表 8 EJTAG插座信号定义 (12)图表 9 拨码开关定义 (13)图表 10 F_PANEL ( J18 )管脚定义 (13)61概述龙芯2K1000评估板(型号LS2K1000_PC_EVB)是一款为龙芯2K1000量身定制的评估系统板。

RTQ2522AGQW(2) 评估板用户指南说明书

RTQ2522AGQW(2) 评估板用户指南说明书

2A Ultra-Low Dropout Voltage LDO Regulators withSoft-Start Evalution Board GuidanceGeneral DescriptionThe Evaluation Board user guide describes the operational use of the RTQ2522A evaluation board as a reference design for demonstration and evaluation of the RTQ2522A, an ultra-low dropout (LDO) linear regulator with soft-start. Included in this user guide are setup and operating instructions, thermal and layout guidelines, a printed circuit board (PCB) layout, a schematic diagram, and a bill of materials (BOM). For more detail information, please refer to the RTQ2522A datasheetTable of ContentsGeneral Description (1)Performance Sepcification Summary (2)Power-up Procedure (2)Detailed Description of Hardware (3)Bill of Materials (4)Typical Applications (5)Evaluation Board Layout (8)More Information (10)Important Notice for Richtek Evaluation Board (10)Performance Specification SummarySummary of the RTQ2522A Evaluation Board performance specificiaiton is provided in Table 1. The ambient temperature is 25°C.Table 1. RTQ2522A Evaluation Board Performance Specification SummaryPower-up ProcedureSuggestion Required Equipments⚫RTQ2522A Evaluation Board⚫DC power supply capable of at least 5.5V and 2A⚫Electronic load capable of 2A⚫Function Generator⚫OscilloscopeQuick Start ProceduresThe Evaluation Board is fully assembled and tested. Follow the steps below to verify board operation. Do not turn on supplies until all connections are made. When measuring the output voltage ripple, care must be taken to avoid a long ground lead on the oscilloscope probe. Measure the output voltage ripple by touching the probe tip and groundring directly across the last output capacitor.Proper measurement equipment setup and follow the procedure below.1) With power off, connect the input power supply to VIN and GND pins.2) With power off, connect the electronic load between the VOUT and nearest GND pins.3) Turn on the power supply at the input. Make sure that the input voltage does not exceeds 6V on the EvaluationBoard.4) Check for the proper output voltage using a voltmeter.5) Once the proper output voltage is established, adjust the load within the operating ranges and observe theoutput voltage regulation, quiescent current, dropout voltage, PSRR, noise and other performance.Detailed Description of HardwareHeaders Description and PlacementCarefully inspect all the components used in the EVB according to the following Bill of Materials table, and then make sure all the components are undamaged and correctly installed. If there is any missing or damaged component, which may occur during transportation, please contact our distributors or e-mail us at ***********************.Test PointsThe EVB is provided with the test points and pin names listed in the table below.Bill of MaterialsTypical ApplicationsEVB Schematic Diagram1. The capacitance values of the input and output capacitors will influence the input and output voltage ripple.2. MLCC capacitors have degrading capacitance at DC bias voltage, and especially smaller size MLCCcapacitors will have much lower capacitance.Measure ResultVBIAS Voltage UVLO vs. Temperature Dropout Voltage vs. Output Current Output Spectral Noise Density VIN PSRR vs. FrequencyShort ProtectionNote: When measuring the input or output voltage ripple, care must be taken to avoid a long ground lead on the oscilloscope probe. Measure the output voltage ripple by touching the probe tip directly across the output capacitor.Evaluation Board LayoutFigure 1 to Figure 4 are RTQ2522A Evaluation Board layout. This board is constructed on four-layer PCB, outer layers with 1 oz. Cu and inner layers with 1 oz. Cu.Figure 1. Top View (1st layer)Figure 2. PCB Layout—Inner Side (2nd Layer)Figure 3. PCB Layout—Inner Side (3rd Layer)Figure 4. Bottom View (4th Layer)More InformationFor more information, please find the related datasheet or application notes from Richtek website.Important Notice for Richtek Evaluation BoardTHIS DOCUMENT IS FOR REFERENCE ONLY, NOTHING CONT AINED IN THIS DOCUMENT SHALL BE CONSTRUED AS RICHTEK’S WARRANTY, EXPRESS OR IMPLIED, UNDER CONTRACT, TORT OR STATUTORY, WITH RESPECT TO THE PRESENTATION HEREIN. IN NO EVENT SHALL RICHTEK BE LIABLE TO BUYER OR USER FOR ANY AND ALL DAMAGES INCLUDING WITHOUT LIMITATION TO DIRECT, INDIRECT, SPECIAL, PUNITIVE OR CONSEQUENTIAL DAMAGES.。

stm32 f446 评估板例程

stm32 f446 评估板例程

【stm32 f446评估板例程全面评估】1. 引言在现代电子设备的设计和开发过程中,嵌入式系统起着至关重要的作用。

而STM32系列微控制器由意法半导体推出,以其强大的性能、丰富的外设以及灵活的应用环境而备受开发者青睐。

其中,STM32F446评估板作为STM32系列中的一款典型代表,具有丰富的外设和灵活的扩展能力,因此备受开发者的喜爱。

2. STM32F446评估板概述STM32F446评估板是基于ARM Cortex-M4内核的高性能微控制器,工作频率高达180MHz,具有丰富的外设资源,包括多个通用定时器、高分辨率定时器、RTC、I²S、SDIO、USB OTG等。

评估板还有丰富而灵活的扩展接口,包括Arduino、ST Zio和Morpho接口,能够满足不同应用场景的需求。

3. 评估板例程深度评估在评估STM32F446评估板的例程时,我们首先需要深入了解其基本的功能和特性,然后根据不同的应用场景和需求,进行更深入的探索和评估。

3.1 基本例程我们需要评估评估板自带的基本例程,包括GPIO控制、定时器应用、中断处理、串口通信等。

这些基本的例程能够帮助我们快速了解评估板的基本功能和特性,为后续的应用开发奠定基础。

3.2 高级外设例程我们需要评估评估板所支持的高级外设的例程,包括SD卡读写、USB 设备模式、DMA控制等。

这些例程能够帮助我们更好地了解评估板的外设性能和灵活性,为开发高端应用打下基础。

3.3 应用场景案例我们需要评估评估板在不同应用场景下的案例,包括物联网、工业控制、智能家居等。

通过这些实际案例的评估,我们能够更全面地了解评估板在不同领域的适用性和性能表现。

4. 总结与展望STM32F446评估板具有丰富的外设资源和灵活的应用环境,能够满足不同应用场景的需求。

而在评估例程的过程中,我们不仅全面了解了评估板的基本功能和特性,还深入探讨了其在高级外设和实际应用场景下的表现。

KSZ8863MLL FLL RLL 评估板用户指南说明书

KSZ8863MLL FLL RLL 评估板用户指南说明书

KSZ8863MLL/FLL/RLLEvaluation Board User’s GuideKSZ8863MLL/FLL/RLL Integrated 3-Port 10/100 Managed Switch with PHYsRevision 1.1 January 2011© Micrel, Inc. 2011All rights reservedMicrel is a registered trademark of Micrel and its subsidiaries in theUnited States and certain other countries. All other trademarks are theproperty of their respective owners.The information furnished by Micrel in this datasheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer. Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury.Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user.A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's ownrisk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.Revision HistoryRevision Date Summary of Changes1.0 07/15/09 Initial Release1.1 01/11/11 Update description.Micrel, Inc. January 11, 2011Table of Contents1.0Introduction (4)2.0Board Features (4)3.0Evaluation Kit Contents (4)4.0Hardware Description (4)4.1Strap In Mode (5)4.1.1Feature Setting Jumpers (6)4.2I2C Master (EEPROM) Mode (7)4.3SPI Slave Mode (8)4.410/100 Ethernet PHY Ports (KSZ8863MLL/RLL) (9)4.5100FX Fiber Port (KSZ8863FLL) (9)4.6LED Indicators (9)4.7MII Port Configuration (KSZ8863MLL/FLL) (9)4.8RMII Port Configuration (KSZ8863RLL) (9)5.0Reference Documents (10)List of TablesTable 1: Feature Setting Jumpers (6)Table 2: Reserved Jumpers (6)Table 3: EEPROM Mode Settings (8)Table 4: SPI Slave Mode Settings (8)Table 5: LED Modes (9)Table 6: RMII Clock Setting (10)List of FiguresFigure 1: KSZ8863MLL/FLL/RLL Evaluation Board Block Diagram (5)Micrel, Inc. January 11, 20111.0 IntroductionThe KSZ8863MLL/FLL/RLL is Micrel’s third generation fully integrated 3-port switch. The two PHY units of KSZ8863MLL/RLL support 10BASE-T and 100BASE-TX. The KSZ8863FLL supports 100BASE-FX. The devices have been designed for cost sensitive systems, however, still offer a multitude of features, such as switch management, port and tag based VLAN, QoS priority, one MII interfaces and CPU control and data interfaces.The KSZ8863MLL/FLL/RLL is an excellent choice for VoIP Phone, Set-top/Game Box, SOHO Residential Gateway, industrial Ethernet systems and as a standalone 3-port switch.The KSZ8863MLL/FLL/RLL Evaluation Board provides a convenient means to evaluate the KSZ8863MLL/FLL/RLL’s rich feature set. Easy access is provided to all of the KSZ8863MLL/FLL/RLL pins, with jumpers and interface connectors allowing quick configuration and re-configuration of the board. MIIM, EEPROM programming, SPI emulation software are also provided to access the more extensive features of the KSZ8863MLL/FLL/RLL, via a PC USB port.2.0 Board Features•Micrel’s KSZ8863MLL/FLL/RLL Integrated 3-Port 10/100 Managed Ethernet Switch•Two RJ-45 Jacks for Ethernet LAN Interfaces with corresponding Isolation Magnetics (KSZ98863MLL/RLL)•Auto MDI/MDI-X on the PHY port• 1 PHY Mode and 1 MAC Mode MII Connector for the Switch RMII/MII Interface• 2 100Base-FX fiber interface(KSZ8863FLL)• 1 USB port to emulate an MIIM, EEPROM, SPI Interface•On board EEPROM• 2 LEDs per port to Indicate the Status and Activity of the RJ45 port• 1 power jack for 5VDC Universal Power Supply3.0 Evaluation Kit ContentsThe KSZ8863MLL/FLL/RLL Evaluation kit includes the following:•KSZ8863MLL/FLL/RLL Evaluation Board Revision 1.0•KSZ8863MLL/FLL/RLL Evaluation Board User’s Guide•Micrel Switch Configuration Software Version 1.0.5•Micrel Switch Configuration Software User Guide•KSZ8863MLL/FLL/RLL Evaluation Board Schematic Revision 1.0(Contact your Micrel FAE for the latest schematic)Note: USB cable and 5V DC Wall Power Supply is not included in the design kit (the dimension of the output plug of 5V DC wall power supply is 2.5x5.5x9.5mm or 0.1x0.218x0.375inch)4.0 Hardware DescriptionThe KSZ8863MLL/FLL/RLL Evaluation Board is in a compact form factor and can sit on a bench near a computer. There are three options for configuration: strap in mode, EEPROM mode, and SPI mode. Strap in mode configuration is easily done with on board jumper options. EEPROM mode and SPI mode are accomplished through a built in USB port interface. With the Micrel software and your PC, you can use the USB port to reprogram the EEPROM on board, or use the SPI interface to access the KSZ8863MLL/FLL/RLL’s full feature set. The board also features oneMicrel, Inc. January 11, 2011MII connector for the Switch MII interface. It is to facilitate connection from the switch to either the external CPU or the external PHY.Figure 1: KSZ8863MLL/FLL/RLL Evaluation Board Block DiagramThe KSZ8863MLL/FLL/RLL evaluation board is easy to use. There are programmable LED indicators for link and activity on the PHY ports and a power LED. A manual reset button allows the user to reset the board without removing the power plug. The 5V power on the board can be supplied by a standard 5VDC power supply (close pin 1-2 of JP400 jumper) or by the USB cable (close pin 2-3 of JP400 jumper) which is used to access the registers in SPI mode. A standard 5VDC power supply is included so that the user can supply power from any 110 Volt AC wall or bench socket. Before to start to use the evaluation board, make sure the power connectors JP403, JP404, JP405, JP406 and JP31 are connected, and close pin 1-2 of J14.4.1 Strap in ModeStrap in configuration mode is the quickest and easiest way to get started. In this mode, the KSZ8863MLL/FLL/RLL acts as a standalone 3-port switch. Simply set the board’s configuration jumpers to the desired settings and apply power to the board. The configuration can be changed while power is applied to the board by changing the jumper settings and pressing the convenient manual reset button for the new settings to take effect. Note that even if no external strap in values are set, internal pull up and pull down resistors will set the KSZ8863MLL/FLL/RLL default configuration. Section 4.1.1 covers each jumper on the board and describes its function. To start in strap in configuration mode, make sure that the USB cable is unplugged, JP34, JP35, JP3and JP9 are connected, JP21, JP25 have jumpers fitted between pins 2 to 3.Micrel, Inc. January 11, 20114.1.1 Feature Setting JumpersThe evaluation board provides jumpers to allow easy setting of strap in configurations for the KSZ8863MLL/FLL/RLL. Table 1 describes the jumpers and their functionalities.Table 1: Feature Setting JumpersOPEN CLOSED JUMPER KSZ8863MLL/FLL/RLLSIGNALJP3 SPIQ SPI EEPROMJP25 P2LED0 EEPROM/SPI Setting. See Section 4.2 and 4.3JP21 P2LED1 EEPROM/SPI Setting. See Section 4.2 and 4.3JP78 FXSD1 Pins 1-2 closed : Disable FEF feature of FX.Pins 5-6 closed : Force port 1 TX modeFor KSZ8863MLL/RLL, close 5-6 since this devicedoesn’t support FX mode.For KSZ8863FLL, open JP77JP77 FXSD2 Pins 1-2 closed : Disable FEF feature of FX.Pins 5-6 closed : Force port 1 TX modeFor KSZ8863MLL/RLL, close 5-6 since this devicedoesn’t support FX mode.For KSZ8863FLL, open JP77JP2 PWRDN Normal Operation KSZ8863MLL/FLL/RLLChip Power DownJP101 SPIQ (P1FFC) Pull Down = DisablePull Up(default) = EnableJP102 SMRXDV3(P1DPX) Pull Down = Half DuplexPull Up(default) = Full DuplexJP103 P1LED1(P1SPD) Pull Down = 10BTPull Up(default) = 100BTJP104 P1LED0(P1ANEN) Pull Down(default) = DisablePull Up = EnableJP201 SMRXD30(P2FFC) Pull Down = DisablePull Up(default) = EnableJP202 SMRXD31(P2DPX) Pull Down = Half DuplexPull Up(default) = Full DuplexJP203 SMRXD32(P2SPD) Pull Down = 10BTPull Up(default) = 100BTJP204 SMRXD33(P2ANEN) Pull Down = DisablePull Up(default) = EnableNote: JP101, JP102, JP103, JP201, JP202, JP203 are only valid if Auto-Negotiation is disabled. The following table shows the recommended settings for the evaluation board reserved jumpers.JUMPER Description Recommended Setting JP30 3.3V Biased of transformerCenter (For test only)OpenJP11 Power for Fiber Module.(Port 2) KSZ8863MLL/RLL: Open For KSZ8863FLL:Close pin 1-2 for 3.3V Fiber Module.Close pin 3-2 for 5.0V Fiber Module.JP10 Power for Fiber Module.(Port 1) KSZ8863MLL/RLL: Open For KSZ8863FLL:Close pin 1-2 for 3.3V Fiber Module.Close pin 3-2 for 5.0V Fiber Module.JP28 REFCLKO3 enable. KSZ8863MLL/FLL: OpenKSZ8863RLL:Close pin 1-2: Enable REFCLKOClose pin 2-3: Disable REFCLKO4.2 I2C Master (EEPROM) ModeThe evaluation board has an EEPROM to allow the user to explore more extensive capabilities of the KSZ8863MLL/FLL/RLL. The user can conveniently program the EEPROM on board using the USB port from any computer with a WIN 2000/XP environment and the Micrel provided software. This makes it easy for the user to evaluate features like “broadcast storm protection” and “rate control”.To prepare the KSZ8863MLL/FLL/RLL evaluation board for EEPROM configuration follow these steps:1. Install the Micrel Switch Configuration Software to your computer.2. Set JP3, JP9, JP21, JP25, JP34 and JP35 as specified in Table 3 for EEPROM modeconfiguration. Make sure that the EEPROM is installed on the board.3.Connect the computer’s USB port to the KSZ8863MLL/FLL/RLL board with aUSB port cable.4. There are two way to power up the evaluation board:a). Connect the 5 VDC power supply to the KSZ8863MLL/FLL/RLL when JP400pin1-2 is closed.b). 5 VDC power source from the USB port when JP400 pin 2-3 is closed.5. The KSZ8863MLL/FLL/RLL will power up in its default configuration if there is noinformation in the EEPROM.6. Click the software icon to invoke the software to program the desired settings into theEEPROM. See the Micrel Switch Configuration Software User Guide for details.7. Press the manual reset button. The KSZ8863MLL/FLL/RLL will reset and read the newconfiguration in the EEPROM. After reset, the KSZ8863MLL/FLL/RLL is ready for normal operation.Micrel, Inc. January 11, 2011Table 3: EEPROM Mode SettingsJumper Description SettingJP9 SPIQ ClosedJP3 SCL_MDC_SW ClosedJP34 SCL_MDC ClosedJP35 SDA_MDIO ClosedJP25 Serial Bus Config. (P2LED0) Pins 2-3 closedJP21 Serial Bus Config. (P2LED1) Pins 2-3 closed4.3 SPI Slave ModeFrom SPI interface to the KSZ8863MLL/FLL/RLL, use a USB to SPI converter that allows accessing all of the KSZ8863MLL/FLL/RLL features and registers. The user can easily access the SPI interface using a computer connected to the evaluation board’s USB port interface. Micrel provides a Windows 2000/XP based program for the user to evaluate the KSZ8863MLL/FLL/RLL’s full feature set. In addition to all the registers available via EEPROM programming, a host CPU connected to theKSZ8863MLL/FLL/RLL’s SPI interface will be able to access all static MAC entries, the VLAN table, dynamic MAC address table and the MIB counters.To prepare the KSZ8863MLL/FLL/RLL evaluation board for SPI modeconfiguration follow these steps:1. Install the Micrel Switch Configuration Software on your computer.2. Set JP3, JP9, JP21, JP25, JP34 and JP35 as specified in Table 4 for SPI modeconfiguration.Table 4: SPI Slave Mode SettingsJumper Description SettingJP9 SPIQ OpenJP3 SCL_MDC_SW OpenJP34 SCL_MDC ClosedJP35 SDA_MDIO ClosedJP25 Serial Bus Config. (P2LED0) Pins 2-3 closedJP21 Serial Bus Config. (P2LED1) Pins 1-2 closed3.Connect the computer’s USB port to the KSZ8863MLL/FLL/RLL board with aUSB port cable.4.There are two way to power up the evaluation board:a). Connect the 5 VDC power supply to the KSZ8863MLL/FLL/RLL when JP400pin1-2 is closed.b). 5 VDC power source from the USB port when JP400 pin 2-3 is closed.5.The KSZ8863MLL/FLL/RLL will power up in its default configuration6.Click the software icon to invoke the software to program the desired settings. Micrel, Inc. January 11, 2011See the Micrel Switch Configuration Software User Guide for details.4.4 10/100 Ethernet PHY Ports (KSZ8863MLL/RLL)There are two 10/100 Ethernet PHY ports on the KSZ8863MLL/RLL evaluation board. The ports can be connected to an Ethernet traffic generator or analyzer via standard RJ-45 connectors using CAT-5 cables. Each port can be used as either an uplink or downlink. Both ports support auto MDI/MDI-X, eliminating the need for cross over cables.4.5 100FX Fiber Port (KSZ8863FLL)There are two 100FX PHY ports on the KSZ8863FLL evaluation board. The ports can be connected to an Ethernet traffic generator or analyzer via fiber transceiver and fiber cable. The fiber signal threshold can be set by register 192 bit 6(Port1) and bit 7(Port2). If the bits are 1, the threshold will be set to 2.0V, Otherwise it is 1.25V.The resister R76 also need to be adjusted if the FXSD signal value from the fiber module doesn’t meet the fiber signal threshold spec.4.6 LED IndicatorsThere is one column of LED indicator for one column for port 2. The LED indicators are programmable to three different modes. LED mode is selected through register 195 bit [5:4] setting. The LED mode definitions are specified in Table 5. See Figure 1 for the LEDs’ orientation on the KSZ8863MLL/FLL/RLL evaluation board.Table 5: LED ModesRegister 195 Bit[5:4]00 01 10 11PxLED1 = Speed PxLED1 = Active PxLED1 = Duplex PxLED1 = Duplex PxLED0 = Link/Active PxLED0 = Link PxLED0 = Link/Active PxLED0 = LinkThe KSZ8863MLL/FLL/RLL evaluation board provides two LEDs (PxLED1, PxLED0) for each PHY port.The KSZ8863MLL/FLL/RLL evaluation board also has a power LED (D3) for the 3.3V power supply. When D3 is lit, the board’s 3.3V power supply is “on”.4.7 MII Port Configuration (KSZ8863MLL/FLL)The evaluation board provides access to the KSZ8863MLL/FLL/RLL’s third MAC via the MII port interfaces. The MAC can be configured to MII PHY mode and MII MAC mode via register 53 bit 7. The default of the bit is 0 for MII PHY mode.In MII PHY mode, the MII transmit and receive signals will be on J3, the male MII port connectors. This mode is usually used to connect the KSZ8863MLL/FLL/RLL to an external MAC processor. In MII MAC mode, the MII transmit and receive signals will be on J4, the female MII port connector. This interface is normally used to connect the KSZ8863MLL/FLL/RLL to an external PHY, for example the Micrel KSZ8041NL.4.8 RMII Port Configuration (KSZ8863RLL)In RMII interface, the 50MHz reference clock can be provide by the KSZ8863RLL or by the link partner. When pin 1-2 of JP28 is closed, the reference clock will be output from REFCLKO on Micrel, Inc. January 11, 2011Micrel, Inc. January 11, 2011KSZ8863RLL. Register 198 bit[3] is used to select internal or external reference clock for the KSZ8863RLL RMII interface. If pin 2-3 of JP28 is closed, the REFCLKO disable.Table 6: RMII Clock Setting5.0 Reference DocumentsKSZ8863MLL/FLL/RLL Datasheet Rev. 1.1 (Contact Micrel for latest Datasheet)KSZ8863MLL/FLL/RLL Evaluation Board Schematic Rev. 1.0 (Contact Micrel for latest Schematic)KSZ8863MLL/FLL/RLL Evaluation Board Gerber files Micrel Switch Configuration Software User GuideReg198[3] EN_REFCLKO_3 Clock Source NoteExternal 50MHz OSC input to REFCLKI_3EN_REFCLKO_3 = 0 to DisableREFCLKO_3 for better EMI0 1REFCLKO_3 Output Is Feedback to REFCLKI_3 EN_REFCLKO_3 = 1 to Enable REFCLKO_3 1 1Internal Clock SourceREFCLKI_3 is unconnected EN_REFCLKO_3 = 1 to Enable REFCLKO_3 1 0Not suggestMouser ElectronicsAuthorized DistributorClick to View Pricing, Inventory, Delivery & Lifecycle Information:M icrochip:KSZ8863FLL-EVAL KSZ8863MLL-EVAL。

MAXQ1103评估板使用手册

MAXQ1103评估板使用手册
初步调试 CrossWorks Compiler: Blinky
不用“Hello World” 程序 ,我们建立一个简单的应用程序,一个让 MAXQ1103 评估板上 LED 管交替点亮的程序。
创建一个新的工程,点击 FILE→NEW→NEW BLANK SOLUTION,从弹出的菜单
2 of 8
选择“Executable”,并填写对话框底部的名称和位置内容。我们给项目取名字 为“BlinkyDemo”和存储路径为“c:\work\maxq\maxq1103\blinky”,如图 2。
按下暂停按钮(或进入 DEBUG→BREAK) 。黄色的箭头就会出现在停止的代 码行那里。代码在 delayms 函数内停止执行(见图 6 )。
图 6:代码在 delayms 函数内停止执行 仔细检查 右侧 'Locals'窗口(如果没有显示此窗口 ,选择 DEBUG→DEBUG WINDOWS→LOCALS)。它应该显示当前变量值 ‘x’ 和‘数’。现在按步进按钮(见 图 7)一些时间。你就能在'Local'窗口中看到'x'的值减小了。
图 9:Step Into button 也可以在运行的时候更改变量(和寄存器)。清除所有的中断点( DEBUG→ BREAKPOINTS→CLEAR ALL BREAKPOINTS),点击 GO。点击暂停会再次停留在中间 的 delayms ( )函数中。注意变量‘x’和‘计数’。现在将‘x’改成 2499(点 击‘x’显示的值,当它高亮显示时,输入 2499)。点击几次‘Step Over’或者 ‘Step Into’将看到循环结束和‘count’值减少。
图 7:步进按钮 我们继续按步进按钮直到循环结束,但是这个将一直执行下去。真正我们要 回答的问题是“灯是在闪烁吗?” 。因此在主函数中的 delayms(5)那行程序中 设置中断点。通过点击小三角形来设置中断,离开这行代码,它将变成一个红色 圆圈(图 8 ) 。现在重新运行应用程序(DEBUG→GO 或者按'Play'按 钮 )。应用 程序运行到中断点并挂起。现在单击 Go 几次,当按一下应该可以看到 LED 灯或 亮或灭。这验证灯光闪烁如此之快,我们的眼睛感受不到。

LMP91000评估板说明书

LMP91000评估板说明书

LMP91000评估板用户指南LMP91000评估板用户指南图1 LMP91000SDE VAL气体传感器的连接LMP91000评估板不配备有任何气体传感器。

它支持3电极电化学电池和2电极原电池。

在连接气体传感器之前根据下表配置跳线。

电极电流测定电池(有毒气体传感器)跳线名称配置4-6 1-3 开路开路J_CE_RE_GNDJ_RLOAD_O2J_SENSOR_CFG 本文是National Semiconductor 英文版的译文,本公司不对翻译中存在的差异或由此产生的错误负责。

如需确认任何内容的准确性,请参考本公司提供的英文版。

P_VREF 插头不连接任何电源电压。

2.1 跳线为了在独立模式下使用LMP91000SDEVAL ,下列跳线设置需要依照以下方法进行:2.2 供电电源LMP91000评估板用户指南2电极原电池相关接地 (氧气传感器)跳线名称配置跳线名称配置跳线名称配置2-4 短接;3-5 短接J_SENSOR_CFG J_RLOAD_O2J_CE_RE_GND 1-2 短接 2-4 短接恒电位仪配置中的2电极原电池(氧气传感器)2. 独立使用I 2C 总线具备有10kohm 上拉电阻器以及电平移动电路,它可以在高于或等于I 2C 的外部微控制器电压下向LMP91000提供电源( )。

将该外部微控制器与GPSI16相连接作为引脚输出,如下。

4-6 短接;1-3 短接J_SENSOR_CFG J_RLOAD_O2J_CE_RE_GND开路1-3 短接开路接地 - MENB 短路J_VDD J_MENB参阅示意图引脚12 引脚11引脚13(最大5.25V)引脚2连接P_VDD 和GND 香蕉插头之间的电源电压(2.7V 至5.25V)。

2.3 电压基准如果配置LMP91000,以获得一个外部基准电压,那么连接电源电压或者P_VREF 和GND 香蕉插头之间的基准电源(1.5V≤VREF≤电源电压)。

开发工时评估模板 -回复

开发工时评估模板 -回复

开发工时评估模板-回复开发工时评估模板是一个用于估算软件开发项目所需工时的工具。

它可以帮助项目团队了解项目的时间需求,并制定合理的项目计划。

在使用开发工时评估模板之前,团队需要对项目的需求有一个清晰的了解。

这包括了解项目的规模、技术要求、项目周期等。

接下来将介绍如何使用开发工时评估模板进行工时评估。

第一步:准备工作在开始工时评估之前,团队需要根据项目的需求收集相关的项目文档和资料。

这包括需求文档、设计文档、技术文档等。

团队成员还需要对项目的背景和目标有一定的了解,以便更好地进行工时评估。

第二步:确定工时评估模板根据项目的特点和团队的需求,选择适合的开发工时评估模板。

常见的模板包括任务清单模板、甘特图模板、Sprint计划模板等。

使用模板可以帮助团队更好地组织和管理工作,并提高评估的准确性。

第三步:分解任务将项目的需求分解成多个具体的任务,并根据任务的类型和复杂度进行分类。

例如,对于软件开发项目,可能包括需求分析、设计、编码、测试等任务。

分解任务时需要细化到较小的工作单元,以便更好地进行工时评估。

第四步:估算工时根据任务的特点和复杂度,结合团队成员的经验和能力,为每个任务估算所需的工时。

在进行估算时,可以参考过去的项目经验、专家意见和类似项目的数据。

可以使用模板中的工时估算列,记录每个任务的估算值。

第五步:汇总工时将每个任务的工时估算值进行汇总,得到项目的总工时。

可以根据模板中的公式或功能,自动计算总工时。

同时,还可以根据项目的周期和团队的资源情况,对总工时进行调整和优化。

第六步:校验评估对评估结果进行校验和验证。

团队可以将评估结果与实际开发效果进行比较,以验证估算的准确性。

如果评估结果与实际情况存在较大偏差,可以对评估过程进行迭代和改进,提高评估的准确性。

第七步:制定项目计划根据评估结果制定项目计划。

根据项目的优先级和紧急程度,确定任务的排列顺序和时间安排。

在制定计划时,需要考虑到团队成员的可用资源和工作能力,以确保项目能够按计划完成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
接通电源,用户可以通过 电脑对模块进行配置和数据收 发。
这种应用可以用在简易 GW (无需显示、按键等)以及对 SD-II 的直接配置上。也可以 对模块进行读写、配置、网络 通信测试,了解模块性能。
SM10XB 开发、评估板使用说明
4.SM10XB 与 CPU 对接
用短路插将 JP7、JP8、JP9、 JP10 跳针座按右图短接起来, SM10XB 的异步串口 1 便和 CPU U5 的一个异步串口(串口 1) 连接,RS232 驱动芯片 U1 与 CPU U5 的另一个异步串口 (串口 2)连接。这样,SM10XB 与 CPU 对接通信, 速率为 400kbps。通过 JP1 接口, PC 机串口与 CPU 通信,速率为 115.2kbps。
_U1RXIF=0;
_U1RXIE=1;
}
void T1Init(void) { /* 定时器*/ T1CON=0x8020; PR1 = 124; _T1IE=1; }
/* 定时 1ms*/
void U2Init(void) { /* 串口 U2_IO*/ __builtin_write_OSCCONL(OSCCON & 0xbf); RPINR19bits.U2RXR = 0; RPOR0bits.RP1R = 5;
if (!SMInit_flag) return;
/* 若是 PC 机与模块直接通信,跳过*/
spidermesh@
8
SpiderMesh 无线传感器网络
SM10XB 开发、评估板使用说明
/* 串口速率调整准备*/ SMDI1 = 0; SMDI1_TRIS = 0; SMDI2 = 1; SMDI2_TRIS = 0;
void U1Init(void)
{
/* 串口 U1_IO*/
__builtin_write_OSCCONL(OSCCON & 0xbf);
RPINR18bits.U1RXR = 14;
// U1RX,IN -> RX1,RB14
RPOR3bits.RP7R = 3;
// U1TX ,OUT -> TX1,RB7,RP7
4.SM10XB 与 CPU 对接
5.CPU 编程接口
6.CPU 应用例程
7
7.评估软件包
11
7.1 GW 应用
7.2 MD 应用
13
7.3 LSD-I 应用
7.4 LSD-II 应用
7.5 RSD-I 应用
7.6 RSD-II 应用
14
8.用电脑直接配置模块
8.1 GW 应用
8.2 SD-II 应用
spidermesh@
6
SpiderMesh 无线传感器网络
SM10XB 开发、评估板使用说明
4:PGD 5:PGC
注意:编程接口与 JP7、JP8 跳针座在硬件上有关联,编程时请将 JP7、JP8 上的短路插拔掉,以免影 响编程效果。
6.CPU 应用例程
以下例程对应于 PIC24FJ48GA002 芯片和 MPLAB C30 Compiler 编译器。
//输出到模块 DI1 //输出到模块 DI2
/* 模块复位*/ SRESET = 0; SRESET_TRIS = 0; DelayMs(10); SRESET = 1; lp10: for (j=50;j>1;j--); SMDI2 = 1;
/* 延时 50us */
/* 串口初始化*/ _UARTEN = 0; for (j=100;j>1;j--); U1Init();
U1TXREG = 0xaa; for (j=200;j>1;j--)
{ if (rxm_OK) goto lp60; } lp60: if (rxm_OK) { rxm_OK = 0; if (Urxbuffer[0]==0xaa)
{
/* 等待 200us */ /* 收到数据*/ /* 数据正确*/ /* 等待 200us */
/* 收到数据*/ /* 数据正确,速率调整完成*/
spidermesh@
9
SpiderMesh 无线传感器网络
SM10XB 开发、评估板使用说明
SMDI1_TRIS = 1; SMDI1 = 1; SMDI2_TRIS = 1; _CN14PUE=0; _CN13PUE=0; goto lp30; } } } } /* 数据接收不正确或超时没收到*/ SMDI2 = 0; goto lp10;
SpiderMesh 无线传感器网络
SM10XB 开发、评估板
使用说明
V2.2
Spidermesh 工作室 二○一一年十二月
SpiderMesh 无线传感器网络
SM10XB 开发、评估板使用说明
目录
一.概述
3
二.D0 板使用说明
4
1.工作模式
2.D0 板功能接口
5
3.SM10XB 与 PC 对接
6
/* RX2 上拉*/ // 高速模式
/* 16M -> 115.2kbps. */
/* U1 接收中断*/ // USART1 Receiver interrupt service routine void __attribute__((interrupt,auto_psv)) _U1RXInterrupt(void) { unsigned char data;
__builtin_write_OSCCONL(OSCCON | 0x40);
_CN12PUE=1;
/* RX1 上拉*/
U1MODE = 0x8008;
// 高速模式
U1STA = 0x400;
U1BRG = 0x04;
/* 16M -> 400kbps.4; 500k.3; 115.2k.16; */
15
9.D0 板电路图
16
三.D1 板使用说明
17
1.模式
2.插座
18
3.角色地址编号
4.使用
MD、SD-I
SD-II
5.D1 板电路图
19
spidermesh@
2
SpiderMesh 无线传感器网络
SM10XB 开发、评估板使用说明
一.概述 SM10XB 模块开发、评估板有两种型号,分别为 D0 和 D1 板。D0 板使模块工作于“正常工作”状态,可 用作模块应用程序开发和功能评估。D1 板使模块工作于“DEMO”状态,仅能用作模块的简单功能评估。
spidermesh@
5
SpiderMesh 无线传感器网络
3.SM10XB 与 PC 对接
用短路插将 JP7、JP8、JP9、 JP10 跳针座按右图短接起来, SM10XB 的异步串口 1 便和 RS232 驱动芯片 U1 连接。通过 JP1 接口,PC 机串口就可直接 与 SM10XB 模块进行通信了。速 率为 115.2kbps。
D0 板具有 RS232 接口,可以方便的与 PC 机通信。D0 板上 CPU 程序可由用户任意烧录,用户完全可以 把它作为一个产品开发样机来使用。通过使用 D0 板对模块的操作以及收发数据的应用,可以很快理解和 掌握模块的功能和组网通信性能,为迅速完成最终产品的开发提供了一个非常便利的环境。
spidermesh@
接通电源,CPU 对模块进行 初始化, 模块自动调整串口速 率到 400kbps, 并接受初始化 操作。CPU 对模块进行完全的管理。若 CPU 为 GW 角色,它将完成 PC 与模块间的数据转发。
这种应用是典型的“工作模式”应用。
5.CPU 编程接口
JP3 是 CPU 编程接口,针脚定义如下: 1:MCLR(RESET) 2:VDD 3:VSS
/* 延时 100us */
/* 发第一数据:0x55 */ U1TXREG = 0x55; for (j=200;j>1;j--)
{ if (rxm_OK) goto lp50; } lp50: if (rxm_OK)
{ rxm_OK = 0; if (Urxbuffer[0]==0x55)
{ /* 发第二数据:0xaa */
SCL(GDIO4) (GDIO5) (GDIO6) (GDIO7) (GDIO8) CS
PAC CPU
CC1101 射频收发器
电源
天馈 电路
ANT AGND
/RESET
VCC GND
工作模式应用框图
1.工作模式 当模块上电或复位,片选端为高电平时,模块进入工作模式。 在这一工作方式下,GDIO3、GDIO4 共同组成高速异步串行接口(TX1/RX1),可与外部 PC 或 CPU 实现 全双工高速(115.2-500kbps)异步串行通信。GDIO1(DI1)、GDIO2(DI2)在模块初始化时用于高速异步串 口速率的调整,使模块能够自动适应外接 PC 或 CPU 的异步串口工作速率。模块在初始化完成后,GDIO2 也 作为通信指示灯输出接口(LED),低电平有效,可直接驱动 LED,用于指示无线数据的收发。GDIO5-GDIO8 作为预留接口。 模块的角色担当和数据收发都可以通过外接 PC 或 CPU 来配置和完成。当使用外接 PC 时,须通过 RS232 接口转接,高速异步串口速率仅为 115.2kbps。若外接 CPU,高速异步串口可以通过 TX1/RX1 直接对接, CPU 异步串口速率可以是 115.2-500kbps(推荐使用 400kbps 速率),模块初始化时会自动适应 CPU 的异步 串口速率。模块工作中 CPU 不应变更异步串口速率。
_CONFIG1( JTAGEN_OFF & GCP_ON & GWRP_ON & BKBUG_OFF & COE_OFF & FWDTEN_OFF & ICS_PGx1 & WINDIS_OFF & FWPSA_PR128 & WDTPS_PS32768)
相关文档
最新文档