冷冲压模具设计实例
冷冲压模具结构与设计实例

一、制件工艺性要求
图1-2 冲裁件尺寸工艺性
一、制件工艺性要求
表1-2 钢材制件一般冲孔模可以冲压的最小孔径
表1-3 一般冲裁件剪断面的表面粗糙度值
二、制件的工艺分析
内容二 制订工艺方案及确定模具结构
一、制定冲压工艺方案 二、复合模的概念与分类 三、正装式复合模和倒装式复合模的性能比较 四、复合模工作零件的位置关系 五、复合模具的结构形式
五、复合模具的结构形式
表1-7 卸料螺钉的尺寸(单位:mm)
五、复合模具的结构形式
图1-12 刚性推件(顶件)装置 1—模柄 2—打杆 3—上模座 4—推板 5—垫板 6—连接推杆
7—拆分式卸料块 8—冲孔凸模 9—落料凹模
五、复合模具的结构形式
图1-13 复合模推件装置的工作原理 1—限位螺钉 2—打料横梁 3—打杆 4—推板 5—连接推杆 6—卸料块
一、计算零件毛坯尺寸
表1-11
二、排样与材料利用率
表1-12 低碳钢的搭边a
二、排样与材料利用率
图1-26 排样图
二、排样与材料利用率
图1-27 对排落料排样图
二、排样与材料利用率
图1-28 复合模排样图
二、排样与材料利用率
图1-29 排样图
二、排样与材料利用率
图1-30 步距与有效面积示意图
二、确定落料凹模尺寸
表1-25
表1-26 螺钉直径选用
二、确定落料凹模尺寸
图1- 41 常见凹模板固定形式
二、确定落料凹模尺寸
图1- 42 凹模轮廓尺寸示意图
二、确定落料凹模尺寸
表1-27 凹模壁厚c
二、确定落料凹模尺寸
表1-28 螺纹孔、销钉孔及刃口边的最小距离(淬火件)(单位:mm)
冷冲压模具设计与制造

目录0产品零件图 ...........................................................................错误!未定义书签。
1冲裁弯曲工艺分析 . (I)1.1 工件的工艺分析 (34)2工艺方案的确定 (34)2.1工艺方案 (34)3排样设计 (35)3.1排样的的选择 (35)4凸凹模刃口尺寸计算 (37)4.1合理间隙的确定 (37)4.2刃口尺寸计算 (37)4.3弯曲模尺寸计算与分析 (38)5冲压力计算 (40)5.1弯曲力计算 (40)5.2冲裁力的计算 (40)6模具压力中心计算及冲压设备选择 (41)6.1在排样图上创建坐标系 (41)7凸凹模的结构设计 (42)7.1凸模长度计算 (42)7.2凹模结构设计 (43)7.3凸模结构设计 (43)8其他零件的选择 (46)9模具的闭合高度 (46)10模具工作说明 (47)11小结 (47)附录·······················································································错误!未定义书签。
冷冲压模具设计与制造实例[2]汇总
![冷冲压模具设计与制造实例[2]汇总](https://img.taocdn.com/s3/m/bd988345be23482fb4da4c5a.png)
例8.2.1冲裁模设计与制造实例工件名称:手柄工件简图:如图8.2.1所示。
生产批量:中批量材料:Q235-A钢1.冲压件工艺性分析此工件只有落料和冲孔两个工序。
材料为Q235-A钢,具有良好的冲压性能,适合冲裁。
工件结构相对简单,有一个φ8mm的孔和5个φ5mm的孔;孔与孔、孔与边缘之间的距离也满足要求,最小壁厚为3.5mm(大端4个φ5mm的孔与φ8mm孔、φ5mm的孔与R16mm外圆之间的壁厚。
工件的尺寸全部为自由公差,可看作IT14级,尺寸精度较低,普通冲裁完全能满足要求。
2.冲压工艺方案的确定该工件包括落料、冲孔两个基本工序,方案一:先落料,后冲孔。
采用单工序模生产。
方案二:落料-冲孔复合冲压。
采用复合模生产。
方案三:冲孔-落料级进冲压。
采用级进模生产。
方案一模具结构简单,但需两道工序两副模具,成本高而生产效率低,难以满足中批量生产要求。
方案二只需一副模具,工件的精度及生产效率都较高,但工件最小壁厚3.5mm接近凸凹模许用最小壁厚3.2mm,模具强度较差,制造难度大,并且冲压后成品件留在模具上,在清理模具上的物料时会影响冲压速度,操作不方便。
方案三也只需一副模具,生产效率高,操作方便,工件精度也能满足要求。
通过对上述三种方案的分析比较,该件的冲压生产采用方案三为佳。
3.主要设计计算(1)排样方式的确定及其计算设计级进模,首先要设计条料排样图。
手柄的形状具有一头大一头小的特点,直排时材料利用率低,应采用直对排,如图8.2.2所示的排样方法,设计成隔位冲压,可显著地减少废料。
隔位冲压就是将第一遍冲压以后的条料水平方向旋转180°,再冲第二遍,在第一次冲裁的间隔中冲裁出第二部分工件。
搭边值取2.5mm和3.5mm,条料宽度为135mm,步距离为53 mm,一个步距的材料利用率为78%(计算见表8.2.1)。
查板材标准,宜选950mm×1500mm的钢板,每张钢板可剪裁为7张条料(135mm×1500mm),每张条料可冲56个工件,故每张钢板的材料利用率为76%。
冷冲压模具设计的过程 工程

冷冲压模具设计的过程工程一、方案设计:在工艺分析的根底上,综合考虑产品的产量和精度要求,结构设计:在方案设计的根底上,进一步设计模具各局部零件的具体结构尺寸。
(一)冲裁的工艺分析分析冲裁件的结构形状,尺寸精度,材料是否符合,冲压力工艺要求,从而确定冲裁的可能性。
(二)确定冲裁工艺方案及模具结构形式工序数目,工序性质,工序顺序,工序组合及模具结构形式。
(三)冲压模具的设计计算。
(1)排样(2)冲压力(3)压力中心(4)模具刃口尺寸计算(5)确定各主要零件的外形尺寸(6)计算模具的闭合高度(7)确定所用冲床(四)绘制冲模总装图从冷冲模标准中选取标准件,将标准编号写入详细表。
(五)绘制非标准零件图二、设计实例(一)冲裁件工艺分析1、材料:08F是优质碳素钢,具有良好的冲压性能。
2、结构形状:冲裁件内,外形要尽量防止锋利清角。
3、尺寸精度:未标注按IT14级,查标准公差表。
(二)确定工艺方案及模具形式:采用具有导正钉定位的连续冲裁模。
(三)模具设计计算1、排样:按表2-8查:a:手动送料按图形a=2b: 手动送料按图形b=2条料宽度:B=(d+2a)- =(58+4)-0.6=62-0.6步进:30+2=32画出排样图2、计算总冲压力P总=P冲裁+P推件=P冲孔+P落料+P推件P冲孔=1.3Lt=4*3.14*3.5*2*390=34000NPt=Kt.Pn取n=3 Kt=0.055(查表2-5)Pt=0.055*(126000+34000)*3=26400=186400N=186.4KN3、压力中心在O1上,P2压力中心在O上,离O1距离为X根据压力中心两边边距相等的条件:P1X=(32-X)P2X=6.84、冲模刃口尺寸计算(1)落料凹、凸模尺寸,按配合加工,只计算凹模尺寸。
外形尺寸都属于尺寸变大的情况:凸模尺寸按相应的凹模实际尺寸配作,保证双边间隙:0.246-0.360(2)冲孔时的凸凹模尺寸计算。
冷冲压模具设计与制造实例[2]
![冷冲压模具设计与制造实例[2]](https://img.taocdn.com/s3/m/085e6370be1e650e52ea9989.png)
例8.2.1冲裁模设计与制造实例工件名称:手柄工件简图:如图8.2.1所示。
生产批量:中批量材料:Q235-A钢材料厚度:1.2mm1.冲压件工艺性分析此工件只有落料和冲孔两个工序。
材料为Q235-A钢,具有良好的冲压性能,适合冲裁。
工件结构相对简单,有一个φ8mm的孔和5个φ5mm的孔;孔与孔、孔与边缘之间的距离也满足要求,最小壁厚为3.5mm(大端4个φ5mm的孔与φ8mm孔、φ5mm的孔与R16mm 外圆之间的壁厚)。
工件的尺寸全部为自由公差,可看作IT14级,尺寸精度较低,普通冲裁完全能满足要求。
2.冲压工艺方案的确定该工件包括落料、冲孔两个基本工序,可有以下三种工艺方案:方案一:先落料,后冲孔。
采用单工序模生产。
方案二:落料-冲孔复合冲压。
采用复合模生产。
方案三:冲孔-落料级进冲压。
采用级进模生产。
方案一模具结构简单,但需两道工序两副模具,成本高而生产效率低,难以满足中批量生产要求。
方案二只需一副模具,工件的精度及生产效率都较高,但工件最小壁厚3.5mm 接近凸凹模许用最小壁厚3.2mm,模具强度较差,制造难度大,并且冲压后成品件留在模具上,在清理模具上的物料时会影响冲压速度,操作不方便。
方案三也只需一副模具,生产效率高,操作方便,工件精度也能满足要求。
通过对上述三种方案的分析比较,该件的冲压生产采用方案三为佳。
3.主要设计计算(1)排样方式的确定及其计算设计级进模,首先要设计条料排样图。
手柄的形状具有一头大一头小的特点,直排时材料利用率低,应采用直对排,如图8.2.2所示的排样方法,设计成隔位冲压,可显著地减少废料。
隔位冲压就是将第一遍冲压以后的条料水平方向旋转180°,再冲第二遍,在第一次冲裁的间隔中冲裁出第二部分工件。
搭边值取2.5mm和3.5mm,条料宽度为135mm,步距离为53 mm,一个步距的材料利用率为78%(计算见表8.2.1)。
查板材标准,宜选950mm×1500mm的钢板,每张钢板可剪裁为7张条料(135mm×1500mm),每张条料可冲56个工件,故每张钢板的材料利用率为76%。
冷冲压模具设计实例和编写说明书

冷冲压模具设计实例和编写说明书一、冲裁模如图1所示工件为22型客车车门垫板。
每辆车数量为6个,材料为Q235,厚度t=4mm.图1 车门垫板1.零件的工艺分析零件尺寸公差无特殊要求,按ITl4级选取,利用普通冲裁方式可达到图样要求.由于该件外形简单,形状规则,适于冲裁加工。
材料为Q235钢板,2.确定工艺方案零件属于大批生产,工艺性较好。
但不宜采用复合模.因为最窄处A的距离为6.5mm(图1),而复合模的凸凹模最小壁厚需要8.5mm(见表2—27),所以不能采用复合模.如果采用落料以后再冲孔,则效率太低,而且质量不易保证。
由于该件批量较大,因此确定零件的工艺方案为冲孔—切断级进模较好,并考虑凹模刃口强度,其中间还需留一空步,排样如图2所示。
图2 排样图.工艺与设计计算(1)冲裁力的计算根据式(2—4),冲孔力切断力根据式(2-5),冲孔部分及切断部分的卸料力二、弯曲模如图6-10所示零件为汽车上的塑料闸瓦钢背,每辆车16个。
材料为Q235,厚度t=3mm.图6—10 塑料闸瓦钢背本工序简图设计步骤:1.分析零件的冲压工艺性并确定工艺方案弯曲模没有固定的结构型式,有可能设计得很简单,也可能设计得很复杂,这需要根据工件的材料性能、形状、精度要求和产量进行综合分析,确定模具结构型式。
本工件的断面是燕尾形的,其表面还要翻出两种尺寸的若干梅花形孔,确定工艺方案为弯曲一翻边一修边三个工序.本工序主要完成弯曲工艺,达到如图6—10所示的燕尾形工件.这种燕尾形一般分两次弯成,先弯成四个直角槽形件,然后再侧弯成燕尾形,这就需要两套模具,生产效率低。
考虑该工件的批量较大,因此应该尽量设计一种效率较高的模具,本方案就是采用了能一次成形的转轴式压弯模。
2.进行必要的计算(1)毛坯尺寸计算毛坯尺寸分析如图6,11所示三、拉深模及翻边模如图6—19所示工件,为180柴油机通风口座子,每台车用数量4个.材料为08酸洗钢板,厚度t=1.5mm。
冷冲压工艺模具设计实例

冷冲压工艺模具设计实例随着技术的不断发展,冷冲压工艺逐渐成为了制造业中的一个不可或缺的环节。
这个过程中的一个关键组成部分就是模具,是由模架、模头、模板以及其他紧固部件等组成。
冷冲压工艺模具的设计是一个十分复杂的过程,需要考虑材料的选择、模具的外形尺寸、产品的形状等多个因素。
本文将通过一个实例,阐述冷冲压工艺模具设计的具体过程。
首先,需要确定产品的形状、尺寸和设计要求。
在本文的实例中,我们需要设计的是一个U形金属弯制件,其长30毫米,宽15毫米,高20毫米。
设计要求弯制件的外观要光滑、无毛刺、无裂纹,并且弯曲角度要保持在90度,弯曲半径要保持在5毫米左右。
接下来,我们需要考虑模具的设计。
模具分为男模和女模,分别用于把钣金制品压制成所需的弯制形状。
在本文中,男模采用4个方形组合成的长方形,女模采用类似U形的形状设计。
男模和女模的外观应该与产品的形状完全一致,这样才能保证产品的质量并降低废品率。
在进行模具的设计时,需要考虑模具的尺寸。
考虑到冷冲压工艺中模具的尺寸可以影响到成品的尺寸,所以需要把模具的尺寸控制在一个合理的范围内。
在本文中,男模的尺寸为60毫米×30毫米×30毫米,女模的尺寸为80毫米×20毫米×25毫米。
与此同时,还需要考虑模具的材料。
可以采用碳钢、合金钢、特殊合金或者硬质合金等材料制作模具。
考虑到我们所需制作的弯制件是一种广泛用于各种交通运输车辆中的金属制品,需要考虑其强度、硬度、韧性、耐热性等方面的要求。
在本文中,我们采用了高速钢作为模具材料,其硬度和韧性都比较适中,并且其制作成本相对较低。
最后,还需要考虑一些其它因素,如模具的制造成本、制作周期、精度等。
在本文中,我们选择了传统的数控加工技术,制作周期为2周左右,精度误差控制范围在0.1毫米左右。
总之,冷冲压工艺模具设计是一个高度精密的过程,需要专业的设计人员根据具体的产品形态、尺寸、工艺要求等因素进行综合考虑,并且需要结合经验进行实际操作才能获得最终的理想产品。
冷冲压模具课程设计

沈阳航空工业学院课程设计说明书工艺方案分析及确定零件简图如下图所示生产批量:大批量;材料:H62;材料厚度;1.5mm。
1.产品结构形状分析(1)材料分析H62 普通黄铜;有良好的力学性能,热态下塑性好,冷态下塑性也可以,切削性好,易钎焊和焊接,耐蚀,但易产生腐蚀破裂。
此外价格便宜,是应用广泛的一个普通黄铜品种。
用于各种深引伸和弯折制造的受礼零件,如销钉、铆钉、垫圈、螺母、导管、气压表弹簧、筛网、散热器零件等。
具有良好的拉深成形性τ。
能。
σb=412MPa,MPa=412(2)结构分析加工此工件的首道工序为无凸缘圆筒形件的拉深,要求内形尺寸,没有厚度不变的要求。
此工件的形状满足拉深的工艺要求,可用拉深工序加工。
工件为阶梯拉深加冲孔或者钻孔,考虑到工件加工的复杂,此设计仅涉及拉深到ø48的工艺流程。
其圆角半径为r=r p=3mm≥t,满足再次拉深对圆角半径的要求。
此工件的拉深工艺型好,需要计算工序尺寸。
(3)精度分析零件上尺寸均为未注公差尺寸,在计算凸模和凹模尺寸时,均按公差IT14(GB180-79)处理。
普通拉深即可达到零件的精度要求。
经上述分析,产品的材料性能符合冷冲压加工要求。
在零件工艺性分析的基础上制定其工艺路线如下:零件的生产包括落料、拉深(需计算确定拉深次数)、切边等工序,为了提高生产效率,可以考虑工序的复合,经比较决定采用落料与第一次拉深复合,经多次拉深成形后,由机械加工方法切边保证零件高度的生产工艺。
2 冲压工艺方案的确定沈阳航空工业学院课程设计说明书工艺方案分析及确定根据本零件的设计要求以及各方案的特点,决定采用第2种方案比较合理。
3 圆筒拉深件工艺计算(1)计算毛坯尺寸用表4.1中的面积公式来推导上图所示的无凸缘圆筒形的毛坯直径。
将上图所示的工件的拉深工序分为四个简单的几何体,如下四个部分。
根据相对高度h/d=50/48=1.04。
由表4.3查得,修边余量△h=2.5.H1=47,h2=14.25,d1=46.5mm,d2=43.5mm第一部分的表面积 A=π*ø46.5*(47+2.5)第二部分的表面积 A2=3π(43.5π+12)/2第三部分的表面积 A3=43.5π*14.25第四部分的表面积 A4=43.5π/4据等面积原则,A 毛坯=A1+A2+A3+A4 毛坯面积 A 毛坯=πD 2/4将A1,A2,A3,A4代入上式得毛坯直径 D=100mm(2) 排样①搭边 查表2.8,确定搭边值a,a1时 a=2,a1=1.5②条料宽度 采用无侧压装置,查表2.9,所以(Z=0.,3,△ =0.7)05.003.1047)3.022100()2(-∆-∆-=+⨯+=++=Z a D B mm③材料利用率%1000⨯=bhnAη式中 n —板料(带料或条料)上实际冲裁的零件数量 A —冲裁件面积n —一个进距内冲裁件数目; b —板料(带料或条料)宽度; h ——进距一张板料上总的材料利用率η0的计算式为%10010⨯=LBnF η 式中 n —板料(带料或条料)上实际冲裁的零件数量; 1F —零件的实际面积; L —板料(带料或条料)长度; B —板料(带料或条料)宽度;零件采用单直排排样方式,查得零件间的搭边值为1.5mm ,零件与条料侧边之间的搭边值为2mm ,若模具采用无侧压装置的导料板结构,条料的宽度应为05.03.104-选用规格为1.5mm×210mm×1000mm 的板料,计算裁料方式如下。
冲压模设计经典案例

工序号 1 2
3 3 4
5 6
工序名称 备料 钳工
铣 磨 线切割
热处理 检验
工序内容
设备
铣削各面142*82*13
铣床
1、 画螺纹孔、销钉孔、型孔的中 铣床 心线和打线切割孔中心线
2、 钻螺纹孔并攻丝、钻销钉孔并 绞孔、钻线切割孔
铣固定凸模的沉孔
铣床
140*80*12 保证高的两面的粗糙度 磨床
(2)查《冷冲模国家标准》
选取如下尺寸(本因尽量避
免括号内的尺寸,但因其规
格的组合与计算结果相差太
大故勉强取之)
零件名称
尺寸
数量
垫板(上) 140*80*6 1
固定板(上) 140*80*14 1
凹模 140*80*16 1
卸料板 140*80*12 1
中间板 140*80*10 1
固定板(下) 140*80*16 1
凹模板
工艺过程卡
材料名称及 牌号
T10A
产品名称 落寸
工序号 1 2
150×100×20
凹模板
工序名称
工序内容
备料
铣削、保证毛坯142*82*18
钳工
(1)、划型孔、螺钉、销钉中心 线,
(2)、钻螺纹底孔并攻丝; 钻、绞型孔;钻线切割中心孔
3
铣
保证尺寸140.5*80.5*16.5
目录
1、 设计任务如图 2、 冲裁的工艺分析 3、 冲裁工艺方案的确定 4、 排样图设计 5、 冲裁压力及压力中心的确定 6、 计算凹模外形尺寸和选择典
型组合 7、 模具主要零部件的设计
8、 凹凸模刃口尺寸计算 9、 编制工艺规程 10、 装配图、零件图 11、 致谢 12、 附录参考资料
冷冲压模具结构与设计实例

粉末冶金高速工具钢
4.GD钢
1.D2
2.SKD系列
表0-5 SKD系列的参数对比 表0- 6 以SKD11为基准的纵弯曲、抗弯强度、耐磨性的对比值
1.TiCN涂覆凸模
2.WPC处理凸模
3.HW涂覆处理凸模
图0-2 TiCN涂覆和HW涂覆处理涂层的对比
3.HW涂覆处理凸模
Z1.eps
图1-2 冲裁件尺寸工艺性
一、制件工艺性要求
表1-3 一般冲裁件剪断面的表面粗糙度值
表1-2 钢材制件一般冲孔模可以冲压的最小孔径
制件的工艺分析
内容二 制订工艺方案及确定模具结构
制定冲压工艺方案 复合模的概念与分类 正装式复合模和倒装式复合模的性能比较 复合模工作零件的位置关系 复合模具的结构形式
表1- 44 翻孔相关尺寸计算
一、计算零件毛坯尺寸
表1-11 平板毛坯局部压凸包时的许用成形高度
二、排样与材料利用率
表1-12 低碳钢的搭边a和的数值
二、排样与材料利用率
图1-26 排样图
二、排样与材料利用率
图1-27 对排落料排样图
二、排样与材料利用率
图1-28 复合模排样图
二、排样与材料利用率
图1-29 排样图
二、排样与材料利用率
三、计算冲压力、选择压力机
图1-34 模具卸料、出料结构
三、计算冲压力、选择压力机
表1-14 复合模模具冲压力的计算
三、计算冲压力、选择压力机
表1-15 压力机相关参数与后续部分工艺计算的联系
四、确定模具的压力中心
确定落料凹模尺寸 确定拉深凹模的尺寸 确定冲裁凸模的尺寸 设计模具凸凹模 选择弹性元件 一般冲裁模总体结构的尺寸关系
冷冲压模具设计实例-冲孔模2PPT课件

Lmax 425
I 425 F
61.32 39.6mm
24 0.6 490
➢ 由此可知,允许的凸模最大自由长度为39.6mm。当模具总 体设计使该凸模的自由长度小于39.6mm时,即可满足其弯 曲强度要求。
装备制造系模具教研室
教学情境二:冲孔模具设计
七、凸模、凹模结构设计及轮廓尺寸确定 2、凹模结构设计及轮廓尺寸的确定
(5)根据凹模轮廓尺寸选择标准凹模 根据凹模计算尺寸 LxBxH=156.5x106x17.7选定标准凹模 板:“凹模 160×125×18 GB 2851.1-81•CrWMn”。
装备制造系模具教研室
教学情境二:冲孔模具设计
八、模具总体设计及主要零、部件设计
➢ 为了缩短模具设计周期,模具的总体结构参考《冷冲模》中 “典型组合”。根据材料状态和凹模周界,可选择国标《冷 冲模》“冷冲模弹压卸料典型组合—纵向送料典型组合”。 用标准代号简写为:“典型组合 160×125×140~170 GB 2872.1—81”。
《冷冲压模具设计》
教学情境二:冲孔模具设计 学时:8 授课老师:谷安旭
装备制造系模具教研室
教学情境二:冲孔模具设计
➢明确任务:根据已知条件设计冲裁模
➢ 零件简图:如图1所示 ➢ 生产批量:大批量 ➢ 材 料:1Cr18Ni9Ti ➢ 材料厚度:0.6mm
图1 零件简图 装备制造系模具教研室
教学情境二:冲孔模具设计
Smin
F
压
24.0 0.6 490 5.04mm 2 1400
➢ 经查询长轴为10,短轴为5的凸模截面积为39.26mm2 >5.04 mm2,故满足强度要求。
装备制造系模具教研室
教学情境二:冲孔模具设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A冷冲压模具设计实例工件名称:手柄工件简图:生产批量:中批量材料:Q235-A钢材料厚度:1.2mm1、冲压件工艺性分析此工件只有落料和冲孔两个工序。
材料为Q235-A钢,具有良好的冲压性能,适合冲裁。
工件结构相对简单,有一个φ8mm的孔和5个φ5mm的孔;孔与孔、孔与边缘之间的距离也满足要求,最小壁厚为3.5mm(大端4个φ5mm的孔与φ8mm孔、φ5mm的孔与R16mm外圆之间的壁厚)。
工件的尺寸全部为自由公差,可看作IT14级,尺寸精度较低,普通冲裁完全能满足要求。
2、冲压工艺方案的确定该工件包括落料、冲孔两个基本工序,可有以下三种工艺方案:方案一:先落料,后冲孔。
采用单工序模生产。
方案二:落料-冲孔复合冲压。
采用复合模生产。
方案三:冲孔—落料级进冲压。
采用级进模生产。
方案一模具结构简单,但需两道工序两副模具,成本高而生产效率低,难以满足中批量生产要求。
方案二只需一副模具,工件的精度及生产效率都较高,但工件最小壁厚 3.5mm 接近凸凹模许用最小壁厚3.2mm,模具强度较差,制造难度大,并且冲压后成品件留在模具上,在清理模具上的物料时会影响冲压速度,操作不方便。
方案三也只需一副模具,生产效率高,操作方便,工件精度也能满足要求。
通过对上述三种方案的分析比较,该件的冲压生产采用方案三为佳。
3、主要设计计算(1)排样方式的确定及其计算设计级进模,首先要设计条料排样图。
手柄的形状具有一头大一头小的特点,直排时材料利用率低,应采用直对排,如图8.2.2手柄排样图所示的排样方法,设计成隔位冲压,可显著地减少废料。
隔位冲压就是将第一遍冲压以后的条料水平方向旋转180°,再冲第二遍,在第一次冲裁的间隔中冲裁出第二部分工件。
搭边值取 2.5mm和 3.5mm,条料宽度为135mm,步距离为53 mm,一个步距的材料利用率为78%(计算见表8.2.1)。
查板材标准,宜选950mm×1500mm的钢板,每张钢板可剪裁为7张条料(135mm×1500mm),每张条料可冲56个工件,故每张钢板的材料利用率为76%。
图8.2.2 手柄排样图(2)冲压力的计算该模具采用级进模,拟选择弹性卸料、下出件。
冲压力的相关计算见表8.2.1。
根据计算结果,冲压设备拟选J23-25。
(3)压力中心的确定及相关计算计算压力中心时,先画出凹模型口图,如图8.2.3所示。
在图中将xoy坐标系建立在图示的对称中心线上,将冲裁轮廓线按几何图形分解成L1~L6共6组基本线段,用解析法求得该模具的压力中心C点的坐标(13.57,11.64)。
有关计算如表8.2.2所示。
由以上计算结果可以看出,该工件冲裁力不大,压力中心偏移坐标原点O较小,为了便于模具的加工和装配,模具中心仍选在坐标原点O。
若选用J23-25冲床,C点仍在压力机模柄孔投影面积范围内,满足要求。
(4)工作零件刃口尺寸计算在确定工作零件刃口尺寸计算方法之前,首先要考虑工作零件的加工方法及模具装配方法。
结合该模具的特点,工作零件的形状相对较简单,适宜采用线切割机床分别加工落料凸模、凹模、凸模固定板以及卸料板,这种加工方法可以保证这些零件各个孔的同轴度,使装配工作简化。
因此工作零件刃口尺寸计算就按分开加工的方法来计算,具体计算见表8.2.3所示。
(5)卸料橡胶的设计卸料橡胶的设计计算见表8.2.4。
选用的四块橡胶板的厚度务必一致,不然会造成受力不均匀,运动产生歪斜,影响模具的正常工作。
4、模具总体设计(1)模具类型的选择由冲压工艺分析可知,采用级进冲压,所以模具类型为级进模。
(2)定位方式的选择因为该模具采用的是条料,控制条料的送进方向采用导料板,无侧压装置。
控制条料的送进步距采用挡料销初定距,导正销精定距。
而第一件的冲压位置因为条料长度有一定余量,可以靠操作工目测来定。
(3)卸料、出件方式的选择因为工件料厚为1.2mm,相对较薄,卸料力也比较小,故可采用弹性卸料。
又因为是级进模生产,所以采用下出件比较便于操作与提高生产效率。
(4)导向方式的选择为了提高模具寿命和工件质量,方便安装调整,该级进模采用中间导柱的导向方式。
5、主要零部件设计(1)工作零件的结构设计①落料凸模结合工件外形并考虑加工,将落料凸模设计成直通式,采用线切割机床加工,2个M8螺钉固定在垫板上,与凸模固定板的配合按H6/m5。
其总长L可按公式2.9.2计算:L =20+14+1.2+28.8=64mm具体结构可参见图8.2.4(a)所示。
②冲孔凸模因为所冲的孔均为圆形,而且都不属于需要特别保护的小凸模,所以冲孔凸模采用台阶式,一方面加工简单,另一方面又便于装配与更换。
其中冲5个φ5的圆形凸模可选用标准件BⅡ型式(尺寸为5.15×64)。
冲φ8mm孔的凸模结构如图8.2.4(b)所示。
③凹模凹模采用整体凹模,各冲裁的凹模孔均采用线切割机床加工,安排凹模在模架上的位置时,要依据计算压力中心的数据,将压力中心与模柄中心重合。
其轮廓尺寸可按公式2.9.3、2.9.4计算:凹模厚度H=kb=0.2×127mm=25.4mm(查表2.9.5得k=0.2)凹模壁厚c=(1.5~2)H=38~50.8mm取凹模厚度H=30mm,凹模壁厚c=45mm,凹模宽度B=b+2c=(127+2×45)mm=217mm凹模长度L取195mm(送料方向)凹模轮廓尺寸为195mm×217mm×30mm,结构如图8.2.4(c)所示。
(2)定位零件的设计落料凸模下部设置两个导正销,分别借用工件上φ5mm和φ8mm两个孔作导正孔。
φ8mm导正孔的导正销的结构如图8.2.5所示。
导正应在卸料板压紧板料之前完成导正,考虑料厚和装配后卸料板下平面超出凸模端面lmm ,所以导正销直线部分的长度为1.8mm。
导正销采用H7/r6安装在落料凸模端面,导正销导正部分与导正孔采用H7/h6配合。
起粗定距的活动挡料销、弹簧和螺塞选用标准件,规格为8×16。
(3)导料板的设计导料板的内侧与条料接触,外侧与凹模齐平,导料板与条料之间的间隙取1mm,这样就可确定了导料板的宽度,导料板的厚度按表2.9.7选择。
导料板采用45钢制作,热处理硬度为40~45HRC,用螺钉和销钉固定在凹模上。
导料板的进料端安装有承料板。
(4)卸料部件的设计①卸料板的设计卸料板的周界尺寸与凹模的周界尺寸相同,厚度为14mm。
卸料板采用45钢制造,淬火硬度为40~45HRC。
②卸料螺钉的选用卸料板上设置4个卸料螺钉,公称直径为12mm,螺纹部分为M10×10mm。
卸料钉尾部应留有足够的行程空间。
卸料螺钉拧紧后,应使卸料板超出凸模端面lmm,有误差时通过在螺钉与卸料板之间安装垫片来调整。
(5)模架及其它零部件设计该模具采用中间导柱模架,这种模架的导柱在模具中间位置,冲压时可防止由于偏心力矩而引起的模具歪斜。
以凹模周界尺寸为依据,选择模架规格。
导柱d/mm×L/mm分别为φ28×160,φ32×160;导套d/mm×L/mm×D/mm分别为φ28×115×42,φ32×115×45。
上模座厚度H上模取45mm,上模垫板厚度H垫取10mm,固定板厚度H固取20mm,下模座厚度H下模取50mm,那么,该模具的闭合高度:H闭=H上模+H垫+L+H +H下模-h2 =(45+10+64+30+50-2)mm=197mm 式中L——凸模长度,L=64 mm;H——凹模厚度,H=30mm;h2——凸模冲裁后进入凹模的深度,h2=2mm。
可见该模具闭合高度小于所选压力机J23-25的最大装模高度(220mm),可以使用。
6、模具总装图通过以上设计,可得到如图8.2.6所示的模具总装图。
模具上模部分主要由上模板、垫板、凸模(7个)、凸模固定板及卸料板等组成。
卸料方式采用弹性卸料,以橡胶为弹性元件。
下模部分由下模座、凹模板、导料板等组成。
冲孔废料和成品件均由漏料孔漏出。
条料送进时采用活动挡料销13作为粗定距,在落料凸模上安装两个导正销4,利用条料上φ5mm和φ8孔作导正销孔进行导正,以此作为条料送进的精确定距。
操作时完成第一步冲压后,把条料抬起向前移动,用落料孔套在活动挡料销13上,并向前推紧,冲压时凸模上的导正销4再作精确定距。
活动挡料销位置的设定比理想的几何位置向前偏移0.2mm,冲压过程中粗定位完成以后,当用导正销作精确定位时,由导正销上圆锥形斜面再将条料向后拉回约0.2mm而完成精确定距。
用这种方法定距,精度可达到0.02mm。
7、冲压设备的选定通过校核,选择开式双柱可倾压力机J23-25能满足使用要求。
其主要技术参数如下:公称压力:250KN滑块行程:65mm最大闭合高度:270mm最大装模高度:220mm工作台尺寸(前后×左右):370mm×560mm 垫板尺寸(厚度×孔径):50mm×200mm 模柄孔尺寸:φ40mm×60mm 最大倾斜角度:30°。