氢脆与应力腐蚀断裂的比较
应力腐蚀和氢脆
二、应力腐蚀产生的条件
▪ (1)只有在拉伸应力作用下才能引起应力腐蚀开 裂(近年来,也发现在不锈钢中可以有压应力引起)。 这种拉应力可以是外加载荷造成的应力,但 主要是各种残余应力,如焊接残余应力、热处理 残余应力和装配应力等。 据统计,在应力腐蚀开裂事故中,由残余应 力所引起的占80%以上,而由工作应力引起的则 不足20%。
▪ 控制温度,使材料工作在该体系的临界温度以下, 以抑制SCC的发生。
▪ 采用外加电流阴极保护法也可以防止SCC的发生, 而且在裂纹形成后还可使其停止发展。
采用电化学保护
▪ 一般采用阴极保护法,但高强度钢或其它 氢脆敏感的材料不宜采用。
F/A-18舰载机
SCC像晶间腐蚀一样,能导致飞机结构的临界载荷破裂失效。 在飞机制造时,安装和装配应力也应该消除。材料选择和过程 也能预防SCC,选择较小SCC倾向的铝合金是关键。必须采用 经过长时间时效处理、延展的和消除了应力的铝合金。同样, 利用开发的用于减少应力腐蚀开裂的恰当的铝回火热处理也很 重要。
▪ 应力腐蚀的主裂纹扩展时常有分枝。但不要形成绝对化 的概念,应力腐蚀裂纹并不总是分枝的。
▪ 应力腐蚀破坏的断口,其颜色灰暗,表面常有腐蚀产物 (泥状花样),或腐蚀坑。而疲劳断口的表面,如果是 新鲜断口常常较光滑,有光泽。
▪ 应力腐蚀引起的断裂可以是穿晶断裂,也可以是沿晶断 裂。如果是穿晶断裂,其断口是解理或准解理的,其裂 纹有似人字形或羽毛状的标记。
枯枝状
泥状花状
奥氏体不锈钢应力腐 蚀断口
1Cr18Ni9Ti钢应力腐蚀的解理断口(SEM)
a) 解理断口Βιβλιοθήκη b) 扇形状或羽毛状的痕迹
第06章金属的应力腐蚀和氢脆断裂
测定金属材料的K 测定金属材料的 ISCC 值可用恒载荷法或恒位 移法。以恒载荷法的悬臂梁弯曲试验法最常用, 移法。以恒载荷法的悬臂梁弯曲试验法最常用,所 用试样与测定的K 的三点弯曲试样相同, 用试样与测定的 IC 的三点弯曲试样相同 , 装置见 图6-6。 。 裂纹尖端的ΚⅠ可用公式(6-2)计算。 裂纹尖端的 可用公式( )计算。
(6-2) ) 通过做出Κ 的关系图线, 通过做出 Ⅰ初 — lgtf的关系图线,便可从曲线 的水平部分所对应的Κ 值即为材料的Κ 的水平部分所对应的 Ⅰ初值即为材料的 Ⅰscc。
14
2、应力腐蚀裂纹扩展速率da/dt 、应力腐蚀裂纹扩展速率 当应力腐蚀裂纹尖端的K 当应力腐蚀裂纹尖端的 I>KISCC时,裂纹就会 不断扩展。 不断扩展。 单位时间内裂纹的扩展量称为应力腐蚀裂纹 单位时间内裂纹的扩展量称为 应力腐蚀裂纹 扩展速率, 扩展速率,da/dt。 。
10
2、微观特征 断口的微观形貌一般为沿晶断裂 沿晶断裂, ⑴ 断口的微观形貌一般为 沿晶断裂 , 也可能 为穿晶断裂。 穿晶断裂。 ⑵ 其表面可见到 “ 泥状花样 ” 的 腐蚀产物 (见图6-3a)及腐蚀坑(见图 见图 ) 腐蚀坑(见图6-3b)。 ) 应力腐蚀的显微裂纹有分叉现象 显微裂纹有分叉现象, ⑶ 应力腐蚀的 显微裂纹有分叉现象 , 呈枯树 枝状,如图所示。表明应力腐蚀时, 枝状 , 如图所示 。 表明应力腐蚀时 , 有一主裂纹 扩展较快,其它分枝扩展较慢, 扩展较快 ,其它分枝扩展较慢, 根据这一特征可 将其与腐蚀疲劳、晶间腐蚀等断裂区分开来。 将其与腐蚀疲劳、晶间腐蚀等断裂区分开来。
17
4、 采用电化学保护 使金属远离电化学腐蚀 、 采用电化学保护使金属远离电化学腐蚀 敏感电位区域 敏感电位区域 因为金属在化学介质中只有在一定的电极电 位范围内才会产生应力腐蚀现象,因此采用外加 位范围内才会产生应力腐蚀现象 , 因此采用外加 电位的方法,使金属在化学介质中的电位远离应 电位的方法, 力腐蚀敏感电位区域,也是一种防止措施。 力腐蚀敏感电位区域, 也是一种防止措施 。 一般 采用阴极保护法。 采用 阴极保护法。此方法不适用于高强度钢和其 阴极保护法 它氢脆敏感材料。 它氢脆敏感材料。
6 金属的应力腐蚀和氢脆断裂
举例
低碳钢,低合金钢— 低碳钢,低合金钢—碱脆,硝脆; 高强度钢 钛合金 不锈钢— 不锈钢—氯脆; 铜合金— 铜合金—氨脆; 高强度铝合金— 高强度铝合金—脆裂.
2,产生条件
应力:静应力远低于材料的屈服强度,且 一般为拉应力.包括工作应力和残余应力. 化学介质:一定材料对应一定的化学介质; 如黄铜—氨气氛,不锈钢— 如黄铜—氨气氛,不锈钢—氯离子的腐蚀 介质,低碳钢— 介质,低碳钢—碱脆. 金属材料:纯金属一般不会产生应力腐蚀, 合金对应力腐蚀都比较敏感,不同的合金 成分,敏感性不同.
四,防止应力腐蚀的措施
应力腐蚀是通过阳极溶解的过程进行的. 应力腐蚀机理就是滑移— 应力腐蚀机理就是滑移—溶解理论.它 可以简单地归结为四个过程,即滑移— 可以简单地归结为四个过程,即滑移— 膜破—阳极溶解— 膜破—阳极溶解—再钝化. 防止应力腐蚀的方法要视具体的材料— 防止应力腐蚀的方法要视具体的材料— 介质而定.
2,应力腐蚀临界应力场强度因子KISCC 应力腐蚀临界应力场强度因子K
定义:在特定介质中不发生应力腐蚀断裂 的最大应力场强度因子. 含宏观裂纹的试样,恒定载荷,特定介质, 测KI~tf曲线. KISCC值的测定:1) 恒载荷法:使KI不断增 值的测定:1) 恒载荷法:使K 大的方法,最常用的是恒载荷的悬臂梁弯 曲试验装置.2) 恒位移法:使K 曲试验装置.2) 恒位移法:使KI不断减少, 用紧凑拉伸试样和螺栓加载.
防止应力腐蚀的措施
1,合理选择金属材料:正确选材,选用 KISCC较高的合金. 2,减少或消除机件中的残余拉应力:主要是 应力集中,注意工艺措施. 3,改善化学介质. 4,采用电化学保护:使金属远离电化学腐蚀 区域.一般采用阴极保护法,但高强度钢 或其它氢脆敏感的材料不宜采用.
应力腐蚀及环境氢脆测试方法
K1-tF曲线
五、慢应变率法试验
慢应变率法,又称恒 应变率法,它是将拉伸试 样放在特定的介质中,然 后在慢应变率试验机上, 用一定的、缓慢的应变速 度进行拉伸试验,直到拉 断。
SERT型慢应变应力腐蚀试验机
六、应力腐蚀案例
不锈钢管与管板胀接部位的横向裂纹
管与管板连接方式很多,在应 力腐蚀工程事故分析中,多遇到胀 -焊连接,仅胀未焊连接还仅焊未 胀连接三种。部分胀-焊连接方式 见图。 大量事故分析表明,不论是胀 -焊还是仅胀未焊连接,不锈钢管 束应力腐蚀裂纹多位于胀与未胀过 渡区。 这与滚胀连接时,局部变形, 受有较大的纵向残余拉应力有关。 实测表明,此处纵向应力一般高达 相当于屈服强度的数值。
典型的da/dt-K曲线(K为应力强度因子)
8、破裂电位范围和临界破裂电位
大量的例子表明,对于某一特定体系应力腐蚀 破裂只发生于一定的电位以上,低于这个电位则不 会发生,这个电位值称为应力腐蚀破裂临界电位。
在沸腾的42%MgCl2 溶液中,18-8Ti 不锈钢的电位-断裂 时间关系
二、试样及测试方法的类型
b、三点弯曲试样
恒应变三点弯曲 试样及试验装置
恒载荷三点弯曲试验
1-棒;2-试样; 3-荷重
C、四点弯曲试样
恒应变四点弯曲试样及试样架
恒应变四点弯曲试样及试样架
1-棒;2-试样;3-荷重
d、双弯梁
3、U形弯曲试样
U形试样 弯曲过程
常用的U形试样
1-焊接或缚紧;2-焊接;3-夹紧前;4-受力试样
水中Cl-浓度对 0Cr18Ni10钢SCC 敏感性的影响
5、应力腐蚀破裂敏感系数
在特定条件下,把应力腐蚀破裂时间的倒 数,称为破裂敏感系数。当破裂敏感系数越大时, 材料的应力腐蚀敏感性也越大。
第六章 金属的应力腐蚀与氢脆断裂
第六章金属的应力腐蚀与氢脆断裂Chapter 6 Stress Corrosion and Hydrogen Embrittlement ofMetals第一节概述(Brief introduction)1、定义(Definition)在应力和环境介质的共同作用下,金属构件产生破坏行为按其受力情况与破坏方式的不同可分为以下三种基本类型。
应力腐蚀——金属构件在静态或准静态拉应力和环境介质的共同作用下,经过一定的时间后而产生的低应力脆断称为应力腐蚀(SCC);(包括低碳钢的碱脆、低碳钢的硝脆、奥氏体不锈钢的氯脆和低合金高强度钢的氢脆等)腐蚀疲劳——金属构件在交变应力和环境介质的共同作用下,经过一定的时间后而产生的断裂称为腐蚀疲劳;腐蚀磨损——金属构件在环境介质作用下还受机械摩擦,或者由于腐蚀介质的直接冲刷等引起表面磨损的现象腐蚀磨损。
由于金属的应力腐蚀现象更为普遍,并且其破坏原理更为复杂,氢脆也是极为重要的一种破坏方式,因此本章重点以应力腐蚀和氢脆为主。
同时由于这类腐蚀大多为低应力脆断,因此具有很多的危险性,同时随着航空、原子能、石油化工等工业的迅速发展,这类腐蚀越来越多,因此有必要进行研究。
第二节应力腐蚀(Stress corrosion)(一)应力腐蚀现象及其产生条件(Stress corrosion phenomenon and engendering condition)应力和环境综合作用的结果,其效果不是两者的简单迭加。
绝大多数金属材料在一定介质下都有应力腐蚀倾向。
如:1)低碳及低合金钢的碱脆与硝脆;2)奥氏体不绣钢的氯脆;3)铜合金的氨脆;4)高强度铝合金在空气、蒸馏水中的脆断;5)低合金高强度钢及不锈钢的氢脆等。
可见产生应力腐蚀的条件是:应力、介质及合金的材料(纯金属不会产生应力腐蚀)。
(二)应力腐蚀断裂机理及断口形貌特征(Fracture mechanism and morphology of stress corrosion)1、断裂机理(Fracture mechanism)目前断裂机理有多种理论,至今尚未得到统一,但主要以阳极溶解为基础的钝化膜破坏理论为主。
应力腐蚀断裂和氢脆
海川流浪人应力腐蚀断裂和氢脆金属材料的两种经常有关而又有别的被破坏(或断裂)的现象。
应力腐蚀断裂(SCC) 是应力与腐蚀介质协同作用下引起的金属断裂现象(见金属腐蚀)。
它有三个主要特征:①应力腐蚀断裂是时间的函数。
拉伸应力越大,则断裂所需时间越短;断裂所需应力一般都低于材料的屈服强度。
这种应力包括外加载荷产生的应力、残余应力、腐蚀产物的楔形应力等。
②腐蚀介质是特定的,只有某些金属-介质的组合(见表发生应力腐蚀断裂的典型体系──金属与腐蚀介质的组合)情况下,才会发生应力腐蚀断裂。
若无应力,金属在其特定腐蚀介质中的腐蚀速度是微小的。
③断裂速度在纯腐蚀及纯力学破坏之间,断口一般为脆断型。
氢脆(HE) 又称氢致开裂或氢损伤,是一种由于金属材料中氢引起的材料塑性下降、开裂或损伤的现象。
所谓“损伤”,是指材料的力学性能下降。
在氢脆情况下会发生“滞后破坏”,因为这种破坏需要经历一定时间才发生。
氢的来源有“内含”的及“外来”的两种:前者指材料在冶炼及随后的机械制造(如焊接、酸洗、电镀等)过程中所吸收的氢;而后者是指材料在致氢环境的使用过程中所吸收的氢(见金属中氢)。
致氢环境既包括含有氢的气体,如H□、H□S;也包括金属在水溶液中腐蚀时阴极过程所放出的氢。
金属的应力腐蚀断裂和氢脆是两种既经常相关而又不同的现象。
在高温高压氢气中结构件的开裂,既是HE,又是SCC;水溶液中应力腐蚀时,若阴极过程析出的氢对断裂起了决定性作用,则这种破坏既是SCC,也是HE;这两个实例便位于图1应力腐蚀断裂(SCC)和氢脆(HE)关系的示意所示的重叠区内。
试验方法和工程参量应力腐蚀试验一般采用光滑或缺口试样,固定环境条件(即腐蚀介质和温度),采用断裂为临界点、测定固定应力下的断裂时间(□□)或固定□□下的断裂应力(□□),用□□的长短或□□的高低,来衡量材料抗应力腐蚀断裂能力的大小。
70年代以来,人们广泛地运用了断裂力学研究应力腐蚀断裂;用预制裂纹的试样进行应力腐蚀试验,如图2断裂时间□□与应力场强度因子(□□)之间的关系所示。
应力腐蚀
差 异
• 应力腐蚀:
沿晶裂纹优先在表面生核,源点有大量的腐蚀产物。 沿晶区有严重的二次裂纹或腐蚀坑。 穿晶型的应力腐蚀断口,往往具有泥纹状花样等特征。
•氢脆:
沿晶断裂起源于皮下,呈多源断裂。 断口上撕裂棱较多,二次裂纹较少,尚可观察到平行 条纹花样,但不同于疲劳纹。 在沿晶区能发现韧窝及发纹,在某些区域可观察到氢 所引起的准解理面。
3.3 应力腐蚀和氢脆断裂
某些金属或合金在腐蚀性介质中,受拉应力(或残 余应力)的作用,同时又有电化学腐蚀而导致正 常的韧性材料迅速开裂和早期脆性损坏的现象, 称为应力腐蚀断裂。 某些金属或合金中原来就存在或吸收了过量的氢, 在外加张应力或残余应力的作用下引起的脆性开 裂称为氢脆断裂。 二者常常共存。
宏观分叉尺寸较大,有时达几毫米,甚至厘 米。主裂纹上长出两个或多个几乎以相同 速度扩展的分叉裂纹,分叉间常常是锐角。
2、微观特征
1)泥纹状花样,腐蚀产物覆盖断口所致。 2)微观分叉,尺寸较小,通常在一个晶粒范 围内。 3)裂纹既可穿晶,也可沿晶扩展。
三、应力腐蚀和氢脆的比较
广义均属应力腐蚀
一、应力腐蚀 1、宏观特征
1)断口平齐,垂直于主应力方向,无明显塑性变形 痕迹和唇口,断口一般呈颗粒状,呈现明显的脆 性特征。 2)应力腐蚀是一种局部腐蚀,但裂纹常常被腐蚀产 物覆盖,因而断口灰暗。 3)断口一般有三个区域: 断裂源区、缓慢扩展区、瞬断区
4)应力腐蚀裂纹扩展过程中常常出现分叉。
氢脆与应力腐蚀断裂的比较
三、氢脆与应力腐蚀断裂的比较
应力腐蚀与氢脆往往同时发生。
因此,要从机理上把应力腐蚀与氢脆清晰区分开来是困难的。
但是从预防的角度来看,区分他们又十分必要,因此,可以作如下的分析(表5-2)。
表5-2 氢脆与应力腐蚀断裂异同
应力腐蚀开裂氢脆
产生条件
1 临界值以上的拉应力或低速度应力
临界值以上的拉应力(三
轴应力)
2 合金发生。
而纯金属不发生
合金与某些纯金属都能发
生
3
一种合金只对少数特定化学介质是敏感
的。
其数量和浓度不一定大
只要含氢或能产生氢(酸
洗、电镀)的情况都能发
生
4 发生温度从室温到300℃从-100~100℃
5 无应力时合金对环境是惰性的
无应力时合金对环境是惰
性的
6 阳极反应阴极反应
7 采用阴极防护能明显改善阴极极化反而促进氢脆
8 受应力作用时间支配不明显
9 对金属组织敏感对金属组织敏感
10 不同的σs有不同的门槛值不同的σs有不同的含氢量
外观形貌特征1 裂纹从表面开始。
断口不平整
裂纹从次表面或内部开
始。
断口较平整
2 裂纹分叉,有二次裂纹几乎不分叉,有二次裂纹
3
裂纹张开度小
裂纹不张开
4
裂纹萌生处可能有腐蚀产物,但不一定有
点蚀
裂纹萌生点在内部与点蚀
无关
5 裂纹萌生点可能是一个或多个
裂纹萌生点可能是一个或
多个
6 裂纹不一定在应力集中处萌生裂纹多在三轴应力区萌生
7 多数为沿晶、奥氏体不锈钢为穿晶断口多数为沿晶
8 沿晶断口上有腐蚀产物断口上没有腐蚀。
[机械电子]金属的应力腐蚀和氢脆断裂
2. 白点(发裂)
当钢中含有过量的氢肘,随着温度降低, 氢在钢中的溶解度减小。如果过饱和的氢未 能扩散逸出,便聚集在某些缺陷处而形成氢 分子。此时。氢的体积发生急剧膨胀,内压 力很大足以将金属局部撕裂,而形成微裂纹。 这种微裂纹的断面呈圆形或椭圆形,颜色为 银白色。故称为白点。
图6-9为10CrNiMoV钢锻材调质后纵断面上 的白点形貌
(二). 应力腐蚀断口特征
应力腐蚀的显微裂纹如 图6-2所示,常有分叉现象, 呈枯树枝状。这表明,在应 力腐蚀时,有一主裂纹扩展 较快,其它分支裂纹扩展较 慢。根据这一特征可以将应 力腐蚀与腐蚀疲劳、晶间腐 蚀以及其它形式的断裂区分 开来。
断口的微观形貌丁般为沿晶断裂,也可 能为穿晶解理断裂。其表面可见到“泥状花 样”的腐蚀产物(图6-4a)及腐蚀坑(图6-4b)。
,特别适于单件、成批生产企业使用 。马鞍 车床在 马鞍槽 内可加 工较大 直径工 件。机 床导轨 经淬硬 并精磨 ,操作 方便可 靠。车 床具有 功率大 、转速 高
,刚性强、精度高、噪音低等特点。
12.仪表车床
仪表车床属于简单的卧式车床,一般来 说最大 工件加 工直径 在250mm以下 的机床 ,多属 于
一、应力腐蚀现象及其产生条件
1. 应力腐蚀现象
金属在拉应力和特定的化学介质共同作 用下,经过一段时间后所产生的低应力脆断 现象,称为应力腐蚀断裂(Stress Corrosion Cracking,缩写办SCC)。
2. 产生条件
应力、化学介质和金属材料三者是产生应力腐 蚀的条件。
⑴ 应力 在化学介质诱导开裂过程中起作用的是拉应力。 ⑵ 化学介质 只有在特定的化学介质中,某种金属材料才能
HRC62-65。约为45号钢硬度的2.7倍 。具有 一定的 红热硬 度,耐 温程度 可达560-600摄氏度 。韧性 和加工 机能较 好。高 速钢刀 具制造 简朴, 刃磨利 便,
金属的应力腐蚀和氢脆断裂
• 测定金属材料的KIscc可用 恒载荷法或恒位移KI初, 一般用恒载荷法。
• 整个试验过程中载荷恒定, 随着裂纹的扩展,裂纹尖
端KI增大,可用下式计算:
KI
4.12M BW 3/ 2
1
[
3
3 ]1/ 2
• 其中α=1-a/W,M=FL
• 应力腐蚀断裂SCC:拉应力和特定介质共同作
用下所引起的断裂 • • 一.应力腐蚀断裂的条件及特征 • 1、应力腐蚀现象 低碳钢和低合金钢在苛性碱溶液中的“碱脆”和在含
有硝酸根离子介质中的“硝脆”。 奥氏体不锈钢在含有氯离子介质中的“氯脆”。 铜合金在氨气介质中的氨脆。
2、产生条件
(1)应力:机件所承受的应力包括工作应力和 残余应力。在化学介质诱导开裂过程起作用 的是拉应力,且产生应力腐蚀的应力不一定 很大。
• 可按下式将腐蚀的失重指标换算成腐蚀的深度指 标:
• VL= V-×24×365×10-3/ρ= V-×8.76/ρ • VL-腐蚀的深度指标 mm/a (毫米/年) • ρ-金属的密度 g/cm3
• (3)均匀腐蚀金属耐蚀性的评定 • 对于均匀腐蚀的金属材料,耐蚀性等级的划分大
多采用深度指标,但金属腐蚀深度一般是随时间变 化的,所以从腐蚀手册查到的资料难以精确地反映 出实际情况,因此选用评定标准时,应考虑实际情 况和使用期限。
1、均匀腐蚀的程度与评定方法
• (1)腐蚀速度的质量指标
• 金属因腐蚀而发生质量变化,在失重时是指腐蚀前的 质量与清除腐蚀产物后的质量之间的差值1
S t
• V--失重时的腐蚀速度g/m2h
• W0-金属初始质量 • W1-清除腐蚀产物后的质量 • S-金属的表面积 t-腐蚀时间
第6章_金属的应力腐蚀和氢脆断裂
6.1 应力腐蚀
一、定义:
应力腐蚀断裂: 金属在拉应力和特定的化学介质共同作用
下,经过一段时间后所产生的低应力脆断现象, 称为应力腐蚀断裂。
实际服役的零件通常承受的应力水平较低,介质 的腐蚀作用也较弱,它们单独存在时,零件可能 不会失效。但在二者联合作用下,失效则发生。
应力腐蚀断裂并不是金属在应力作用下的机械性破 坏与在化学介质作用下的腐蚀性破坏的叠加所造成 的,而是在应力和化学介质的联合作用下,按特有 机理产生的断裂。其断裂强度比单个因素分别作用 后再叠加起来的要低得多。
6.1 应力腐蚀
二、应力腐蚀断裂产生的条件及特征
1、拉应力是产生应力腐蚀断裂的必要条件 拉应力可来自外载(工作应力),也可以来自各 种残余应力,如焊接、冷加工、热处理等引起的 残余应力。
2、产生应力腐蚀的环境总是存在化学介质 介质的腐蚀性一般都很弱,若无拉应力作用,材 料在介质中的腐蚀速度很慢,甚至可在金属表面 形成保护膜而不产生应力腐蚀断裂。只有在介质 与拉应力同时作用下,才产生强烈的应力腐蚀。 而且,产生应力腐蚀的介质一般都是特定的,即 每种材料只对某些介质敏感,而该介质对其它材 料可能没有明显作用。
3、金属材料中只有合金才产生应力腐蚀,一般纯金 属不会发生应力腐蚀。所有合金对应力腐蚀都有 不同程度的敏感性。
4、应力腐蚀是一种延迟断裂,即在拉应力作用下, 需经一定时间后才产生裂纹和裂纹扩展。
5、应力腐蚀断裂一般是脆性的,不产生宏观塑性变 形。其断口可为沿晶、穿晶和混合型断裂。多数
情况下,以沿晶断裂为主。
一、氢脆的概念
由氢和应力联合作用而使材料产生脆性断 裂的现象谓之氢脆断裂,简称氢脆,亦称氢损 伤。
二、氢脆产生原因
• 氢脆的产生可有多种途径。在应力腐蚀过程 中,除在阳极产生金属溶解外,若同时在阴极 发生 H++eH 的反应生成原子氢,则会使氢 吸附在金属表面。
第6章 金属的应力腐蚀和氢脆断裂讲解
3)应力腐蚀断裂途径 (1) 根据金属和合金的种类及介 质不同, SCC 可以是沿晶的 或穿晶的: 碳钢和铬不锈钢多系沿晶 奥氏体不锈钢多为穿晶 铝、钛、镍也多为沿晶 但也有例外的。 (2)裂纹扩展的宏观方向与应力 有关,大体垂直于主应力, 但裂纹常有分叉现象,呈枯 树枝状。
9
三、应力腐蚀抗力指标
关于应力腐蚀的机理曾提出许多学说,如活性通 路—电化学理论,膜破裂理论、氢脆理论,“化学脆 变—脆性破裂”理论,腐蚀产物楔入理论、隧洞形蚀孔 撕裂理论,应力吸附破裂理论,快速溶解理论,环境破 裂三阶段理论……等。
最基本的是: 滑移—溶解理论(或称钝化模破坏理论)和氢脆理论。
4
滑移-溶解理论
在特定化学介质中首先在表面形成一层钝化膜,在拉应力 阳极金属变成正离子进入电解质中产生阳极溶解,于是在 作用下裂纹尖端地区产生局部塑性变形,滑移台阶在表面 金属表面形成蚀坑。拉应力在蚀坑或原有裂纹的尖端形成 露头时钝化膜破裂,显露出新表面。这个新表面在电解质 应力集中,使阳极电位降低,加速阳极金属的溶解。如果 溶液中成为阳极,具有钝化膜的金属表面为阴极,从而形 裂纹尖端的应力集中始终存在,那么微电池反应便不断进 成腐蚀微电池。 行,钝化膜不能恢复,裂纹将逐步向纵深扩展。
6
R
(Vc Va )
2、应力腐蚀断口特征
1)应力腐蚀断裂断口宏观特征 (1)即使是塑韧性非常好的材料,其应力腐蚀断裂的宏观形 貌也是完全脆性的。 (2)断口往往是粗糙的。 (3)在亚稳扩展区可见腐蚀产物带来的颜色变化(黑色或灰 黑色),但深裂纹的裂夹区颜色可能很浅,不易为肉 眼辨认。 (4)由于断裂总是从与介质接触的表面开始,故启裂区表面 附近的断口颜色最深,有时由于腐蚀进展的变化会在 断口上留下海滩花样。 (5)与介质接触表面往往有点蚀或蚀斑。 (6)应注意,有腐蚀产物不是判定应力腐蚀的充分条件。因 为也有可能由于别的机制导致断裂后,断口受到随后 的腐蚀。
(推荐)氢脆与应力腐蚀断裂的比较
三、氢脆与应力腐蚀断裂的比较应力腐蚀与氢脆往往同时发生。
因此,要从机理上把应力腐蚀与氢脆清晰区分开来是困难的。
但是从预防的角度来看,区分他们又十分必要,因此,可以作如下的分析(表5-2)。
表5-2 氢脆与应力腐蚀断裂异同应力腐蚀开裂氢脆产生条件1临界值以上的拉应力或低速度应力临界值以上的拉应力(三轴应力)2合金发生。
而纯金属不发生合金与某些纯金属都能发生3一种合金只对少数特定化学介质是敏感的。
其数量和浓度不一定大只要含氢或能产生氢(酸洗、电镀)的情况都能发生4发生温度从室温到300℃从-100~100℃5无应力时合金对环境是惰性的无应力时合金对环境是惰性的6阳极反应阴极反应7采用阴极防护能明显改善阴极极化反而促进氢脆8受应力作用时间支配不明显9对金属组织敏感对金属组织敏感10不同的σs有不同的门槛值不同的σs有不同的含氢量外观形貌特征1裂纹从表面开始。
断口不平整裂纹从次表面或内部开始。
断口较平整2裂纹分叉,有二次裂纹几乎不分叉,有二次裂纹3裂纹张开度小裂纹不张开4裂纹萌生处可能有腐蚀产物,但不一定有点蚀裂纹萌生点在内部与点蚀无关5裂纹萌生点可能是一个或多个裂纹萌生点可能是一个或多个6裂纹不一定在应力集中处萌生裂纹多在三轴应力区萌生7多数为沿晶、奥氏体不锈钢为穿晶断口多数为沿晶8沿晶断口上有腐蚀产物断口上没有腐蚀9与轧制方向无关对轧制方向敏感(注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。
可复制、编制,期待你的好评与关注)。
零件的脆性断裂(含疲劳、应力腐蚀、氢脆断裂等)失效分析
零件的脆性断裂(含疲劳、应力腐蚀、氢脆断裂等)失效分析本文旨在介绍零件的脆性断裂失效分析的重要性和目的。
脆性断裂是指在零件受到一定载荷作用下,没有发生明显的塑性变形,而导致突然断裂的现象。
这种失效模式对于工程结构的安全性和可靠性具有重要的影响。
脆性断裂的失效分析是一项关键的任务,旨在确定零件破坏的原因和机制,以及采取相应的措施来预防和控制脆性断裂的发生。
在分析中,我们还会涉及到与脆性断裂相关的其他失效现象,如疲劳断裂、应力腐蚀断裂和氢脆断裂等。
通过对零件脆性断裂失效的深入分析,我们可以更好地了解材料的性能和强度,确定适当的设计和加工参数,以及制定合理的维护和检修计划。
这对于提高工程结构的可靠性,延长零件的使用寿命以及降低维护成本具有重要意义。
本文将通过对脆性断裂失效分析的相关知识进行详细解释和说明,为读者提供系统的理论基础和实践指导,以便能够有效地进行脆性断裂的失效分析工作。
解释脆性断裂是指在应力作用下,当零件发生断裂时没有明显的塑性变形。
详细讨论导致脆性断裂的各种原因,包括疲劳、应力腐蚀、氢脆断裂等。
脆性断裂是指材料在受力作用下发生的突然断裂,常常发生在零件长时间受重复负载或特定环境下受力情况下。
脆性断裂的原因多种多样,下面将对其中的疲劳、应力腐蚀和氢脆断裂进行详细讨论。
疲劳断裂:疲劳断裂是由于零件在长时间受到变化的载荷作用下产生的。
当重复载荷作用于零件时,如果应力超过了材料的疲劳极限,就会发生疲劳断裂。
疲劳断裂是零件的高频失效模式,常见于机械装置和结构中。
应力腐蚀断裂:应力腐蚀断裂是指在特定环境中,材料受到应力和腐蚀介质共同作用时突然断裂。
应力腐蚀断裂的发生是由于腐蚀介质在零件表面引起局部腐蚀,而应力则产生了裂纹的扩展。
应力腐蚀断裂是一个复杂的断裂形式,常见于化工设备和海洋装备等领域。
氢脆断裂:氢脆断裂是由于材料在存在氢的环境中发生的断裂。
氢脆断裂的主要机制是氢的扩散和积聚在材料中,导致材料的力学性能降低,从而引起断裂。
第7章 应力腐蚀和氢脆断裂
12
二、应力腐蚀断裂机理及断口形貌特征
13
应力腐蚀断裂机理
应力腐蚀断裂最基本机理:是滑移-溶解理论(或称钝化膜 破坏理论)和氢脆理论。
对应力腐蚀敏感的合金在特定化学介质中, (1)表面先形成一层钝化膜,使金属不致进一步受到腐蚀,
即处于钝化态。若无应力作用,金属不会发生腐蚀破坏。
(2)若有拉应力作用,则 可使裂纹尖端产生局部塑 性变形,滑移台阶在表面 露头时钝化膜破裂,显露 出新鲜表面。
1
2
第一章 应力腐蚀和氢脆断裂
3
第一节 应力腐蚀
4
金属机件在加工过程中常会产生残余应力,在服役过程中 又承受外加载荷,同时又与周围环境中各种化学介质或氢相 接触,便会产个特殊的断裂现象,这就有应力腐蚀断裂和氢 脆断裂等。
这些断裂形式大多为低应力脆断,具有很大的危险性。
随着航空航天、海洋、原子能发电、石油、化工等工业的迅 速发展,对金属材料强度的要求越来越高,接触的化学介质 的条件越加苛刻,致使上述各种断裂形式逐年增多。
(原来存在或从环境介质中吸收),在低于屈服强度的应力 持续作用下,经过一段时间(孕育)后,在金属内部,特别 在三向拉应力区形成裂纹,裂纹逐步扩展,最后突然发生脆 性断裂。
这种因氢的作用而产生的延迟断裂称为“氢致延迟断裂”。 工程上所说“氢脆”:大多数是指这类氢脆。
32
氢致延滞断裂特点
氢致延滞断裂特点: 1)只在一定温度范围内出现; 如高强度钢多在-100~ 150℃间,而以室温下最敏感。
若裂纹尖端应力集中始终存在, 则微电池反应便不断进行,钝 化膜不能恢复,裂纹将逐步向 纵深扩展。
15
应力腐蚀断裂机理
应力腐蚀过程,衡量腐蚀速度的腐蚀电流I 可表示为:
金属的应力腐蚀和氢脆断裂
(二) 应力腐蚀裂纹扩展速率da/dt
当应力腐蚀裂纹尖端的 KⅠ > KⅠscc 时,裂纹就 会不断扩展。单位时间内 裂纹的扩展量叫做应力腐 蚀裂纹扩展速率,用da/dt 表示。实验证明,da/dt 与 KⅠ有关。即
da / dt f KⅠ
在 lg(da/dt )-KⅠ坐标 图上,其关系曲线如图6-7 所示。
思考题
1. 解释下列名词 ⑴ 应力腐蚀 ; ⑵ 氢蚀 ; ⑶ 白点; ⑷ 氢化物致脆; ⑸ 氢致延滞断裂。 2. 说明下列力学性能指标的意义: ⑴ scc ;⑵ KⅠscc ;⑶ KⅠHEC ;⑷ da/dt。 3. 试述金属产生应力腐蚀的条件和机理 4. 分析应力腐蚀裂纹扩展速率 da/dt 与 KⅠ关系曲线, 并与疲劳裂纹扩展速率曲线进行比较。
曲线可分为三个阶段: 第Ⅰ阶段 当 KⅠ 刚超过 KⅠscc时,裂纹经过一 段孕育期后突然加速扩展,da/dt -KⅠ曲线几乎与 纵坐标轴平行。 第Ⅱ阶段 曲线出现水平线段,da/dt 与 KⅠ 几乎无关。因为这时裂纹尖端发生分叉现象,裂纹 扩展主要受电化学过程控制。 第Ⅲ阶段 裂纹长度已接近临界尺寸,da/dt 又明显地依赖于 KⅠ,da/dt 随 KⅠ增大而急剧增大。 这时材料进入失稳扩展的过渡区。当 KⅠ 达到 KⅠscc 时便失稳扩展而断裂。 第Ⅱ阶段时间越长,材料抗应力腐蚀性能越好。
四、氢致延滞断裂与应力腐蚀的关系
应力腐蚀与氢致 延滞断裂都是由于应 力和化学介质共同作 用而产生的延滞断裂 现象,两者关系十分 密切。图6-13所示为 钢在特定化学介质中 产生应力腐蚀与氢致 延滞断裂的电化学原 理图。
五、防止氢脆的措施
氢致延滞断裂与环境因素、力学因素及 材质因素三方面有关,因此可从这三个方面 来防止。 1.环境因素 2.力学因素 3.材质因素
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、氢脆与应力腐蚀断裂的比较
应力腐蚀与氢脆往往同时发生。
因此,要从机理上把应力腐蚀与氢脆清晰区分开来是困难的。
但是从预防的角度来看,区分他们又十分必要,因此,可以作如下的分析(表5-2)。
表5-2 氢脆与应力腐蚀断裂异同
? 应力腐蚀开裂氢脆
产生条件1临界值以上的拉应力或低速度应力
临界值以上的拉应力
(三轴应力)
2合金发生。
而纯金属不发生
合金与某些纯金属都能
发生
3
一种合金只对少数特定化学介质是
敏感的。
其数量和浓度不一定大
只要含氢或能产生氢
(酸洗、电镀)的情况
都能发生
4发生温度从室温到300℃从-100~100℃
5无应力时合金对环境是惰性的
无应力时合金对环境是
惰性的
6阳极反应阴极反应
7采用阴极防护能明显改善阴极极化反而促进氢脆8受应力作用时间支配不明显。