合成氨原料气精制

合集下载

合成氨生产原料气的制取

合成氨生产原料气的制取

3. 蒸汽氧比 蒸汽与氧的比例,影响气化温度及煤气 的组成。蒸汽氧比增大,煤气中氢和一氧化 碳增加。但炉温下降,使甲烷含量提高。 一般控制在5~8kg/m3。
五、固定层连续气化岗位安全操作及环保措施
(1).岗位特点 见任务一“五” (2). 岗位物料的性质
主要物料性质见任务一第五点,还有氧气,氮气。氧气为助燃剂, 和氧化剂。
(3)、本岗位主要安全事故及处理方法
事故 炉内结渣,
炉顶出口煤气与灰 锁温度同时升高
现象
处理方法
(1)灰中渣块大
(1)提高汽氧比,与灰熔点相适应。
(2)炉箅电机电流超高或液压驱 (2)降低炉箅转速,加大负荷。
动的液压压力高
(3)CO2偏低
(1)出现沟流;出口煤气温度高, (1)降低负荷,增加汽氧比,短时增加炉箅转速来破坏风洞,检查气化炉
③炉箅。其作用是维持燃料层的 向下移动,均匀分布气化剂, 排灰入灰锁,破碎灰渣。
(2)煤锁和灰锁 气化炉顶设有煤锁,进行间歇 加煤 。 炉底设有灰锁,将灰渣 定期排入灰斗
图3-4 鲁奇炉 1、煤箱 2、分布器 3、水 夹槽4、灰箱 5、洗涤器
(3)灰锁膨胀冷凝器 灰锁膨胀 冷凝器的作用是灰锁泄压时将含有 的灰尘和水蒸气冷凝、洗涤下来, 使泄压气量大幅减少,同时保护 泄压阀门不被含有灰尘的水蒸气 冲刷磨损,延长阀门的使用寿命。
润滑油供油不足
煤锁温度正常而炉内缺煤,温度 高
灰锁下阀打不开,下灰少
降炉负荷,短时增加炉箅转速,若无效停车处理。
(1)降炉负荷,降汽氧比 (2)减小供气量,维持好煤气炉的压力。 (3)减少气化剂,转动炉箅。 (4)气化炉停车处理。
检查润滑油泵,注油点压力、管线是否通畅,调整油泵出口压力。

合成氨工艺概述

合成氨工艺概述
合成氨、尿素生产工艺
2015年6月16日
内容简介
一、氨的发现
二、合成氨工业的形成 三、合成氨技术的发展 四、合成氨工艺的典型流程 五、我厂的工艺流程概述
六、合成氨各工段工艺原理简述
七、尿素生产工艺及原理
一、氨的发现
• 1727年,英国化学家哈尔斯在加热氯化铵及 石灰水混合物时首先发现这种刺激性气味的 气体;1754年,普利恩特利再次通过此实验, 研究其物理化学性质后,测定该气体为氢、 氮两种元素组成。 • 19世纪中叶,欧美炼焦工业,产生的焦炉煤 气中发现了氨,煤中含有微量的氮,少量转 化为氨,含量约为 8-11ppm。
• 3、尿素生产工艺的选择 • 由于氨基甲酸铵合成与脱水都是可逆反应, CO2的转化率仅在50-70%之间,需要将未反应物分 离回收。未反应物的分离回收方法的不同决定了 不同的工艺流程。 • (1)不循环法; • (2)半循环法; • (3)全循环法; • (4)气提法; • (5)中压联尿法(气提全循环法的一种)
• • • • • •
2、尿素反应原理 2NH3+CO2 =(NH2)2CO+H2O 一般认为反应分两步进行 (1)2NH3+CO2=NH4COONH2+Q (2)NH4COONH2=(NH2)2CO+H2O-Q 氨与CO2生成氨基甲酸铵强放热反应,反应迅速, 转化率> 90%;氨基甲酸铵脱水是微吸热液的状态下才能较快进行。
六、合成氨各工段工艺原理简述
• • • • • • • 1、造气工段主要目的及工艺原理 造气工段主要反应有两个阶段: 吹风阶段与制气阶段 (1)吹风阶段碳与空气的反应: C+O2=CO2+Q 2C+O2=2CO+Q C+CO2=2CO-Q 2CO+O2=2CO2+Q 空气煤气主要成分:CO、CO2、O2、N2

合成氨工艺

合成氨工艺

合成氨工艺————————————————————————————————作者:————————————————————————————————日期:合成氨工艺流程(1)原料气制备将煤和天然气等原料制成含氢和氮的粗原料气。

对于固体原料煤和焦炭,通常采用气化的方法制取合成气;渣油可采用非催化部分氧化的方法获得合成气;对气态烃类和石脑油,工业中利用二段蒸汽转化法制取合成气。

(2)净化对粗原料气进行净化处理,除去氢气和氮气以外的杂质,主要包括变换过程、脱硫脱碳过程以及气体精制过程。

①一氧化碳变换过程在合成氨生产中,各种方法制取的原料气都含有CO,其体积分数一般为12%~40%。

合成氨需要的两种组分是H2和N2,因此需要除去合成气中的CO。

变换反应如下:CO+H2OH→2+CO2 =-41.2kJ/mol 0298HΔ由于CO变换过程是强放热过程,必须分段进行以利于回收反应热,并控制变换段出口残余CO含量。

第一步是高温变换,使大部分CO转变为CO2和H2;第二步是低温变换,将CO含量降至0.3%左右。

因此,CO变换反应既是原料气制造的继续,又是净化的过程,为后续脱碳过程创造条件。

②脱硫脱碳过程各种原料制取的粗原料气,都含有一些硫和碳的氧化物,为了防止合成氨生产过程催化剂的中毒,必须在氨合成工序前加以脱除,以天然气为原料的蒸汽转化法,第一道工序是脱硫,用以保护转化催化剂,以重油和煤为原料的部分氧化法,根据一氧化碳变换是否采用耐硫的催化剂而确定脱硫的位置。

工业脱硫方法种类很多,通常是采用物理或化学吸收的方法,常用的有低温甲醇洗法(Rectisol)、聚乙二醇二甲醚法(Selexol)等。

粗原料气经CO变换以后,变换气中除H2外,还有CO2、CO和CH4等组分,其中以CO2含量最多。

CO2既是氨合成催化剂的毒物,又是制造尿素、碳酸氢铵等氮肥的重要原料。

因此变换气中CO2的脱除必须兼顾这两方面的要求。

一般采用溶液吸收法脱除CO2。

合成氨原料气的精制

合成氨原料气的精制

一 、 甲烷化法流程
甲烷化的流程主要有两种类型,即外加热与自热型。
一般流程如下:先用甲烷化反应后出口气体来换热使进 口温度上升,余下的温差再用一氧化碳变换工序来的热气体 或电加热器加热到催化反应所需要的入口气体温度。
脱碳气 脱碳气气水分离器
甲烷化换热器
来自变换气
脱碳气加热器
甲烷化气 甲烷化气水分离器
2、认真操作,做到勤观察、勤调节、优化运行,监控入 口净化气中(CO+ CO2)%的变化情况及脱碳岗位是否有带液 情况,保证甲烷化炉气中(CO+ CO2)%≤10PPm。
3、严密监控系统阻力变化情况。 4、仔细检查合成气分离器的排放情况。
由金属壳体或钢架各种配件组合的炉体结构,要求能承受相当 高的温度、各种介质的腐蚀以及承受一定的压力和荷载,由于气 体中氢分压较大,且气温较高,使氢腐蚀较严重,因此甲烷化炉 采用低合金钢制作。炉内催化剂一般不分层,也可分两层装填。 催化剂层的最低高度与直径之比一般为1:1。催化剂层和气体进 出口都设有热电偶,以测定炉温。
3.原料气成分
C
原料气中水蒸汽含量增加,对甲烷
化反应是不利的,并对催化剂的活性
有一定的影响,所以原料气中水蒸汽
含量越少越好。一般要求小于0.7%。
五、甲烷化法生产操作要点及异常现象处理
(一)装置原始开车及操作
A
1、开车前的准备工作: (1)各相关阀门检查完毕,开启灵活; (2)各相关管道已进行检查,无泄漏、无积水; (3)CO、CO2微量分析仪、温度、压力、流量等 监测、控制仪表安装完毕,调试合格。
升温期间由升温加热炉的燃烧烟气通过气/气换热 器提供的热量加热升温介质。
(1)氮、氢气升温 (2)净化气升温 (3)催化剂升温还原

合成氨原料气醇烃化净化精制新工艺技术

合成氨原料气醇烃化净化精制新工艺技术

合成氨原料气醇烃化净化精制新工艺技术合成氨是一种重要的化学原料,在农业、化肥生产以及其他领域有广泛的应用。

合成氨的生产过程中,醇烃化是一个关键的步骤,它将醇类原料氧化成氨气。

然而,该过程中也存在着一些问题,如氨气纯度不高、能耗大和废水处理困难等。

为了解决这些问题,研究人员提出了一种新的工艺技术,通过气醇烃化净化和精制的方法来改进合成氨的生产过程。

新工艺技术的主要步骤包括以下几个方面:首先,选择高纯度的醇类原料作为氨气的来源。

一般来说,乙醇和丙醇是合成氨生产中常用的原料,它们具有较高的氨气产率。

在这一步中,可以采用蒸馏等方法从原料中提取纯度较高的醇类化合物。

其次,将醇类化合物经过催化氧化反应得到氨气。

这个步骤的关键在于选择适当的催化剂和反应条件,以提高氨气的产率和纯度。

同时,还需控制反应中的温度、压力和氧化剂的使用量,以减少能耗和废水产生。

接下来,对产生的氨气进行净化处理。

在这一步中,可以采用吸附剂、膜分离或冷凝等方法去除气相中的杂质,如水、氧气和碳氧化物等。

通过这些净化手段,可以提高氨气的纯度,并减少对后续工艺步骤的影响。

最后,对净化后的氨气进行精制处理。

在这一步中,可以利用洗涤和吸附等方法去除氨气中的杂质,如硫化氢和二氧化碳等。

通过精制处理,可以进一步提高合成氨的纯度,并保证其达到工业生产的要求。

总的来说,合成氨原料气醇烃化净化精制新工艺技术为合成氨的生产过程提供了一种可行的改进方法。

该工艺技术通过选择高纯度的醇类化合物原料、优化催化氧化反应条件以及采用净化和精制手段,可以提高氨气的产率、纯度和质量,降低能耗并减少废水处理难题,从而实现合成氨生产过程的可持续发展。

合成氨是一种广泛用于农业、化肥生产和其他领域的化学原料。

目前,最常用的方法是通过醇烃化将醇类原料氧化成氨气。

然而,传统的合成氨工艺存在一些问题,如氨气纯度低、废水处理难题以及能耗较高。

为了解决这些问题,研究人员提出了一种新的合成氨原料气醇烃化净化精制工艺技术。

合成氨原料气醇烃化净化精制新工艺

合成氨原料气醇烃化净化精制新工艺

合成氨原料气醇烃化净化精制新工艺1. 醇烃化工艺开发简况合成氨原料气醇烃化净化精制工艺,即在用甲醇化、烃化(或甲烷化)反应的方法来净化精制合成氨原料气,使合成氨原料气进入氨合成工段之前的气体中CO、CO2(俗称气体中的“微量”指标)总量小于10ppm。

此工艺还可联产甲醇,用此工艺取代传统的“醋酸铜氨液洗涤法(俗称铜洗法)”的净化精制合成氨原料气的方法。

工艺简称醇烃化工艺(或双甲工艺)。

合成氨原料气醇烃化净化工艺是双甲工艺的升级技术,双甲工艺是湖南安淳高新技术有限公司开发成功的技术,该技术于上世纪1990年提出,1991年进行工业化实施,1992年9月第一套工业化装置在湖南衡阳市氮肥厂投产成功,国际上属于首先提出,最先进行工业化生产。

1993年4月获国家发明专利权,相继又申请了可调节氨醇比的醇烃化工艺专利,美、英等权威化学文摘均作了报道。

1994年元月通过化工部科技鉴定,1994年6月国家科委将该项目列入《国家重大科技成果推广计划》项目。

第一套装置至今已正常运行13年,目前净化精制能力达到了总氨8万吨/年,副产1万吨甲醇/年,取得了很好的效益。

目前,推广的工艺最大处理合成氨能力为40万吨,在全国中、小合成氨厂推广达15家,目前正在进行工程设计的有5家。

湖南郴州桥口氮肥厂的双甲工艺工程被评为国家优秀创新工程,双甲工艺技术于2000年被授予湖南省科技进步一等奖。

双甲工艺评为1995年度原化学工业部十二大重大科技成果之一,给予重点推广。

2003年醇烃化工艺获得国家科技进步二等奖。

此工艺开发和发展可分为三个阶段,历时十多年的开发创新和竭力推广,有着超乎寻常的辛劳可谓十年磨一剑。

技术发展的第一阶段——确认了国产的甲烷化催化剂在高压条件下的运行条件。

技术发展之初,当有双甲净化这个工艺创意时,当时国内的很多厂家已经有了联醇工段,一般为联醇后再串铜洗工段进行净化精制方法,由于联醇出口的CO和CO2的指标与传统的甲烷化进口的气体成份指标不一样,且压力等级也不一样,要将铜洗去掉用甲烷化来替代必须首先解决进甲烷化炉的进口气体的气体成份问题——一定要使醇后气中的CO+CO2总量不超过0.7%,且较低为好。

合成氨原料气的精制陈诚

合成氨原料气的精制陈诚

常规甲烷化工艺具有如下特点: 原料气中CO+CO2含量较低,一般不超过0.7%;


反应放热量少,热点温度不超过350℃ ;
反应空速为3000-6000h-1; 反应器为单绝热床; 催化剂为镍系,采用浸渍法或共沉淀法制备; 产品气中CO+CO2含量<2ppm。
二.催化剂主要活性组分
二.工艺流程
变换气经压缩机压缩,用水(或热钾碱溶液等)除去其中大部分CO2 后,再由压缩机加压到12~13MPa送至铜氨液洗涤系统。 气体自铜 氨液洗涤塔(简称铜洗塔)的底部进入,自下而上与塔顶喷淋下来的 铜氨液逆流接触,气体中CO、CO2、H2O和O2等即为铜氨液吸收。 如果洗涤后气体中CO+CO2〈10ml/m3,即可加压后送往氨合成系 统。倘若出铜洗塔气体中的CO2含量较高时,还要经过碱洗塔用氨水 或碱液吸收CO2后,才能达到净化要求。 吸收气体中CO等杂质后 的铜氨液,自铜液塔底部经减压至0.15MPa自动流到铜氨液再生系统 的回流塔3的顶部,与再生器4逸出的气体相遇,捕集其中氨及部分 CO2后,由回流塔底部流至还原器7中。还原器的上下两段均上设有 蒸汽加热管,底部有空气加入管 ,中部有旁通管线(即副线)。铜 氨液首先经过下加热器6加热,随即向上流,经还原器内几层有孔折 板后进入上加热器5。在必要时,可开用旁通管,使部分铜氨液不经 下加热器而直接进入上加热器。铜氨液经还原

金属的甲烷化活性顺序: Ru>Ir>Rh>Ni>Co>Os>Pt>Fe>Mo>Pd>Ag


从原料来源、成本和活性进行综合分析,认为Ni是最适 宜的甲烷化催化剂;
优点 缺点
镍系催化剂
钴系催化剂 钼系催化剂 铁系催化剂
活性高、选择性好

粗原料气的净化—原料气的最终净化(合成氨生产)

粗原料气的净化—原料气的最终净化(合成氨生产)

上图 (a) 流程中原料气预热部分系由进出气换热器与外加 热源(例如烃类转化流程用高变气或回收余热后的二段转化 气)的换热器串联组成,该流程的缺点是开车时进出气换热 器不能一开始就发挥作用,升温比较困难。上图 (b) 流程则 全部利用外加热源预热原料气,此反应器的气体用来预热锅 炉给水。
②温度对平衡的影响
从上表(热效应和平衡常数)的数据看出,甲烷化反应的 平衡常数随温度的降低而迅速增大。当原料气中含有少量水蒸 气,而 H2为75%、N2为24%时,可以根据甲烷化反应的平衡 常数,按经验公式计算出达到预期的CO和CO2所需要的条件。
③压力对平衡的影响
甲烷化是体积缩小的反应,在一定温度下,提高压力,反应混合物中 碳氧化物的平衡含量减少。由式经验式可知,碳的氧化物的平衡含量与压 力的平方成反比。因为反应物中H2过量很多,即使在压力不高的条件下这 两种碳的氧化物的平衡含量仍然很低。
根据上面所举的反应器进口气体组成,计算反应器出口温度为400℃ 和操作压力为2.452MPa时,CO、CO2的平衡含量都小于 10-4cm3/m3。 所以,要求出口气体中 CO和CO2含量达到低于 10cm3/m3是很容易的。
因此,从热力学角度,CO和CO2的甲烷化反应可以看做不可逆反应。
①一氧化碳的分解
般在280-420℃
压力 通常随变换、脱碳压力而定1-10MPa 气体 成分 CO+CO2<0.7%
温度
甲烷化炉的入口温度受羰基镍生成温度(121℃)和催化剂 起活性温度的限制,甲烷化催化剂在200℃已经具有活性。 实际生产中,一般控制在280℃左右,高限温度受甲烷化炉 材质的限制,一般不超过420℃。
压力
甲烷化是体积缩小的反应,提高压力有利于化学平衡, 使反应速度加快,提高催化剂的生产能力。在实际生产中, 甲烷化的操作压力由合成总流程和气体净化压力确定。通常 为1.0-10.0MPa。

合成氨生产的三个过程

合成氨生产的三个过程

合成氨生产是一个复杂的过程,包括三个主要阶段:原料气制备、净化、氨的合成。

以下是每个阶段的详细描述:一、原料气制备合成氨生产的第一步是制备原料气,即氮气和氢气的混合气体。

这个过程通常使用天然气或煤作为原料。

天然气蒸汽转化法:天然气的主要成分是甲烷,通过蒸汽转化反应,甲烷与水蒸气在催化剂的作用下反应生成一氧化碳和氢气。

然后,一氧化碳通过变换反应转化为二氧化碳,氢气则被回收利用。

煤为原料:以煤为原料时,首先通过气化炉将煤转化为煤气,煤气中含有大量的氢气和一氧化碳。

然后,一氧化碳通过变换反应转化为二氧化碳,氢气则被回收利用。

二、净化在合成氨生产中,原料气需要经过净化处理,以除去其中的杂质。

脱硫:硫化物是原料气中的主要杂质之一,必须将其除去。

通常使用催化剂或化学吸收剂将硫化物转化为硫化氢,然后通过酸碱洗涤法将其除去。

脱碳:一氧化碳是原料气中的另一种杂质,它会对氨的合成反应产生不利影响。

通过使用催化剂或化学吸收剂将一氧化碳转化为二氧化碳,然后通过碱洗法将其除去。

氢气提纯:经过脱硫和脱碳处理后,原料气中的氢气纯度仍然不够高。

因此,需要进行氢气提纯,通常使用变压吸附或低温分离等方法将氢气纯度提高到99%以上。

三、氨的合成经过净化的原料气进入氨的合成阶段。

合成反应:在高温高压下,氮气和氢气在催化剂的作用下反应生成氨气和水蒸气。

这个反应是放热反应,需要控制温度和压力以确保反应的顺利进行。

气体分离:合成反应完成后,气体混合物需要进行分离。

通常使用冷凝法将水蒸气冷凝成液体水,然后通过蒸馏法将氨气从气体中分离出来。

氨的精制:经过气体分离后得到的氨气可能含有其他杂质,如硫化氢、二氧化碳等。

因此,需要进行氨的精制,通常使用化学吸收法或物理吸附法将杂质除去,以提高氨的纯度。

产品储存和运输:经过精制后的氨可以储存在专门的储罐中,也可以通过管道输送到下游用户。

在储存和运输过程中,需要注意安全措施,防止泄漏和事故发生。

总之,合成氨生产是一个复杂的过程,包括原料气制备、净化和氨的合成三个主要阶段。

合成氨工艺原料气净化方法

合成氨工艺原料气净化方法
合成氨工艺原料气净化方法
摘要:氨合成反应需要高纯度的H2和N2,无论以固体(煤或焦炭)还是用烃类(天然气、石脑油等)为原料获得的原料气中,都含有一氧化碳、二氧化碳、硫化物等不利于合成反应的成分,需要在进入合成塔之前除去,否则将导致氨合成催化剂中毒而无法运行。在多年的实践和探索中,合成氨工艺原料气净化方法不断创新和改进,由原来高污染高能耗的铜洗法发展到如今的高效节能净化技术。本文简述了铜洗、双甲、醇烃化等几种合成氨原料气净化的工艺原理、方法及其特点,对几种净化工艺进行了对比分析。并介绍了新型节能净化技术。
2.3 甲醇甲烷净化工艺法(双甲工艺)
“双甲”工艺,实际上就是合成氨厂将联醇、甲烷化技术引入原料气净化系统,从而省去落 后的铜洗再生工艺。该工艺由两部分组成,在甲醇合成之后,再是传统的甲烷化工艺工序。工艺原理:
甲醇化工艺CO+2H2 = CH3OH CO2+3H2 = CH3OH +H2O;
甲烷化工艺CO+3H2= CH4 +H2O CO2 +4H2=CH4+2H2 O
四.
合成氨厂原料气净化工艺随着时代发展,已从较为落后的铜洗工艺法逐渐发展到 工艺较为先进的醇烃化及醇烷化净化工艺,并不断向节能减排方向发展,如通过增加1台换热器来改进分子筛再生系统,用新增换热器来对系统内氮气进行换热,降低了其他换热器外部供能,从而提高能源利用率,达到节能的效果;合成氨原料气节能净化装置,回收了合成氨原料气中的甲烷,增加了产出,提高了原料利用率,同时有效减少了氨合成工序弛放气的排放量等等。
醇烃化工艺就是醇醚化、醇烃化精制工艺。第一步将双甲工艺中甲醇化催化剂更换成醇醚复 合催化剂,使CO+CO2与H2反应生成甲醇,并随即水解为二甲醚。第二步将双甲工艺的甲烷化催化剂更换为烃化催化剂,使 CO+CO2与H2反应生成低碳烃化物、低碳醇化物,低碳烃化物、低碳醇化物在水冷温度下可冷凝为液相,与气体分离。优点:①脱除CO+CO2的量低且稳定,并能较大幅度地提高联产甲醇的产量;②烃化生产烃类物质,高压常温下冷凝分离;③烃化操作温度较甲烷化低60~80℃,烃化反应床层更易维持自热操作;④烃化催化剂活性温区宽,不易烧结、老化,使用寿命长;⑤烃化催化剂价格便宜;⑥甲醇在烃化塔内无逆反应发生。

合成氨原料气的生产与净化

合成氨原料气的生产与净化

合成氨原料气的生产与净化
不同合成氨厂,生产工艺流程不尽相同,但基本生产过程都包括以下
工序。

(l)原料气制各工序制各合成氨用的氢、氨原料气。

可将分别制得
的氢气和氨气混合而成,也可同时制得氢、氨混合气。

除电解水外,制取的氢、氨原料气都含有硫化物、一氧化碳、二氧化
碳等杂质,这些杂质不仅腐蚀设各,而且是合成氨催化剂的毒物。

因此,
必须除去,制得纯净的氢、氨混合气。

(2)脱硫工序除去原料中的硫化物。

(3)变换工序利用一氧化碳与蒸汽作用生成氢和二氧化碳,除去原料
气中的大部分一氧化碳。

(4)脱碳工序经变换工序,原料气含有较多的二氧化碳,其中既有原
料气制各过程产生的,也有变换产生的。

脱碳是除去原料气中的大部分二
氧化碳。

(5)精制工序经变换、脱碳,除去了原料气中大部分的一氧化碳
和二氧化碳,但仍含有0.3%-3%的一氧化碳和0.1%-0.3%的二氧化碳,需
进一步脱除以制取纯净的氢、氨混合气。

(6)压缩工序将原料气压缩到净化所需耍的压力,分别进行气体净化,得到纯净的氢、氨混合气,然后将纯净的氢、氨混合气压缩到氨合成反应
要求的压力。

(7)氨合成工序在高温、高压和有催化剂存在的条件下,氢气、氨气合成为氨。

在合成氨厂,原料气的制各也称为造气;而脱硫、变换、脱碳、少量
一氧化碳及二氧化碳的脱除等,则统称为原料气的净化。

可以说,合成氨生产是由原料气的制各、净化及氨的合成等步骤组成的。

合成氨原料气净化

合成氨原料气净化
蒽醌二磺酸钠(ADA) 结构式:
A
15
ADA法脱硫基本原理
改良ADA法脱硫包括吸收脱硫和氧化再生 H NSaH 3 CO
2 N a 4 N H 3 a S H 2 V O N O 2 V 4 O a 9 4 Na 2 S O
= N 2 V 4 O 9 a 2 A D 2 NA a H 2 O O 4 N H 3 a 2 A V (D H O
合成氨原料气的净化 --原料气脱硫
• 一、硫的来源及脱硫目的 • 二、脱硫方法的分类 • 三、干法脱硫 • 四、湿法脱硫
A
2
合成氨原料气的净化
氨合成反应需要高纯度的H2和N2。无论以固体(煤 或焦炭)还是用烃类(天然气、石脑油等)为原料获 得的原料气中,都含有一氧化碳、二氧化碳、硫化物 等不利于合成反应的成分,为了防止合成氨生产过程 催化剂中毒,需要在进入合成塔之前除去。
原料气的脱硫
一氧化碳变换
二氧化碳的脱除 原料气精制
A
3
一、硫的来源及脱硫目的
按分子结构

无机硫 有机硫
存在形式
硫铁矿硫 硫化氢 无机硫90%
硫酸盐硫 脂肪硫 芳香硫
CS2、 COS
硫醇、 有机硫10% 硫醚、噻吩
硫化物含量因原料及加工方法不同而不同
A
4
硫化物的危害:
影响催化剂活性导致其中毒;腐蚀设备和管 道;使铜洗系统的低价铜生成硫化亚铜沉淀, 增加铜耗。
H2S吸收程度/% 硫代硫酸钠的量/%
40
30
20
10
0
8.3
8.5
8.7
pH值
图1
2.0
1.5
1.0
0.5
0 6 7 8 9 10 11 12

合成氨生产技术

合成氨生产技术

合成氨生产技术第一节 概述氨是化学工业中产量最大的产品之一,是化肥工业和其他化工产品的主要原料。

现约有80%的氨用于制造化学肥料,除氨本身可用作化肥外,可以加工成各种氮肥和含氮复合肥料,如尿素、硫酸铵、氯化铵、硝酸铵、磷酸铵等。

可以生产硝酸、纯碱,含氮无机盐等。

氨还被广泛用于有机化工、制药工业、化纤和塑料工业以及国防工业中。

因此,氨在国民经济中占有重要地位。

目前氨是由氮气和氢气在高温、高压和催化剂作用下直接合成而得。

除电解法外,不管用何种原料制得的粗原料气中都含有硫化物、一氧化碳、二氧化碳,这些物质都是氨合成催化剂的毒物,在进行合成之前,需将其彻底清除。

因此,合成氨的生产过程包括以下三个主要步骤。

原料气的制取 制备含有氢气、一氧化碳、氮气的粗原料气。

原料气的净化 指除去原料气中氢气、氮气以外的杂质,一般由原料气的脱硫,一氧化碳的变换,二氧化碳的脱除,原料气的精炼等组成。

原料气压缩与合成 将符合要求的氢氮混合气压缩到一定的压力,在铁催化剂与高温条件下合成为氨。

第二节 原料气的制备目前,合成氨生产原料按状态分主要有固体原料,如焦炭和煤;气体原料,如天然气、油田气、焦炉气、石油废气、有机合成废气;液体原料,如石脑油、重油等。

生产方法主要有固体燃料气化法(煤或焦炭),烃类蒸汽转化法(气态烃、石脑油),重油部分氧化法(重油)。

一、固体燃料气化法固体燃料气化过程是以煤或焦炭为原料,在一定的高温条件下通入空气、水蒸气或富氧空气-水蒸气混合气,经过一系列反应生成含有一氧化碳、二氧化碳、氢气、氮气及甲烷等混合气体的过程。

在气化过程中所使用的空气、水蒸气或富氧空气-水蒸气混合气等称为气化剂。

这种生成的混合气体称为煤气。

用于实现气化过程的设备称为煤气发生炉。

煤或焦炭气化因采用不同的气化剂,可以生产出下列几种不同用途的工业煤气: ①空气煤气。

以空气作为气化剂所制得的煤气。

按体积分数计,其中约有50%的N 2,一定量的CO及少量的CO2和H2。

合成氨的生产过程的三个主要步骤

合成氨的生产过程的三个主要步骤

合成氨是一种重要的化工原料,广泛应用于农业、化工和医药等领域。

合成氨的生产过程是一个复杂而精密的工艺流程,包括多个主要步骤。

本文将从以下三个主要步骤来详细介绍合成氨的生产过程。

一、氮气和氢气的准备合成氨的生产过程首先需要准备氮气和氢气。

氮气通常从空气中通过分离提炼获得,而氢气则是通过蒸汽重整、水煤气变换或其他方法制备。

这两种气体的准备需要高纯度和高效率,以确保生产后的合成氨质量。

1. 氮气的提炼氮气的提炼通常采用分子筛吸附法或低温分馏法。

在分子筛吸附法中,空气首先经过过滤和去除杂质的处理,然后通过分子筛吸附剂进行分离,从而获得高纯度的氮气。

而低温分馏法则是利用空气中的氮气和氧气的沸点差异,通过低温冷却凝结氮气,然后采用分馏的方法将氮气和氧气分离。

2. 氢气的制备氢气的制备方法多种多样,常见的包括蒸汽重整法和水煤气变换法。

在蒸汽重整法中,石油制品或天然气经过蒸馏和蒸汽重整反应产生氢气;而水煤气变换法则是通过水蒸气与煤气或重油反应得到氢气。

无论是哪种方法,制备氢气都需要高效能的反应装置和精密的控制系统,以确保生产出高纯度的氢气。

二、氮氢混合气的合成当氮气和氢气准备好后,接下来的主要步骤是将两者合成为氨气。

这一步骤通常采用哈布法,通过高温高压下的催化反应将氮气和氢气合成氨气。

1. 反应装置哈布法的反应装置是合成氨过程中最关键的部分。

通常采用的是固定床反应器,反应器内填充有合成氨的催化剂,然后将预热的氮氢混合气以一定的流量输送到反应器中。

反应器的设计和运行需要考虑到高温高压下的工艺安全和高效能的问题,同时还要考虑催化剂的运转和再生等技术性问题。

2. 反应条件在哈布法的反应条件中,温度和压力是两个至关重要的因素。

一般情况下,合成氨的反应温度在350-550℃之间,压力在100-300大气压之间。

还需要考虑反应速率与选择性、热力学与动力学等因素,以保证合成氨的产率和质量。

三、氨气的精馏和提纯合成氨的最后一个主要步骤是氨气的精馏和提纯。

合成氨原料气精炼的工艺流程和条件

合成氨原料气精炼的工艺流程和条件

合成氨原料气精炼的工艺流程和条件下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!合成氨原料气精炼的工艺流程和条件介绍合成氨是一种重要的化工原料,广泛用于生产化肥、合成尿素等。

合成氨工艺简介解读

合成氨工艺简介解读

• (2)、固定层间歇法制半水煤气各工艺循环的作用 • 吹风:以空气为气化剂,空气自下而上通过燃料层,目的是通过C与 O2的化学反应,放出热量,并贮存于燃料层中,为制气阶段提供热量。 • 回收:吹风后期,空气自下而上,通过燃料层,氧气燃烧后,回收氮 气到气柜,控制H2/N2比。 • 上吹制气:以蒸汽(或配少量空气)为气化剂,自下而上通过燃料层, 燃料中的C与水蒸汽反应,生成半水煤气。这个过程加入空气并不单 纯为了提高温度,主要是为了配入适量N2,以满足原料气H2/N2比要 求,即所谓“上吹加氮”。 • 下吹制气:上吹制气后,蒸汽改变进入燃料层的方向,自上而下通过 燃料层生产水煤气,以保持气化层的位置和温度稳定在一定区域内。 • 二次上吹:下吹制气后,蒸汽改变方向,自下而上通过燃料层,即生 产水煤气,又能排净炉底残留的半水煤气,为空气通过燃料层创造安 全条件。 • 空气吹净:空气自下而上通过燃料层,生产空气煤气,将原来炉上部 残留的水煤气一并送入气柜。
3、流程图
一入
压缩一段来气体 油分离器 活性炭滤油器
二出 一入 二出
三入 一出
二出 二入 一出
二入
饱和热水塔
一出 二入
一入
热交预腐蚀器
二入
电炉
一入
淬冷 器
一出
二出
变换炉
三出
热水换热器 变换气去变脱
变换气冷却 分离器
软水换热器
四、变换气脱硫
• 1、生产原理 • 将变换气中的硫化物(H2S)用碱液法气液相逆向接触 吸收,达到净化变换气的目的。净化后的变换气硫化物含 量在20mg/m3以下,吸收后碱液经氧化再生(催化剂作用 下),析出单质硫,碱液得到再生,循环使用,硫泡沫送 去硫回收岗位处理。 • 吸收反应:Na2CO3 + H2S = NaHS + NaHCO3 • COS + 2Na2CO3 + H2O =Na2CO2S + 2NaHCO3 • Na2CO3 + CO2 + H2O = NaHCO3 • 再生反应:NaHS + 1/2O2 = NaOH+S↓ • NaHCO3 + NaOH = Na2CO3 + H2O • 2Na2CO2S + O 2 = Na2CO3 + 2S↓
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


氨经济效益为150.48万元。双甲工艺有明 显的节能效益,吨氨煤气(或天然气)消 耗降低11.24%,可少消耗汽400~600kt。 ④环境效益 减少和消除了两个污染源。因 去除了铜洗工艺,消除了因铜液“跑冒滴 漏”造成的污染。因将放空的CO、CO2 回收利用制取甲醇,消除了铜洗再生产放 空污染。
• (3)甲烷化 通过下述反应将0.1%~0.3% Co+2H2→CH3OH CO2+4H2→CH4+2H2O (4)甲醇化 甲烷化操作压力为 7.0~32.0MPa 技术关键:新工艺特殊之处在于把甲醇化 和甲烷化串接起来,把甲醇化、甲烷化作 为原料气的净化精制手段,有效的减少了
• 亲消耗,且副产甲醇或双甲燃料,变废为 宝。关键在于控制甲烷化后CO+CO2量越 来越少越好。因此关键技术是甲醇化—甲 烷化串接流程及甲醇化反应器。 • 该技术在1990年9月申请发明专利,1993 年4月获得发明专利权,1994年1月通过化 工部鉴定。 • 主要技术经济指标如下:
合成氨原料气精制技术
——双甲新工艺
合成氨原料气精制技术的技术内容和工艺流程
• (1)将合成氨原料气中CO采用变换反应, 使CO降至1.5%~5%CO2变成 化学产品甲醇,使原料气中CO+CO2达到 0.1%~0.3%,此过程称为甲醇化 CO+2H2 → CH3OH CO2+3H2→CH3OH+H2O
① 气体中CO+CO2净化指标 气体净化前 20~25cm3/m3,气体净化后小于等于 10cm3/m3。 ② 吨氨原材料消耗定额 采用新工艺前,铜洗 工序需消耗铜0.2kg、醋酸2kg、氨10kg、蒸 汽350kg。采用新工艺后,取消铜洗工序,消 耗摊入副粗甲醇成本。 ③ 经济效益 因取消铜洗工序,吨氨可节约物耗 (铜、冰醋酸、液氨)14元、蒸汽30元、氨 耗6.48元等。年产10kt合成氨可节约50.48万 元;副产甲烷,按氨醇比5:1计算,10kt氨副 产2000t甲醇,利润100万元。年产10kt合成
相关文档
最新文档