数据结构学习(C++)——双向链表
c链表库函数
c链表库函数全文共四篇示例,供读者参考第一篇示例:C语言是一种广泛应用于系统编程的高级语言,而链表(Linked List)是C语言中常用的数据结构之一。
在C语言中,链表并不像数组一样有现成的库函数可以直接调用,需要通过自定义函数来实现链表的操作。
为了方便使用链表,不少开发者封装了链表操作的库函数,提供了一些常用的链表操作接口,以供开发者使用。
本文将介绍一些常见的C链表库函数及其用法。
一、链表的概念及基本操作链表是一种线性表的存储结构,由若干节点(Node)组成,每个节点包含数据域和指针域。
数据域用于存放数据,指针域用于指向下一个节点。
链表的最后一个节点指针域为空(NULL),表示链表的末尾。
常见的链表操作包括创建链表、插入节点、删除节点、遍历链表、查找节点等。
下面我们来看看C语言中常用的链表库函数。
二、常见的C链表库函数1. 创建链表在C语言中,创建链表的函数通常包括初始化链表头节点和链表节点的操作。
```#include <stdio.h>#include <stdlib.h>//定义链表节点typedef struct node {int data;struct node* next;} Node;2. 插入节点插入节点是链表操作中的重要操作,可以在链表的任意位置插入新节点。
常见的插入方式包括头部插入和尾部插入。
```//头部插入节点void insertNodeAtHead(Node* head, int data) {Node* newNode = (Node*)malloc(sizeof(Node));newNode->data = data;newNode->next = head->next;head->next = newNode;}以上是常见的C链表库函数,这些函数可以帮助我们更方便地操作链表。
在实际开发中,可以根据需要自定义更多的链表操作函数,以满足具体的需求。
数据结构(C语言版)(第2版)课后习题答案
数据结构(C语言版)(第2版)课后习题答案数据结构课后习题答案李冬梅目录第第第第第第第第1章绪论 ................................................ ................................................... ............... 1 2章线性表 ................................................ ................................................... ........... 5 3章栈和队列................................................. ................................................... ..... 14 4章串、数组和广义表 ................................................ ......................................... 27 5章树和二叉树 ................................................ ................................................... .. 34 6章图 ................................................ ................................................... ................... 44 7章查找 ................................................ ................................................... ............. 55 8章排序 ................................................ ................................................... . (66)II第1章绪论1.简述下列概念:数据、数据元素、数据项、数据对象、数据结构、逻辑结构、存储结构、抽象数据类型。
双向链表
第8讲 双向链表● 循环单链表的出现,虽然能够实现从任一结点出发沿着链能找到其前趋结点,但时间耗费是O (n) 。
● 如果希望从表中快速确定某一个结点的前趋,另一个解决方法就是在单链表的每个结点里再增加一个指向其前趋的指针域prior 。
这样形成的链表中就有两条方向不同的链,我们称之为双向链表。
● 双向链表的结构定义如下:typedef struct DNode{ ElemType data ;struct DNode *prior ,*next ;}DNode, * DoubleList ;● 双向链表的结点结构如图所示。
图:双链表的结点结构注:● 双向链表也是由头指针唯一确定的,● 增加头结点能使双链表的某些运算变得方便● 由于在双向链表中既有前向链又有后向链,寻找任一个结点的直接前驱结点与直接后继结点变得非常方便。
● 设指针p 指向双链表中某一结点,则有下式成立:p->prior->next = p = p->next->prior●在双向链表中,那些只涉及后继指针的算法,如求表长度、取元素、元素定位等,与单链表中相应的算法相同,● 但对于前插和删除操作则涉及到前驱和后继两个方向的指针变化,因此与单链表中的算法不同。
1、 双向链表的前插操作【算法思想】欲在双向链表第i 个结点之前插入一个的新的结点,则指针的变化情况如图所示:… p …s->prior=p->prior; ①p->prior->next=s;②s->next=p; ③p->prior=s;④【算法描述】int DlinkIns(DoubleList L,int i,ElemType e){DNode *s,*p;… /*先检查待插入的位置i是否合法(实现方法同单链表的前插操作)*/… /*若位置i合法,则找到第i个结点并让指针p指向它*/s=(DNode*)malloc(sizeof(DNode));if (s){ s->data=e;s->prior=p->prior; ①p->prior->next=s; ②s->next=p; ③p->prior=s; ④r eturn TRUE;}else return FALSE;}2、双向链表的删除操作【算法思想】欲删除双向链表中的第i个结点,则指针的变化情况如图所示:p->prior->next=p->next; ①p->next->prior=p->prior; ②free(p);【算法描述】int DlinkDel(DoubleList L,int i,ElemType *e){DNode *p;… /*先检查待插入的位置i 是否合法(实现方法同单链表的删除操作)*/… /*若位置i 合法,则找到第i 个结点并让指针p 指向它*/*e=p->data;p->prior->next=p->next; ①p->next->prior=p->prior; ②free(p);return TRUE;}3、 双向循环链表双向链表可以有循环表,称为双向循环链表。
数据结构中的双向链表实现和应用场景
数据结构中的双向链表实现和应用场景双向链表是一种常用的数据结构,它在许多实际应用中都发挥着重要的作用。
本文将介绍双向链表的实现原理以及一些常见的应用场景。
一、双向链表的实现原理双向链表由一系列节点组成,每个节点包含两个指针,一个指向前一个节点,一个指向后一个节点。
相比于单向链表,双向链表可以实现双向遍历,提高了一些操作的效率。
1.1 节点定义双向链表的节点通常由数据域和两个指针域组成,例如:```struct Node {int data; // 节点数据Node* prev; // 前一个节点指针Node* next; // 后一个节点指针};```1.2 插入操作在双向链表中插入一个节点可以分为两种情况:在表头插入和在表尾插入。
在表头插入时,只需修改原来头节点的prev指针为新节点的地址,并将新节点的next指针指向原头节点即可。
在表尾插入时,需要先找到原来的尾节点,然后将尾节点的next指针指向新节点的地址,并将新节点的prev指针指向尾节点的地址。
1.3 删除操作删除操作与插入操作类似,同样分为在表头和表尾删除节点。
在表头删除时,只需将头节点的next指针指向新的头节点,同时将新头节点的prev指针置为空。
在表尾删除时,需要先找到尾节点的前一个节点,然后将该节点的next指针置为空。
1.4 查找操作双向链表支持从前向后和从后向前两种遍历方式。
从前向后遍历时,我们可以利用节点的next指针不断向后遍历得到所有节点。
同样,从后向前遍历时,可以利用节点的prev指针不断向前遍历得到所有节点。
二、双向链表的应用场景双向链表广泛应用于各种软件和系统中,下面列举了一些常见的应用场景。
2.1 浏览器的历史记录在浏览器中,经常需要记录用户浏览过的网页历史记录。
这时可以使用双向链表来实现。
每当用户访问一个新的网页,就在双向链表中插入一个新节点,同时将新节点的next指针指向前一个节点,prev指针指向后一个节点。
天大《数据结构》学习笔记三
{ p=(struct node *)malloc(sizeof(struct node)); scanf(&p->data); p->next=L->next; L->next=p;
} } 3.2按已知数组建立链表:/*正序*/
{ …… q=(struct node *)malloc(sizeof(struct node)); head=q;q->next=NULL; for(i=1;i<=n;i++) {p=(struct node *)malloc(sizeof(struct node));
}
3、课后练习: 国际象棋“马”的遍历算法。
四、链表:
1、引入指针型变量的原因:
1.1与其它类型的变量的不同; 1.2指针型变量为“地址”而设立;
2、指针型变量定义:
2.1定义
例如:
struct node
{int year;
int month;
int day;
}*p.*q;
或 structnode*p,*q;
‘=’:则退栈,(此时为‘(’‘)’匹配),扫描下一个。
数据结构—学习笔记三
‘>’:运算数栈退二个,运算符栈退一个,形成运算,结果进栈,返 回②。
3、实例运行:: 再运行:(3+4)*2#
4、程序: {initstack(OPTR);PUSH(OPTR,’#’); initstack(OPND);c=getchar(); while((c!=‘#’)||(GetTop(OPTR)!=‘#’))
{switch(tem) {case‘[’: case‘(’:{top++ s[top]=tem; break; } case‘]’:{if(s[top]==‘[’) {y=s[top]; top--; } else err=1; break; } case‘)’:{if(s[top]==‘(’) {y=s[top]; top--; } else err=1; break; } default:{err=1;break; } } if(err!=1)scanf(“%c”,&tem); }
《数据结构》学习指导
《数据结构》学习指导说明:本指导以《数据结构》(C语言版)(严蔚敏等编著,清华大学出版社1997年出版,国家级优秀教材特等奖)和《数据结构题集》(严蔚敏等编著,清华大学出版社1999年出版)为教学主要参考书。
一、绪论1、学习目的:明确数据结构课程在本专业知识结构中的地位,作用。
课程的特点,教学的要求,方法。
明确数据结构所研究的问题以及有关基本概念。
初步掌握抽象数据类型的表示与实现,初步明确算法分析的作用与分析的重点,初步掌握算法分析的方法。
2、学习重点:数据的逻辑结构、存储结构及其算法,数据结构的有关概念,抽象数据类型及其表示与实现,算法,算法设计的要求,算法的时间复杂度和算法的空间复杂度。
3、学习难点:数据结构的有关概念,抽象数据类型的表示与实现;算法的时间复杂度分析。
4、课程内容与基本要求(一) 数据结构的引入(1) 三个世界:现实世界,信息世界,机器世界。
数据结构要解决的就是实现从现实世界到信息世界,再由信息世界到机器世界的转换,从而实现用计算机来解决问题的目的。
(2) 非数值问题(结合三个世界讲):控制,管理,数据处理(3) 数值问题:数值计算(4)数据结构:从学科角度讲,数据结构是一门研究非数值计算的程序设计问题中计算机操作对象以及他们之间的关系和操作等等的学科。
(二) 课程的地位,性质,作用。
(1) 地位: 计算机专业的核心课程之一。
(2) 性质: 算法理论基础和软件设计的技术基础课。
(3) 作用: 程序设计的基础,编译程序,操作系统,数据库系统及软件系统和应用程序的基础(三) 数据结构的产生和发展(四) 课程的特点,学习的要求教材:《数据结构》(C语言版)严蔚敏等编著北京清华大学出版社1997年参考书:《数据结构》许卓群等编著北京高等教育出版社1987年数据结构实用教程》(C/C++描述)徐孝凯北京清华大学出版社1999年《数据结构题集》严蔚敏等编著北京清华大学出版社1999年《数据结构导学》苏光奎等编著北京清华大学出版社20XX年《数据结构》(C语言篇)-习题与解析李春葆编著北京清华大学出版社20XX年《数据结构》实验指导书唐开山自编讲义20XX年(五) 基本概念和术语数据数据元素数据对象(4)数据结构:按某种逻辑关系组织起来的一批数据,按一定的存储表示方式把它存储到计算机的存储器中,并在这些数据上定义了一个运算的集合,叫做一个数据结构。
数据结构试题
一、判断题(正确在括号内填√,错误在括号内填×,每题1分,共15分)()1.线性表采用顺序存储,必须占用一片连续的存储单元。
()2.栈和队列的共同点是只允许在端点处插入和删除元。
()3.数据结构包括数据间的逻辑结构、数据的存储方式和数据的运算三个方面。
()4.一棵哈夫曼树中不存在度为1的结点。
()5.散列法是一种对关键字进行运算的查找方法和存储方法。
()6.一个队列的入队序列是1,2,3,4,则队列的出队序列是4,3,2,1。
()7.数据元素是数据的最小单位。
()8.算法的五个特性为:有穷性、输入、输出、完成性和确定性()9.线性表采用链式存储结构时,其地址必须是连续的。
()10.二叉树中任何一个结点的度都是2。
()11.直接插入排序是稳定的排序。
()12.n个顶点的无向图最多有n*(n-1)条边。
()13.一个有向图的邻接矩阵一定是一个非对称矩阵。
()14.用二分查找法对一个顺序表进行查找,这个顺序表可以是按各键值排好序的,也可以是没有按键值排好序的。
()15.设高度为h的二叉树上只有度为0和度为2的结点,则此类二叉树中所包含的结点数至少为2h-1。
二、单项选择(在备选答案中选出一个正确答案,并将正确答案的序号填在题干后的括号内。
每题1分,共15分)1. 下列算法的时间复杂度为()。
x=n;// n>1 While(x>=(y+1)*(y+1)) Y++;A.O(n1/2) B.O(n2) C. O(log2n) D.O(n)2. n个顶点的无向连通图的最小生成树包含( )条边。
A.nB.n-1C.n/2D.n+1。
3. 深度为6(根的层次为1)的二叉树最多有()个结点。
A.64 B.32 C. 63 D.31 4. 一个线性表第一个元素的存储地址是100,每个元素的长度为2,则第5个元素的地址是( ) 。
A. 110B. 120C. 100D. 1085. 在一个单链表中,若删除p所指结点的后续结点,则执行()A.p->next=p->next->next ; B.p=p->next;C.p->next=p->next; D.p =p->next->next;6 . 稀疏矩阵一般的压缩存储方法有两种,即()。
《C语言链表》课件
详细描述
删除链表中的节点需要找到要删除的节点,修改其前一个节点的指针,使其指向要删除节点的下一个 节点,然后将要删除节点的指针置为NULL。如果要删除的是头节点或尾节点,还需要对头指针或尾 指针进行相应的修改。
遍历链表
总结词
了解如何遍历链表中的所有节点
VS
详细描述
遍历链表需要从头节点开始,依次访问每 个节点,直到达到链表的尾部。在遍历过 程中,可以使用一个指针变量来指向当前 节点,每次循环将指针向后移动一个节点 ,即修改指针的next指针。
链表和循环链表的主要区别在于它们的最后一个节点指向的方向。在链表中,最后一个节点指向NULL; 而在循环链表中,最后一个节点指向第一个节点。循环链表具有更好的性能,但实现起来相对复杂一些 。
05
总结与展望
总结链表的重要性和应用场景
总结1
链表作为C语言中一种基本的数据结构,在计算机科学中 有着广泛的应用。通过学习链表,可以更好地理解数据 结构的基本概念,提高编程能力和解决实际问题的能力 。
详细描述
合并两个有序链表可以通过比较两个链表的 节点值来实现。从头节点开始比较,将较小 的节点添加到结果链表中,并将指针向后移 动。重复此过程直到其中一个链表为空。如 果还有剩余的节点,将其添加到结果链表的 末尾。这种方法的时间复杂度为O(n),其中
n为两个链表中节点的总数。
04
常见错误与注意事项
内存泄漏问题
内存泄漏定义
在C语言中,内存泄漏是指在使用动 态内存分配函数(如malloc、calloc 、realloc等)分配内存后,未能正确 释放这些内存,导致程序运行过程中 不断占用越来越多的内存,最终可能 导致程序崩溃或性能下降。
链表(单链表 双向循环)实验报告讲解
数据结构实验报告T1223-3-21余帅实验一实验题目:仅仅做链表部分难度从上到下1.双向链表,带表头,线性表常规操作。
2.循环表,带表头,线性表常规操作。
3.单链表,带表头,线性表常规操作。
实验目的:了解和掌握线性表的逻辑结构和链式存储结构,掌握单链表的基本算法及相关的时间性能分析。
实验要求:常规操作至少有:1.数据输入或建立2.遍历3.插入4.删除必须能多次反复运行实验主要步骤:1、分析、理解给出的示例程序。
2、调试程序,并设计输入数据,测试程序的如下功能:1.数据输入或建立2.遍历3.插入4.删除单链表示意图:headhead head 创建删除双向循环链表示意图:创建程序代码://单链表#include<iostream.h>#include<windows.h>const MAX=5;enum returninfo{success,fail,overflow,underflow,range_error}; int defaultdata[MAX]={11,22,33,44,55};class node{public:int data;node *next;};class linklist{private:node *headp;protected:int count;public:linklist();~linklist();bool empty();void clearlist();returninfo create(void);returninfo insert(int position,const int &item);returninfo remove(int position) ;returninfo traverse(void);};linklist::linklist(){headp = new node;headp->next = NULL;count=0;}linklist::~linklist(){clearlist();delete headp;}bool linklist::empty(){if(headp->next==NULL)return true;elsereturn false;}void linklist::clearlist(){node *searchp=headp->next,*followp=headp;while(searchp->next!=NULL){followp=searchp;searchp=searchp->next;delete followp;}headp->next = NULL;count = 0;}returninfo linklist::create(){node *searchp=headp,*newnodep;for(int i=0;i<MAX;i++){newnodep = new node;newnodep->data = defaultdata[i];newnodep->next = NULL;searchp->next = newnodep;searchp = searchp->next;count++;}searchp->next = NULL;traverse();return success;}returninfo linklist::insert(int position,const int &item) //插入一个结点{if(position<=0 || position>=count)return range_error;node *newnodep=new node,*searchp=headp->next,*followp=headp;for(int i=1; i<position && searchp!=NULL;i++){followp=searchp;searchp=searchp->next;}newnodep->data=item; //给数据赋值newnodep->next=followp->next; //注意此处的次序相关性followp->next=newnodep;count++; //计数器加一return success;}returninfo linklist::remove(int position) //删除一个结点{if(empty())return underflow;if(position<=0||position>=count+1)return range_error;node *searchp=headp->next,*followp=headp; //这里两个指针的初始值设计一前一后for(int i=1; i<position && searchp!=NULL;i++){followp=searchp;searchp=searchp->next;}followp->next=searchp->next; //删除结点的实际语句delete searchp; //释放该结点count--; //计数器减一return success;}returninfo linklist::traverse(void){node *searchp;if(empty())return underflow;searchp = headp->next;cout<<"连表中的数据为:"<<endl;while(searchp!=NULL){cout<<searchp->data<<" ";searchp = searchp->next;}cout<<endl;return success;}class interfacebase{public:linklist listface; //定义一个对象Cskillstudyonfacevoid clearscreen(void);void showmenu(void);void processmenu(void);};void interfacebase::clearscreen(void){system("cls");}void interfacebase::showmenu(void){cout<<"================================"<<endl;cout<<" 功能菜单 "<<endl;cout<<" 1.创建链表 "<<endl;cout<<" 2.增加结点 "<<endl;cout<<" 3.删除结点 "<<endl;cout<<" 4.遍历链表 "<<endl;cout<<" 0.结束程序 "<<endl;cout<<"======================================"<<endl;cout<<"请输入您的选择:";}void interfacebase::processmenu(void){int returnvalue,item,position;char menuchoice;cin >>menuchoice;switch(menuchoice) //根据用户的选择进行相应的操作{case '1':returnvalue=listface.create();if(returnvalue==success)cout<<"链表创建已完成"<<endl;break;case '2':cout<<"请输入插入位置:"<<endl;cin>>position;cout<<"请输入插入数据:"<<endl;cin>>item;returnvalue = listface.insert(position,item);if(returnvalue==range_error)cout<<"数据个数超出范围"<<endl;elsecout<<"操作成功!!!"<<endl;break;case '3':cout<<"输入你要删除的位置:"<<endl;cin>>position;returnvalue = listface.remove(position);if(returnvalue==underflow)cout<<"链表已空"<<endl;else if(returnvalue==range_error)cout<<"删除的数据位置超区范围"<<endl;elsecout<<"操作成功!!!"<<endl;break;case '4':listface.traverse();break;case '0':cout<<endl<<endl<<"您已经成功退出本系统,欢迎再次使用!!!"<<endl;system("pause");exit(1);default:cout<<"对不起,您输入的功能编号有错!请重新输入!!!"<<endl;break;}}void main(){interfacebase interfacenow;linklist listnow;system("color f0");interfacenow.clearscreen();while(1){interfacenow.showmenu();interfacenow.processmenu();system("pause");interfacenow.clearscreen();}}/* 功能:用双向循环链表存储数据1.创建链表2.增加结点3.删除结点4.遍历链表制作人:余帅内容:239行*/#include<iostream.h>#include<windows.h>const MAX=5;enum returninfo{success,fail,overflow,underflow,range_error}; int defaultdata[MAX]={11,22,33,44,55};class node{public:int data;node * next; //指向后续节点node * pre; //指向前面的节点};class linklist{private:node *headp;protected:int count;public:linklist();~linklist();bool empty();void clearlist();returninfo create(void);returninfo insert(int position,const int &item);returninfo remove(int position) ;returninfo traverse(void);};linklist::linklist(){headp = new node;headp->next = NULL;headp->pre = NULL;count=0;}linklist::~linklist(){clearlist();delete headp;}bool linklist::empty(){if(headp->next==NULL)return true;elsereturn false;}void linklist::clearlist(){node *searchp=headp->next,*followp=headp;while(searchp->next!=NULL){followp=searchp;searchp=searchp->next;delete followp;}headp->next = NULL;headp->pre = NULL;count = 0;}returninfo linklist::create(){node *searchp=headp,*newnodep;for(int i=0;i<MAX;i++){newnodep = new node;newnodep->data = defaultdata[i];newnodep->next = NULL;searchp->next = newnodep;newnodep->pre = searchp;searchp = searchp->next;count++;}searchp->next = headp;headp->pre = searchp;traverse();return success;}returninfo linklist::insert(int position,const int &item) //插入一个结点{if(position<=0 || position>count+1)return range_error;node *newnodep=new node;node *searchp=headp->next,*followp=headp;for(int i=1; i<position && searchp!=NULL;i++){followp=searchp;searchp=searchp->next;}newnodep->data=item; //给数据赋值newnodep->next = searchp;searchp->pre = newnodep;followp->next = newnodep;newnodep->pre = followp;count++; //计数器加一return success;}returninfo linklist::remove(int position) //删除一个结点{if(empty())return underflow;if(position<=0||position>=count+1)return range_error;node *searchp=headp->next,*followp=headp; //这里两个指针的初始值设计一前一后for(int i=1; i<position && searchp!=NULL;i++){followp=searchp;searchp=searchp->next;}followp->next=searchp->next; //删除结点的实际语句searchp->next->pre = followp;delete searchp; //释放该结点count--; //计数器减一return success;}returninfo linklist::traverse(void){node *searchp1,*searchp2;if(empty())return underflow;searchp1 = headp;searchp2 = headp;cout<<"连表中的数据为:"<<endl;cout<<"从左至右读取:";while (searchp1->next!=headp ) {searchp1 = searchp1 ->next;cout << searchp1->data<<" ";}cout<<endl;cout<<"从右至左读取:";while (searchp2->pre!=headp ) {searchp2 = searchp2 ->pre;cout << searchp2->data<<" ";}cout<<endl;return success;}class interfacebase{public:linklist listface; //定义一个对象Cskillstudyonface void clearscreen(void);void showmenu(void);void processmenu(void);};void interfacebase::clearscreen(void){system("cls");}void interfacebase::showmenu(void){cout<<"================================"<<endl;cout<<" 功能菜单 "<<endl;cout<<" 1.创建链表 "<<endl;cout<<" 2.增加结点 "<<endl;cout<<" 3.删除结点 "<<endl;cout<<" 4.遍历链表 "<<endl;cout<<" 0.结束程序 "<<endl;cout<<"======================================"<<endl;cout<<"请输入您的选择:";}void interfacebase::processmenu(void){int returnvalue,item,position;char menuchoice;cin >>menuchoice;switch(menuchoice) //根据用户的选择进行相应的操作{case '1':returnvalue=listface.create();if(returnvalue==success)cout<<"链表创建已完成"<<endl;break;case '2':cout<<"请输入插入位置:"<<endl;cin>>position;cout<<"请输入插入数据:"<<endl;cin>>item;returnvalue = listface.insert(position,item);if(returnvalue==range_error)cout<<"数据个数超出范围"<<endl;elsecout<<"操作成功!!!"<<endl;break;case '3':cout<<"输入你要删除的位置:"<<endl;cin>>position;returnvalue = listface.remove(position);if(returnvalue==underflow)cout<<"链表已空"<<endl;else if(returnvalue==range_error)cout<<"删除的数据位置超区范围"<<endl;elsecout<<"操作成功!!!"<<endl;break;case '4':listface.traverse();break;case '0':cout<<endl<<endl<<"您已经成功退出本系统,欢迎再次使用!!!"<<endl;system("pause");exit(1);default:cout<<"对不起,您输入的功能编号有错!请重新输入!!!"<<endl;break;}}void main(){interfacebase interfacenow;linklist listnow;system("color f0");interfacenow.clearscreen();while(1){interfacenow.showmenu();interfacenow.processmenu();system("pause");interfacenow.clearscreen();}}运行结果:1.创建链表:2.增加结点3.删除结点心得体会:本次实验使我们对链表的实质了解更加明确了,对链表的一些基本操作也更加熟练了。
数据结构c语言版(题目)
分类:编程思想和算法2012-09-15 22:24 1759 人阅读评论(0)收藏举报如果TCPhashlistJuli 采用线性表的顺序存储结构,则可以随机存取表中任一终端,但插入和删除终端时,需要移动大量元素,巧妙地终端离线不进行删除操作。
数组,存储的元素应该是线性表顺序存储结构的数据结构。
线性表题目类型:线性表在顺序结构上各种操作的实现;线性链表的各种操作;两个或多个线性表的各种操作;循环链表和双向链表;稀疏多项式及其运算在线性表的两种存储结构上的实现。
线性表在顺序结构上各种操作的实现题目1:(线性表顺序存储结构上的操作—Delete )从顺序存储结构的线性表a 中删除第i个元素起的k个元素。
(《数据结构题集C语言版》P16)题目2:(线性表顺序存储结构上的操作_lnsert )设顺序表va中的数据元素递增有序。
试写一算法,将x插入到循序表的适当位置上,以保持该表的有序性。
(《数据结构题集C语言版》P17)题目3:(线性表顺序存储结构上的操作_逆置)试写一算法,实现顺序表的就地逆置,即利用原表的存储空间将线性表逆置。
(《数据结构题集C语言版》2.21)线性表线性链表的各种操作题目1:( Insert )试写一算法,在无头结点的动态单链表上实现线性表的Insert(L,i,b), 并和在带头结点的动态单链表上实现同样操作的算法进行比较。
(《数据结构题集C语音版》P17)题目2:(Delete )同上题要求,实现线性表操作Delete(L,i).题目3:已知线性表中的元素以值递增有序排序,并以单链表作为存储结构。
试写一高效算法,删除表中所有值大于mink且小于maxk的元素(若表中存在这样的元素)同时释放被删除结点空间,并分析你的算法的事件复杂度(注意:mink和maxk是给定的两个参变量,它们的值可以和表中的元素相同,也可以不同)。
(《数据结构题集C语言版》P17)题目4:同上题条件,试写一高效算法,删除表中所有值相同的多余元素(使得操作后的线性表所有元素的值均不相同),同是释放被删结点空间,并分析你算法的时间复杂度。
2010年硕士研究生入学考试“数据结构与C语言程序设计”试题与答案
13.C 语言规定,简单变量做实参时,它和对应的形参之间的数据传递方式是 A.单向值传递 B.地址传递 C.由实参传给形参,再由形参传回给实参 D.由用户指定传递方式 14.C 语言规定,函数返回值的类型是由 A.return 语句中的表达式的类型所决定 B.调用该函数时的主函数的类型所决定 。
3
C.调用该函数时系统临时决定 D.在定义该函数时所指定的函数的类型所决定 15.下面给出的 4 个定义语句中,与 int *p[5]; 等价的是 。 A.int p[5]; B.int *p; C.int *(p[5]); 16.若有以下定义和语句,则值为 1002 的表达式是 。 struct s{ int age; int num; }; static struct s a[3]={1001,20,1002,19,1003,21},*ptr; ptr=a; A.ptr++->num B.(ptr++)->age C.(*ptr).num D.(*++ptr).age 17.若要通过下面的程序段使得指针变量指向一个存储整型变量的动态存储单元,则程序段中的空 。 白处(横线上方)应该是 int *ptr; ptr= malloc(sizeof(int)); A.int B.int * C.(int *) D.(*int ) 。 18.下面关于宏的叙述中,错误的是 A.宏名无类型,其参数也无类型 B.宏定义不是 C 语句,不必在行的末尾加分号 C.宏替换只是字符替换 D.宏定义命令必须写在文件的开头 。 19.下列关于 C 语言文件操作的叙述中,正确的是 A.对文件的操作必须是先打开文件 B.对文件的操作必须是先关闭文件 C.对文件操作之前必须先测试文件是否已打开,然后再打开文件 D.对文件的操作无顺序要求 20.使用 fopen( )函数以文本方式打开或者建立可读写文件。要求:若指定文件不存在,则建立一 个文件,并使文件指针指向其开头;若指定文件存在,则打开该文件,并将文件指针指向其结尾。下列 。 “文件使用方式”中,正确的是 A.“r+” B.“ a+” C.“ w+” D.“a”
《数据结构与算法》课件 第3章 链表
练习
1、链表中逻辑上相邻的元素在物理上()相邻。 2、已知带头结点的单链表L,指针p指向链表中的一个节点, 指针q指向链表外的节点,在指针p的后面插入q的语句序 列( ) 3、设某非空单链表,要删除指针p所指的结点的直接后继结 点,则需要执行下述语句序列: p=q->next; ( );free(p); 4、线性表的存储有顺序存储和( )存储两种。 5、线性表中哪些元素只有一个直接前驱和一个直接后继? A 首元素 b 尾元素 c 中间的元素 d 所有的元素 6、线性表的各元素之间是()关系 A 层次 b 网状 c 有序 d 集合 7、在单链表中一个结点有()个指针,在双向链表中的一 个结点有()指针
2、求长度 L 21 18 p k p
30
p
75
p
42
p
56 ∧
p p
6 5 4 3 2 1 0
int list_length(LinkList L) {int n=0; LinkList p=L->next; while(p!=NULL) { n++;p=p->next;} return n; }
exit(0);}
s=(SNode *) malloc(sizeof(SNode)); sdata=x; snext=prenext; prenext=s; }
5、删除算法的实现
void LinkListDelete(LinkList L,int i)
……..
ai-1
ai
ai+1
……..
P
相互之间的关系是靠其中的后继地址来表示的
动态链表:根据实际需要临时分配
结构描述如下: typedef struct SNode{ ElemType data; struct SNode *next; //指向结构体类型指针 }*LinkList;
C语言-链表
NWPU—CC—ZhangYanChun
13
┇
void main( )
{┇
for(i=1; i<=N; i++)
/*建立链表*/
{┇
}
for(i=1; i<=N; i++)
/*输出链表*/
{ if(i==1) p1=head;
/*p1指向首节点*/
else p1=p1->next; /*p1指向下一节点*/
第第9十页,一共2章8页。 结构体与共用体
NWPU—CC—ZhangYanChun
10
3) 重复第2步,建立并链接多个节点直至所需长
度,将末尾节点的next成员赋值0。
head
1048 p1 1370 p1
2101
2304
1012
2918
89.5
90
85
操作:
1370
1012
NULL
pp22
p2
p1=(struct student *)malloc(len);
成功,返回存储块起始指针,该指针类型为
void *;否则返回空指针(NULL)。
内存释放函数原形:void free(void *p); 功能:释放p所指向的内存块。
包含文件:malloc.h、stdlib.h中均有其原型声明。
C 程序设计
第第4十页,一共2章8页。 结构体与共用体
NWPU—CC—ZhangYanChun
第第5十页,一共2章8页。 结构体与共用体
NWPU—CC—ZhangYanChun
6
6) 链表的类型
单链表:每个节点只有一个指向后继节点的指针 双向链表:每个节点有两个用于指向其它节点的指针;
《数据结构》课程教案
《数据结构》课程教案课程类别:专业基础课合用专业:计算机应用技术授课学时:32 学时课程学分:4 学分一、课程性质、任务课程性质:《数据结构》是计算机应用技术专业的必修课程,也是研究如何对数据进行组织和设计、如何编制高效率的处理程序的一门基础学科。
课程任务:1、学习计算机程序编写中的数据组织和设计;2、数据的物理结构和逻辑结构;3、经典算法的设计和算法效率的分析。
二、课程培养目标:(一)知识目标通过理论学习和程序的编写,使学生系统地掌握程序中数据的组织、数据的物理结构和逻辑结构,在重要算法的实现上逐步提高编程能力。
(二)技能目标通过课程的学习,让学生掌握重要的数据结构,对数据的逻辑结构和物理结构有深入的理解,同时能编写出使用重要算法知识的程序,并运用所学知识编写程序解决实际中的问题。
(三)素质目标通过课程的学习,让学习学会自学,培养学生的自学能力、克服学习艰难的能力,同时让学生掌握计算机编程中数据结构的学习方法,并养成严谨、认真、子细、塌实、上进的好习惯。
三、选用教材与参考资料教材版本信息《数据结构与算法简明教程(Java 语言版)》清华大学出版社叶小平陈瑛主编教材使用评价本教材经过两年的使用,得到了读者一致认可,同时也在不断改进,适合高职高专教学使用,内容基础、重难点突出,符合高职高专“理论够用、注重实践”的要求。
选用的参考资料严蔚敏.吴伟民《数据结构(C 语言版)》.清华大学出版社.2022 年版殷人昆. 《数据结构》 .清华大学出版社.1999 年版《C 语言程序设计》 .石油大学出版社《C 语言程序设计》 .中国石油大学出版社.2022 年版四、本课程与其他课程的联系与分工先修课程《离散数学》、《程序设计基础》后续课程《面向对象技术》、《操作系统》与其他课程配合与取舍情况《数据结构》与《离散数学》知识点结合较多,《离散数学》讲求逻辑思维能力的培养和训练,《数据结构》中逻辑结构的学习也需要逻辑思维能力做铺垫。
循环链表和双向链表
b.head->next = NULL; //此时,b中已只剩第一个结点(头), 为其置空表标志
return k; //返回结果链表中的元素个数
}
为了进一步说明上述程序,举一个程序运行的例子, 其各次循环的运行结果如图5-6所示
p
7 0 3 2 -9 3 1 5
^
(a)A(x)=p5(x)=7+3x2-9x3+x5,进入循环前
该程序不断比较A链和B链中的一对结点的指数值 (称其为当前结点)。开始时A链和B链中参加比较
的当前结点都是它们的第一个元素。
主循环while结束后,可能出现下列3种情况:①A
链和B链同时被处理完;②只有B链处理完;③只有A
链处理完。 对第一和第二种情况,不需要“善后”处理。对第 三种情况,B链中尚有未被处理完的结点,需将其挂 接在结果链的尾部。循环外的“if(q 不为空)将q
p = p->next; } // if (x==0) … else … q0 = q; q = q->next; delete q0; //将q所指结点从表中删除并释放,令q新指向原所 指的下一个 } // if (p->exp > q->exp ) … else … } //while if (q!=NULL) p0->next = q;
为处理方便,在具体存储多项式时,我们规定:
所存储的多项式已约简,即已合并同类项,不 保留0系数项,各项按指数的升序排列。 (二)多项式加法实现—直接操作链表 为操作方便,我采用带头结点的非循环链表,下面给 出一个例子说明多项式的这种表示法。
设有一个一元5次多项式: P5(x)=7+3x-9x3+x5
数据结构教程(C语言描述)
数据结构教程
简单赋值: 变量名=表达式;
串联赋值: 变量名1=变量名2=...=变量名k=表达式;
交换赋值: 变量名<-->变量名; 条件赋值: 变量名=条件表达式?表达式?表达式T:表达式F
1、if(表达式) 语句;
4、赋值语句
2、if(表达式) 语句; else 语句;
3、switch(表达式){
for(赋初值表达式;条件;修改表达式序列)语句; 6、循环语句 while(条件)语句;
do{ 语句序列}while(条件);
return [/函数结束语句 break; //case结束语句
exit(异常代码); //异常结束语句
8、输入和输 scanf([格式串],变量1,...,变量n); 出语句
file:///C|/Documents%20and%20Settings/Krison%20Liang/Desktop/datasf29.htm(第 7/115 页)2010-4-26 14:38:21
成组赋值:
(变量名1,...,变量名k)=(表达式1,...,表达式k); 结构名=结构名; 结构名=(值1,...,值k); 变量名[]=表达式; 变量名[起始下标..终止下标]=变量名[起始下标..终止下 标];
任意数据元素的集合
除第一个和最后一个
数据关系 R1={<ai-1,ai>| ai-1,ai(- D,i=2,...,n}
外,每个元素有唯一的 直接前趋和唯一的直接
后继
ListInsert(&L,i,e) 基本操作 ListDelete(&L,i,e)
...
L为线性表,i为位置,e 为数据元素。
二、类C语言语法
数据结构中链表及常见操作
链表1 定义链表(Linked list)是一种常见的基础数据结构,是一种线性表,但是并不会按线性的顺序存储数据,而是在每一个节点里存到下一个节点的指针(Pointer)。
由于不必须按顺序存储,链表在插入的时候可以达到O(1)的复杂度,比另一种线性表顺序表快得多,但是查找一个节点或者访问特定编号的节点则需要O(n)的时间,而顺序表相应的时间复杂度分别是O(logn)和O(1)。
使用链表结构可以克服数组链表需要预先知道数据大小的缺点,链表结构可以充分利用计算机内存空间,实现灵活的内存动态管理。
但是链表失去了数组随机读取的优点,同时链表由于增加了结点的指针域,空间开销比较大。
在计算机科学中,链表作为一种基础的数据结构可以用来生成其它类型的数据结构。
链表通常由一连串节点组成,每个节点包含任意的实例数据(data fields)和一或两个用来指向明上一个或下一个节点的位置的链接("links")。
链表最明显的好处就是,常规数组排列关联项目的方式可能不同于这些数据项目在记忆体或磁盘上顺序,数据的访问往往要在不同的排列顺序中转换。
而链表是一种自我指示数据类型,因为它包含指向另一个相同类型的数据的指针(链接)。
链表允许插入和移除表上任意位置上的节点,但是不允许随机存取。
链表有很多种不同的类型:单向链表,双向链表以及循环链表。
2 结构2.1 单向链表链表中最简单的一种是单向链表,它包含两个域,一个信息域和一个指针域。
这个链接指向列表中的下一个节点,而最后一个节点则指向一个空值。
一个单向链表的节点被分成两个部分。
第一个部分保存或者显示关于节点的信息,第二个部分存储下一个节点的地址。
单向链表只可向一个方向遍历。
链表最基本的结构是在每个节点保存数据和到下一个节点的地址,在最后一个节点保存一个特殊的结束标记,另外在一个固定的位置保存指向第一个节点的指针,有的时候也会同时储存指向最后一个节点的指针。
一般查找一个节点的时候需要从第一个节点开始每次访问下一个节点,一直访问到需要的位置。
最新数据结构习题19325教学内容
一.算法的基本概念【例1】算法是指()。
(A)计算机程序(B)计算机的计算方法(C)计算机的存取方式(D)解决问题的有限运算序列【答案】D【例2】算法的基本特性不包括()。
(A)输入性(B)确定性(C)高效性(D)可执行性【答案】C【例3】算法的工作量大小和实现算法所需的存储单元多少分别称为算法的()和()。
(1)(A)可执行性(B)时间复杂度(C)空间复杂度(D)计算机的效率(2)(A)确定性(B)时间复杂度(C)空间复杂度(D)存储的合理性【答案】(1)B (2)C【例4】时间复杂性最好,执行时间最短的是()。
(A)O(log2n) (B)O(nlog2n)(C)O(n) (D)O(n³)【答案】A【例5】下面程序段的时间复杂度是()。
For(int a=0;a<n;a++)For(int b=1;b<m;b++)A[a][b]=1;(A)O(n) (B)O(n×m)(C)O(n+m) (D)O(n+m-1)【答案】B【例6】下列程序段的时间复杂度为()。
For(i=1;i<n;i++){y=y+1; ①for(j=0;j<=(2*n);j++)x++; ②}(A)O(n-1) (B) O(n)(C)O(n2) (D) O(2n+1)【答案】C【例7】下列程序段的时间复杂度为()。
i=1;while(i<=n)i=i*2;(A)O(1) (B) O(n)(C)O(log2n) (D) O(2n)【答案】C【例8】算法的执行遵循“输入―计算―________”的模式,算法的________体现算法的功能。
【答案】输出输出【例9】式子a*(3a2+6a-3)的时间复杂度是________。
【答案】O(a3)【例10】当有非法数据输入时,算法能做出适当的处理,体现了算法的________。
【答案】健壮性【考点解析】一个算法必须能够处理非法数据的输入,且不能产生不可预测的结果,这是算法的健壮性所必须的,处理非法数据的能力体现了算法的健壮性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
}
【后记】从我对双向链表不负责任的实现来看,我并不想这么来实现双向链表,我只是尝试怎样最大限度的利用已有的类来实现这种类型。实践证明,不如重写一个。别人看起来也好看一些,自己写起来也不用这样闹心。不过,这个过程让我对函数的调用和返回的理解又更深了一步。如果你能第一次就写对这里的Insert函数,相信你一定对C++有一定的感触了。我也觉得,只有做一些创新,才能最已经很成熟的东西更深入的了解。比如,这些数据结构,在C++的标准库(STL)中都可以直接拿来用,我们为什么还辛辛苦苦的写,结果还不如人家原来的好。为了学习,这就是理由,这也是一切看起来很笨的事发生的理由。
在开始完成你的从单链表派生出来的双向链表之前,要在单链表这个基类中添加修改当前指针和当前前驱指针的接口,如下所示:
protected:
void Put(Node<Type> *p)//尽量不用,双向链表将使用这个完成向前移动
{
current = p;
}
void PutPrior(Node<Type> *p)//尽量不用,原因同上
{
prior = p;
}
因为这个接口很危险,而且几乎用不到,所以我在前面并没有给出,但要完成双向链表最“杰出”的优点——向前移动当前指针,必须要使用。另外说的是,我从前也从来没计划从单链表派生双链表,下面你将看到,这个过程很让人烦人,甚至不如重写一个来的省事,执行效率也不是很好,这种费力不讨好的事做它有什么意思呢?的确,我也觉得我在钻牛角尖。(别拿鸡蛋丢我)
定义和实现
#ifndef DblList_H
#define DblList_H
#include "List.h"
template <class Type> class DblList : public List< Node<Type> >
{
public:
Type *Get()
List< Node<Type> >::Insert(newdata);
if (pGetNext()->link != NULL)
pGetNext()->link->data.link = (Node<Type>*)pGetNext();
a.Remove();
cout << *a.Get() << endl;
cout << *a.Prior() << endl;
cout << *a.Prior() << endl;
cout << *a.Prior() << endl;
一小段测试程序
void DblListTest_int()
{
DblList<int> a;
for (int i = 10; i > 1; i--) a.Insert(i);
for (i = 10; i > 1; i--) cout << *a.Next() << " ";
return TURE;
}
return FALSE;
}
};
#endif
【说明】只完成了最重要的Insert和Remove函数和最具特点的Prior()函数,其他的没有重新实现。所以,你在这里使用单链表的其他方法,我不保证一定正确。并且,这里的指针类型转换依赖于编译器实现,我也不能肯定其他的编译器编译出来也能正确。对于让不让Prior返回头节点的data,我考虑再三,反正用First();Get();这样的组合也能返回,所以就不在乎他了,所以要是用Prior遍历直到返回NULL,就会将头节点的data输出来了。
数据结构学习(C++)——双向链表
原书这部分内容很多,至少相对于循环链表是很多。相信当你把单链表的指针域搞清楚后,这部分应该难不倒你。现在我的问题是,能不能从单链表派生出双向链表?
你可以有几种做法:
一种就是先定义一个双链节点——但是,它的名字必须叫Node,这是没办法的事;不然你就只好拷贝一份单链表的实现文件,把其中的Node全都替换成你的双链节点名字,但是这就不叫继承了。
}
return NULL;
}
void Insert(const Type &value)
{
Node<Type> newdata(value, (Node<Type>*)pGet());
}
BOOL Remove()
{
if (List< Node<Type> >::Remove())
{
pGet()->data.link = (Node<Type>*)pGetPrior();
Put(pGetPrior());
PutPrior( (Node< Node<Type> >*)pGet()->data.link);
return Get();
另一种做法就是先定义一种结构例如这样的:
template <class Type> class newtype
{
public:
Type data;
Node<newtype> *link;
}
当你派生双向链表时,这样写template <calss Type> class DblList : public List<newtype<Type> >,注意连续的两个“>”之间要有空格。或者根本不定义这样的结构,直接拿Node类型来做,例如我下面给出的。但是,请注意要完成“==”的重载,否则,你又要重写Find函数,并且其他的NULL) return &pGet()->data.data;
else return NULL;
}
Type *Next()
{
【补充】至于双向循环链表,也可以从这个双向链表派生(仿照派生循环链表的方法);或者从循环链表派生(仿照派生双向链表的方法),就不一一举例了(再这样下去,我就真闹心的要吐血了)。至此,可以得出一个结论,链表的各种结构都是能从单链表派生出来的。换句话说,单链表是根本所在,如果研究透了单链表,各种链式结构都不难。
a.First();
cout << endl;
cout << *a.Next() << endl;
cout << *a.Next() << endl;
cout << *a.Next() << endl;
cout << *a.Next() << endl;
pNext();
return Get();
}
Type *Prior()
{
if (pGetPrior != NULL)
{