八年级数学上册 第十三章 轴对称 13.2 画轴对称图形 第2课时 用坐标表示轴对称导学课件 新人
人教版八年级数学上册13.2画轴对称图形 用坐标表示轴对称(第二课时)教案 (1)
§13.2 用坐标表示轴对称(第二课时)教学目标(一)教学知识点1.在平面直角坐标系中,探索关于x轴、y轴对称的点的坐标规律.2.利用关于x轴、y轴对称的点的坐标的规律,能作出关于x轴、y•轴对称的图形.(二)能力训练要求1.在探索关于x轴,y轴对称的点的坐标的规律时,•发展学生数形结合的思维意识. 2.在同一坐标系中,•感受图形上点的坐标的变化与图形的轴对称变换之间的关系.(三)情感与价值观要求在探索规律的过程中,提高学生的求知欲和强烈的好奇心.教学重点1.理解图形上的点的坐标的变化与图形的轴对称变换之间的关系.2.在用坐标表示轴对称时发展形象思维能力和数形结合的意识.教学难点用坐标表示轴对称.教学方法探索发现法.教具准备课件,坐标纸.教学过程Ⅰ.提出问题,创设情境在直角坐标系中根据坐标描出四个点并依次连结如图.A(2,2),B(4,2),•C(4,4),D(2,4).(1)纵坐标不变,横坐标乘以-1,得到相应四个点为A1(-2,2),B1(-4,2),C1(-4,4)•,D1(-2,4).顺次连结所得到的图案和原图案比较,不难发现它们是关于y 轴对称的.(2)横坐标不变,纵坐标乘以-1,得到相应的四个点为A2(2,-2),B2(4,-2),C2(4,-4),D2(2,-4).顺次连结所得到的图案和原图案比较,可得它们是关于x轴对称的.A(2,2)与A1(-2,2)关于y轴对称那么关于y轴对称的点具有什么规律呢?A(2,2)与A2(2,-2)关于x轴对称,那么关于x轴对称的点有何规律呢?这节课我们就来研究关于x轴,y轴对称的每对对称点坐标的规律.Ⅱ.导入新课在如图所示的平面坐标系中,画出下列已知点及其对称点,并把坐标填入表格中.看看每对对称点的坐标有怎样的规律.再和同学讨论一下.已知点A(2,-3),B(-1,2),C(-6,-5),D(12,1),E(4,0).关于x轴的对称点A′(____,____)B′(_____,______)C•′(•_____,•_____)••D′(____,_____)E′(_____,_____).关于y轴的对称点A″(_____,____)B″(_____,______)C″(•_____,•_____)••D″(____,_____)E″(_____,_____).[生]如图,我们先在直角坐标系中描出A(2,-3),B(-1,2),C(-6,-5),D(12,1),E(4,0)点.已知点 A(2,-3)B(-1,2)C(-6,-5)关于x轴的对称点A′(2,3)B′(-1,-2) C′(-6,5)续表已知点D(12,1)E(4,0)关于x轴的对称点D′(12,-1)E′(4,0)[师]观察上表每对对称点坐标之间的关系,你发现什么规律?[生]每对对称点的横坐标相同,纵坐标互为相反数.[师生共析]关于x轴对称的每对对称点的坐标:横坐标相同,纵坐标互为相反数.已知点 A(2,-3)B(-1,2)C(-6,-5)关于y轴对称点A″(-2,-3) B″(1,2)C″(6,-5)已知点D(12,1)E(4,0)关于y轴对称点D″(12,1)E″(-4,0)C/ .[师]观察上表,比较每对关于y轴的对称点的坐标,你能发现什么规律?[生]关于y轴对称的每一对对称点的坐标纵坐标相同,横坐标互为相反数.Ⅲ.随堂练习练习:(教科书P70练习)1.分别写出下列各点关于x轴和y轴对称的点的坐标:(-2,6),(1,-2),(-1,3),(-4,-2),(1,0).2.如图,△ABC关于x轴对称,点A的坐标为(1,-2),标出点B的坐标.Ⅳ.课时小结本节课的主要内容(由学生在教师的引导下共同回忆总结):在直角坐标系中,探索了关于x轴,y轴对称的对称点坐标规律.Ⅴ.课后作业教科书习题71、3题.Ⅵ.活动与探究1.如下图,以树干为对称轴,画出树的另一半.。
第1套人教初中数学八上 13.2.2 用坐标表示轴对称课件 【通用,最新经典教案】
学前温故
新课早知
2.如图,下列说法中,正确的是( D ).
A.如图(1),由 AB,BC,DE 三条线段组成的图形是三角形 B.如图(2),已知∠BAD=∠CAD,则射线 AD 是△ABC 的角平分线 C.如图(3),已知点 D 为 BC 边上的中点,则射线 AD 是△ABC 的中线 D.如图(4),已知在△ABC 中,AD⊥BC 于点 D,则线段 AD 是△ABC 的高
1.认识三角形的三条重要线段
一二
【例 1】 如图所示,AC⊥BC,CD⊥AB,DE⊥BC,则下列说法中错误的是
( ). A.在△ABC 中,AC 是边 BC 上的高 B.在△BCD 中,DE 是边 BC 上的高 C.在△ABE 中,DE 是边 BE 上的高 D.在△ACD 中,AD 是边 CD 上的高
关闭
A
答案
1
2
3
4
5
2.设直线 l 垂直于 x 轴,点 A,B 在直线 l 上,则( ). A.A,B 两点横坐标相同 B.A,B 两点纵坐标相同 C.A,B 两点横、纵坐标都相同 D.A,B 两点横、纵坐标都不同
关闭
A
答案
1
2
3
4
5
3.点 P(1,2)关于 x 轴的对称点 P1 的坐标为
.
(1,-2)
关闭 答案
4.△ABC 在平面直角坐标系中的位置如图所示,A,B,C 三点在格点上. 作出△ABC 关于 y 轴对称的△A1B1C1,并写1 出点2 C13 的坐4 标5.
如图,点 C1 的坐标为(-3,2).
关闭 答答案案
1
2
3
4
5
5.已知点 A(a+2b,1),B(-2,2a-b),若点 A,B 关于 y 轴对称,求 a+b 的值.
13.2 第2课时用坐标表示轴对称人教版数学八年级上册同步课堂教案
第十三章轴对称13.2 画轴对称图形第2课时用坐标表示轴对称一、教学目标1.理解在平面直角坐标系中, 已知点关于x轴、y轴对称的点的坐标的变化规律.2.掌握在平面直角坐标系中作出一个图形的轴对称图形的方法.3.能根据坐标系中轴对称点的坐标特点解决简单的问题.二、教学重难点重点:已知点关于x轴、y轴对称的点的坐标的变化规律;在平面直角坐标系中作出一个图形的轴对称图形的方法.难点:根据坐标系中轴对称点的坐标特点解决简单的问题.三、教学过程【新课导入】[复习导入]1.什么是轴对称变换?(由一个平面图形可以得到与它关于一条直线l对称的图形, 这个图形与原图形的大小、形状完全相同.)2.轴对称变换的性质是什么?(①新图形上的每一点都是原图形的某一点关于直线l的对称点;②连接任意一对对应点的线段被对称轴垂直平分.)3.画轴对称图形的步骤?(找:在原图形上找特殊点(如线段端点等);画:画出各个特殊点关于对称轴的对称点;连:依次连接各对称点.)4.如何画点A关于直线l的对称点A′.(作法:(1)过点A作直线l的垂线,垂足为O;(2)在垂线上截取OA′=OA.点A′就是点A关于直线l 的对称点.可简记为:作垂线;取等长)教师带领学生复习旧知,鼓励学生积极的投入到活动中,为本节课做准备.【新知探究】知识点1 关于坐标轴对称的点的坐标规律[引出课题]如图是一幅老北京城的示意图, 其中西直门和东直门是关于中轴线对称的,如果以天安门为原点, 分别以长安街和中轴线为x轴和y轴建立平面直角坐标系, 根据如图所示的东直门的坐标, 你能说出西直门的坐标吗?跟着老师学了今天的内容,你就能解答出来了.[提出问题]问题1 (1)根据“作已知点关于对称轴的对称点”的方法,你能在如图所示的平面直角坐标系中画出点A关于x轴的对称点,并求出它的坐标吗?[课件展示]教师利用多媒体展示如下过程:[提出问题](2)点B和点C关于x轴的对称点呢?[课件展示]教师利用多媒体展示如下过程:[提出问题](3)分别求出点D和点E关于x轴的对称点的坐标, 并把它们的坐标填入表格中.[动手操作]学生在已经画好的坐标系中描出点D和点E,作图,找出这两点关于x轴对称的点,之后举手回答,教师纠正,并将最终答案填到表格中,得到如下表格:[提出问题](4)看看每对对称点的坐标有怎样的规律, 再和同学讨论一下.[小组讨论]学生之间讨论.之后代表回答小组间讨论的结果.教师纠正.最后得到”横坐标相等,纵坐标互为相反数.”[提出问题]问题2 (1)根据“作已知点关于对称轴的对称点”的方法,你能在如图所示的平面直角坐标系中画出点A关于y轴的对称点,并求出它的坐标吗?[课件展示]教师利用多媒体展示如下过程:[提出问题](2)点B和点C关于y轴的对称点呢?[课件展示]教师利用多媒体展示如下过程:[提出问题](3)分别求出点D和点E关于y轴的对称点的坐标, 并把它们的坐标填入表格中.[动手操作]学生在已经画好的坐标系中描出点D和点E,作图,找出这两点关于y轴对称的点,之后举手回答,教师纠正,并将最终答案填到表格中,得到如下表格:[提出问题](4)看看每对对称点的坐标有怎样的规律, 再和同学讨论一下.[小组讨论]学生之间讨论.之后代表回答小组间讨论的结果.教师纠正.最后得到”纵坐标相等,横坐标互为相反数.”[归纳总结]关于坐标轴对称的点的坐标规律1.点(x,y)关于x轴对称的点的坐标是(x,-y).2.点(x,y)关于y轴对称的点的坐标是(-x,y).并强调:简记为“横轴横相同, 纵相反;纵轴纵相同, 横相反”.关于谁对称谁不变[提出问题]现在你能说出西直门的坐标了吗?学生集体回答.(-3.5,4)[课件展示]跟踪训练1.(2021•雅安)在平面直角坐标系中,点A(-3,-1)关于y轴的对称点的坐标是( C )A.(-3,1)B.(3,1)C.(3,-1 )D.(-1,-3)2.(2021•杭州萧山区二模)在平面直角坐标系中,点A(m,2)与点B(3,n)关于x轴对称,则( A )A.m=3,n=﹣2 B.m=﹣3,n=2C.m=3,n=2 D.m=﹣2,n=3知识点2 在坐标系中作已知图形的对称图形[课件展示]教师利用多媒体展示如下例题:例如图,四边形ABCD的四个顶点的坐标分别为A(-5,1), B(-2,1), C(-2,5), D(-5,4), 分别画出与四边形ABCD关于y轴和x轴对称的图形.解:点(x,y)关于y轴对称的点的坐标为(-x,y),因此四边形ABCD的顶点A,B,C,D关于y轴对称的点分别为A′( 5,1 ),B′( 2,1 ),C′( 2,5 ),D′( 5,4 ),依次连接A′B′,B′C′,C′D′,D′A′,就可得到与四边形ABCD关于y轴对称的四边形A′B′C′D ′.四边形ABCD的顶点A,B,C,D关于x轴对称的点分别如下表格:依次连接A′B′,B′C′,C′D′,D′A′,就可得到与四边形ABCD关于x轴对称的四边形A′′B′′C′′D′′.[归纳总结]在直角坐标系中画与已知图形关于某直线成轴对称的图形的方法:计算:求出已知图形中的一些特殊点的对称点的坐标;描点:根据对称点的坐标描点;连接:按原图对应点连接所描各点得到对称图形.并提醒学生:所找的特殊点一定要能确定原图形, 否则画出的图形与原图形不一定成轴对称.[课件展示]跟踪训练已知△ABC的三个顶点的坐标分别为分别为A (-5,-1),B(3,3),C(-2,3) ,作出△ABC关于x轴对称的图形.解:△A′B′C′即为所求.【课堂小结】【课堂训练】1.(2021•成都)在平面直角坐标系xOy中,点M(-4,2)关于x轴对称的点的坐标是( C )A. (-4,2)B. (4,2)C. (-4,-2)D. (4,-2)2.(2021•泸州)在平面直角坐标系中,将点A(-3,-2 )向右平移5个单位长度得到点B ,则点B关于y轴对称点B'的坐标为( C )A.(2,2)B.(-2,2)C.(-2,-2)D.(2,-2)3.已知点P关于x轴对称的点的坐标是(1,-2),则它关于y轴对称的点的坐标是( A )A.(-1,2)B.(-1,-2)C.(-2,1)D.(1,-2)【解析】∵点P关于x轴对称的点的坐标是(1,-2),∴点P的坐标是(1,2).∴点P关于y轴对称的点的坐标是(-1,2).4.( 2021•丽水)四盏灯笼的位置如图所示.已知A,B,C,D的坐标分别是(-1 ,b),(1,b),(2,b),(3.5,b),平移y轴右侧的一盏灯笼,使得y轴两侧的灯笼对称,则平移的方法可以是( C )A.将B向左平移4.5个单位B.将C向左平移4个单位C.将D向左平移5.5个单位D.将C向左平移3.5个单位5.(2021•荆州)若点P(a+1,2-2a)关于x轴的对称点在第四象限,则a的取值范围在数轴上表示为( C )【解析】点P(a+1,2-2a)关于x轴的对称点的坐标为(a+1,2a-2).∵该点在第四象限,∴a+1>0,2a-2<0.解得-1<a<1.故选C.6.平面直角坐标系内的点A(-1,2)与点B(-1,-2)关于 x 轴对称.7.若|a-2|+(b-5)2=0,则点P (a,b)关于y轴对称的点的坐标为___(-2,5)_____.8.平面直角坐标系中,△ABC的三个顶点坐标分别为A(-5,4),B(-3,0),C(-2,2).(1)试在平面直角坐标系中,标出A、B、C三点;(2)若△ABC与△DEF关于y轴对称,画出△DEF,并写出D、E、F的坐标.解:(1)A、B、C三点如图所示.(2)△DEF如图所示,D、E、F的坐标分别为(5,4)、(3,0)、(2,2).9.已知点A(2a-b,5+a),B(2b-1,-a+b).(1)若点A、B关于x轴对称,求点C(a,b)在第几象限;(2)若点A、B关于y轴对称,求(4a+b)2022的值.解:(1)∵点A、B关于x轴对称,∴2a-b=2b-1,5+a-a+b=0,解得a=-8,b=-5.∴点C(-8,-5)在第三象限;(2)∵点A、B关于y轴对称,∴2a-b+2b-1=0,5+a=-a+b,解得a=-1,b=3,∴(4a+b)2022=1.【教学反思】本节课通过学生熟悉、向往的北京城内天安门、长安街、东直门等的方位引入新课,强烈地吸引了学生的注意力,较好地激发学生的学习兴趣.由于学生已经系统学过平面直角坐标系的相关知识,并研究了用坐标表示平移,拥有了一定的在平面直角坐标系中研究图形的能力和方法,加上在本章之前的学习中,学生已经非常熟练地掌握了轴对称图形、图形的轴对称的概念、轴对称的基本性质、线段的垂直平分线的性质等内容,因此,本节课的教学采用教师组织引导,给学生留足空间和时间,以学生自主学习为主,付之以尝试学习、探究学习、合作交流学习,教师进行适当帮助、指导和适时的点拨、点评的教学方式.通过教学,基本达到了教育教学目标,但我觉得自己还存在以下几个不足:1.对于没有举手发言的同学的关注度不够;2.总结变化规律应该让学生尝试进行,而不是教师代劳;3.部分学生对规律的记忆还不是十分清晰,课堂上还是没有强调到位.。
最新人教版八年级数学上册第十三章轴对称 教案教学设计 共10课时,含教学反思
第十三章轴对称13.1 轴对称 (1)13.1.1 轴对称 (1)13.1.2 线段的垂直平分线的性质 (3)13.2 画轴对称图形 (8)第1课时作轴对称图形 (8)第2课时用坐标表示轴对称 (12)13.3 等腰三角形 (16)13.3.1 等腰三角形 (16)13.3.2 等边三角形 (25)13.4 课题学习最短路径问题 (33)章末复习 (35)13.1 轴对称13.1.1 轴对称【知识与技能】掌握轴对称图形和关于直线成轴对称等概念.【过程与方法】通过生活中的具体实例认识,培养观察、思维、操作、归纳能力.【情感态度】体验数学与生活的联系,发展审美观.【教学重点】准确掌握轴对称图形和关于直线成轴对称的实质.【教学难点】轴对称图形和关于直线成轴对称的区别与联系.一、情境导入,初步认识展示学生按要求收集的图片资料,教师指导并对所有图片进行分类:第一类是轴对称图形,第二类是关于一条直线对称的图形.学生观察,并以小组为单位,讨论下列问题:1.第一类图案有什么共同特征?2.第二类图案有什么共同特征?【教学说明】教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知1.轴对称图形在学生交流和说出两类图案的特征的基础上,教师提出第一类的图案称为轴对称图形.问题1 学生尝试说出轴对称图形的定义,教师适当纠正与补充.问题2 请学生再举一些日常生活中的轴对称图形的例子.问题3 请观察下列图案,看这些轴对称图形各有几条对称轴.2.两个图形关于某条直线对称教师提出第二类图案称为两个图形关于某条直线对称.问题4 鼓励学生说出两个图形关于某条直线对称的定义.问题5 举出生活中两个图形成轴对称的例子.如:提示:对称轴可能不止1条,也可能是水平的或倾斜的.教师再归纳总结轴对称图形和两个图形成轴对称间的区别与联系.三、运用新知,深化理解1.如图,在由小正方形组成的L形的图形中,用三种不同的方法添画一个小正方形,使它成为轴对称图形.2.角是轴对称图形,它的对称轴是 .【教学说明】问题1中有两种方法比较容易,方法3鼓励学生交流讨论得到;问题2提醒学生不能说成角平分线.【答案】1.2.角平分线所在的直线.四、师生互动,课堂小结本节课你学会了什么?有哪些收获?还有什么疑问?1.布置作业:从教材“习题13.1”中选取.2.如图是一个圆形的纸片,请问:它是轴对称图形吗?如果是, 对称轴有多少条?请你找到它的圆心.3.完成练习册中本课时的练习.本课时教学应重视以下几点:1.努力体现数学与生活的联系,从实际中学习新知,使学生认识这种学习方法.2.形成提炼概念的能力,注重从实物的形象思维向抽象思维转变.3.在对比中发现,认识知识,如“轴对称”与“轴对称图形”的区别与联系.13.1.2 线段的垂直平分线的性质【知识与技能】1.了解两个图形成轴对称的性质,了解轴对称图形的性质.2.探究线段垂直平分线的性质.【过程与方法】经历探索轴对称图形性质的过程,发展空间观察能力.【情感态度】体验数学与现实间的联系,发展审美感,激发兴趣.【教学重点】轴对称的性质,线段垂直平分线的性质.【教学难点】线段垂直平分线的性质.一、情境导入,初步认识问题1 下面图形中哪些是轴对称图形?如果是,请说出它的对称轴.问题2 如果两个图形成轴对称,那么这两个图形有什么关系?(如图2,△ABC和△A′B′C′关于直线MN对称)【教学说明】两个图形成轴对称,那么这两个图形就全等.由此提出线段垂直平分线定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.如图3,直线l是线段AB的垂直平分线.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知1.探究轴对称的性质(1)作两个成轴对称的三角形,如图.(2)将对称点分别用线段连接起来,观察它与对称轴的位置关系及数量关系,你能得到什么结论?是如何得到这个结论的?(3)轴对称图形是否也具备这样的性质呢?举例说明.2.探索线段垂直平分线的性质探究1 教材中的“探究”.学生先思考教科书上的问题,然后让学生以线段代替木条进行画图探究.任意画一条线段AB,画出它的垂直平分线MN,在MN上任取点P1,P2,P3,分别量一量点P1,P2,P3到点A,点B 的距离,你有什么发现?与同伴交流,说明理由.探究2 如图,PA=PB,取线段AB的中点O,连接PO,PO与AB有怎样的位置关系?指导学生运用三角形全等知识判定△PAO≌△PBO,从而推得PO是线段AB的垂直平分线.教师总结线段垂直平分线的性质与判定.例1 如图所示,有一块三角形田地,AB=AC=10m,作AB的垂直平分线ED交AC于D,交AB 于E,量得△BDC的周长为17m,请你替测量人员计算BC的长.解:∵ED是AB的垂直平分线,∴DA=DB.又∵△BDC的周长为17m,AB=AC=10m,∴BD+DC+BC=17(m).∴DA+DC+BC=17, 即AC+BC=17(m). ∴10+BC=17(m),BC=7(m). 3.作简单轴对称图形的对称轴.例2 如图所示,△ABC 与△A ′B ′C ′关于某条直线对称,请你作出这条直线.【分析】△ABC 与△A ′B ′C ′中的点A 与A ′,点B 与B ′,点C 与C ′是对应点,连接一对对应点,如连接BB ′,作线段BB ′的垂直平分线即可.解:(1)如图所示,连接BB ′,分别以点B ,B ′为圆心,以大于21BB ′的长为半径作弧,两弧相交于D 、E 两点;(2)作直线DE ,DE 即为所求的直线. 三、运用新知,深化理解1.如果△ABC 中,∠BAC=110°,P\,Q 在BC 上,若MP\,NQ 分别垂直平分AB\,AC,则∠PAQ 的度数是 .2.如图,正方形ABCD 的边长为4cm,则图中阴影部分的面积为.3.如图所示,直线CD 是线段AB 的垂直平分线,P 为直线CD 上的一点,已知线段PA=5,则线段PB 的长度为( )A.6B.5C.4D.34.如图所示,OC是∠AOB的平分线,AC⊥AO,BC⊥BO,则OC与AB的关系是( ).A.AB垂直平分OCB.OC垂直平分ABC.OC只平分AB但不垂直D.OC只垂直AB但不平分5.如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连结EC.(1)求∠ECD的度数;(2)若CE=5,求BC的长.【教学说明】指导学生解答上述习题时,强调学生应:(1)注意成轴对称的两个图形的全等关系,由此可得到几组边、角的相等;(2)注意线段垂直平分线的性质的灵活运用.【答案】1.40° 2.8cm2 3.B 4.B5.(1)∵DE垂直平分AC,∴CE=AE,∴∠ECD=∠A=36°.(2)∵AB=AC,∠A=36°,∴∠B=∠ACB=72°,∵∠ECD=36°,∴∠BCE=∠ACB-∠ECD=36°,∴∠BEC=72°=∠B,∴BC=EC=5.四、师生互动,课堂小结问题:本节课学会了什么?有哪些收获?还有什么疑问?由学生表述,教师归纳总结.1.布置作业:从教材“习题13.1”中选取.2.完成练习册中本课时的练习.本课教学力求充分体现内容的基础性,方法的灵活性、学生学习的主体性和教学的主导性,在学习活动中,要求学生主动参与,认真思考、比较观察、动手交流和表述,并借助多媒体的手段辅助教学,增强直观性、激发学习兴趣.强调分组讨论,学生与学生之间很好地交流与合作,利用师生的双边活动,激发学生学习兴趣,教师从中发现、搜集学生的学习情况,查漏补缺,适时调度,从而顺利达到教学的目的.13.2 画轴对称图形第1课时作轴对称图形【知识与技能】1.通过动手操作体验如何作轴对称图形.2.能作出一个图形经一次或二次轴对称变换后的图形.3.能利用轴对称变换设计一些简单的图案.【过程与方法】通过实际操作获取作轴对称图形的方法,并应用于简单的图案设计.【情感态度】通过图案设计等活动,培养学生的动手操作能力\,审美及数学兴趣,发展学生的空间观念.【教学重点】作一个图形经轴对称变换后的图形.【教学难点】通过动手操作总结轴对称变换的特征.一、情境导入,初步认识利用多媒体向学生展示剪纸图片,供学生欣赏,并请学生交流:如此漂亮的剪纸是如何剪出的呢?问题 1 请学生拿出画有一个简单风筝(如图形状)的半透明纸,把这张纸对折后描图,学生画好后打开对折的纸,观察并回答下列问题:(1)画出的图形与原来的图形有什么关系?(2)两个图形成轴对称有什么特征?问题 2 如果改变对称轴的方向和位置,结果又如何呢?让学生在刚才的纸上任意折叠,描图,打开纸.你发现了什么?【教学归纳】由学生画图、操作、观察后总结出:(1)由一个平面图形可以得到它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全一样.(2)新图形上的每一点,都是原图形上的某一点关于直线l的对称点,连接任意一对对应点的线段被对称轴垂直平分.【教学说明】教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知【教学说明】成轴对称的两个图形中的任何一个可以看作由另一个图形经轴对称变换后得到.一个轴对称图形也可以看作以它的一部分为基础,经轴对称变换扩展而成的.问题除上面所用的描图法;还可用什么方法画出轴对称变换后的图形?请学生间交流探讨.例1(1)如图1,已知△ABC和直线l,作出与△ABC关于直线l对称的图形.(2)将△ABC的位置移至图2,图3,图4时,再作出关于直线l对称的图形.并验证画法.【归纳总结】一个平面图形都是由一些点组成,点动成线,故要画一个图形经轴对称后的图形,只要找到一些特殊点,作出这些特殊点的对称点即可.【教学说明】利用轴对称变换,可以设计出精美的图案.有时,将平移和轴对称结合起来,可以设计出更美丽的图案.例2 操作并思考:如图所示,取一张薄的正方形纸,沿对角线对折后,得到一个等腰直角三角形,再沿斜边上的高线对折,将得到的三角形沿黑线剪开,去掉含90°角的部分,拆开折叠的纸,并将其铺开.(1)你会得到怎样的图案?先猜一猜,再做一做.(2)你能说明为什么会得到这样的图案吗?应用学过的轴对称的知识试一试.(3)如果将正方形纸按上面方式折3次,然后再去掉含90°角的部分展开后的结果又会怎样?为什么?解:(1)得到一个有2条对称轴的图形.(2)按照上面的做法,实际相当于折出了正方形的2条对称轴,因此图中得到的图案一定有2条对称轴.(3)按题中的方式将正方形对折3次,相当于折出了正方形的4条对称轴,因此得到的图案一定有4条对称轴.【教学说明】教师参与,与学生一起操作,力求使图案与花边完美.三、运用新知,深化理解1.把下列图形补成关于直线l对称的图形.2.如图,利用轴对称变换画出花瓶的另一半.3.如图,左边的旗子经过几次轴对称变换,可以变成右边的旗子?你能设计一种变换方案吗?4.如果我们把台球桌做成等边三角形形状,那么从AC中点D处出发的球,能否依次经BC,AB两条边反射后回到D处?如果认为不能,请说明理由;如果认为能,请作出球运动的路线.【教学说明】指导学生解答上述习题时,要注意引导学生:(1)画轴对称图形时,要先画好关键的对应点;(2)在已知成轴对称的图形时,利用成轴对称的图形的性质,找出对称轴.【答案】4.能.运动路线如图的D→E→F→D四、师生互动,课堂小结教师请学生回忆本节内容,学生发言谈收获,最后引导总结.1.由一个平面图形可以得到它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全一样.2.经轴对称变换后的图形与原图形上的对应点连线被对称轴垂直平分.3.画一个图形经轴对称变换后的图形,关键是找到图形上的一些点,作出这些点的对称点.1.布置作业:从教材“习题13.2”中选取.2.完成练习册中本课时的练习.本课时教学时要尽量创设与学生生活环境、知识背景相关的教学情境,以生动活泼的形式呈现有关内容,重视学生的实际操作和观察发现与表述能力.教学时,根据本课内容特点,可依据其学科知识间联系(如例2)调动课堂气氛,培养学生学习兴趣.第2课时用坐标表示轴对称【知识与技能】1.能在直角坐标系中画出已知点关于坐标轴对称的点.2.能求出已知点关于坐标轴对称的点的坐标,求出已知点关于平行于坐标轴的直线对称的点的坐标.【过程与方法】在找关于坐标轴对称的点的坐标之间规律并检验其正确性的过程中,培养学生的语言表达能力、归纳能力.【情感态度】在找点,绘图的过程中使学生体验数形结合思想、体验学习乐趣,养成良好的科学研究方法.【教学重点】能求出已知点关于坐标轴对称的点的坐标.【教学难点】找对称点的坐标之间的关系,规律.一、情境导入,初步认识用多媒体展示北京城风光图片,及北京城形象地图.问题 1 老北京的地图(教材图13.2-3)中,西直门和东直门是关于中轴线对称的,如果以天安门为原点,分别以长安街和中轴线为x轴和y轴建立平面直角坐标系,对应于如教材图13.2-3所示的东直门的坐标,你能找到西直门的位置和坐标吗?学生指出西直门的位置或坐标,由此指出用坐标表示轴对称,很方便确定一个地方的位置.【教学说明】教师讲课前,先让学生完成“自主预习”.问题2(1)在直角坐标系中画出下列已知点:A(2,-3);B(-1,2);C(-6,-5);D(3,5);E(4,0);F(0,-3).(2)画出这些点分别关于x轴、y轴对称的点,并填写表格.(3)请你仔细观察点的坐标,你能发现关于坐标轴对称的点的坐标有什么规律吗?(4)请你想办法检验你所发现的规律的正确性,说说你是如何检验的.【归纳结论】点(x,y)关于x轴对称的点的坐标为(x,-y),即横坐标相等,纵坐标互为相反数;点(x,y)关于y轴对称的点的坐标为(-x,y),即横坐标互为相反数,纵坐标相等.二、典例精析,掌握新知例1 已知点P1(a-1,5)和P2(2,b-1)关于x轴对称,则(a+b)2012的值为( ).A.0B.-1C.1D.(-3)2012出示新问题:1.如图,分别作出△PQR关于直线x=1和直线y=1对称的图形.2.试找出它们对应点的坐标.3.猜想:如果作关于直线x=3和直线y=-4对称的图形,试找出它们对应点的坐标,并总结出一般性规律.点(x,y)关于直线x=m 对称点的坐标是(2m-x,y),即若两点(x 1,y 1),(x 2,y 2)关于直线x=m 对称,则m=221x x +,y 1=y 2. 点(x,y)关于直线y=n 对称点的坐标是(x,2n-y),即若两点(x 1,y 1),(x 2,y 2)关于直线y=n 对称,则x 1=x 2,n=221y y +. 例2 如图,梯形ABCD 关于y 轴对称,点A 的坐标为(-3,3),点B 的坐标为(-2,0),试写出点C 和点D 的坐标,并求出梯形ABCD 的面积.【分析】已知点D 与点A 关于y 轴对称,点B 和点C 关于y 轴对称,由此可推知点D,点C 的坐标.解:∵点D 与点A(-3,3)关于y 轴对称,∴点D 的坐标为(3,3).同理点C 的坐标为(2,0).故AD=|3-(-3)|=6,BC=|2-(-2)|=4,∴S 梯形=21 (AD+BC)·OE=21×(6+4)×3=15. 【教学说明】由以上例题,应让学生掌握:1.平行于x 轴的两点之间的距离等于两点横坐标差的绝对值.2.求规则图形的面积应选用平行于x 轴(或y 轴)的边为底边,求面积较方便.三、运用新知,深化理解1.说出下列各点关于x轴,y轴对称的点的坐标.(-2,6),(1,-2),(-1,3),(-4,-2),(1,0).2.四边形ABCD的四个顶点的坐标分别为A(-5,1),B(-2,1),C(-2,5),D(-5,4),分别作出与四边形关于x轴和y轴对称的图形.3.在坐标系中描出点A(-1,3),B(5,-4),C(-3,-1),D(-1,1),E(-3,5),F(5,8),连接AB,BC,AC,DE,EF,DF,请你判断所得图形是轴对称图形吗?如果不是,请你说明理由;如果是,请说出对称轴.【教学说明】教师指导学生完成上述问题的解答,提示学生解题过程中注重画图找答案,体验数形结合的作用.同时,鼓励学生从实际解题中总结题中所隐含的规律.【答案】1.2.略3.图略.所得图形是轴对称图形,对称轴是y=2.四、师生互动,课堂小结教师引导学生总结本节课用坐标表示轴对称的主要解题方法和解题思路.1.已知点关于某条直线对称的点的坐标可以通过寻找线段间关系来求.2.学生表述关于x轴,y轴对称的点的坐标规律.1.布置作业:从教材“习题13.2”中选取.2.完成练习册中本课时的练习.本课时采用探究、发现式的教学方法,通过找具有一定代表性的分别位于四个象限及坐标轴的一些点的对称点及坐标,寻找关于坐标轴对称的点的坐标的一般规律,可培养学生观察、归纳、分析问题解决问题的能力,并通过研究线段之间关系发现对称点的坐标之间的关系,从中体验数形结合思想,教学中应让学生认识到寻找规律后检验其正确性是科学研究问题的一个必不可少的步骤.13.3 等腰三角形13.3.1 等腰三角形第1课时等腰三角形的性质【知识与技能】1.理解掌握等腰三角形的性质.2.运用等腰三角形性质进行证明和计算.3.观察等腰三角形的对称性、发展形象思维.【过程与方法】1.通过实践、观察、证明等腰三角形的性质,发展学生推理能力.2.通过运用等腰三角形的性质解决有关问题,提高运用知识和技能解决问题的能力.【情感态度】引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中取得成功的体验.【教学重点】等腰三角形的性质及应用.【教学难点】等腰三角形的证明.一、情境导入,初步认识问题 1 让学生根据自己的理解,做一个等腰三角形.要求学生独立思考,动手做图后,再互相交流评价.可按下列方法做出:作一条直线l,在l上取点A,在l外取点B,作出点B关于直线l的对称点C,连接AB,AC,CB,则可得到一个等腰三角形.问题2 老师拿出事先准备好的长方形纸片,按下图方式折叠剪裁.观察并讨论:△ABC有什么特点?教师指导,并介绍等腰三角形的相关概念,及等腰三角形是轴对称图形.【教学说明】教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知教师依据学生讨论发言的情况,归纳等腰三角形的性质:①∠B=∠C→两个底角相等.②BD=CD→AD为底边BC上的中线.③∠BAD=∠CAD→AD为顶角∠BAC的平分线.∠ADB=∠ADC=90°→AD为底边BC上的高.指导学生用语言叙述上述性质.性质1等腰三角形的两个底角相等(简写成:“等边对等角”).性质2等腰三角形的顶角平分线、底边上的中线,底边上的高重合(简记为:“三线合一”).教师指导对等腰三角形性质的证明.1.证明等腰三角形底角的性质.教师要求学生根据猜想的结论画出相应的图形,写出已知和求证.在引导学生分析思路时强调:(1)利用三角形全等来证明两角相等.为证∠B=∠C,需证明以∠B,∠C为元素的两个三角形全等,需要添加辅助线构造符合证明要求的两个三角形.(2)添加辅助线的方法可以有多种方式:如作顶角平分线,或作底边上的中线,或作底边上的高等.2.证明等腰三角形“三线合一”的性质.【教学说明】在证明中,设计辅助线是关键,引导学生用全等的方法去处理,在不同的辅助线作法中,由辅助线带来的条件是不同的,重视这一点,要求学生板书证明过程,以体会一题多解带来的体验.例如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数.解:∵AB=AC,BD=BC=AD,∴∠ABC=∠C=∠BDC,∠A=∠ABD(等边对等角).设∠A=x,则∠BDC=∠A+∠ABD=2x,从而∠ABC=∠C=∠BDC=2x.于是在△ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,解得x=36°于是在△ABC中,有∠A=36°,∠ABC=∠C=72°.【教学说明】等腰三角形“等边对等角”及“三线合一”性质,可以实现由边到角的转化,从而可求出相应角的度数.要在解题过程中,学会从复杂图形中分解出等腰三角形,用方程思想和数形结合思想解决几何问题.三、运用新知,深化理解第1组练习:1.如图,在下列等腰三角形中,分别求出它们的底角的度数.2.如图,△ABC是等腰直角三角形,AB=AC,∠BAC=90°,AD是底边BC上的高,标出∠B,∠C,∠BAD,∠DAC的度数,指出图中有哪些相等线段.3.如图,在△ABC,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数.第2组练习:1.如果△ABC是轴对称图形,则它一定是( )A.等边三角形B.直角三角形C.等腰三角形D.等腰直角三角形2.等腰三角形的一个外角是100°,它的顶角的度数是( )A.80°B.20°C.80°和20°D.80°或50°3.已知等腰三角形的腰长比底边多2cm,并且它的周长为16cm.求这个等腰三角形的边长.4.如图,在△ABC中,过C作∠BAC的平分线AD的垂线,垂足为D,DE∥AB交AC于E.求证:AE=CE.【教学说明】等腰三角形解边方面的计算类型较多,引导学生见识不同类型,并适时概括归纳,帮学生形成解题能力,注意提醒学生分类讨论思想的应用.【答案】第1组练习答案:1.(1)72°;(2)30°2.∠B=∠C=∠BAD=∠DAC=45°;AB=AC,BD=DC=AD3.∠B=77°,∠C=38.5°第2组练习答案:1.C2.C3.设三角形的底边长为xcm,则其腰长为(x+2)cm,根据题意,得2(x+2)+x=16.解得x=4.∴等腰三角形的三边长为4cm,6cm和6cm.4.延长CD交AB的延长线于P,在△ADP和△ADC中,∠PAD=∠CAD,AD=AD,∠PDA=∠CDA,∴△ADP≌△ADC.∴∠P=∠ACD.又∵DE∥AP,∴∠CDE=∠P.∴∠CDE=∠ACD,∴DE=EC.同理可证:AE=DE.∴AE=CE.四、师生互动,课堂小结这节课主要探讨了等腰三角形的性质,并对性质作了简单的应用.请学生表述性质,提醒每个学生要灵活应用它们.学生间可交流体会与收获.1.布置作业:从教材“习题13.3”中选取.2.完成练习册中本课时的练习.本课时应把重点放在逐步展示知识的形成过程上,先让学生通过剪纸认识等腰三角形;再通过折纸猜测、验证等腰三角形的性质;然后运用全等三角形的知识加以论证.由特殊到一般、由感性上升到理性,逻辑演绎,层层展开,步步深入.第2课时等腰三角形的判定【知识与技能】1.理解掌握等腰三角形的判定.2.运用等腰三角形判定进行证明和计算.【过程与方法】通过推理证明等腰三角形的判定定理,发展学生的推理能力,培养学生分析、归纳问题的能力.【情感态度】引导学生观察,发现等腰三角形的判定方法,获得成功的感受,并在这个过程中体验学习的乐趣.【教学重点】等腰三角形的判定定理.【教学难点】等腰三角形判定定理的证明.一、情境导入,初步认识先请学生回忆等腰三角形的性质,再向学生提出下列问题.问题1 如图,位于海上A,B两处的两艘救生船接到O处遇险船只的报警,当时测得∠A=∠B.如果这两艘救生船以同样的速度同时出发,能不能大约同时赶到出事地点(不考虑风浪因素).引导学生作如下思考:(1)应该能同时赶到出事地点,因为两艘救生船的速度相同,同时出发,在相同的时间内走过的路程应该相同,也就是OA=OB,所以两船能同时赶到出事地点.(2)能同时赶到O点位置的一个很重要的因素是∠A=∠B,也就是说如果∠A不等于∠B,那么同时以同样的速度出发就不能同时赶到出事地点.【教学说明】教师讲课前,先让学生完成“自主预习”.问题2 根据上述探究,考虑:“在一个三角形中,如果两个角相等,那么它们所对的边也相等”,并证明这个结论.1.指导学生表述结论并写出证明过程.2.指出表述要严谨,如不能说成:“如果一个三角形的两个底角相等,那么它是等腰三角形”.二、思考探究,获取新知例1 求证:如果一个三角形的一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.【教学说明】本题是文字叙述的证明题,先应将文字语言转化为相应的数学语言,再根据题意画出相应的几何图形.要证明这个问题,由特征结论联想“等角对等边”,而等角由已知的平行线和角平分线可推得.例2 如图,标杆AB高5m,为了将它固定,需要由它的中点C向地面上与点B距离相等的D,E两点拉两条绳子,使得D,B,E在一条直线上,量得DE=4m,绳子CD和CE要多长?【教学说明】这是一个与实际生活相关的问题,要解决这类问题,需要将实际问题抽象为数学模型.本题的实质是已知等腰三角形的底边和底边上的高,求腰长的问题.解:如图(2),选取比例尺为1∶100.①作线段DE=4cm.②作线段DE的垂直平分线MN,与DE交于点B.。
人教版八年级数学上册第13章 轴对称2 第2课时 用坐标表示轴对称
用坐标表示轴对称
互动探究 问题1:已知点 A 和一条直线 MN,你能画
出这个点关于直线 MN 的对称点吗?
(1)过点 A 作 AO⊥MN,
M
垂足为点 O;
(2)延长 AO 至 A′,
使 OA′ = AO. 则 A′ 就是点 A 关于
A
O
A′
直线 MN 的对称点.
N
问题2:如图,在平面直角坐标系中你能画出点 A
B.(2,2)
O
C.(3,2)
D.(4,2)
5. 已知点 P (2a + b,-3a) 与点 P′ (8,b + 2). 若点 P 与点 P′ 关于 x 轴对称,则 a = __2__,b = ___4__. 若点 P 与点 P′ 关于 y 轴对称,则 a = __6__,b = __-_2_0_. 6. 若 |a - 2| + (b - 5)2 = 0,则点 P (a,b) 关于 x 轴对称 的点的坐标为_(_2_,__-_5_)_.
∴ (4a+b)2022 = 1.
例3 已知点 P (a+1,2a-1)关于 x 轴的对称点在第一
象限,求 a 的取值范围. 解:依题意得 P 点在第四象限,
即2aa+a1的>1<取0,0值,范围解是得1<1<a<a<1 .12 .
2
方法总结:解决此类题,一般先根据点的坐标关于坐 标轴对称,判断出点或对称点所在的象限,再由各象 限内坐标的符号,列不等式 (组) 求解.
y A(0,4) B(2,4)
C'(3,1) x
O C (3,-1)
B'(2,-4) A' (0,-4)
例2 已知点 A (2a-b,5+a),B (2b-1,-a+b).
人教版数学八年级上册13.用坐标表示轴对称课件(1)
关于y 轴对称的点的坐标:(2,6), (-1,-2),(1,3),(4,-2),(-1,0) .
当堂练习
练习2 若点P(2a+b,-3a)与点P′(8,b+2) 关于x 轴对称,则a = 2 ,b= 4 ;若关于y 轴对 称,则a = 6 ,b=__-_2_0__.
C y C′
D
D′
为: A′( 5 , 1 ), B′( 2 , 1 ),
A
B
1
O
B′
1
A′x
C′( 2 , 5 ),
D′( 5 , 4 ),
运用变化规律作图
解:依次连接 A′B′ , B′C′, C′D′, D′A′,
就可得到与四边形ABCD
关于y轴对称的四边形
C y C′
D
D′
A′B′C′D′ .
如图,如果以天安门 为原点,分别以长安街和中 轴线为x轴和y 轴建立平面 直角坐标系,对应于东直 门的坐标,你能找到西直门 的位置,说出西直门的坐 标吗?
探究并归纳已知点关于坐标轴对称的点 的坐标变化规律
对于平面直角坐标系中任意一点,你能找出其关于 x 轴或y 轴对称的点的坐标吗?它们之间有什么规律?
样的变化规律?
y
C′ 关于x 轴对称的每对
A′ B
对称点的横坐标相等,纵 坐标互为相反数.
C
1D
O
1
D′
B′
A
E E′
x
探究并归纳已知点关于坐标轴对称的点 的坐标变化规律
在平面直角坐标系中,画出下列已知点及其关于 y 轴对称的点,把它们的坐标填入表格中.
新人教版八年级数学上册 第十三章 轴对称全章课件
(2)承(1)小题,请判断当∠ABC不是你指出的角 度时,PR的长度小于6还是大于6?并完整说 明你判断的理由.
解:PR的长度小于6,理由如下: ∠ABC≠90°,则点P、B、R三点不在 同一直线上,∴PB+BR>PR. ∵PB+BR=2OB=2×3=6, ∴PR<6.
重合,那么就说这两个图形关于这条直线对称,这条直线就是它
的对称轴.
知识要点
比较归纳
轴对称图形
两个图形成轴对称
图形
区别 联系
一个图形具有的特 殊形状
两个全等图形的特殊 的位置关系
1.都是沿着某条直线折叠后能重合. 2.可以互相转化.
这是轴对称图形还是两个图形成轴对称?
二 轴对称的性质
如图,△ABC和△A′B′C′关于直线MN对称,点A′,B′,C′分
1.下列表情图中,属于轴对称图形的是( D )
2.下列图形,对称轴最多的是( D )
A.长方形
B.正方形
C.角
D.圆
3.如图,△ABC与△DEF关于直线MN轴对称,则以 下结论中错误的是( A )
A.AB∥DF
B.∠B=∠E C.AB=DE D.AD的连线被MN垂直平分
4.如图,Rt△ABC中,∠ACB= 90°,∠A=50°,将其折叠,使 点A落在边CB上A′处,折痕为 CD,则∠A′DB的度数为__1_0_°___.
A
A′
B
N B′
典例精析
例1 如图,一种滑翔伞的形状是左右成轴对称的 四边形ABCD,其中∠BAD=150°,∠B=40°, 则∠BCD的度数是( A ) A.130° B.150° C.40° D.65°
方法归纳:轴对称是一种全等变换,在轴对称图形中求角度 时,一般先根据轴对称的性质及已知条件,得出相关角的度 数,然后再结合多边形的内角和或三角形外角的性质求解.
13.2画轴对称图形(2)同步习题精讲课件
16.(8分)如图,以长方形ABCD的两条对称轴为x轴和y轴 建立直角坐标系,若A点的坐标为(4,3).
(1)写出长方形的另外三个顶点B,C,D的坐标; (2)求该长方形的面积.
解:(1)B(4,-3) C(-4,-3) D(-4,3)
(2)S长=48
17.(10分)如图,已知A(1,1),B(-2,4),C(-4,4), D(-4,1).
8.(8分)如图,分别作出△ABC关于x轴和y轴对称的图形.
解:(1)△ABC关于x轴对称的 图形是△A1B1C1;(2)△ABC 关于y轴对称的图形是 △A2B2C2.
【易错盘点】
【例】如图,△ABC中,点A的坐标为(0,1),点C的坐标为 (4,3),如果要使△ABD与△ABC全等,那么点D的坐标是 _________________________
7.(8分)已知点M(2a-b,5+a),N(2b-1,-a+b). (1)若M,N关于x轴对称,试求a,b的值; (2)若M,N关于y轴对称,试求(b+2a)2 014的值.
解:(1)25+a-a3+b(=--1a+b)=0
解之a=-8 b=-5
(2)2a+a-5b=+-2ba+-b1=0解之ab==-3 1 ∴(b+2a)2013=1
第十三章 轴对称
习题精讲
13.2
数学 八年级上册
(人教版)
画轴对称图形
13.2 画轴对称图形 第2课时 用坐标表示轴对称
点P(a,b)关于x轴对称的点的坐标是 (a,-b) ;点 P(a,b)关于y轴对称的点的坐标是 (-a,b) ;点 P(a,b)关于原点对称的点的坐标是(-a,-b).
关于坐标轴对称点的坐标特征
D.将点A向x轴负方向平移一个单位得到A′
八年级数学上册13.2画轴对称图形第2课时用坐标表示轴对称说课稿(新版)新人教版
八年级数学上册 13.2 画轴对称图形第2课时用坐标表示轴对称说课稿(新版)新人教版一. 教材分析八年级数学上册13.2节“画轴对称图形”是新人教版数学课程的一部分,主要内容是让学生理解并掌握用坐标表示轴对称图形的方法。
这一节内容是在学生已经掌握了轴对称图形的概念和性质的基础上进行教学的,旨在培养学生的空间想象能力和坐标表示能力。
教材中通过丰富的例题和练习题,引导学生运用坐标方法,找出对称轴,并确定对称图形在坐标系中的位置。
通过这一节的学习,学生能够进一步理解坐标与图形之间的关系,提高解决问题的能力。
二. 学情分析八年级的学生已经具备了一定的数学基础,对轴对称图形的概念和性质有了初步的了解。
但是,对于如何用坐标表示轴对称图形,可能还存在一定的困难。
因此,在教学过程中,需要引导学生通过实际操作,理解并掌握坐标表示轴对称图形的方法。
三. 说教学目标1.知识与技能目标:让学生掌握用坐标表示轴对称图形的方法,能找出对称轴,并确定对称图形在坐标系中的位置。
2.过程与方法目标:通过实际操作,培养学生的空间想象能力和坐标表示能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识。
四. 说教学重难点1.教学重点:用坐标表示轴对称图形的方法。
2.教学难点:如何找出对称轴,并确定对称图形在坐标系中的位置。
五. 说教学方法与手段1.教学方法:采用问题驱动法,引导学生通过实际操作,理解并掌握坐标表示轴对称图形的方法。
2.教学手段:利用多媒体课件,展示轴对称图形的对称性质,引导学生进行实际操作。
六. 说教学过程1.导入:通过展示一些生活中的轴对称图形,引导学生回顾轴对称图形的概念和性质。
2.新课导入:介绍用坐标表示轴对称图形的方法,引导学生理解坐标与图形之间的关系。
3.实例讲解:通过具体的例题,引导学生找出对称轴,并确定对称图形在坐标系中的位置。
4.学生练习:让学生自主完成教材中的练习题,巩固所学知识。
人教版八年级上册数学13.2.2《用坐标表示轴对称》优秀教学案例
四、教学内容与过程
(一)导入新课
1.利用数学软件展示轴对称图形,引导学生关注轴对称现象。
2.呈现生活中的轴对称实例,如剪纸、建筑等,激发学生的学习兴趣。
3.提出问题:“什么是轴对称?轴对称在生活中的应用有哪些?”引导学生思考。
在导入环节,我会利用数学软件展示轴对称图形的动态变化,引导学生关注轴对称现象。同时,我会呈现生活中的轴对称实例,如剪纸、建筑等,激发学生的学习兴趣。通过提出问题:“什么是轴对称?轴对称在生活中的应用有哪些?”引导学生思考,为后续新知的讲授做好铺垫。
在教学过程中,我引导学生对自己的学习过程进行反思,培养学生的自我评价能力。例如,在课堂的最后环节,我让学生总结本节课所学的内容,并分享自己的学习体会。这样的反思与评价环节有助于培养学生的自我评价能力,提高学生的自信心。
5.专业素养的展现:通过运用现代教育技术和几何画板等软件,直观地展示轴对称图形的动态变化,提高学生的学习效果。
在教学过程中,我充分利用现代教育技术和几何画板等软件,直观地展示轴对称图形的动态变化。例如,我在讲授坐标表示轴对称图形时,利用几何画板展示了坐标的变化规律。这样的展示不仅提高了学生的学习效果,还展现了我的专业素养。
二、教学目标
(一)知识与技能
1.理解轴对称的概念,掌握轴对称图形的特征。
13.2 第2课时 用坐标表示轴对称
8.(4分)已知正方形ABCD在坐标轴上的位置如图所示, 的坐标为 (-2,-2) ,D点的坐标为 (-2,2)
是正方形的两条对称轴,若A(2,2),则B点的坐标为 (2
.
9.(6分)如图所示,在直角坐标系xOy中,A(-1,5) C(-4,3). (1)在图中作出△ABC关于y轴的对称图形△A′B′C′; (2)写出点C关于y轴的对称点C′的坐标. (1)略 (2)(4,3)
B2(6,0),C2(1,0)
14.(10分)(1)分别作出△ABC关于直线MN对称的图形 直线PQ对称的图形;
(2)若网格中每个小正方形的边长为1,求△ABC的面积
(1)略 (2)10
16 . (12 分 ) 在平面直角坐标系中 , 已知点 A(2 , 2) , B
1).
(1)画出△ABC关于y轴的轴对称图形△A′B′C′,则点C
12.已知点A(2x-4,6)关于y轴对称的点在第二象限, A.x>2 B.x<2 C.x>0 D.x<0
二、填空题(每小题5分,共10分)
13 . 如图所示 , 在直角坐标系内 , 线段 AB 垂直于 y 轴
AB=2,如果将线段AB沿y轴翻折,点A落在点C处,那 是 -2 .
14.点P(1,2)关于直线y=1对称的点的坐标是 (1,0 关于直线x=2对称的点的坐标是 (3,2) .
三、解答题(共35分)
15 . (10 分 ) 如图 , 已知△ ABC 的三个顶点坐标分别为
B(-6,0),C(-1,0).
(1) 在 图 中 分 别 作 出 △ ABC 关 于 x , y 轴 的 对 称 图 形
△A2B2C2;
(2)直接写出这两个三角形各顶点的坐标.
(1) 作图略
人教版数学八年级上册第十三章13.2 画轴对称图形
第十三章轴对称13.2 画轴对称图形第1课时画轴对称图形学习目标:1.能够按要求画简单平面图形经过一次对称后的图形.2.掌握作轴对称图形的方法.3.通过画轴对称图形,增强学生学习几何的趣味感.重点:掌握作轴对称图形的方法难点:按要求画简单平面图形经过一次对称后的图形.一、知识链接1.说一说如何用尺规作图:过已知直线外一点作该直线的垂线?2.想一想作轴对称图形的对称轴有哪些方法?二、新知预习做一做:在一张半透明纸的左边部分,画一只左脚印,把这张纸对折后描图,打开对折的纸,就能得到相应的右脚印.(1)此时,右脚印和左脚印成_________,它们的大小_______、形状______.(2)折痕所在直线就是它们的_________;(3)若连接任意一对对应点,则所得线段被对称轴________.类似地,请你再画一个图形做一做,看看能否得到同样的结论.归纳总结:由一个平面图形可以得到与它关于一条直线l对称的图形,这个图形与原图形的_____、_____完全相同;新图形上的每一点都是原图形上的某一点关于直线l的_______;连接任意一对对应点的线段被对称轴垂直平分.三、自学自测如图所示的两个三角形关于某条直线对称,∠1=110°,∠2=46°,则x=_______.四、我的疑惑___________________________________________________________________________一、要点探究探究点1:轴对称变换 典例精析:例1:将一张正方形纸片按如图①,图②所示的方向对折,然后沿图③中的虚线剪裁得到图④,将图④的纸片展开铺平,再得到的图案是( )图① 图② 图③ 图④A B C D 例2:如图,将长方形ABCD 沿DE 折叠,使A 点落在BC 上的F 处,若∠EFB =50°,则 ∠CFD 的度数为 ( )A .20°B .30°C .40°D .50°方法总结:折叠是一种轴对称变换,折叠前后的图形形状和大小不变,对应边和对应角相等.探究点2:作轴对称图形问题1:如何作一个点的轴对称图形?做一做:画出点A 关于直线l 的对称点A ′. Al问题2:如何画一条线段的轴对称图形?做一做:已知线段AB ,画出AB 关于直线l 的对称线段.想一想:如果有一个图形和一条直线,如何画出与这个图形关于这条直线对称的图形呢?课堂探究动手剪一剪A BAA BBl l l典例精析:例3:如图,已知△ABC和直线l,作出与△ABC关于直线l对称的图形.方法总结:几何图形都可以看作由点组成.对于某些图形,只要作出图形中一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.例4:在3×3的正方形格点图中,有格点△ABC和△DEF,且△ABC和△DEF关于某直线成轴对称,请在下面给出的图中画出4个这样的△DEF.方法总结:作一个图形关于一条已知直线的对称图形,关键是作出图形上一些点关于这条直线的对称点,然后再根据已知图形将这些点连接起来.针对训练1.如图,已知△ABC和△A′B′C′关于MN对称,并且AC=5,BC=2,A′B′=4,则△A′B′C′的周长是()A.9 B.10 C.11 D.122.如图,现要利用尺规作图作△ABC关于BC的轴对称图形△A′BC.若AB=5cm,AC=6cm,BC=7cm,则分别以点B、C为圆心,依次以____cm、____cm为半径画弧,使得两弧相交于点A′,再连结A′C、A′B,即可得△A′BC.3.如图是由三个小正方形组成的图形,请你在图中补画一个小正方形,使补画后的图形为轴对称图形.ABlC二、课堂小结1.作已知点关于某直线的对称点的第一步是( )A .过已知点作一条直线与已知直线相交B .过已知点作一条直线与已知直线垂直C .过已知点作一条直线与已知直线平行D .不确定2.如图,把一张长方形的纸按图那样折叠后,B 、D 两点落在 B ′、D ′点处,若得∠AOB ′=70°,则∠B ′OG 的度数为_______.3.如图,把下列图形补成关于直线l 的对称图形.l ll l 4. 如图给出了一个图案的一半,虚线 l 是这个图案的对称轴.整个图案是个什么形状?请 准确地画出它的另一半.5.如图,画△ABC 关于直线m 的对称图形.当堂检测l轴对称变换画轴对称图作轴对称图形形状、大小完全相同对称轴是对称点连线的垂直平分线关键点关于对称轴的对称点拓展提升6.如图,在2×2的正方形格纸中,有一个以格点为顶点的△ABC ,请你找出格纸中所有与△ABC成轴对称且以格占为顶点的三角形,这样的三角形共有________ 个,请在下面所给的格纸中一一画出.(所给的六个格纸未必全用).第十三章轴对称13.2 画轴对称图形第2课时用坐标表示轴对称学习目标:1.探究在平面直角坐标系中关于x轴和y轴对称点的坐标特点.2.能在平面直角坐标系中画出一些简单的关于x轴和y轴的对称图形.3.能根据坐标系中轴对称点的坐标特点解决简单的问题.重点:掌握平面直角坐标系中关于x轴和y轴对称点的坐标特点.难点:运用坐标系中的轴对称特点解决简单的问题.二、要点探究探究点:用坐标表示轴对称问题1:已知点A和一条直线MN,你能画出这个点关于已知直线的对称点吗?A问题2:如图,在平面直角坐标系中你能画出点A关于x轴的对称点A′ 吗?课堂探究MNxyOA想一想:A′ 的坐标与点A 的坐标有什么联系与区别?你能得出什么结论?做一做:在平面直角坐标系中画出点B (-4,2)、C (3,-4)关于x 轴的对称点,验证你的结论是否正确.知识归纳:关于x 轴对称的点的坐标的特点:横坐标______,纵坐标_________. 用坐标表示为:点(x,y )关于x 轴的对称点的坐标为___________. 练一练:1.点P(-5, 6)与点Q 关于x 轴对称,则点Q 的坐标为__________.2.点M(a, -5)与点N(-2, b)关于x 轴对称,则a=_____, b =_____.问题3:如图,在平面直角坐标系中你能画出点A 关于y 轴的对称点A′ 吗?想一想:A′ 的坐标与点A 的坐标有什么联系与区别?你能得出什么结论?做一做:在平面直角坐标系中画出点B (-4,2)、C (3,-4)关于y 轴的对称点,验证你的结论是否正确.知识归纳:关于y 轴对称的点的坐标的特点:横坐标______,纵坐标_________. 用坐标表示为:点(x,y )关于y 轴的对称点的坐标为___________. 练一练:1.点P(-5, 6)与点Q 关于y 轴对称,则点Q 的坐标为__________.2.点M(a, -5)与点N(-2, b)关于y 轴对称,则a=_____, b =_____.典例精析例1:平面直角坐标系中,△ABC 的三个顶点坐标分别为A (0,4),B (2,4),C (3,-1). (1)试在平面直角坐标系中,标出A 、B 、C 三点;(2)若△ABC 与△A'B'C'关于x 轴对称,画出△A'B'C',并写出A'、B'、C'的坐标.xyO A xy O方法总结:对于这类问题,一般分为三步:一找:找出已知图形的特殊点(如多边形的顶点)的对应点;二描:在坐标系中描出这些对应点;三连:根据原图形,依次连接各对应点,即可得到这个图形的轴对称图形.例2: 已知点A(2a-b,5+a),B(2b-1,-a+b).(1)若点A、B关于x轴对称,求a、b的值;(2)若A、B关于y轴对称,求(4a+b)2016的值.方法总结:解决此类题可根据关于x轴、y轴对称的点的特征列方程(组)求解.例3:已知点P(a+1,2a-1)关于x轴的对称点在第一象限,求a的取值范围.方法总结:解决此类题,一般先写出对称点的坐标或判断已知所在的象限,再由各象限内点的坐标的符号,列不等式(组)求解.4.平面直角坐标系中的点P(2−m,m)关于x轴的对称点在第三象限,则m的取值范围为______________.二、课堂小结内容用坐标轴表示轴对称 1.关于x轴对称的点的坐标特点:(x,y) (x,-y) 简记:横轴横相等.2.关于y轴对称的点的坐标特点:(x,y) (-x,y) 简记:纵轴纵相等.作轴对称图形一找、二描、三连当堂检测1.平面直角坐标系内的点A(-1,2)与点B(-1,-2)关于()A.y轴对称B.x轴对称C.原点对称D.直线y=x对称2.在平面直角坐标系中,将点A(-1,2)向右平移3个单位长度得到点B,则点B关于x 轴的对称点C的坐标是()A.(-4,-2)B.(2,2)C.(-2,2)D.(2,-2)3.设点M(x,y)在第二象限,且|x|=2,|y|=3,则点M关于y轴的对称点的坐标是()A.(2,3)B.(-2,3)C.(-3,2)D.(-3,-2)4.如图,在平面直角坐标系中,点P(-1,2)关于直线x=1的对称点的坐标为()A.(1,2)B.(2,2)C.(3,2)D.(4,2)5.已知点P(2a+b,-3a)与点P′(8,b+2).若点P与点P′关于x轴对称,则a=_____,b=_______.若点P 与点P ′关于y 轴对称,则a=_____ ,b=_______.6.若|a -2|+(b -5)2=0,则点P (a ,b)关于x 轴对称的点的坐标为________.7.已知△ABC 的三个顶点的坐标分别为A(-3,5),B(- 4,1),C(-1,3),作出△ABC 关于y轴对称的图形.8.已知点A (2a+b ,-4),B (3,a -2b )关于x 轴对称,则点C (a ,b )在第几象限?拓展提升9.在平面直角坐标系中,规定把一个正方形先沿着x 轴翻折,再向右平移2个单位称为1次变换.如图,已知正方形ABCD 的顶点A 、B 的坐标分别是(-1,-1)、(-3,-1),把正方形ABCD 经过连续7次这样的变换得到正方形A ′B ′C ′D ′,求B 的对应点B ′的坐标.x y O。
八年级数学上册 13.2 画轴对称图形 第2课时 用坐标表示轴对称教学设计 (新版)新人教版
八年级数学上册13.2 画轴对称图形第2课时用坐标表示轴对称教学设计(新版)新人教版一. 教材分析《八年级数学上册》第13.2节“画轴对称图形”,主要让学生理解轴对称图形的概念,学会用坐标表示轴对称图形。
这部分内容是学生在学习了平面直角坐标系、图形的性质等知识的基础上进行学习的,对学生掌握图形的变换、坐标与图形的关系等知识有着重要的意义。
二. 学情分析八年级的学生已经掌握了平面直角坐标系的知识,对图形的性质也有了一定的了解,具备了一定的逻辑思维能力和空间想象能力。
但是,对于轴对称图形的概念,以及如何用坐标表示轴对称图形,可能还比较陌生,需要通过实例和练习来理解和掌握。
三. 教学目标1.让学生理解轴对称图形的概念,掌握轴对称图形的性质。
2.学会用坐标表示轴对称图形,理解坐标与轴对称图形的关系。
3.培养学生的逻辑思维能力和空间想象能力,提高学生解决实际问题的能力。
四. 教学重难点1.轴对称图形的概念及其性质。
2.如何用坐标表示轴对称图形,以及坐标与轴对称图形的关系。
五. 教学方法采用讲解法、演示法、练习法、讨论法等教学方法,通过实例和练习,让学生理解和掌握轴对称图形的概念和性质,学会用坐标表示轴对称图形。
六. 教学准备1.准备相关的教学PPT和教学素材。
2.准备黑板和粉笔,用于板书和演示。
3.准备练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个实例,如翻转一张纸片,让学生观察和思考,引出轴对称图形的概念。
2.呈现(10分钟)讲解轴对称图形的性质,如对称轴、对称点等,并用PPT展示相关的图片和例子。
3.操练(10分钟)让学生通过PPT上的练习题,用坐标表示轴对称图形,巩固所学知识。
4.巩固(10分钟)让学生在纸上画出一些轴对称图形,并标出对称轴和对称点,加深对知识的理解。
5.拓展(10分钟)让学生思考和讨论,如何判断一个图形是否是轴对称图形,以及如何用坐标表示。
6.小结(5分钟)总结本节课所学的内容,强调轴对称图形的性质和坐标表示方法。
2020年人教版数学八年级上册学案13.2《画轴对称图形》(含答案)
13.2画轴对称图形第1课时画轴对称图形学习目标1.会作已知图形关于某条直线对称的图形.2.能利用轴对称的一些性质设计图案.预习阅读教材“归纳、思考及归纳”,完成预习内容.知识探究1.如图,观察下面剪纸的形成过程并填空:(1)由一个平面图形可以得到它关于一条直线l对称的图形,这个图形与原图形的________、________完全一样.(2)新图形上的每一点都是原图形上的某一点关于直线l的________.(3)连接任意一对对应点的线段被对称轴________.2.如图,观察下面作线段AB关于直线l对称图形的过程并填空:(1)几何图形都可以看作由点组成,只要分别作出这些点关于对称轴的________,再连接这些________,就可以得到原图形的____________.(2)对于一些由直线、线段或射线组成的图形,只要作出图形中一些特殊点(如线段端点)的________,连接这些________,就可以得到原图形的__________.活动1小组讨论例如图,已知对称轴l和一个点A,画出点A关于l的对称点A′.点拨:逆用对称点的连线被对称轴垂直平分.课堂小结作与图形成轴对称的图形,关键在于将图形抽象出各点,然后作点的对称点,再连线即可.第2课时用坐标表示轴对称学习目标:1.探索关于x轴、y轴对称的每对对称点的规律.2.利用关于x轴、y轴对称的点的坐标的规律,能作出关于x轴、y轴对称的图形.预习:阅读教材“思考、归纳及例2”,完成预习内容.知识探究(1)如图,在坐标系中作出B、C两点关于x轴对称的点;思考:点(x,y)关于x轴的对称点是________;归纳:关于x轴对称的点的坐标的特点:横坐标________,纵坐标互为________.第(1)题图第(2)题图(2)如图,在坐标系中作出B、C两点关于y轴对称的点;思考:点(x,y)关于y轴的对称点是________;归纳:关于y轴对称的点的坐标的特点:纵坐标________,横坐标互为________.自学反馈1.点P(-5,6)关于x轴的对称点为Q,则点Q的坐标为________.2.点P(-5,6)关于y轴的对称点为M,则点M的坐标为________.3.课本P70~71练习第1、2、3题.活动1小组讨论例1.已知点A(-3,2),且点A与点B,点B与点C,点C与点D分别关于x轴、y轴、x轴对称.(1)写出B、C、D的坐标.(2)问四边形ABCD是什么四边形?(3)试求四边形ABCD的面积.解:(1)点B(-3,-2),点C(3,-2),点D(3,2).(2)四边形ABCD是矩形.(3)S矩形ABCD=BC·AB=4×6=24.例2.如图,已知△ABC的三个顶点的坐标分别是(-1,5),(-5,3),(-3,-1);作出△ABC关于x轴、y轴的对称图形.解:如图所示,△A1B1C1和△A2B2C2即为所求作的图形.点拨:可先写出各对称点的坐标,再描点画图.课堂小结解题时紧紧抓住点关于x轴、y轴和图形关于x轴、y轴对称的规律,弄清规律后就可以轻松解题了.课堂小练一、选择题1.如图所示,把一个正方形对折两次后沿虚线剪下,展开后所得的图形是()2.如图,△ABC和△A′B′C′关于直线对称,下列结论中:①△ABC≌△A′B′C′;②∠BAC′=∠B′AC;③l垂直平分CC′;④直线BC和B′C′的交点不一定在l上,正确的有()A.4个 B.3个 C.2个D.1个3.已知△ABC在平面直角坐标系中,点A,B,C都在第一象限内,现将△ABC的三个顶点的横坐标保持不变,纵坐标都乘﹣1,得到一个新的三角形,则()A.新三角形与△ABC关于x轴对称B.新三角形与△ABC关于y轴对称C.新三角形的三个顶点都在第三象限内D.新三角形是由△ABC沿y轴向下平移一个单位长度得到的4.在直角坐标系中,点A的坐标为(﹣3,4),那么下列说法正确的是()A.点A与点B(﹣3,﹣4)关于y轴对称B.点A与点C(3,﹣4)关于x轴对称C.点A与点C(4,﹣3)关于原点对称D.点A与点F(﹣4,3)关于第二象限的平分线对称5.点P(x,y)在第二象限内,且|x|=2,|y|=3,则点P关于y轴的对称点的坐标为()A.(2,3)B.(﹣2,﹣3)C.(3,﹣2)D.(﹣3,2)6.如下图是一台球桌面示意图,图中小正方形的边长均相等,黑球放在如图所示的位置,经白球撞击后沿箭头方向运动,经桌边反弹最后进入球洞的序号是()A.①B.②C.⑤D.⑥7.下列图形中,△A′B′C′与△ABC成轴对称的是()二、填空题8..如图,四边形ABCD沿直线l对折后互相重合,如果AD∥BC,有下列结论:①AB∥CD;②AB=CD;③AB⊥BC;④AO=OC.其中正确的结论是.(把你认为正确的结论的序号都填上)9.点P(﹣1,3)关于y轴的对称点的坐标是.10.在平面直角坐标系中,点P(4,2)关于直线x=1的对称点的坐标是.11.如图,点P关于OA,OB的对称点分别为C、D,连接CD,交OA于M,交OB于N,若CD=18cm,则△PMN的周长为 cm.12.如图4×5的方格纸中,在除阴影之外的方格中任意选择一个涂黑,与图中阴影部分构成轴对称图形的涂法有______种.三、作图题13.如图,已知A(2,3)、B(1,1)、C(4,1)是平面直角坐标系中的三点.(1)请画出△ABC关于y轴对称的△A1B1C1;(2)画出△A1B1C1向下平移3个单位得到的△A2B2C2;(3)若△ABC中有一点P坐标为(x,y),请直接写出经过以上变换后△A2B2C2中点P的对应点P2的坐标.14.△ABC在平面直角坐标系中的位置如图所示.(1)在图中画出△ABC关于y轴对称的图形△A1B1C1,并写出△A1B1C1各顶点的坐标;(2)若将线段A1B1平移后得到线段A2B2,且A2(a,1),B2(4,b),求a+b的值.参考答案1.B2.B3.A.4.D5.A.6.B7.B8.答案为:①、②、④.9.答案为:(1,3).10.答案为:(﹣2,2).11.答案为:18cm.12.答案为:4.13.解:(1)如图:△AB1C1即为所求;1(2)如图,△A2B2C2即为所求;(3)根据题意可得点P2的坐标为(﹣x,y﹣3).14.解:(1)所作图形如图所示:A(1,4),B1(3,2),C1(2,1);1(2)由图可得,A2(2,1),B2(4,﹣1),即a=2,b=﹣1,则a+b=1.。
【人教版】八上数学:第13章《轴对称》全章教案
第十三章轴对称13.1轴对称13.1.1轴对称1.理解轴对称图形和两个图形关于某直线对称的概念.2.了解轴对称图形的对称轴,两个图形关于某直线对称的对称轴、对应点.3.掌握线段垂直平分线的概念.4.理解和掌握轴对称的性质.重点轴对称图形和两个图形关于某直线对称的概念.难点轴对称图形和两个图形关于某直线对称的区别和联系.一、作品展示1.让部分学生展示课前的剪纸作品.2.小组活动:(1)在窗花的制作过程中,你是如何进行剪纸的?为什么要这样?(2)这些窗花(图案)有什么共同的特点?二、概念形成(一)轴对称图形1.在学生充分交流的基础上,教师提出“轴对称图形”的概念,并让学生尝试给它下定义,通过逐步地修正形成“轴对称图形”的定义,同时给出“对称轴”.2.结合教材图13.1-1进一步分析轴对称图形的特点,以及对称轴的位置.3.学生举例,试举几个在现实生活中你所见到的轴对称例子.4.概念应用:(1)教材第60页练习第1题.(2)补充:判断下面的图形是不是轴对称图形?如果是轴对称图形,它们的对称轴是什么?(二)两个图形关于某条直线对称1.观察教材中的图13.1-3,思考:图中的每对图形有什么共同的特点?2.两个图形成轴对称的定义.观察右图:把△A′B′C′沿直线l对折后能与△ABC重合,则称△A′B′C′与△ABC关于直线l对称,简称“轴对称”,点A与点A′对应,点B与B′对应,点C与C′对应,称为对称点,直线l叫做对称轴.3.举例:你能举出一些生活中两个图形成轴对称的例子吗?4.讨论:轴对称图形和两个图形成轴对称的区别.(三)轴对称的性质观察教材中图13.1-4,线段AA′与直线MN有怎样的位置关系?你能说明理由吗?引导学生说出如下关系:PA=PA′,∠MPA=∠MPA′=90°.类似的,点B和点B′,点C和点C′是否有同样的关系?你能用语言归纳上述发现的规律吗?结合学生发表的观点,教师总结并板书.对称轴经过对称点所连线段的中点,并且垂直于这条线段.在这个基础上,教师给出线段的垂直平分线的概念,然而把上述规律概括成图形轴对称的性质.上述性质是对两个成轴对称的图形来说的,如果是一个轴对称图形,那么它的对应点的连线与对称轴之间是否也有同样的关系?从而得出:类似的,轴对称图形的对称轴,是任何一个对应点所连线段的垂直平分线.三、归纳小结主要围绕下列几个问题:(1)概念:轴对称图形,两个图形关于某条直线对称,对称轴,对称点;(2)找轴对称图形的对称轴.四、布置作业教材习题13.1第1,2,3题.数学教学应该选在牵一发而动全身的关键之处进行,轴对称图形的认识的教学就是要抓住“对折”与“完全重合”两个关键之处.不然就是隔靴搔痒. 当“部分重合”与“完全重合”理解了,轴对称图形的概念也会在学生脑海中留下深刻的印象.13.1.2线段的垂直平分线的性质(2课时)第1课时线段的垂直平分线的性质与判定掌握线段的垂直平分线的性质和判定,能灵活运用线段的垂直平分线的性质和判定解题.重点线段的垂直平分线的性质和判定,能灵活运用线段的垂直平分线的性质和判定解题.难点灵活运用线段的垂直平分线的性质和判定解题.一、问题导入我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴.那么,线段的垂直平分线有什么性质呢?这节课我们就来研究它.二、探究新知(一)线段的垂直平分线的性质教师出示教材第61页探究,让学生测量,思考有什么发现?如图,直线l垂直平分线段AB,P1,P2,P3…是l上的点,分别量一量点P1,P2,P3…到点A与点B的距离,你有什么发现?学生回答,教师小结:线段垂直平分线上的点与这条线段两个端点的距离相等.性质的证明:教师讲解题意并在黑板上绘出图形:上述问题用数学语言可以这样表示:如图,设直线MN是线段AB的垂直平分线,点C是垂足,点P是直线MN上任意一点,连接PA,PB,我们要证明的是PA=PB.教师分析证明思路:图中有两个直角三角形,△APC和△BPC,只要证明这两个三角形全等,便可证得PA=PB.教师要求学生自己写已知,求证,自己证明.学生证明完后教师板书证明过程供学生对照.已知:MN⊥AB,垂足为点C,AC=BC,点P是直线MN上任意一点.求证:PA=PB.证明:在△APC和△BPC中,∵PC=PC(公共边),∠PCB=∠PCA(垂直定义),AC=BC(已知),∴△APC≌△BPC(SAS).∴PA=PB(全等三角形的对应边相等).因为点P是线段的垂直平分线上一点,于是就有:线段垂直平分线上的点与这条线段两个端点的距离相等.(二)线段的垂直平分线的判定学生给出了如下的四种证法.已知:线段AB,点P是平面内一点,且PA=PB.求证:P点在AB的垂直平分线上.证法一过点P作已知线段AB的垂线PC,∵PA=PB,PC=PC,∴Rt△PAC≌Rt△PBC(HL).∴AC=BC,即P点在AB的垂直平分线上.证法二取AB的中点C,过P,C作直线.∵PA=PB,PC=PC,AC=CB,∴△APC ≌△BPC(SSS).∴∠PCA=∠PCB(全等三角形的对应角相等).又∵∠PCA+∠PCB=180°,∴∠PCA=∠PCB=90°,即PC⊥AB,∴P点在AB的垂直平分线上.证法三过P点作∠APB的平分线.∵PA=PB,∠1=∠2,PC=PC,△APC≌△BPC(SAS).∴AC=BC,∠PCA=∠PCB(全等三角形的对应边相等,对应角相等).又∵∠PCA+∠PCB=180°,∴∠PCA=∠PCB=90°,∴P点在AB的垂直平分线上.证法四过P作线段AB的垂直平分线PC.∵AC=CB,∠PCA=∠PCB=90°,∴P在AB的垂直平分线上.四种证法由学生表述后,有学生提问:“前三个同学的证明是正确的,而第四个同学的证明我有点弄不懂.”师生共析:如图(1),PD⊥AB,D是垂足,但D不平分AB;如图(2),PD平分AB,但PD不垂直于AB.这说明一般情况下,“过P作AB的垂直平分线”是不可能实现的,所以第四个同学的证法是错误的.要作出线段的垂直平分线,根据垂直平分线的判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上,那么我们必须找到两个与线段两个端点距离相等的点,这样才能确定已知线段的垂直平分线.下面我们一同来写出已知、求作、作法,体会作法中每一步的依据.例1尺规作图:经过已知直线外一点作这条直线的垂线.已知:直线AB和AB外一点C.(如下图)求作:AB的垂线,使它经过点C.作法:(1)任意取一点K,使点K和点C在AB的两旁.(2)以点C 为圆心,CK 长为半径作弧,交AB 于点D 和点E.(3)分别以点D 和点E 为圆心,大于12DE 的长为半径作弧,两弧相交于点F.(4)作直线CF.直线CF 就是所求作的垂线.师:根据上面作法中的步骤,想一想,为什么直线CF 就是所求作的垂线?请与同伴进行交流.生:从作法的第(2)(3)步可知CD =CE ,DF =EF ,∴C ,F 都在AB 的垂直平分线上(线段的垂直平分线的判定).∴CF 就是线段AB 的垂直平分线(两点确定一条直线).师:我们曾用刻度尺找线段的中点,当我们学习了线段的垂直平分线的作法时,一旦垂直平分线作出,线段与线段的垂直平分线的交点就是线段AB 的中点,所以我们也用这种方法找线段的中点.三、课堂练习教材第62页练习第1,2题.四、课堂小结本节课我们学习了线段的垂直平分线的性质和判定,并学会了用尺规作线段的垂直平分线.五、布置作业1.教材习题13.1第6题. 2.补充题:(1)下图是某跨河大桥的斜拉索,图中PA =PB ,PO ⊥AB ,则必有AO =BO ,为什么?(2)如左下图,△ABC 中,AC =16 cm ,DE 为AB 的垂直平分线,△BCE 的周长为26 cm .求BC 的长.(3)有A ,B ,C 三个村庄(如右上图),现准备建一所学校,要求学校到三个村庄的距离相等,请你确定学校的位置.本节证明了线段的中垂线的性质定理及判定定理、用尺规作线段的中垂线.在课堂中,学生证明过程、作图方法原理的理解及掌握都比较好,但要强调作业中不用三角板等工具而要用尺规来作图,解决实际问题时可以直接用定理而不是借助于全等.第2课时 画对称轴会画轴对称图形的对称轴.重点轴对称图形的对称轴的画法. 难点轴对称图形的对称轴的画法.一、提出问题如果两个平面图形成轴对称,你能用什么办法验证?不经过折叠,你能用什么方法画出它的对称轴? 二、探究新知 我们已经学过,如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线,所以我们只要找到两个图形的一对对应点,然后画出以对应点为端点的线段的垂直平分线即可,如何作线段的垂直平分线呢?例1 如图(1),已知点A 和点B 关于某条直线成轴对称,你能作出这条直线吗?分析:我们只要连接点A 和点B ,作出线段AB 的垂直平分线,就可以得到点A 和点B 的对称轴,为此作出到点A ,B 距离相等的两点,即线段AB 的垂直平分线上的两点,从而作出线段AB 的垂直平分线.教师具体分析画法、写出画法,根据画法作出图形. 学生模仿教师的画法,边写画法,边画图.作法:如图(2).(1)分别以点A ,B 为圆心,以大于12AB 的长为半径作弧(想一想,为什么),两弧相交于C ,D 两点;(2)作直线CD.CD 就是所求作的直线.这个作法实际上就是线段的垂直平分线的尺规作图. 教师引导学生思考:(1)在作法中为什么有CA =CB ,DA =DB?(2)可以用这种方法找线段的中点吗?四等分点呢? 三、举例分析例2 如图(1),△ABC 和△A′B′C′是两个成轴对称的图形,请画出它的对称轴.教学方法:启发学生把问题转化为已解决问题,只要画出点A、点A′连线的垂直平分线即可,如图(2).例3图(1)是一个五角星,请画出它的对称轴.教学方法:引导学生思考五角星有几条对称轴,点A可以和哪些点成对应点?最后化归到例2,由学生自己完成.四、巩固练习教材第64页练习第1,2,3题.五、课堂小结本节课你有什么收获?还有哪些不懂的地方吗?六、布置作业教材习题13.1第7,8题.通过前两节的学习,这节画对称轴的习题课就可以全部交由学生自己完成.画轴对称图形的对称轴就是利用两个对称点找到对称轴,即画出这对对应点连线的垂直平分线,让学生用尺规作图,独立完成.13.2画轴对称图形(2课时)第1课时作轴对称图形通过实际操作,掌握作轴对称图形的方法.重点能够按要求作出简单平面图形经过一次对称后的图形.难点较复杂图形的轴对称图形的画法.一、问题导入我们前面学习了轴对称图形以及轴对称图形的一些相关的性质.如果有一个图形和一条直线,如何画出这个图形关于这条直线对称的图形呢?这节课我们一起来学习作轴对称图形的方法.二、探究新知[活动]在一张半透明纸的左边部分,画一只左脚印,把这张纸对折后描图,打开对折的纸,就能得到相应的右脚印.这时,右脚印和左脚印成轴对称,折痕所在的直线就是它们的对称轴,并且连接任意一对对应点的线段被对称轴垂直平分.类似地,请你再将一个图形做一做,看看能否得到同样的结论.认真观察,左脚印和右脚印有什么关系?(成轴对称)对称轴是折痕所在的直线,即直线l,它与图中的线段PP′是什么关系?(直线l垂直平分线段PP′)[思考1]如何画一个点的对称图形?例1画出点A关于直线l的对称点A′.画法:(1)过点A作对称轴l的垂线,垂足为B;(2)延长AB到A′,使得BA′=AB.点A′就是点A关于直线l的对称点.[思考2]如何画一条直线的对称图形?例2已知线段AB,画出AB关于直线l的对称线段.画法:(1)画出点A关于直线l的对称点A′.(2)画出点B关于直线l的对称点B′.(3)连接点A′和点B′成线段A′B′.线段A′B′即为所求.[思考3]如果有一个图形和一条直线,如何画出与这个图形关于这条直线对称的图形呢?例3如图,已知△ABC和直线l,画出与△ABC关于直线l对称的图形.画法:(1)过点A画直线l的垂线,垂足为O,在垂线上截取OA′=OA,A′就是点A 关于直线l的对称点.(2)同理,分别画出点B,C关于直线l的对称点B′,C′.(3)连接A′B′,B′C′,C′A′,则△A′B′C′即为所求.三、课堂练习1.教材第68页练习第1,2题2.下列图形中,点P与P′关于直线MN对称的图形是()四、小结与作业1.归纳:几何图形都可以看成由点组成,对于某些图形,只要画出图形中的一些特殊点(如线段的端点),连接这些对称点,就可以得到图形的对称图形.2.作业:教材习题13.2第1题.几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对应点,再连接这些对应点,就可以得到原图形的轴对称图形;对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.第2课时用坐标表示轴对称1.能在直角坐标系中画点关于坐标轴的对称点.2.能表示点关于坐标轴对称的点的坐标,表示关于平行于坐标轴的直线的对称点的坐标.重点用坐标表示点关于坐标轴对称的点的坐标.难点找对称点的坐标之间的关系.一、问题导入教材图13.2-3是一张老北京城的示意图,其中西直门和东直门是关于中轴线对称的,如果以天安门为原点,分别以长安街和中轴线为x轴和y轴建立平面直角坐标系,根据如图所示的东直门的坐标,你能说出西直门的坐标吗?二、探究新知【探究1】(1)在直角坐标系中画出下列已知点A(2,-3),B(-1,2),C(-6,-5),D(3,5),E(4,0),F(0,-3);(2)画出这些点分别关于x轴、y轴对称的点,并填写表格;(3)请你仔细观察点的坐标,你能发现关于坐标轴对称的点的坐标有什么规律吗?(4)请你想办法检验你所发现的规律的正确性,说说你是如何检验的.已知点A(2,-3)B(-1,2)C(-6,-5)D(3,5)E(4,0)F(0,-3)关于x轴的对称点关于y轴的对称点【探究2】在同一平面直角坐标系内描出以上各点关于y轴的对称点并写出坐标,观察关于y轴对称的两个点的坐标有什么规律?【归纳】关于y轴对称的点的坐标规律是:纵坐标相同,横坐标互为相反数.【探究3】按以上规律,说出点P(x,y)关于x轴的对称点P1的坐标,再说出P1关于y轴的对称点P2坐标.观察点P经过两次轴对称所得点P2的坐标有什么规律?【归纳】一个点经历关于x轴、y轴两次轴对称得到的对称点坐标规律是:横坐标互为相反数,纵坐标也互为相反数.在以后学了“中心对称”后,两点被称为关于原点对称.三、举例分析【例1】已知A(2,a),B(-b,4),分别根据下列条件求a,b的值.(1)A,B关于y轴对称;(2)A,B关于x轴对称;(3)A,C关于x轴对称,B,C关于y轴对称.【解析】(1)A,B关于y轴对称,说明纵坐标相同,横坐标相反,a=4,b=2;(2)A,B关于x轴对称,说明横坐标相同,纵坐标相反,a=-4,b=-2;(3)A,C关于x轴对称,B,C关于y轴对称,说明A,B经过x轴、y轴两次对称变换,即关于原点对称,横、纵坐标各互为相反数,a=-4,b=2.【例2】如下图,四边形ABCD的四个顶点的坐标分别为A(-5,1),B(-2,1),C(-2,5),D(-5,4),分别画出与四边形ABCD关于y轴和x轴对称的图形.学生独立完成,教师用多媒体出示出正确答案并讲评.四、课堂巩固1.平面直角坐标系中,点P(4,-5)关于x轴的对称点在()A.第一象限B.第二象限C.第三象限D.第四象限2.已知点P(-2,3)关于y轴对称点为Q(a,b),则a+b的值为()A.1B.-1C.5D.-53.点P(a,b)关于x轴对称的点为P1,点P1关于y轴的对称点为P2,则P2的坐标为()A.(a,b) B.(a,-b)C.(-a,b) D.(-a,-b)4.若点(a,b)与点(m,n)满足a+m=0,b-n=0,则这两点关于()对称.A.x轴B.y轴C.x轴或y轴D.不确定五、拓展思维如图,点A(1,4),B(4,1),l为第一、三象限角∠xOy的平分线.(1)求证:l垂直平分AB;(2)A,B关于l成轴对称吗?(3)如果点A,B的坐标分别为(6,8)和(8,6),它们还关于l对称吗?(4)如果你发现了对称点的坐标规律,写出点P(m,n)关于第一、三象限角平分线的对称点Q的坐标.六、小结与作业小结:(1)点关于某条直线对称的点的坐标可以通过寻找线段之间的关系来求.(2)点(x,y)关于x轴对称的点的坐标为(x,-y),即横坐标相等,纵坐标互为相反数;点(x,y)关于y轴对称的点的坐标为(-x,y)即横坐标互为相反数,纵坐标相等.作业:教材习题13.2第3,4题.本节课通过学生熟悉、向往的北京城内天安门、长安街、东直门等的方位引入新课,能强烈地吸引学生的注意力,较好地激发学生的学习兴趣.其中归纳规律后检验其正确性是科学研究问题的一个必不可少的步骤,并通过一系列的练习培养学生思维的流畅性,也使学生特别是学有困难的学生都能达到基本的学习目标.13.3等腰三角形13.3.1等腰三角形(2课时)第1课时等腰三角形的性质和应用1.理解并掌握等腰三角形的性质.2.运用等腰三角形的性质进行证明和计算.3.观察等腰三角形的对称性、发展形象思维.重点等腰三角形的性质及应用.难点等腰三角形的性质的证明.一、情境导入【活动1】教师预先做出各种几何图形,包括圆、长方形、正方形、等腰梯形、一般三角形、等腰三角形、等边三角形等.让同学们抢答哪些是轴对称图形,提问什么是轴对称图形,什么样的三角形才是轴对称图形.引入今天所要讲的课题——等腰三角形.我们知道,有两条边相等的三角形是等腰三角形,下面我们利用轴对称的知识来研究等腰三角形.二、探究新知如图,把一张长方形的纸按图中虚线对折,并剪去阴影部分,再把它展开,得到的△ABC 有什么特点?学生活动:学生动手操作,从剪出的图形观察△ABC的特点,可以发现AB=AC.教师活动:让学生回顾等腰三角形的概念:有两边相等的三角形叫做等腰三角形,相等的两边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角.如下图.在△ABC中,若AB=AC,则△ABC是等腰三角形,AB,AC是腰,BC是底边,∠A 是顶角,∠B和∠C是底角.【活动2】把活动1中剪出的△ABC沿折痕AD对折,找出其中重合的线段,填入下表:重合的线段重合的角从上表中你能发现等腰三角形具有什么性质吗?学生活动:学生经过观察,独立完成上表,然后小组讨论交流,从表中总结等腰三角形的性质.教师活动:引导学生归纳.性质1等腰三角形的两个底角相等(简写成“等边对等角”);性质2等腰三角形顶角平分线、底边上的中线、底边上的高相互重合(简写成“三线合一”).【活动3】你能用所学知识验证上述性质吗?如图,在△ABC 中,AB =AC.求证:∠B =∠C.学生活动:学生在独立思考的基础上进行讨论,寻找解决问题的办法,若证∠B =∠C ,根据全等三角形的知识可以知道,只需要证明这两个角所在的三角形全等即可.于是可以作辅助线构造两个三角形,作BC 边上的中线AD ,证明△ABD 和△ACD 全等即可,根据条件利用“边边边”可以证明.教师活动:让学生充分讨论,根据所学的数学知识利用逻辑推理的方式进行证明,证明过程中注意学生表述的准确性和严谨性.证明:作BC 边上的中线AD ,如图.在△ABD 和△ACD 中,⎩⎨⎧AB =AC ,AD =AD ,BD =CD ,所以△ABD ≌△ACD(SSS ),所以∠B =∠C. 这样,就证明了性质1.类比性质1的证明你能证明性质2吗?由△ABD ≌△ACD ,还可得出∠BAD =∠CAD ,∠ADB =∠ADC =90°. 从而AD ⊥BC ,这也就证明了等腰△ABC 底边上的中线平分顶角∠A 并垂直于底边BC. 添加辅助线的方法多样,让学生再去讨论、交流,即用类似的方法可以证明性质2. 三、应用提高例1 如图,在△ABC 中,AB =AC ,点D 在AC 上,且BD =BC =AD ,求△ABC 各角的度数.学生活动:小组合作,分组讨论、交流.教师活动:引导学生分析图形中关于角的数量关系.(三角形的内角、外角,等腰三角形的底角)发现:(1)∠ABC =∠ACB =∠CDB =∠A +∠ABD ; (2)∠A =∠ABD ; (3)∠A +2∠C =180°.若设∠A=x,则有x+4x=180°,得到x=36°,进一步得到两个底角的度数.四、小结与作业请同学们回顾本节课所学的内容,有哪些收获?师生活动:学生思考后,用自己的语言归纳,教师适时点评,并关注以下几个问题:小结:(1)等边对等角;(2)等腰三角形的三线合一;(3)等腰三角形常用辅助线作法(作底边上的高、作底边上的中线、作顶角的平分线).作业:教材习题13.3第1,3,7题.本节课重点要让学生通过动手翻折等腰三角形纸片得出等腰三角形“两个底角相等”、“三线合一”的性质.设计理念是让学生通过感官认识、折纸、猜想、验证等腰三角形的性质,然后运用全等三角形的知识加以论证,使学生思维由形象直观过渡到抽象的逻辑演绎,层层展开,步步深入,从而实现教学目的.第2课时等腰三角形的判定1.理解并掌握等腰三角形的判定方法.2.运用等腰三角形的判定进行证明和计算.重点等腰三角形的判定方法.难点等腰三角形的判定方法的证明.一、提出问题出示教材第77页“思考”.学生思考,回答后教师提问:在一般三角形中,如果有两个角相等,那么它们所对的边有什么关系?学生猜想它们所对的边相等.即如果一个三角形有两个角相等,那么这两个角所对的边也相等.如何证明?二、解决问题教师引导提示,学生根据提示画出图形,并写出已知、求证.已知:在△ABC中,∠B=∠C.求证:AB=AC.与学生一起回顾等腰三角形中常添加的辅助线:高、顶角平分线、底边上的中线.让学生逐一尝试,发现可以作AD⊥BC,或AD平分∠BAC,但不能作BC边上的中线.学生口头证明后,选一种方法写出证明过程.如图,在△ABC中,∠B=∠C,作△ABC的角平分线AD.在△BAD 和△CAD 中,⎩⎨⎧∠1=∠2,∠B =∠C ,AD =AD ,∴△BAD ≌△CAD(AAS ),∴AB =AC.归纳等腰三角形的判定方法: 如果一个三角形有两个角相等,那么这两个角所对的边也相等,简称:“等角对等边”. 三、应用举例 1.出示教材例2.学生讨论后,自己完成证明过程.例2 求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.已知:∠CAE 是△ABC 的外角,∠1=∠2,AD ∥BC.(如图所示)求证:AB =AC.分析:要证明AB =AC.可先证明∠B =∠C.因为∠1=∠2,所以可以设法找出∠B ,∠C 与∠1,∠2的关系.证明:∵AD ∥BC ,∴∠1=∠B(______________________),∠2=∠C(______________________). 而已知∠1=∠2,所以 ∠B =∠C.∴AB =AC(______________). 2.出示教材例3.让学生自学例3.例3 已知等腰三角形底边长为a ,底边上的高的长为h ,求作这个等腰三角形.作法:(1)作线段AB=a.(2)作线段AB的垂直平分线MN,与AB相交于点D.(3)在MN上取一点C,使DC=h.(4)连接AC,BC,则△ABC就是所求作的等腰三角形.四、课堂小结1.等腰三角形的判定方法是什么?2.等腰三角形的性质与判定既有区别又有联系,你能总结一下吗?五、布置作业教材习题13.3第2,8,10题.13.3.2等边三角形(2课时)第1课时等边三角形的性质和判定1.掌握等边三角形的定义.2.理解等边三角形的性质与判定.重点等边三角形的性质和判定.难点等边三角形的性质的应用.一、问题引入在等腰三角形中,如果底边与腰相等,会得到什么结论?二、自主探究1.等边三角形的定义底边和腰相等的等腰三角形叫做等边三角形.2.思考:把等腰三角形的性质用于等边三角形,能得到什么结论?一个三角形的三个内角满足什么条件才是等边三角形?边:三条边都相等.角:三个角都相等,并且每一个角都等于60°.3.在△ABC中,∠A=∠B=∠C,你能得到AB=BC=CA吗?为什么?你从中能得到什么结论?三个角都相等的三角形是等边三角形.4.在△ABC中,AB=AC,∠A=60°.(1)求证:△ABC是等边三角形;(2)如果把∠A=60°改为∠B=60°或∠C=60°,那么结论还成立吗?(3)由上你可以得到什么结论?。
人教版八年级数学上册13.2.2《用坐标表示轴对称》教案
人教版八年级数学上册13.2.2《用坐标表示轴对称》教案一. 教材分析人教版八年级数学上册13.2.2《用坐标表示轴对称》是初中数学中的重要内容,主要让学生了解和掌握用坐标表示轴对称的性质和运用。
通过本节课的学习,学生能够理解轴对称的概念,掌握对称轴的求法,以及会用坐标表示轴对称。
二. 学情分析学生在学习本节课之前,已经学习了坐标系的初步知识,对于坐标系中的点、线、面的位置关系有一定的了解。
但是,对于用坐标表示轴对称,可能还比较陌生,需要通过实例和练习来进一步理解和掌握。
三. 教学目标1.让学生理解轴对称的概念,知道对称轴的求法。
2.让学生掌握用坐标表示轴对称的方法和技巧。
3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.教学重点:轴对称的概念,对称轴的求法,用坐标表示轴对称。
2.教学难点:对称轴的求法,用坐标表示轴对称的技巧。
五. 教学方法采用讲授法、实例分析法、练习法、小组合作法等,通过生动的实例和丰富的练习,让学生理解和掌握轴对称的性质和运用。
六. 教学准备1.准备相关的教学PPT和教学素材。
2.准备黑板和粉笔。
七. 教学过程导入(5分钟)通过一个简单的实例,让学生初步感受轴对称的概念,并提出问题:“什么是轴对称?如何求对称轴?”呈现(15分钟)1.讲解轴对称的定义和性质,通过PPT和实物展示,让学生直观地理解轴对称的概念。
2.讲解对称轴的求法,通过实例分析,让学生掌握求对称轴的方法。
操练(10分钟)1.让学生独立完成PPT上的练习题,检测学生对轴对称的理解和掌握程度。
2.让学生分组讨论,互相解答疑问,巩固所学知识。
巩固(10分钟)1.让学生用坐标表示一些简单的轴对称图形,加深对用坐标表示轴对称的理解。
2.让学生讲解自己的解题思路和方法,互相学习和交流。
拓展(10分钟)1.讲解一些关于轴对称的拓展知识,如:轴对称与旋转的关系。
2.让学生尝试解决一些关于轴对称的综合题,提高学生的解题能力。
八年级上册第十三章13.2画轴对称图形课件
A’
为点O,在垂线上截取OA’=OA,
C’
点A’就是点A关于直线l的对称
B’
点;
∴△A’B’C’即为所求。
2、类似地,分别作出点B、C关 于直线l的对称点B’、C’;
3、连接A’B’、B’C’、C’A’。8
例1:如图,已知△ABC和直线l,作出与 △ABC关于直线l对称的图形。
B
B
B A A
C
B
C
ABCD关于y轴和x轴对称的图形。
解:点(x,y)关于y轴对称的 点坐标为(-x,y),因此 A,B,C,D关于y轴对称的点 分别为A’( ,5 1), B’( 2 , 1),C’( , 2 )5, D’( , ),依5次4连接即可得到关 于y轴对称的四边形 A’B’C’D’.
18
归纳:
对于这类问题,只要先求出已知图形中的一些 特殊点(如多边形的顶点)的对应点的坐标,描出并 连接这些点,就可以得到这个图形的轴对称图形.
· C``(3,2) ·A``(4,1)
· -4 -3 -2 -1 0 1 2
A`(-4,-1)
-1
B(-1,-1)
B``(1,-1)
3
4
5
C`(-3,-2)
-2
-3
-4 24
课本72页习题6
如图,小球起始时位于(3,0),沿所示的方向击球,小球运动轨迹如
图所示,用坐标描述这个运动,找出小球运动的轨迹上关于直线l对
标为 (- 5 , -6 ) .
2、点M(a, -5)与点N(-2, b)关于x轴对称,则
a= -2 , b = 5 .
3、点P(-5, 6)与点Q关于y轴对称,则点Q的坐
标为 ( 5 , 6 ) .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7. 已知点 A(2a+3b,-2)和 A′(-1,3a+b). (1)若点 A 与 A′关于 y 轴对称,求 a+b 的值; (2)若点 A 与 A′关于 x 轴对称,求 a+b 的值.
2a+3b=1, a=-1, 解:(1)3a+b=-2,∴b=1, ∴a+b=0.
2a+3b=-1, a=1, (2)3a+b=2, ∴b=-1, ∴a+b=0.
△ A2B2C2,并写出△ A2B2C2 各顶点的坐标; (3)观察△ A1B1C1 和△ A2B2C2,它们是否关于某直线
对称?若是,请画出这条对称轴,并写出这条对称轴的
名原图形的关系是
( A) A.关于 x 轴对称
B.关于 y 轴对称
C.关于原点对称 D.重合
12
4. (2017·海南)如图,在平面直角坐标系中,△ ABC 位于第二象限,点 A 的坐标是(-2,3),先把△ ABC 向 右平移 4 个单位长度得到△ A1B1C1,再作与△ A1B1C1 关 于 x 轴对称的△ A2B2C2,则点 A 的对应点 A2 的坐标是 (B )
3
2. 设点 M(x,y)在第二象限,且|x|=2,|y|=3,则点
M 关于 y 轴的对称点的坐标是( A )
A.(2,3)
B.(-2,3)
C.(-3,2)
D.(-3,-2)
4
3. 已知点 A(2m,m+n)与点 B(m+n,-6)关于 x 轴 对称,则 A 点坐标为 (6,6) .
4. 在平面直角坐标系中,已知点 A(-1,2),线段
8
解:(1)S△ ABC=12×5×3=125; (2)图略; (3)A1(1,5),B1(1,0),C1(4,3).
9
1. 如图,在 3×3 的正方形网格中有四个格点 A, B, C,
D, 以其中一点为原点,网格线所在直线为坐标轴,建立
平面直角坐标系,使其余三个点中存在两个点关于一条
坐标轴对称,则原点是( B )
17
解:(1)如图,画△ A1B1C1,标出字母;
(2)A1(0,1).B1(2,5),C1(3,2).
18
9. △ ABC 在平面直角坐标系中的位置如图所示.
(1)作出△ ABC 关于 y 轴对称的图形△ A1B1C1,并写 出△ A1B1C1 各顶点的坐标;
(2)将△ ABC 向右平移 6 个单位,作出平移后的
A.(-3,2) C.(1,-2)
B.(2,-3) D.(-1,2)
13
5. 已知点 M(-2,y),N(x,-3),若 M,N 两点关 于 x 轴对称,则 x= -2 ,y= 3 ;若 M,N 两点 关于 y 轴对称,则 x= 2 ,y= -3 ;若 M,N 两点 关于原点对称,则 x= 2 ,y= 3 .
16
8. 如图,△ ABC 在平面直角坐标系中,其中,点 A, B,C 的坐标分别为 A(-2,1),B(-4,5),C(-5,2).
(1)作△ ABC 关于直线 l:x=-1 对称的△ A1B1C1,其 中,点 A,B,C 的对应点分别为点 A1,B1,C1;
(2)写出点 A1,B1,C1 的坐标.
A.A 点
B. B 点
C. C 点
D. D 点
【解析】只有以点 B 为坐标原点时,点 A 与点 C 才
关于 y 轴对称.
10
2. 已知 a>0,b<0,则点 P(a+1,b-1)关于 x 轴对
称的点一定在( A )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
11
3. 将平面直角坐标系内某个图形各个点的横坐标不
6
解:(1)如图所示:
△ A1B1C1 即为所求; ∴点 B1 的坐标为(-2,-1);
(2)如图所示:
△ A2B2C2 即为所求,
∴ 点 C2 的坐标为(1,1).
7
6. 如图所示,在平面直角坐标系 xOy 中,A(-1,5), B(-1,0),C(-4,3).
(1)求出△ ABC 的面积; (2)在图中作出△ ABC 关于 y 轴的对称图形△ A1B1C1; (3)写出点 A1,B1,C1 的坐标.
14
6. 如图,在平面直角坐标系中,正方形 ABCD 的顶 点坐标为 A(1,1),B(1,-1),C(-1,-1),D(-1, 1),y 轴上有一点 P(0,2),作点 P 关于点 A 的对称点 P1,作点 P1 关于点 B 的对称点 P2, 点 P2 关于 C 的对称点 P3,作点 P3 关于 D 的对称点 P4, 作点 P4 关于 A 的对称点 P5,…,按此操作下去,则点 P2018 的坐标为 (0,-2) .
AB∥x 轴,且 AB=2,则点 B 关于 y 轴的对称点的坐标
为 (3,2)或(-1,2)
.
5
知识点 图形关于坐标轴对称 5. 在如图所示的直角坐标系中,每个小方格都是边 长为 1 的正方形,△ ABC 的顶点均在格点上,点 A 的坐 标是(-3,-1). (1) 将 △ ABC 沿 y 轴 正 方 向 平 移 3 个 单 位 得 到 △ A1B1C1,画出△ A1B1C1,并写出点 B1 的坐标; (2)画出△ A1B1C1 关于 y 轴对称的△ A2B2C2,并写出 点 C2 的坐标.
第十二章 全等三角形 13.2 画轴对称图形
第2课时 用坐标表示轴对称
1
点 P(x,y)关于 x 轴的对称点的坐标是( x,-y ); 点 P(x,y)关于 y 轴的对称点的坐标是( -x,y ); 点 P(x,y)关于原点的对称点的坐标是( -x,-y ).
2
知识点 点关于坐标轴对称 1. 下列判断正确的是( C ) A.点(-3,4)与(3,4)关于 x 轴对称 B.点(3,-4)与点(-3,4)关于 y 轴对称 C.点(3,4)与点(3,-4)关于 x 轴对称 D.点(4,-3)与点(4,3)关于 y 轴对称