第1讲 平面向量的概念及加减运算(教师版)
2020年高一下学期第1讲:平面向量的基本概念与线性运算(含解析)
4若两个向量相等,则它们的起点和终点分另重合;
5若a//b,b//c,则a//C.
A.0个B.1个C.2个D.3个
2.下列命题中,正确的是()
a.a与b共线,b与c共线,则a与c也共线
B.任意两个相等的非零向量的始点与终点总是一平行四边形的四个顶点
十、十muruur r
和0A交于E,设AB占,AO b
(1)用向量a与b表示向量Oc,CD;
…uuumu,亠
(2)若OE OA,求实数的值.
26.如图,已知ABC的面积为14,D、E分别为边AB、BC上的点,且AD:DB BE:EC2:1,AE
(1)求及;
rr uuu
(2)用aLeabharlann b表示BP;(3)求PAC的面积.
动点
uuu
P满足OP
uur
OA
uuur
/AB
(uuu
|AB|
uuur
AC、
-uuu^),
|AC|
[0,),则P的轨迹一定通过
ABC的()
A.外心
B.内心
C.重心
D.垂心
1 2.如图,四边形ABCD是正方形,
延长CD至E,
使得
DE CD.若动点P从点A出发,沿正方形
A点,其中
UUU
AP
UUL
AB
AE,下列判断正确的是()
3
|CB|,
若
AB BC,贝U(
)
2
2
5
5
A .-
B .-
C.
D.
3
3
3
3
5.已知|a11,
rrr
初中数学教案平面向量的加法与减法
初中数学教案平面向量的加法与减法初中数学教案:平面向量的加法与减法引言:平面向量是数学中的重要概念,它们在解决几何和代数问题中起着重要作用。
平面向量的加法与减法是其中的基本运算,通过掌握这些运算,学生们将能更好地理解和应用平面向量的概念。
本教案将重点介绍初中数学中平面向量的加法与减法,并提供相应的教学活动和练习。
一、概念与性质1. 平面向量的定义:平面向量是具有大小和方向的标量,用箭头表示。
2. 平面向量的加法:平面向量的加法满足平行四边形法则。
即将两个向量的起点连接起来,构成一个平行四边形,那么这两个向量的和就是该平行四边形对角线的向量。
3. 平面向量的减法:平面向量的减法可以通过将减数取负后与被减数相加,即将减数的方向翻转180度,然后与被减数相加。
二、教学活动活动1:向量相加的可视化1. 准备一张平面坐标纸和两个向量的起点。
2. 让学生标出这两个向量,然后将它们的起点连接起来。
3. 请学生通过平行四边形法则,确定这两个向量的和。
4. 让学生将这个和向量画在纸上,观察并讨论结果。
活动2:向量相减的实际应用1. 选择一个与日常生活相关的实际场景,例如风力的影响。
2. 以箭头的形式表示不同风速和风向的向量。
3. 让学生利用相减法确定两个不同风速的合成风速,并判断合成风速对不同活动的影响。
三、练习题1. 已知向量AB = (2, 3)和向量AC = (-1, 5),求向量AB + AC的结果。
2. 已知向量CD = (-3, 2)和向量CE = (4, -1),求向量CD - CE的结果。
3. 如果向量AB = (1, 2)和向量BC = (3, -4),求向量AC的结果。
四、扩展应用1. 提供更复杂的平面向量加法与减法练习题,加强学生对概念的理解和应用能力。
2. 探索平面向量运算的几何解释,例如向量代表位移、速度或力。
结语:通过本教案的学习,学生们应该能够理解平面向量的加法与减法的概念,并能够运用这些知识解决问题。
4.1.2平面向量的概念及加减法
A
E
B
A
E
B
2、填空: 填空:
AB + BC = CB + BA = OE + ED =
AB + BE + ED =
AE + FC + EF =
AB + BC + CD + DE + EF =
3、如图,已知平行四边形ABCD,对角线AC与BD 相交于点O,设 OA = a , = b ,试用 a ,b 表 OB 示下列向量。
方向相同, 方向相同,长度相等的两个向量 相等向量: 相等向量: 方向相反, 方向相反,长度相等的两个向量 相反向量: 相反向量:
平行向量: 平行向量: 方向相同或相反的两个向量叫做平行向量
D C
D E C F B
A
B
A
区别与联系
长度 相等向量 互为相反向量 平行向量 相等 相等 无关 向量相等或相反 方向 相同 相反 相同或相反 向量平行 向量平行
不平行向量相加
OB = a + b
b a
A
a
O
b
B
a+b
平行向量相加: 已知: 平行向量相加: 已知: a b
a b
O
求: a + b
A
a
b
B
a+b a b
O
a + b = OA + AB = OB
B
a
A
a+b
a + b = OA + AB = OB
零向量: 零向量: 长度为零的向量
记作: 记作: 0 方向: 方向: 任意的 大小: 大小: a = 0
(完整版)平面向量全部讲义
第一节平面向量的概念及其线性运算1.向量的有关概念(1)向量:既有大小,又有方向的量叫向量;向量的大小叫做向量的模.(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.例1.若向量a与b不相等,则a与b一定()A.有不相等的模B.不共线C.不可能都是零向量D.不可能都是单位向量例2..给出下列命题:①若|a|=|b|,则a=b;②若A,B,C,D是不共线的四点,则AB=DC等价于四边形ABCD为平行四边形;③若a=b,b=c,则a=c;④a=b等价于|a|=|b|且a∥b;⑤若a∥b,b∥c,则a∥c.其中正确命题的序号是()A.②③B.①②C.③④D.④⑤CA2.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算三角形法则平行四边形法则(1)交换律:a+b=b+a;(2)结合律:(a+b)+c=a+(b+c)减法求a与b的相反向量-b的和的运算叫做a与b的差三角形法则a-b=a+(-b)数乘求实数λ与向量a的积的运算(1)|λa|=|λ||a|;(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;λ(μa)=(λμ)a;(λ+μ)a=λa+μa;λ(a+b)=λa+λb例3:化简AC→-BD→+CD→-AB→得() A.AB→B.DA→C.BC→D.0例4:(1)如图,在正六边形ABCDEF中,BA+CD+EF=()A.0B.BE C.AD D.CF(2)设D,E分别是△ABC的边AB,BC上的点,AD=12AB,BE=23BC.若DE=λ1AB+λ2AC(λ1,λ2为实数),则λ1+λ2的值为________.巩固练习:1.将4(3a+2b)-2(b-2a)化简成最简式为______________.2.若|OA→+OB→|=|OA→-OB→|,则非零向量OA→,OB→的关系是() A.平行B.重合C.垂直D.不确定3.若菱形ABCD的边长为2,则|AB-CB+CD|=________4.D是△ABC的边AB上的中点,则向量CD等于()A.-BC+12BA B.-BC-12BA C.BC-12BA D.BC+12BA5.若A,B,C,D是平面内任意四点,给出下列式子:①AB+CD=BC+DA;②AC+BD=BC+AD;③AC-BD=DC+AB.其中正确的有()A.0个B.1个C.2个D.3个6.如图,在△ABC中,D,E为边AB的两个三等分点,CA→=3a,CB→=2b,求CD→,CE→.DD12巩固练习1。
平面向量的定义与加减乘法
平面向量的定义与加减乘法平面向量是数学中的一个重要概念,它在几何学、物理学等领域中有着广泛的应用。
本文将从平面向量的定义入手,逐步介绍向量的加减乘法,并探讨其几何意义和实际应用。
一、平面向量的定义平面向量是指在平面上具有大小和方向的量。
通常用有向线段来表示,线段的起点表示向量的起点,线段的长度表示向量的大小,线段的方向表示向量的方向。
在平面直角坐标系中,可以用坐标表示平面向量。
设向量A的起点为原点O,终点为点P(x,y),则向量A可以表示为A=(x,y)。
其中,x称为向量A在x轴上的投影,y称为向量A在y轴上的投影。
二、向量的加法向量的加法是指将两个向量相加得到一个新的向量。
设有两个向量A=(x1,y1)和B=(x2,y2),则它们的和C=A+B=(x1+x2,y1+y2)。
向量的加法满足交换律和结合律。
即A+B=B+A,(A+B)+C=A+(B+C)。
这意味着向量的加法不依赖于向量的起点,只与向量的大小和方向有关。
几何上,向量的加法可以理解为将一个向量的终点与另一个向量的起点相连,得到一个新的向量。
这个新向量的起点与第一个向量的起点相同,终点与第二个向量的终点相同。
三、向量的减法向量的减法是指将一个向量减去另一个向量得到一个新的向量。
设有两个向量A=(x1,y1)和B=(x2,y2),则它们的差C=A-B=(x1-x2,y1-y2)。
向量的减法可以理解为将第二个向量取反,然后进行向量的加法。
即A-B=A+(-B)。
几何上,向量的减法可以理解为将一个向量的终点与另一个向量的终点相连,得到一个新的向量。
这个新向量的起点与第一个向量的起点相同,终点与第二个向量的起点相同。
四、向量的数量乘法向量的数量乘法是指将一个向量乘以一个实数得到一个新的向量。
设有一个向量A=(x,y)和一个实数k,则它们的数量积B=kA=(kx,ky)。
数量乘法改变了向量的大小,但保持了向量的方向。
当k>0时,向量的数量乘法使向量的大小增大;当k<0时,向量的数量乘法使向量的大小减小,并改变了向量的方向。
平面向量的加减教案
平面向量的加减教案引言:平面向量的加减是数学中重要的概念之一。
通过掌握平面向量的加减法则,我们能够更好地理解和运用向量的性质,解决与向量相关的数学问题。
本教案将介绍平面向量的加减法则及其应用,以帮助学生深入理解和掌握这一知识点。
一、平面向量的定义和表示1. 平面向量的定义:平面向量是具有大小和方向的量,用箭头表示。
例如,向右箭头表示正东方向的向量,向上箭头表示正北方向的向量。
2. 平面向量的表示:平面向量可以用坐标表示,也可以用字母表示。
例如,向量AB可以记作→AB或A B,其中→表示向量,A B表示向量的长度。
二、平面向量的加法1. 平面向量的加法定义:若有向量→A和→B,它们的和记作→A + →B,表示从→A出发,沿着→B的方向走到最后的位置。
2. 平面向量的加法法则:向量的加法满足"三角形法则"。
即将两个向量的起点相连,以第一个向量的方向作为起始方向,以第二个向量的方向作为终止方向,则连接起始点和终止点的向量为和向量。
例如:→A + →B = →CA B + B C = A C3. 平面向量的加法性质:- 交换律:→A + →B = →B + →A- 结合律:(→A + →B) + →C = →A + (→B + →C)三、平面向量的减法1. 平面向量的减法定义:若有向量→A和→B,它们的差记作→A - →B,表示从→B的终止点回到→A的终止点的向量。
2. 平面向量的减法法则:向量的减法满足"平行四边形法则"。
即将两个向量的起点相连,以第二个向量的方向作为终止方向,以第一个向量的方向反向作为起始方向,则连接起始点和终止点的向量为差向量。
例如:→A - →B = →CA B - B C = A C3. 平面向量的减法性质:- 减去一个向量等于加上其负向量:→A - →B = →A + (-→B)四、平面向量的应用1. 位移向量:在平面向量的应用中,位移向量被广泛用于描述物体在平面内的移动。
平面向量加减法课件
在物理学中的应用
01
平面向量加减法在物理学中的性质和定理
02
向量的加法满足平行四边形定则
向量的减法满足三角形定则
03
在物理学中的应用
向量的数乘满足标量积定理
1
2
平面向量加减法在物理学中的实际应用
确定力的合成与分解
3
在物理学中的应用
计算物体的运动轨迹和速度
解决物理问题,如力学、电磁学等
05
平面向量加减法的练习 与巩固
平行法则适用于任何两个相同的向量 。通过将一个向量分解成两个相同的 子向量,可以找到原始向量的和。这 个法则也可以用于任何数量的相同向 量。
04
平面向量加减法的应用
解向量方程
求解向量方程的解 根据给定的向量方程,确定未知量
通过加减法运算,解出未知量的值
解向量方程
检验解的正确性,确 保解符合原始向量方 程
向量减法的几何意义
两个向量相减,得到的新的向量的方向和大小与原来的两个向量有关系。
02
平面向量加减法的运算 性质
向量的加法交换律
总结词
向量加法满足交换律
详细描述
设$\mathbf{a}$和$\mathbf{b}$是平面向量,则有$\mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}$,即向量加法满足交换律。ຫໍສະໝຸດ 练习题一:判断题总结词
掌握平面向量加减法的基本概念
判断下列说法是否正确
向量a+向量b的和向量等于向量a与 向量b之和。(×)
判断下列说法是否正确
向量a与向量b的和向量等于向量a+ 向量b。(×)
判断下列说法是否正确
平面向量的加法和减法
平面向量的加法和减法平面向量是数学中一个重要的概念,它可以表示平面上的位置和方向。
在进行平面向量的运算时,加法和减法是两个最基本的操作。
本文将详细介绍平面向量的加法和减法的定义、性质和运算规则。
一、平面向量的定义平面向量是具有大小和方向的箭头,它可以表示平面上的位移或者方向。
平面向量通常用有向线段来表示,箭头的起点表示向量的起点,箭头的长度表示向量的大小,箭头的方向表示向量的方向。
平面向量常用小写字母加上有向线段的箭头来表示,例如:AB →。
二、平面向量的加法平面向量的加法是指将两个向量相加得到一个新的向量。
设有平面向量AB → 和CD →,它们的加法定义为:AB → + CD → = AD →。
即将向量AB → 的起点和向量CD → 的终点相连得到的向量AD → 就是它们的和向量。
三、平面向量的减法平面向量的减法是指将一个向量减去另一个向量得到一个新的向量。
设有平面向量AB → 和CD →,它们的减法定义为:AB → - CD → = AD →。
即将向量AB → 的起点和向量CD → 的终点相连得到的向量AD → 就是它们的差向量。
四、平面向量的运算规则1. 平面向量的加法满足交换律和结合律。
即对于任意两个向量AB→ 和CD →,有AB → + CD → = CD → + AB → 和(AB → + CD →) + EF → = AB → + (CD → + EF →)。
2. 零向量是一个特殊的向量,它表示大小为0的向量。
对于任意向量AB →,有AB → + 0 → = AB →。
3. 平面向量的减法可以转化为加法,即AB → - CD → = AB → + (-CD →),其中-CD → 表示向量CD → 的反向大小相等的向量。
4. 如果两个向量的大小相等,并且方向相反,则它们相互抵消,和向量为零向量。
即如果AB → = -CD →,则AB → + CD → = 0 →。
5. 平面向量的加法和减法可以通过图形法或坐标法进行计算。
平面向量的加法减法与数乘运算课件
数乘的运算性 质
结合律
$\lambda(\mu\mathbf{a})=(\lambda\mu)\mathbf{a}$。
分配律
$\lambda(\mathbf{a}+\mathbf{b})=\lambda\mathbf{a}+\lambd a\mathbf{b}$。
反交换律
$\lambda\mathbf{a}\cdot\mathbf{b}=\lambda(\mathbf{a}\cdot \mathbf{b})$。
2023
PART 04
平面向量的加法减法与数 乘运算的应用
REPORTING
在物理学中的应用
力的合成
电磁学中的向量表示
在物理中,向量加法可以应用于力的 合成,例如两个力的向量和可以表示 为它们的加法运算。
在电磁学中,向量加法可以用于表示 电磁场中的向量,例如电场强度和磁 场强度。
速度和加速度
速度和加速度是物理学中重要的向量 概念,通过向量加法可以计算出物体 在不同方向上的速度和加速度。
详细描述
2. 这类题目需要学生灵活运用所学知识,进行深入思考 和细致计算。
2023
REPORTING
THANKS
感谢观看
求解向量与轴的夹角
通过数乘运算可以求得向量与 轴之间的夹角。
投影问题
通过数乘运算可以求得一个向 量在另一个向量上的投影。来自 2023PART 03
平面向量的加法减法与数 乘运算的几何意 义
REPORTING
平面向量的几何意 义
01
02
03
04
向量表示为有向线段
向量的起点为线段的起点,终 点为线段的终点
向量的长度和方向
平面向量的加减法运算教学设计
平面向量的加减法运算教学设计以平面向量的加减法运算为主题的教学设计第一节:引入引导学生回顾平面向量的定义和性质,强调向量的表示方法和运算规则。
简要介绍平面向量的加法和减法运算,以及它们的几何意义。
第二节:平面向量的加法运算1.1 向量的加法定义向量的加法是指将两个向量的对应分量相加得到一个新的向量。
引导学生根据定义进行向量的加法运算。
1.2 加法运算的性质向量的加法满足交换律、结合律和零向量的存在性。
通过示例和练习题让学生理解和应用这些性质。
1.3 加法运算的几何意义向量的加法可以用平行四边形法则来解释,即将两个向量的起点相连,得到一个新的向量,它的起点和终点分别为原向量的起点和终点。
第三节:平面向量的减法运算2.1 向量的减法定义向量的减法是指将第二个向量取负后与第一个向量进行加法运算。
引导学生根据定义进行向量的减法运算。
2.2 减法运算的性质向量的减法满足减去一个向量等于加上其相反向量,即a-b=a+(-b)。
通过示例和练习题让学生理解和应用这个性质。
2.3 减法运算的几何意义向量的减法可以用平行四边形法则来解释,即将第二个向量的起点与第一个向量的终点相连,得到一个新的向量,它的起点和终点分别为原向量的起点和第二个向量的终点。
第四节:应用练习通过一些实际问题和练习题,让学生应用所学的平面向量的加减法运算解决几何和物理问题。
可以设计一些场景,如力的合成、位移的计算等。
第五节:总结与拓展对平面向量的加减法运算进行总结,强调运算的规则和性质,以及几何意义。
鼓励学生进一步拓展应用平面向量的知识,如向量的数量积和向量的夹角等。
通过以上教学设计,可以帮助学生系统掌握平面向量的加减法运算,理解其几何意义,并能够应用于实际问题的求解。
同时,通过练习和拓展,培养学生的问题解决能力和数学思维。
第1讲 平面向量的概念及线性运算4种题型(解析版)
第1讲 平面向量的概念及线性运算4种题型【考点分析】考点一:向量的基本概念①定义:既有大小又有方向的量叫做向量.②向量的模:向量AB 的大小,也就是向量AB 的长度,叫做向量的模,记作||AB . ③零向量:长度为0的向量,其方向是任意的. ④单位向量:长度等于1个单位的向量.⑤平行向量:方向相同或相反的非零向量.平行向量又叫共线向量.规定:0与任一向量平行. ⑥相等向量:长度相等且方向相同的向量. ⑦相反向量:长度相等且方向相反的向量. 考点二:向量的线性运算和向量共线定理 ①向量的线性运算考点三:向量共线定理①如果λ=a b 且0≠b ,则a b ∥;反之a b ∥且0≠b ,则一定存在唯一一个实数λ,使λ=a b . 推论:①三点A ,B ,C 共线⇔AB ,AC 共线(功能:证明三点共线);①向量PA ,PB ,PC 中三个向量的终点A ,B ,C 共线⇔存在实数λ,μ使得PA PB PC λμ=+,且1.λμ+=①BD DC λ=,111AD AC AC λλλ=+++. 【题型目录】题型一: 平面向量的概念 题型二: 平面向量的加法、减法 题型三: 平面向量的线性运算与共线定理 题型四: 由平面向量的性质判断图形的形状 【典型例题】题型一: 平面向量的概念【例1】给出下列说法:①零向量是没有方向的;①零向量的长度为0;①零向量的方向是任意的;①单位向量的模都相等.其中正确的有( ) A .1个 B .2个C .3个D .4个【答案】C【分析】根据零向量及单位向量的概念即可求解. 【详解】解:对①:零向量的方向是任意的,故①错误; 对①:零向量的长度为0,故①正确; 对①:零向量的方向是任意的,故①正确; 对①:单位向量的模都等于1,故①正确. 故选:C.【例2】下列命题中正确的是( )A .两个有共同起点且相等的向量,其终点必相同B .两个有公共终点的向量,一定是共线向量C .两个有共同起点且共线的向量,其终点必相同D .若AB 与CD 是共线向量,则点A ,B ,C ,D 必在同一条直线上 【答案】A【分析】根据向量相等与共线的概念即可解决.【详解】两个相等的向量方向相同且长度相等,因此起点相同时终点必相同,故A 正确; 两个有公共终点的向量,可能方向不同,也可能模长不同,故B 错误;两个有共同起点且共线的向量可能方向不同,也可能模长不同,终点未必相同,故C 错误;AB 与CD 是共线向量,也可能是AB 平行于CD ,故D 错误.故选:A【例3】有下列结论:①表示两个相等向量的有向线段,若它们的起点相同,则终点也相同; ①若a b ≠,则a ,b 不是共线向量;①若AB DC =,则四边形ABCD 是平行四边形; ①若m n =,n k =,则m k =;①有向线段就是向量,向量就是有向线段. 其中,错误的个数是( ) A .2 B .3C .4D .5,若a b ≠也有可能a ,b 长度不等,但方向相同或相反,即共线,AB DC =,则AB ,DC 不一定相等,所以四边形,若m n =,n k =,则m k =,①正确;,有向线段不是向量,向量可以用有向线段表示,综上,错误的是①①①,共3个. 【例4】设0a 为单位向量,①若a 为平面内的某个向量,则a =|a |0a ;②若a 与0a 平行,则a =|a |0a ;③若a 与0a 平行且|a |=1,则a =0a .上述命题中,假命题的个数是A .0B .1C .2D .3 【答案】D【详解】单位向量的模为1,方向可以是不同方向,所以①错 ;若a 与0a 平行,则两个向量可以同向,也可以反向,方向不一定相同,所以①错;①错因此选D 【例5】下列命题中,正确的个数是( )①单位向量都相等;①模相等的两个平行向量是相等向量; ①若,a b 满足||||a b >,且a 与b 同向,则a b >①若两个向量相等,则它们的起点和终点分别重合; ①若,a b b c ∥∥,则a c ∥ A .0个 B .1个C .2个D .3个【答案】A【分析】根据平面向量的基本概念,对选项中的命题进行分析、判断正误即可. 【详解】单位向量的大小相等,但方向不一定相同,故①错误; 模相等的两个平行向量是相等向量或相反向量,故①错误; 向量有方向,不能比较大小,故①错误;向量是可以自由平移的矢量,当两个向量相等时,它们的起点与终点不一定相同,故①错误; 当0b =时,可满足,a b b c ∥∥,但a 与c 不一定平行,故①错误; 综上,正确的个数是0, 故选:A .【例6】下面关于向量的说法正确的是( ) A .单位向量:模为1的向量B .零向量:模为0的向量,零向量没有方向C .平行(共线)向量:方向相同或相反的向量D .相等向量:模相等,方向相同的向量 【答案】ACD【分析】根据平面向量的基本定义逐个辨析即可.【详解】根据向量的定义可得,模为1的向量为单位向量,模为0的向量为零向量,零向量的方向是任意的,方向相同或相反的向量为共线向量,模相等,方向相同的向量为相等向量,ABCD 均正确, 故选:ACD .【例7】下列叙述中错误的是( ) A .若a b =,则32a b > B .若a b ∥,则a 与b 的方向相同或相反 C .若a b ∥,b c ∥,则a c ∥ D .对任一非零向量a ,||aa 是一个单位向量 【答案】ABC【分析】对于A ,根据向量的概念判断,对于BCD ,举例判断.【详解】因为是既有大小又有方向的量,所以向量不能比较大小,故A 错误;由于零向量与任意向量共线,且零向量的方向是任意的,故,若b 为零向量,则a 与c 可能不是共线向量,故,对任一非零向量a ,||aa 表示与a ABC 【题型专练】1.下列命题正确的是( )A .向量AB 与BA 是相等向量 B .共线的单位向量是相等向量C .零向量与任一向量共线D .两平行向量所在直线平行 【答案】C【详解】A 选项方向不同,所以错 ;B 选项共线向量是方向相同或者相反,所以错;C 选项,规定零向量的方向是任意的,所以C 对;D 选项向量共线可以在一条直线上,直线平行不能共线,所以D 错 2.下列命题中正确的个数是( )①若向量AB 与CD 是共线向量,则A 、B 、C 、D 必在同一直线上; ①若向量a 与向量b 平行,则a ,b 方向相同或相反;①若非零向量AB 与CD 是共线向量,则它们的夹角是0°或180°; ①若a b =,则a ,b 是相等向量或相反向量. A .0 B .1C .2D .3,根据模长的定义,可知方向不确定,可得答案.【详解】①错误,平行向量又叫共线向量,向量AB 与CD 是共线向量,则AB 与CD 平行或共线;错误,a 与b 至少有一个为零向量时,结论不成立;由向量的夹角可知正确; 错误,由a b =,只能说明a ,b 的长度相等,确定不了方向.3.给出下列命题:①共线向量一定在同一条直线上;①若A ,B ,C ,D 是不共线的四点,则AB DC =是四边形ABCD 为平行四边形的充要条件;①a b =的充要条件是||a b |=|且//a b .其中正确命题的序号是_______.【答案】①【详解】①不正确,共线向量不一定在同一条直线上,也可能在两条平行直线上; ①正确 ①AB DC =,①||||AB DC =且//AB DC , 又A ,B ,C ,D 是不共线的四点, ①四边形ABCD 为平行四边形.反之,若四边形ABCD 为平行四边形,则//AB DC 且||||AB DC =,①AB DC =;①不正确,当//a b 且方向相反时,||||a b =,但不能得到a b =,故||||a b =且//a b 不是a b =的充要条件,而是必要不充分条件. 故答案为:①4.把所有单位向量的起点平移到一点O ,则其终点构成的图形是_____________. 【答案】以O 为圆心的单位圆设终点为A ,则1AO =,则终点构成的图形是以O 为圆心的单位圆. 故答案为:以O 为圆心的单位圆. 5.下列说法中正确的是( ) A .若12,e e 为单位向量,则12e e = B .若a 与b 共线,则a b =或a b =-C .若0a =,则0a =D .a a是与非零向量a 共线的单位向量中,向量12,e e 的方向不一定相同,所以中,向量a 与b 的长度不一定相等,所以0a =,根据零向量的定义,可得0a =,所以C 1a a a a =⋅,可得a a与向量a 同向,a a的模等于a a是与非零向量a 共线的单位向量,所以故选:CD.6.下列说法中正确的是( )A .力是既有大小,又有方向的量,所以是向量B .若向量//AB CD ,则//AB CDC .在四边形ABCD 中,若向量//AB CD ,则该四边形为平行四边形 D .速度、加速度与位移的合成与分解,实质上就是向量的加减法运算 【答案】AD【分析】根据向量的定义,共线向量的定义,逐项判定,即可求解.【详解】对于A 中,根据向量的定义,力是既有大小,又有方向的量,所以是向量,所以A 正确; 对于B 中,向量//AB CD ,则//AB CD 或AB 与CD 共线,所以B 错误;对于C 中,在四边形ABCD 中,若向量//AB CD 、则只有一组对边平行,不一定是平行四边形,所以C 错误;对于D 中,根据向量的运算法则,可得速度、加速度与位移的合成与分解,实质上就是向量的加减法运算,所以D 正确. 故选:AD.7.下列结论中正确的是( ) A .若a b =,则a b = B .若,a b b c ==,则a c =C .若A ,B ,C ,D 是不共线的四点,则“AB DC =”是“四边形ABCD 为平行四边形”的充要条件 D .“a b =”的充要条件是“a b =且a b ∥” 是不共线的四点,则当AB DC =时,,故且,AB DC 同向,故AB DC =,故C ,当a b 且方向相反时,即使a b =,也不能得到a b =,故D 错误;8.下列结论中正确的是( ) A .a 与b 是否相等与a ,b 的方向无关 B .零向量相等,零向量的相反向量是零向量 C .若a ,b 都是单位向量,则a b = D .向量AB 与BA 相等【答案】AB【分析】由向量的模、零向量、单位向量、相等向量的定义判断各选项.【详解】对于C ,单位向量的模相等,但方向不一定相同,故两个单位向量不一定相等;对于D ,向量AB 与BA 互为相反向量,由向量模的定义,零向量的定义AB 正确. 故选:AB .题型二: 平面向量的加法、减法【例1】AO OB OC CA BO ++++等于( )A .AB B .0C .BCD .AC【答案】B【分析】根据平面向量加法的运算律计算可得; 【详解】解:AO OB OC CA BO ++++ ()()AO OC CA BO OB =++++000=+=故选:B【例2】化简下列各式: (1)AO OB CA CB ++-; (2)MN MD NQ DQ -+-.【答案】(1)0;(2)0【分析】(1)由向量的加法法则与减法法则求解即可; (2)由向量的加法法则与减法法则求解即可;(1)()()AO OB CA CB AO OB CA CB ++-=++-0AB BA =+=;(2)()()MN MD NQ DQ MN MD NQ QD -+-=-++0DN ND =+= 【例3】正方形ABCD 的边长为1,则AB AD +为( ) A.1 BC .3D .根据向量加法的平行四边形法则,AB AD AC +=, 212AB A AD C +==,故选:B.【例4】在ABC 中,M 是BC 的中点,则AB AC +等于( ) A .12AM B .AM C .2AM D .MA【答案】C【分析】根据向量的加法法则计算.【详解】如图,作平行四边形ABEC ,因为M 是BC 的中点,所以M 也是AE 的中点,则2AB AC AE AM +==. 故选:C.【例5】如图为正八边形ABCDEFGH ,其中O 为正八边形的中心,则OC HG FH ++=( )A .OB B .ODC .OFD .OH【答案】A【分析】根据平面向量的概念及加法的运算法则,准确运算,即可求解.【详解】由平面向量的运算法则,可得OC HG FH OC FG OC CB OB ++=+=+=. 故选:A.【例6】设M 是平行四边形ABCD 的对角线的交点,O 为平面上任意一点,则OA OB OC OD +++=( ) A .4OM B .3OM C .2OM D .OM【分析】分别在OAC 和OBD 【详解】解:在OAC 所以1()2OM OA OC =+,即2OA OC OM +=.在OBD 中,因为M 是平行四边形ABCD 的对角线的交点,所以1()2OM OB OD =+,即2OB OD OM +=. 所以4OA OB OC OD OM +++=. 故选:A .【例7】若74AB AC ==,,则BC 的取值范围是( )A .[3,7]B .()37,C .[]311, D .(311), 【分析】根据向量的减法的几何意义,确定向量,AC AB 共线时取得最值,即可求得答案74AB AC ==,,且||BC AC AB -=,当,AC AB 同向时,BC 取得最小值,|||||||4||BC AC AB AC AB ===---当,AC AB 反向时,BC 取得最大值,|||||||||4BC AC AB AC AB -+===+当,AC AB 不共线时,BC 取得最小值,3||||||||||1||||1AC AB BC AC AB =<-<+=,BC 的取值范围是[]311,, 故选:C【例8】已知ABC 为正三角形,则下列各式中成立的是___________.(填序号)AC AB =-①AB CA BC AB -=-;①AB CA CA BC -=-;①CA BC AB AC -=-. AB AC CB BC -==,故①分别为,,AB BC AC 的中点,32AB , 23AB CA AB AC AE AB -=+==, 23BC AB BC BA BF BA -=+==,所以AB CA BC AB -=-,故①成立;对于①,23CA BC CA CB CD AB -=+==, 所以AB CA CA BC -=-,故①正确;①,AB AC CB AB CA BC -==≠-,故①不成立故答案为:①①①.【题型专练】1.32AB BC AC +-=( ) A .AB AC + B .AB AC - C .AB D .BA【答案】A【分析】根据向量的运算法则,准确化简,即可求解.【详解】由向量的运算法则,可得3222AB BC AC AB BC AB AC +-=++- 2AC CB AB AC =+=+.故选:A.2.下列能化简为PQ 的是( ) A .QC QP CQ -+ B .()AB PA BQ ++C .()()AB PC BA QC ++- D .PA AB BQ +-【答案】ABC【分析】根据向量运算对选项进行分析,从而确定正确答案. 【详解】A 选项,QC QP CQ PC CQ PQ -+=+=,A 选项正确. B 选项,()AB PA BQ AB AQ BQ PA PA PQ ++=+=+=+,B 选项正确.C 选项,()()AB PC BA QC AB BA PC QC CQ CP PQ ++-=++-=-=,C 选项正确. D 选项,()PA AB BQ PB BQ BP BQ BP BQ PQ +-=-=--=-+≠,D 选项错误. 故选:ABC3. 在四边形ABCD 中,若CA CB CD =+,则( ) A .四边形ABCD 是矩形 B .四边形ABCD 是菱形 C .四边形ABCD 是正方形 D .四边形ABCD 是平行四边形【答案】D【分析】根据平面向量加法的运算法则及向量相等的充要条件判断即可;【详解】解:CA CB CD =+,CA CB BA =+,∴CB BA CB CD +=+∴BA CD =,//AB DC ∴且AB DC =,∴四边形ABCD 是平行四边形.故选:D .4. 在平面四边形ABCD 中,E ,F 分别为AD ,BC 的中点,则下列向量与AB DC +不相等的是( ) A .2EF B .AC DB + C .EB EC + D .FA FD +所以11,22AE ED AD BF FC BC ====, 因为EF EA AB BF =++,EF ED DC CF =++ 2EF ED DC CF EA AB BF AB DC =+++++=+, A 正确,因为,DC DA AC AB AD DB =+=+,所以DC AB DA AC AD DB AC DB +=+++=+,所以B 正确,因为,DC DE EC AB AE EB =+=+,所以DC AB DE EC AE EB EC EB +=+++=+,所以因为()FA FD FB BA FC CD BA CD AB DC +=+++=+=-+, D 错误, 故选:D5.在四边形ABCD 中,给出下列四个结论,其中一定正确的是( ) A .AB BC CA +=B .AB AD BD -=C.AB AD AC+=D.BC CD BD+=【答案】D【分析】由向量加法的三角形法则可判断AD,由向量减法的运算法则可判断B,由向量加法的平行四边形法则可判断C.【详解】根据三角形法则可得AB BC AC+=,所以A错误;根据向量减法的运算法则可得AB AD DB-=,所以B错误;四边形ABCD不一定是平行四边形,所以不一定有AB AD AC+=,C错误;根据三角形法则可得BC CD BD+=正确,所以D正确.故选:D.6.在四边形ABCD中,AB DC=,若AD AB BC BA-=-,则四边形ABCD是()A.菱形B.矩形C.正方形D.不确定【分析】由AB DC=,可得四边形为平行四边形,又BD AC=,从而即可求解【详解】解:在四边形ABCD因为AB DC=,所以四边形AD AB BC BA-=-,即BD AC=,所以平行四边形ABCD为矩形,故选:B.7.在ABC中,D,E,F分别是边BC,CA,AB的中点,点G为ABC的重心,则下列结论中正确的是()A.AB BC CA-=B.1()3AG AB AC=+C.0AF BD CE++=D.0GA GB GC++=【答案】BCD【分析】由向量的线性运算结合三角形的重心的性质求解即可.【详解】解:如图:,2AB BC AB CB EB AC-=+=≠,即选项为ABC的重心,则2211()()3323AG AD AB AC AB AC==⨯+=+,即选项,1()02AF BD CE AB BC CA++=++=,即选项C正确;,122()2GA GD GB GC=-=-⨯+,即0GA GB GC++=,即选项D正确,8.如图,E,F,G,H分别是梯形ABCD的边AB,BC,CD,DA的中点,化简下列各式:(1)DG EA CB++;(2)EG CG DA EB+++.【答案】(1)GE;(2)0.【分析】(1)(2)根据图形中相关线段的位置关系,结合向量加法的几何意义化简目标式.(1)DG EA CB GC BE CB GB BE GE+++++===;(2)EG CG DA EB EG GD DA AE ED DE==+=++++++.题型三:平面向量的线性运算与共线定理【例1】[多选题]下列命题是真命题的是().A.若A,B,C,D在一条直线上,则AB与CD是共线向量B.若A,B,C,D不在一条直线上,则AB与CD不是共线向量C.若向量AB与CD是共线向量,则A,B,C,D四点必在一条直线上D.若向量AB与AC是共线向量,则A,B,C三点必在一条直线上【答案】AD【分析】向量平行与共线是同一个概念,对四个命题依次判断即可.【详解】A 项为真命题,A,B,C,D在一条直线上,则向量AB,CD的方向相同或相反,因此AB与CD是共线向量;B 项为假命题,A ,B ,C ,D 不在一条直线上,则AB ,CD 的方向不确定,不能判断AB 与CD 是否共线;C 项为假命题,因为AB ,CD 两个向量所在的直线可能没有公共点, 所以A ,B ,C ,D 四点不一定在一条直线上;D 项为真命题,因为AB ,AC 两个向量所在的直线有公共点A , 且AB 与AC 是共线向量,所以A ,B ,C 三点共线. 故选:AD .【例2】已知向量a ,b ,且2AB a b =+,56BC a b =-+,72CD a b =-,则一定共线的三点是( ) A .A ,B ,D B .A ,B ,CC .B ,C ,DD .A ,C ,D【分析】由已知,分别表示出选项对应的向量,然后利用平面向量共线定理进行判断即可完成求解【详解】因为2AB a b =+,BC 56a b =-+,72CD a b =-,,2AB a b =+,(56)(72)24B a b D B D b C a C b a ++-+==-+=,若A ,B 则AB BD λ=,即2(24)a b a b λ+=+,解得12λ=,故该选项正确; 选项B ,2AB a b =+,BC 56a b =-+,若A ,B ,C 三点共线,则AB BC λ=,即2(56)a b a b λ+=-+,解得不存在,故该选项错误;选项C ,BC 56a b =-+,72CD a b =-,若B ,三点共线,则BC BD λ=,即56(72)a b a b λ-+=-,不存在,故该选项错误;,(2)(56)48a b a A b AB BC a b C ++=+=+-=-+,72CD a b =-,若A ,C ,D 三点共线,则AC CD λ=,48(72)a b a b λ+=-,解得λ不存在,故该选项错误; 故选:A.【例3】下列说法正确的是( )A .a 与b 是非零向量,则a 与b 同向是a b =的必要不充分条件B .,,A BC 是互不重合的三点,若AB 与BC 共线,则,,A B C 三点在同一条直线上 C .a 与b 是非零向量,若a 与b 同向,则a 与b -反向D .设,λμ为实数,若a b λμ=,则a 与b 共线 【答案】ABC选项:根据向量共线的性质,可知A 、选项:a 与b 同向,则a 与b -反向,显然正确; 选项:如果0λμ==,则无法得知a 与b 共线.【详解】a 与b 同向,但a 不一定与b 相等,∴a b ≠,若a b =,则a 与b 同向, a =b ,∴a 与b 同向是a b =的必要不充分条件,A 正确.AB 与BC 共线,则有AB =BC λ,故一定有,,A B C 三点在同一条直线上,B 正确.a 与b 同向,则a 与b -反向,C 正确.0λμ==时,a 与b 不一定共线,D 错误.故选:ABC【例4】“AB CD ∥”是“A ,B ,C ,D 四点共线”的________条件. 【答案】必要不充分【分析】根据向量平行的定义结合充分性、必要性的定义判断即可. 【详解】当AB CD ∥时,直线AB 与CD 的位置关系有可能是平行或共线, 当二者平行时A ,B ,C ,D 四个点分别位于两条平行线上而不是四点共线, 则“AB CD ∥”无法推出“A ,B ,C ,D 四点共线”;当A ,B ,C ,D 四点共线时,直线AB 与CD 的位置关系为重合,此时,AB CD ∥, 则“A ,B ,C ,D 四点共线”可以推出“AB CD ∥”,因此“AB CD ∥”是“A ,B ,C ,D 四点共线”的必要不充分条件. 故答案为:必要不充分.【例5】设向量,a b 不平行,向量λ+a b 与2+a b 平行,则实数λ= ___. 【答案】21 【解析】因向量λ+a b 与2+a b 平行,所以()b a b a b a μμμλ22+=+=+,所以⎩⎨⎧==μμλ21,解得⎪⎩⎪⎨⎧==2121μλ 【例6】已知P 是①ABC 所在平面内的一点,若CB PB PA λ-=,其中λ①R ,则点P 一定在( ) A .AC 边所在的直线上 B .BC 边所在的直线上 C .AB 边所在的直线上D .①ABC 的内部【答案】A【分析】根据向量的线性运算整理可得,再结合向量共线分析即可. 【详解】①CB PB PA λ-=,PB PC CB =+①()CB PC CB PA λ-+=,则PC -=λPA ,则CP PA λ= ①CP PA ∥①P 点在AC 边所在直线上. 故选:A .【例7】在①ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB =A .3144AB AC - B .1344AB AC - C .3144+AB ACD .1344+AB AC【答案】A【解析】根据向量的运算法则,可得()111111222424BE BA BD BA BC BA BA AC =+=+=++ 1113124444BA BA AC BA AC =++=+① 所以3144EB AB AC =-①故选A.【例8】在ABC 中,AD 为BC 边上的中线,E 为AD 的中点,且EB AB AC λμ=+,则λ=________,μ=_________.【答案】3414-【解析】如下图所示:D 为BC 的中点,则()()111222AD AB BD AB BC AB AC AB AB AC =+=+=+-=+,E 为AD 的中点,所以,()1124AE AD AB AC ==+,因此,()131444EB AB AE AB AB AC AB AC =-=-+=-,即34λ=,14μ=-. 故答案为:34;14-.【例9】在ABC 中,4AC AD =,P 为BD 上一点,若13AP AB AC λ=+,则实数λ的值( ) A .18B .316C .16D .38【答案】C 【解析】4AC AD =,14AD AC ∴=,则14BD AD AB AC AB =-=-, 1233BP AP AB AB AC AB AC AB λλ⎛⎫=-=+-=- ⎪⎝⎭,由于P 为BD 上一点,则//BP BD ,设BP k BD =,则21344kAC AB k AC AB AC k AB λ⎛⎫-=-=- ⎪⎝⎭, 所以423k k λ⎧=⎪⎪⎨⎪=⎪⎩,解得16λ=.【例10】在ABC ∆中,点P 满足3BP PC =,过点P 的直线与AB 、AC 所在的直线分别交于点M 、N ,若AM AB λ=,()0,0AN AC μλμ=>>,则λμ+的最小值为( )A.12+ B1 C .32D .52【答案】B【解析】如下图所示:3BP PC =,即()3AP AB AC AP -=-,1344AP AB AC∴=+, AM AB λ=,()0,0AN AC μλμ=>>,1AB AM λ∴=,1AC ANμ=, 1344AP AM ANλμ∴=+,M 、P 、N 三点共线,则13144λμ+=. ()133********λμλμλμλμμλ⎛⎫∴+=++=++≥=+ ⎪⎝⎭,当且仅当μ=时,等号成立,因此,λμ+1+,故选:B. 【例11】已知M 为ABC 的边AB 的中点,N 为ABC 内一点,且13AN AM BC =+,则AMN BCNS S =△△( ) A .16B .13C .12D .23【答案】B【解析】因为13AN AM BC =+,所以13MN BC =, 所以MN ①BC ,又因为 M 为边AB 的中点,所以点A 到MN 的距离等于点N 到BC 的距离, 所以13AMN BCN MN S S BC==△△,【题型专练】1.已知()1221123,,2AB e e CB e e CD e e =+=-=+,则下列结论中成立的是( )A .A ,B ,C 三点共线B .A ,B ,D 三点共线C .A ,D ,C 三点共线D .D ,B ,C 三点共线 【答案】C【分析】根据平面向量的线性运算可得2AC CD =,从而可求解.【详解】解:()()1221123422AC AB CB e e e e e e CD -=-=+-=+=,所以A ,D ,C 三点共线.故选:C.2.已知向量a ,b 是两个不共线的向量,且35OA a b =+,47OB a b =+,OC a mb =+,若A ,B ,C 三点共线,则m =( )A .1B .1-C .2D .2- 【答案】A【解析】法一:b a b a b a OB AO AB 27453+=++--=+=,()b m a b m a b a OC BO BC 7374-+-=++--=+=,因A ,B ,C 三点共线,所以AB 与BC 共线,所以()[]()b m a b m a b a 73732-+-=-+-=+λλλ,所以()⎩⎨⎧-=-=7231m λλ,解得⎪⎩⎪⎨⎧=-=131m λ 法二:由,,A B C 三点共线,得(1)(4)(72)OC xOA x OB x a x b =+-=-+-,故41,72,x x m -=⎧⎨-=⎩解得1m =. 3.设12e e ,是两个不共线的向量,若向量12m e ke =-+(k ∈R )与向量212n e e =-共线,则 A .0k =B .1k =C .2k =D .12k = 【答案】D【解析】因为向量12=-+m e ke (k ∈R )与向量212=-n e e 共线,所以存在实数λ,使得λ=m n , 所以有2211(2)λ-+=-e ke e e ,因此12k λλ=⎧⎨-=-⎩,解得12k =. 4.在ABC △中,D 是AB 边上的中点,则CB =( )A .2CD CA +B .2CD CA -C .2CD CA - D .2CD CA +【答案】C【解析】:CA CD AC CD CD AC CD AD CD DB CD CB -=+=++=+=+=225.在ABC 中,点P 为AC 中点,点D 在BC 上,且3BD DC =,则DP =( )A .1144AB AC + B .1144AB AC -- C .1144AB AC - D .1144AB AC-+ 【答案】B【解析】①点P 为AC 中点,①12AP AC =,①3BD DC =,()3AD AB AC AD ∴-=-, ①1344AD AB AC =+,①113244DP AP AD AC AB AC =-=--=1144AB AC --,故选:B. 6.设,,D E F 分别为ABC 的三边BC,CA,AB 的中点,则EB FC +=( ) A .ADB .12ADC .12BCD .BC 【答案】A【解析】111()()()222EB FC BA BC CA CB AB AC AD +=-+-+=+=,故选:A7.设D 为①ABC 所在平面内的一点,若3,AD BD CD CA CB λμ==+,则μλ=_____. 【答案】3-【解析】如图所示:3CD CA AD CA BD =+=+,CA =+3(CD CB -),即有CD =﹣1322CA CB +, 因为CD CA CB λμ=+,所以λ=﹣12,μ=32,则μλ=﹣3,故答案为:﹣3. 8.如图,在ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M N ,,若AB mAM =,AC nAN =,则m n +=( )A .1B .32C .2D .3【答案】C 【解析】连接AO ,由O 为BC 中点可得,1()222m n AO AB AC AM AN =+=+, M 、O 、N 三点共线,122m n ∴+=,2m n ∴+=.故选:C.9.在ABC 中,2AB =,4BC =,60ABC ∠=︒,AD 为BC 边上的高,O 为AD 的中点,若AO AB BC λμ=+,则λμ+=( )A .13B .23C .38 D .58【答案】D【解析】AD 是BC 边上的高,∴90ADB ∠=︒,在ADB △中,1cos 22BD BD ABD AB ∠===,解得1BD =,4BC =,∴14BD BC =, ∴14AD AB BD AB BC =+=+,O 为AD 中点, ∴1111122428AO AD AB BC AB BC ⎛⎫==+=+ ⎪⎝⎭,AO AB BC λμ=+, ∴1128AB BC AB BC λμ+=+,∴12λ=,18μ=, ∴115288λμ+=+=. 10.已知O 是ABC 所在平面内一点,D 为BC 边中点,且20OA OB OC ++=,那么( ) A .AO OD = B .2AO OD = C .3AO OD = D .4?AO OD【答案】A【解析】D 为BC 边中点,①2OB OC OD +=,①20OA OB OC ++=,①0OA OD =+,即AO OD =.11.设,,D E F 分别是ABC 的三边BC,CA,AB 上的点,且2,2,2DC BD CE EA AF FB ===,则AD BE CF ++与BC ( )A .反向平行B .同向平行C .互相垂直D .既不平行也不垂直 首先根据平面向量基本定理表示2133AD AB BD AB AC =+=+,2133BE BA BC =+,2133CF CB CA =+,【详解】()11213333AD AB BD AB BC AB AC AB AB AC =+=+=+-=+ 同理:2133BE BA BC =+,2133CF CB CA =+, 所以212121333333AD BE CF AB AC BA BC CB CA ⎛⎫⎛⎫⎛⎫++=+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭13CB , 所以AD BE CF ++与BC 反向平行.故选:A【点睛】本题主要考查向量共线定理和平面向量基本定理,重点考查向量的表示,属于基础题型题型四:由平面向量的性质判断图形的形状【例1】若O 是ABC ∆所在平面内一点,且满足2OB OC OB OC OA -=+-,则ABC ∆的形状为____【答案】直角三角形=OC OA OC +=+=-+,+= 所以ABC ∆的形状为直角三角形【例2】若113e ,5e AB CD ===,则四边形ABCD 是( )A .平行四边形B .菱形C .等腰梯形D .不等腰的梯形 ,结合AD BC =,即可判断四边形【详解】解:因为113e ,5e AB CD ==,所以35AB CD =-,所以//AB CD AB CD ≠,AD BC =,所以四边形ABCD 为等腰梯形.故选:C.【题型专练】1.在四边形ABCD 中,对角线AC 与BD 交于点O ,若2323OA OC OD OB +=+,则四边形ABCD 一定是( )A .矩形B .梯形C .平行四边形D .菱形 【答案】B【分析】由2323OA OC OD OB +=+化简可得23DA CB =,结合向量共线定理判断四边形ABCD 的形状.【详解】① 2323OA OC OD OB +=+,① 2()3()OA OD OB OC -=-,① 23DA CB =,① 四边形ABCD 一定是梯形. 故选:B.2.四边形ABCD 中,2AB a b =+,4BC a b =--,53CD a b =--,若a 、b 不共线,则四边形ABCD 为( )A .平行四边形B .矩形C .梯形D .菱形 【分析】由向量知识可知//AD BC ,AD BC ≠可得答案【详解】由已知得,2453822AD AB BC CD a b a b a b a b BC =++=+----=--= , 故//AD BC ,由AD BC ≠,所以四边形ABCD 是梯形.故选:C.3.在四边形ABCD 中,若CA CB CD =+,则( )A .四边形ABCD 是矩形B .四边形ABCD 是菱形C .四边形ABCD 是正方形D .四边形ABCD 是平行四边形 【答案】D 【分析】根据平面向量加法的运算法则及向量相等的充要条件判断即可;【详解】解:CA CB CD =+,CA CB BA =+,∴CB BA CB CD +=+ ∴BA CD =,//AB DC ∴且AB DC =,∴四边形ABCD 是平行四边形. 故选:D .4.下列有关四边形ABCD 的形状判断正确的是( )A .若AD BC =,则四边形ABCD 为平行四边形B .若13AD BC =,则四边形ABCD 为梯形 C .若AB DC =,且AB AD =,则四边形ABCD 为菱形D .若AB DC =,且AC BD ⊥,则四边形ABCD 为正方形 【分析】由向量平行与相等的关系确定四边形的边的关系得结论.【详解】AD BC =,则AD 13AD BC =,则//AD BC 若AB DC =,四边形ABCD AB AD =,即AB 若AB DC =,四边形ABCD 是平行四边形,AC BD ⊥,即AC 故选:ABC .。
《平面向量加减法》课件
三角形法则:将 两个向量首尾相 接,构成一个三 角形,则其对角 线就是两个向量 的和。
平行四边形法则 和三角形法则的 适用范围:适用 于任意两个向量 的加法运算。
平行四边形法则 和三角形法则的 优缺点:平行四 边形法则直观易 懂,但计算量较 大;三角形法则 计算量较小,但 需要一定的几何 知识。
向量减法的平行四边形法则和三角形法则
几何意义:向量减法的几何意义是表示两个向量的差向量,即从第一个向 量的终点指向第二个向量的终点的向量。
应用:向量减法在物理、工程等领域有着广泛的应用,如力的合成与分解、 速度的合成与分解等。
注意事项:在进行向量减法时,需要注意两个向量的起点必须重合,否则 得到的差向量可能不是正确的。
向量加减法的应用实例
向量减法的定义
向量减法是向量加法的逆运算
向量减法的定义式为:A-B=C,其中A、B、C都是向量
向量减法的运算法则为:A-B=C,其中A、B、C都是向量,且A、B、 C的起点相同 向量减法的运算结果为一个新的向量,其方向与A、B的差方向相同, 其大小为A、B的差大小
03
向量加减法的几何 意义
向量加法的几何意义
向量加法是将两个向量首尾相接, 得到一个新的向量
新的向量的方向由两个向量的方 向决定
添加标题
添加标题
添加标题
添加标题
新的向量的长度等于两个向量长 度之和
新的向量的起点和终点分别对应 两个向量的起点和终点
向量减法的几何意义
向量减法:将两个向量的起点重合,然后从第一个向量的终点指向第二个 向量的终点,得到的向量就是两个向量的差向量。
向量加法的结合 律: (a+b)+c=a+(b+ c)
(完整版)平面向量全部讲义
第一节平面向量的概念及其线性运算1.向量的有关概念(1)向量:既有大小,又有方向的量叫向量;向量的大小叫做向量的模.(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.例1.若向量a与b不相等,则a与b一定()A.有不相等的模B.不共线C.不可能都是零向量D.不可能都是单位向量例2..给出下列命题:①若|a|=|b|,则a=b;②若A,B,C,D是不共线的四点,则AB=DC等价于四边形ABCD为平行四边形;③若a=b,b=c,则a=c;④a=b等价于|a|=|b|且a∥b;⑤若a∥b,b∥c,则a∥c.其中正确命题的序号是()A.②③B.①②C.③④D.④⑤CA2.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算三角形法则平行四边形法则(1)交换律:a+b=b+a;(2)结合律:(a+b)+c=a+(b+c)减法求a与b的相反向量-b的和的运算叫做a与b的差三角形法则a-b=a+(-b)数乘求实数λ与向量a的积的运算(1)|λa|=|λ||a|;(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;λ(μa)=(λμ)a;(λ+μ)a=λa+μa;λ(a+b)=λa+λb例3:化简AC→-BD→+CD→-AB→得() A.AB→B.DA→C.BC→D.0例4:(1)如图,在正六边形ABCDEF中,BA+CD+EF=()A.0B.BE C.AD D.CF(2)设D,E分别是△ABC的边AB,BC上的点,AD=12AB,BE=23BC.若DE=λ1AB+λ2AC(λ1,λ2为实数),则λ1+λ2的值为________.巩固练习:1.将4(3a+2b)-2(b-2a)化简成最简式为______________.2.若|OA→+OB→|=|OA→-OB→|,则非零向量OA→,OB→的关系是() A.平行B.重合C.垂直D.不确定3.若菱形ABCD的边长为2,则|AB-CB+CD|=________4.D是△ABC的边AB上的中点,则向量CD等于()A.-BC+12BA B.-BC-12BA C.BC-12BA D.BC+12BA5.若A,B,C,D是平面内任意四点,给出下列式子:①AB+CD=BC+DA;②AC+BD=BC+AD;③AC-BD=DC+AB.其中正确的有()A.0个B.1个C.2个D.3个6.如图,在△ABC中,D,E为边AB的两个三等分点,CA→=3a,CB→=2b,求CD→,CE→.DD12巩固练习1。
平面向量的加法和减法运算
平面向量的加法和减法运算在数学中,平面向量是一个具有大小和方向的量,可以用箭头表示。
平面向量具有加法和减法运算,可以进行向量之间的加减操作。
本文将介绍平面向量的加法和减法运算,包括定义、性质和实际应用等方面的内容。
一、平面向量的定义平面向量通常用有序数对表示,即(a, b),其中a和b分别表示向量在坐标轴上的投影。
向量也可以用有向线段表示,起始点和终点分别表示向量的起点和终点。
在平面向量中,起点和终点是没有重要意义的,因为向量的性质只与大小和方向有关。
二、平面向量的加法运算平面向量的加法定义为:对于向量A(a, b)和向量B(c, d),它们的加法运算为A + B = (a + c, b + d)。
即将两个向量在相应轴上的分量分别相加得到新的向量。
这个过程可以用平行四边形法则进行可视化理解,即将两个向量的起点放在同一点,然后将它们的终点相连,形成一个平行四边形,新的向量即为对角线向量。
三、平面向量的减法运算平面向量的减法定义为:对于向量A(a, b)和向量B(c, d),它们的减法运算为A - B = (a - c, b - d)。
即将B的每个分量取相反数,然后与A的分量进行相加。
减法运算也可以用平行四边形法则进行可视化理解,即将向量B取相反向量,然后按照向量加法的方式进行操作。
四、平面向量运算的性质平面向量的加法和减法运算满足以下性质:1. 交换律:A + B = B + A,A - B ≠ B - A2. 结合律:(A + B) + C = A + (B + C),(A - B) - C ≠ A - (B - C)3. 加法单位元:对于任意向量A,存在零向量O(0, 0),使得A + O = A4. 加法逆元:对于任意向量A,存在相反向量-B,使得A + (-B) =O5. 数乘结合律:k(A + B) = kA + kB,(k + n)A = kA + nA6. 数乘分配律:k(A - B) = kA - kB五、平面向量运算的实际应用平面向量的加法和减法运算在各个领域有着广泛的应用,例如:1. 物理学:平面向量用于描述物体的位移、速度和加速度等物理量,通过向量的加减法运算可以得到合成位移、合成速度等。
初中数学教案平面向量的基本概念和运算
初中数学教案平面向量的基本概念和运算初中数学教案:平面向量的基本概念和运算引言:平面向量是初中数学中的重要概念,它在几何和代数两个方面都有广泛的应用。
本教案将介绍平面向量的基本概念和运算,并通过丰富的例题让学生更深入地理解和掌握这一知识点。
一、平面向量的定义在平面上,我们可以用一个有大小和方向的直线段来表示一个向量。
其中,大小表示为向量的长度,方向表示为向量所在直线段的朝向。
二、平面向量的表示为了方便起见,我们通常用一个字母加上一个向右的箭头来表示一个向量。
例如,向量A用记作→A。
如果需要表示向量的大小,我们可以在向量字母的上方加上两条平行线。
例如,向量A的大小可以记作|→A|。
三、平面向量的加法平面向量的加法遵循平行四边形法则。
即,将两个向量的起点放在一起,然后将向量依次地按次序相连,连接起两个向量的终点,所形成的向量就是它们的和向量。
四、平面向量的减法平面向量的减法可以看作是加上一个相反向量。
即,向量A减去向量B可以看作是向量A加上向量B的相反向量。
五、平面向量的数量积平面向量的数量积也称为点积。
两个向量的数量积等于它们的模长的乘积再乘以它们的夹角的余弦值。
即,对于向量→A和→B,它们的数量积可以表示为:|→A|·|→B|·cosθ,其中θ为→A与→B的夹角。
六、平面向量的夹角两个非零向量的夹角等于它们的数量积除以它们的模长的乘积的反余弦值。
七、平面向量的正交与共线如果两个向量的数量积为0,则它们为正交向量;如果两个向量的夹角为0度或180度,则它们为共线向量。
八、平面向量的数乘向量乘以一个实数的操作称为数乘。
数乘的结果是一个新的向量,它的大小是原向量大小的绝对值与实数的乘积,而方向与原向量相同(当实数为正数时)或相反(当实数为负数时)。
实例演练:1. 已知向量→A=(2, 3),向量→B=(−1, 4),求→A+→B的结果。
2. 已知向量→A=(3, 5),向量→B=(2, −3),求→A−→B的结果。
平面向量的基本概念教案
平面向量的基本概念教案一、引言在数学中,向量是一种有大小和方向的量,它在许多领域中都有广泛的应用。
平面向量是指位于同一平面上的向量,其基本概念对于理解向量的性质和运算至关重要。
本教案将介绍平面向量的基本概念,包括向量的表示方法、向量的加法与减法、数量积和向量积等。
二、向量的表示方法1. 向量的坐标表示法在平面直角坐标系中,向量可以使用坐标表示。
设向量AB的起点为点A,终点为点B,向量AB可以表示为点B坐标减去点A坐标得到的差值,记作向量AB = (x2 - x1, y2 - y1)。
2. 向量的分量表示法向量的分量表示法是将向量表示为坐标分量的形式。
设向量AB 的起点为点A,终点为点B,向量AB可以表示为向量AB = x方向分量i + y方向分量j,其中x方向分量为向量AB在x轴上的投影长度,y方向分量为向量AB在y轴上的投影长度。
三、向量的加法与减法1. 向量的加法向量的加法满足平行四边形法则。
设有向量AB和向量AC,可以将向量AB的起点与向量AC的终点相连接,构成一个平行四边形,向量AB + 向量AC的结果是连接AB平行四边形的对角线所代表的向量。
2. 向量的减法向量的减法可以理解为向量加法的逆运算。
设有向量AB和向量AC,向量AB - 向量AC的结果等于连接点A和点C的向量。
四、数量积1. 定义与性质数量积又称点积或内积,表示两个向量的数量关系。
设有向量a = (x1, y1)和向量b = (x2, y2),则向量a与向量b的数量积为a · b = x1 *x2 + y1 * y2。
数量积的性质包括交换律、分配律和数量积的几何意义。
2. 数量积的几何意义数量积a · b的几何意义是:a · b = |a| * |b| * co sθ,其中|a|和|b|分别表示向量a和向量b的模,θ表示夹角。
数量积可以用来判断两个向量的夹角是否为直角、锐角或钝角,以及两个向量之间的夹角大小关系。
第一讲:平面向量的概念与加减运算课件-高一下学期数学人教A版必修第二册
a c
b
a b c
1.向量的加法运算
2.向量加法的运算律
例题精讲
A
D
AC
DC CD 0
AC DA CD
AD DA
0
ACD
向量的减法运算
C 应该是零向量
E
平行四边形原则
a b c AB BC BD AC DB
DB BE
DE 2 AB 4
课后作业
平面向量的概念与 加减运算
一、平面向量的概念
探究:有两个景点A,B,游客从景点O出发,半小时后到A,后 来乘车到B,在这个过程中位移和距离两个量是什么,有区别 吗?
O
B
有方向又有大小的量,叫作向量
A
速度,位移,力,加速度等等
只有大小,没有方向的量,叫作标量 体重,身高,长度,面积,体积等等
例题精讲
平行向量也叫作共线向量
注意:零向量与任意向量平行
例题精讲
A 平行向量也是共线向量
零向量与任意向量平行
ACD
(1) FE、BD、DB、CD、DC、CB、BC
(2)
FE
、
BD、DB、
CD
、DC
3CD、DB
二、平面向量加减运算
探究:如图,某人从北京到武汉再到重庆,则两次行程的位 移可用哪个向量表示?从这里可以得到什么结论?
C
D
D
向量不能比较大小
什么是有向线段呢?
注意:有向线段是表示向量的一种方式,不能等同于向量就是有向线段
2.向量的表示
(1)向量的几何表示:用有向线段
AB
表示向量
A
B
有向线段的三个要素:
1.起点 2.方向 3.长度
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1讲 平面向量的概念及加减运算一、考点梳理考点1 基本概念既有大小,又有方向的量叫做向量.以A 为起点、B 为终点的有向线段记作AB →.|AB →|叫AB →的模或AB →的绝对值,表示向量AB →的长度.(1)零向量:长度为0的向量叫做零向量,记作0. (2)单位向量:长度等于1个单位的向量,叫做单位向量. (3)相等向量:长度相等且方向相同的向量叫做相等向量.(4)平行向量(共线向量):方向相同或相反的非零向量叫做平行向量,也叫共线向量. ①记法:向量a 平行于向量b ,记作a∥b . ①规定:零向量与任一向量平行. 例1.(1)下列物理量中不是向量的有( )①质量;①速度;①力;①加速度;①路程;①密度;①功;①电流强度. A .5个 B .4个 C .3个 D .2个解析:(1)看一个量是否为向量,就要看它是否具备向量的两个要素:大小和方向,特别是方向的要求,对各量从物理本身的意义作出判断,①①①既有大小也有方向,是向量,①①①①①只有大小没有方向,不是向量.(2)一辆汽车从A 点出发向西行驶了100 km 到达B 点,然后又改变方向向西偏北50°走了200 km 到达C 点,最后又改变方向,向东行驶了100 km 到达D 点. (1)作出向量AB →、BC →、CD →; (2)求|AD →|.解 (1)向量AB →、BC →、CD →如图所示.(2)由题意,易知AB →与CD →方向相反,故AB →与CD →共线, 又|AB →|=|CD →|,①在四边形ABCD 中,AB ∥CD .①四边形ABCD 为平行四边形. ①AD →=BC →,①|AD →|=|BC →|=200 km.(3)判断下列命题是否正确,并说明理由.(1)若向量a 与b 同向,且|a |>|b |,则a >b ;(2)若|a |=|b |,则a 与b 的长度相等且方向相同或相反; (3)由于0方向不确定,故0不能与任意向量平行; (4)向量a 与向量b 平行,则向量a 与b 方向相同或相反; (5)起点不同,但方向相同且模相等的向量是相等向量.解析:(1)不正确.因为向量由两个因素来确定,即大小和方向,所以两个向量不能比较大小.(2)不正确.由|a |=|b |只能判断两向量长度相等,不能确定它们方向的关系. (3)不正确.依据规定:0与任意向量平行.(4)不正确.因为向量a 与向量b 若有一个是零向量,则其方向不定. (5)正确.对于一个向量只要不改变其大小与方向,是可以任意移动的.【变式训练1】.在下列命题中,真命题为( )A .两个有共同起点的单位向量,其终点必相同B .向量AB →与向量BA →的长度相等 C .向量就是有向线段 D .零向量是没有方向的解析:由于单位向量的方向不一定相同,故其终点不一定相同,故A 错误;任何向量都有方向,零向量的方向是任意的,并非没有方向,故D 错误;有向线段是向量的形象表示,但并非说向量就是有向线段,故C 错误,故选B.【变式训练2】.在如图的方格纸上,已知向量a ,每个小正方形的边长为1.(1)试以B 为终点画一个向量b ,使b =a ;(2) 在图中画一个以A 为起点的向量c ,使|c |=5,并说出向量c 的终点的轨迹是什么? 解析:(1)根据相等向量的定义,所作向量与向量a 平行,且长度相等(作图略).(2)由平面几何知识可知所有这样的向量c 的终点的轨迹是以A 为圆心,半径为5的圆(图略). 【变式训练3】.如图所示,①ABC 的三边均不相等,E 、F 、D 分别是AC 、AB 、BC 的中点.(1)写出与EF →共线的向量; (2)写出与EF →的模大小相等的向量; (3)写出与EF →相等的向量.解析:(1)因为E 、F 分别是AC 、AB 的中点, 所以EF =12BC .又因为D 是BC 的中点,所以与EF →共线的向量有:FE →,BD →,DB →,DC →,CD →,BC →,CB →.(2)与EF →模相等的向量有:FE →,BD →,DB →,DC →,CD →. (3)与EF →相等的向量有:DB →与CD →.考点2 向量的加法 三角形法则如图所示,已知非零向量a ,b ,在平面内任取一点A ,作AB →=a ,BC →=b ,则向量AC →叫做a 与b 的和(或和向量),记作a +b ,即a +b =AB →+BC →=AC →.上述求两个向量和的作图法则,叫做向量加法的三角形法则. 对于零向量与任一向量a 的和有a +0=0+a =a .平行四边形法则如图所示,已知两个不共线向量a ,b ,作OA →=a ,OB →=b ,则O 、A 、B 三点不共线,以OA ,OB 为邻边作平行四边形,则以O 为起点的对角线上的向量OC →=a +b ,这个法则叫做两个向量加法的平行四边形法则.向量加法的运算律 (1)交换律:a +b =b +a .(2)结合律:(a +b )+c =a +(b +c ).例2.(1)如图,已知向量a 、b ,求作向量a +b .解析:在平面内任取一点O (如下图),作OA →=a ,OB →=b ,以OA 、OB 为邻边做①OACB ,连接OC ,则OC →=OA →+OB →=a +b .2(2)如图,在平行四边形ABCD 中,O 是AC 和BD 的交点.(1)AB →+AD →=________; (2)AC →+CD →+DO →=________; (3)AB →+AD →+CD →=________; (4)AC →+BA →+DA →=________. 解析: (1)AC → (2)AO → (3)AD →(4)0(1)BC →+AB →; (2)DB →+CD →+BC →; (3)AB →+DF →+CD →+BC →+F A →. 解析:(1)BC →+AB →=AB →+BC →=AC →. (2)DB →+CD →+BC →=BC →+CD →+DB → =(BC →+CD →)+DB →=BD →+DB →=0.(3)AB →+DF →+CD →+BC →+F A →=AB →+BC →+CD →+DF →+F A → =AC →+CD →+DF →+F A →=AD →+DF →+F A →=AF →+F A →=0. 【变式训练1】.(1)如图①所示,求作向量和a +b .(2)如图①所示,求作向量和a +b +c .解析:(1)首先作向量OA →=a ,然后作向量AB →=b ,则向量OB →=a +b .如图①所示.(2)方法一(三角形法则):如图①所示,首先在平面内任取一点O ,作向量OA →=a ,再作向量AB →=b ,则得向量OB →=a +b ,然后作向量BC →=c ,则向量OC →=(a +b )+c =a +b +c 即为所求.方法二(平行四边形法则):如图①所示,首先在平面内任取一点O ,作向量OA →=a ,OB →=b ,OC →=c ,以OA ,OB 为邻边作▭OADB ,连接OD ,则OD →=OA →+OB →=a +b ,再以OD ,OC 为邻边作①ODEC ,连接OE ,则OE →=OD →+OC →=a +b +c 即为所求.【变式训练2】.(1)化简:①BC →+AB →;①AB →+DF →+CD →+BC →+F A →.(2)如图,已知O 为正六边形ABCDEF 的中心,求下列向量: ①OA →+OE →; ①AO →+AB →; ①AE →+AB →.解析:根据加法的交换律使各向量首尾相接,再运用向量的结合律,调整向量顺序相加.(1)①BC →+AB →=AB →+BC →=AC →;①AB →+DF →+CD →+BC →+F A →=AB →+BC →+CD →+DF →+F A →=AF →+F A →=0.(2)①由题图知,OAFE 为平行四边形,①OA →+OE →=OF →; ①由题图知,OABC 为平行四边形,①AO →+AB →=AC →; ①由题图知,AEDB 为平行四边形,①AE →+AB →=AD →.【变式训练3】.化简:(1)AB →+CD →+BC →. (2)(MA →+BN →)+(AC →+CB →). (3)AB →+(BD →+CA →)+DC →. 解析:(1)AB →+CD →+BC →=AB →+BC →+CD →=AD →.(2)(MA →+BN →)+(AC →+CB →)=(MA →+AC →)+(CB →+BN →)=MC →+CN →=MN →.(3)AB →+(BD →+CA →)+DC →=AB →+BD →+DC →+CA →=0.考点3 向量的减法 相反向量(1)我们规定,与向量a 长度相等,方向相反的向量,叫做a 的相反向量,记作-a . (2)-(-a )=a ,a +(-a )=(-a )+a =0. (3)零向量的相反向量仍是零向量,即0=-0. 向量减法的定义求两个向量差的运算叫做向量的减法.我们定义,a -b =a +(-b ),即减去一个向量相当于加上这个向量的相反向量.向量减法的几何意义 (1)三角形法则如图,已知a 、b ,在平面内任取一点O ,作OA →=a ,OB →=b ,则BA →=a -b ,即a -b 可以表示为从向量b 的终点指向向量a 的终点的向量,这是向量减法的几何意义.(2)平行四边形法则如图①,设向量AB →=b ,AC →=a ,则AD →=-b ,由向量减法的定义, 知AE →=a +(-b )=a -b .又b +BC →=a ,所以BC →=a -b .如图①,理解向量加、减法的平行四边形法则:在①ABCD 中,AB →=a ,AD →=b ,则AC →=a +b ,DB →=a -b .例3.(1)在①ABC 中,D ,E ,F 分别为AB ,BC ,CA 的中点,则AF →-DB →等于( )A .FD →B .FC → C .FE →D .BE →解析:由题意可知AF →-DB →=DE →-DB →=BE →.答案:D(2)化简AC →-BD →+CD →-AB →得( )A .AB →B .AD →C .BC →D .0解析:答案:D解法一:AC →-BD →+CD →-AB →=AC →-BD →+CD →+BA →=(AC →+CD →)+(BA →-BD →)=AD →+DA →=0. 解法二:AC →-BD →+CD →-AB →=AC →+DB →+CD →+BA →=(AC →+CD →)+(DB →+BA →)=AD →+DA →=0.【变式训练1】.如图,设O 为四边形ABCD 的对角线AC 与BD 的交点,若AB →=a ,AD →=b ,OD →=c ,则OB →=解析:由于OB =DB -DO →,而DB →=AB →-AD →=a -b ,DO →=-OD →=-c , 所以OB →=a -b +c .【变式训练2】.化简:(1)(AB →+MB →)+(-OB →-MO →); (2)AB →-AD →-DC →. 解析:解答本题可先去括号,再利用相反向量及加法交换律、结合律化简.(1)解法一:原式=AB →+MB →+BO →+OM →=(AB →+BO →)+(OM →+MB →)=AO →+OB →=AB →.解法二:原式=AB →+MB →-OB →-MO →=AB →+(MB →-MO →)-OB →=AB →+(OB →-OB →)=AB →+0=AB →. (2)解法一:原式=DB →-DC →=CB →.解法二:原式=AB →-(AD →+DC →)=AB →-AC →=CB →.二、课堂检测1.下列物理量:①质量;①速度;①位移;①力;①加速度;①路程.其中是向量的有( ) A .2个 B .3个 C .4个 D .5个 答案 C 解析 ①①①①是向量. 2.下列说法中正确的个数是( )①零向量是没有方向的;①零向量的长度为0;①零向量的方向是任意的;①单位向量的模都相等. A .0 B .1 C .2 D .3 答案 D3. 下列说法正确的是( )A .数量可以比较大小,向量也可以比较大小B .方向不同的向量不能比较大小,但同向的可以比较大小C .向量的大小与方向有关D .向量的模可以比较大小答案 D 解析 A 中不管向量的方向如何,它们都不能比较大小,所以A 不正确;由A 的过程分析可知方向相同的向量也不能比较大小,所以B 不正确;C 中向量的大小即向量的模,指的是有向线段的长度,与方向无关,所以C 不正确;D 中向量的模是一个数量,可以比较大小,所以D 正确. 4. 设O 是正方形ABCD 的中心,则向量AO →,BO →,OC →,OD →是( ) A .相等的向量 B .平行的向量 C .有相同起点的向量 D .模相等的向量 5. 下列等式不成立的是( )A .0+a =aB .a +b =b +a C.AB →+BA →=2BA → D.AB →+BC →=AC →答案C 解析:对于C ,①AB →与BA →方向相反,①AB →+BA →=0.6. 如图,在平行四边形ABCD 中,O 是对角线的交点,下列结论正确的是( ) A.AB →=CD →,BC →=AD → B.AD →+OD →=DA → C.AO →+OD →=AC →+CD → D.AB →+BC →+CD →=DA → 答案 C7. a ,b 为非零向量,且|a +b |=|a |+|b |,则( )A .a∥b ,且a 与b 方向相同B .a ,b 是共线向量且方向相反C .a =bD .a ,b 无论什么关系均可 答案 A8.如图所示,在平行四边形ABCD 中,BC →+DC →+BA →等于( ) A.BD → B.DB → C.BC → D.CB → 答案 C 解析 BC →+DC →+BA →=BC →+(DC →+BA →)=BC →+0=BC →. 9. 在①ABC 中,BC →=a ,CA →=b ,则AB →等于( )A .a +bB .-a +(-b )C .a -bD .b -a 答案B ①BA →=BC →+CA →=a +b ,①AB →=-BA →=-a -b . 10. (多选)若a ,b 为非零向量,则下列命题正确的是( )A .若|a |+|b |=|a +b |,则a 与b 方向相同B .若|a |+|b |=|a -b |,则a 与b 方向相反C .若|a |+|b |=|a -b |,则|a |=|b |D .若||a |-|b ||=|a -b |,则a 与b 方向相同答案ABD 当a ,b 方向相同时,有|a |+|b |=|a +b |,||a |-|b ||=|a -b |;当a ,b 方向相反时,有|a |+|b |=|a -b |,||a |-|b ||=|a +b |,故A ,B ,D 均正确.10. 在平行四边形ABCD 中,BC →+DC →+BA →+DA →=________. 答案 0解析 注意DC →+BA →=0,BC →+DA →=0.12. 如图,在①ABC 中,若D 是边BC 的中点,E 是边AB 上一点,则BE →-DC →+ED →=________.11 答案0 因为D 是边BC 的中点,所以BE →-DC →+ED →=BE →+ED →-DC →=BD →-DC →=0.13. 设|a |=8,|b |=12,则|a +b |的最大值与最小值分别为________.答案 20,4 解析 当a 与b 共线同向时,|a +b |max =20;当a 与b 共线反向时,|a +b |min =4. 14. 已知向量|a |=2,|b |=4,且a ,b 不是方向相反的向量,则|a -b |的取值范围是________. 答案 [2,6) 根据题意得||a |-|b ||≤|a -b |<|a |+|b |,即2≤|a -b |<6.15. 如图所示,P ,Q 是①ABC 的边BC 上两点,且BP =QC . 求证:AB →+AC →=AP →+AQ →.证明 ①AP →=AB →+BP →,AQ →=AC →+CQ →,①AP →+AQ →=AB →+AC →+BP →+CQ →.又①BP =QC 且BP →与CQ →方向相反,①BP →+CQ →=0,①AP →+AQ →=AB →+AC →,即AB →+AC →=AP →+AQ →.。