八年级下学期数学
八年级数学下册知识点总结(全)
八年级数学下知识点总结函数及其相关概念1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一确定的值与它对应,那么就说x 是自变量,y 是x 的函数。
2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
3、函数的三种表示法及其优缺点(1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法把自变量x 的一系列值和函数y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图像法:用图像表示函数关系的方法叫做图像法。
4、由函数解析式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
正比例函数和一次函数1、正比例函数和一次函数的概念一般地,如果b kx y +=(k ,b 是常数,k ≠0),那么y 叫做x 的一次函数。
特别地,当一次函数b kx y +=中的b 为0时,kx y =(k 为常数,k ≠0)这时,y 叫做x 的正比例函数。
2、一次函数的图像所有一次函数的图像都是一条直线。
3、一次函数、正比例函数图像的主要特征:一次函数b kx y +=的图像是经过点(0,b )的直线;正比例函数kx y =的图像是经过原点(0,0)的直线。
(如下图) 4. 正比例函数的性质一般地,正比例函数kx y =有下列性质:(1)当k>0时,图像经过第一、三象限,y 随x 的增大而增大; (2)当k<0时,图像经过第二、四象限,y 随x 的增大而减小。
5、一次函数的性质一般地,一次函数b kx y +=有下列性质: (1)当k>0时,y 随x 的增大而增大 (2)当k<0时,y 随x 的增大而减小 6、正比例函数和一次函数解析式的确定确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k 。
八年级下学期数学知识点总结
八年级下学期数学知识点总结第一章勾股定理定义:如果直角三角形两条直角边分别为a,b,斜边为c,即直角三角形两直角边的平方和等于斜边的平方。
判定:如果三角形的三边长a,b,c满足a +b = c ,那么这个三角形是直角三角形。
定义:满足a +b =c 的三个正整数,称为勾股数。
第二章实数定义:任何有限小数或无限循环小数都是有理数。
无限循环小数称为无理数(有理数总是可以用有限循环小数或无限循环小数来表示)一般地,如果一个正数x的平方等于a,那么这个正数x 就叫做a的算术平方根。
特别地,我们规定0的算术平方根是0。
一般地,如果一个数x的平方等于a,那么这个数x就叫做a的平方根(也叫二次方根) 一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根。
求一个数a的平方根的运算,叫做开平方,其中a叫做被开方数。
一般地,如果一个数x的立方等于a,那么这个数x就叫做a的立方根(也叫做三次方根)。
正数的立方根是正数;0的立方根是0;负数的立方根是负数。
求一个数a的立方根的运算,叫做开立方,其中a叫做被开方数。
有理数和无理数统称为实数,即实数可以分为有理数和无理数。
每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。
即实数和数轴上的点是一一对应的。
在数轴上,右边的点表示的数比左边的点表示的数大。
第三章图形的平移与旋转定义:在一个平面内,一个图形沿着一定的方向移动一定的距离,这样的图形移动称为平移。
平移不会改变图形的形状和大小。
经过平移,对应点所连的线段平行也相等;对应线段平行且相等,对应角相等。
在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称旋转中心,转动的角称为旋转角。
旋转不改变图形的大小和形状。
任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。
第四章四边形性质探索定义:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等,这个距离称为平行线之间的距离。
八年级数学下学期教学计划
八年级数学下学期教学计划人教版八年级数学下学期教学计划(精选8篇)计划服务于目的,计划因目的而产生,因目的而存在,因目的而制定,教学计划也不例外,下面是店铺整理的人教版八年级数学下学期教学计划,欢迎参考!八年级数学下学期教学计划篇1一、学情分析从上学期的期末考试来看,本班无论优秀率还是合格率都有不小的退步。
优秀率仅仅只有13%,而合格率也只达到45%,两极分化的现象再一次增大,与我预期的目标有较大的差距。
通过调阅学生的试卷,发现学生在知识运用上很不熟练,特别是对于解答综合性习题时欠缺灵活性。
二、指导思想坚持党的大会教育方针,结合《初中数学新课程标准》,根据学生实际情况,积极开展课堂教学改革,提高课堂教学效率,向45分钟要质量。
一方面巩固学生的基础知识,另一方面提高学生运用知识的能力。
特别是训练学生的探究思维能力,和发散式思维模式,提高学生知识运用的能力。
并通过本学期的课堂教学,完成八年级下册的数学教学任务。
三、教学目标知识技能目标:掌握分式的基本性质及其相关的运算;学习反比例函数图像、性质;掌握勾股定理及其逆定理;探究平行四边形、特殊四边形及梯形、等腰梯形性质与判定;会分析数据并从中获取总体信息。
过程方法目标:发展学生推理能力;建立函数建模的思维方式;理解勾股定理的意义与内涵;提高几何说理能力及统计意识。
态度情感目标:丰富学生数学经验,增加逻辑推理能力,感受数学与生活的关联。
班级教学目标:优秀率:15%;合格率:55%。
四、教材分析第十六章分式:本章主要学习分式及其基本性质,分式的约分、通分,分式的基本运算,分式方程的概念及可化为一元一次方程的分式方程的解法。
本点重点:运用分式的基本性质进行约分和通分;分式的基本运算;解分式方程。
教学难点:分式的约分和通分;分式的混合运算;解分式方程及分式方程的实际应用。
第十七章反比例函数:本章主要学习反比例函数的概念、图象及其性质,学习反比例函数在实际问题中的应用。
八年级数学(下)期末试卷含答案
ABCDEF八年级数学(下)期末试卷考生注意:本试卷共120分,考试时间100分钟.一、选择题:本大题共10小题,每小题3分,共30分.每小题只有一个正确选项,将此选项选择题(每题3分,本大题共30分)1、下列根式中,与3 是同类二次根式的是( ) A 、8 B 、0.3 C 、23D 、12 2、 若2(3)3a a -=-,则a 与3的大小关系是( )A 、 3a <B 、3a ≤C 、3a >D 、3a ≥3.、若实数a 、b 满足ab <0,则一次函数y =ax +b 的图象可能是( )A .B .C .D .4、已知P 1(-1,y 1),P 2(2,y 2)是一次函数1y x =-+图象上的两个点,则y 1,y 2的大小关系是( )A 、12y y =B 、12y y <C 、12y y >D 、不能确定 5、平行四边形, 矩形,菱形,正方形都具有的性质是( ) A 、对角线相等 B 、对角线互相平分 C 、对角线平分一组对角 D 、对角线互相垂直6、2022年将在北京张家口举办冬季奥运会,很多学校开设了相关的课程如表记录了某校4名同学短道速滑选拔赛成绩的平均数与方差:队员1 队员2 队员3 队员4 平均数 51 50 51 50 方差根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应选择A. 队员1B. 队员2C. 队员3 D. 队员47、如图,直线l 1 : y = 4x - 2 与l 2 : y = x +1的图象相交于点 P ,那么关于 x ,y 的二元一次方程组 4x - y = 2的解是 ( ) x-y=-18. 在平面直角坐标系中,一次函数 y = kx + b 的图象与直线 y = 2x 平行,且经过点A (0,6).则一次函数的解析式为 ( )A 、y=2x-3B 、y=2x+6C 、y=-2x+3D 、y=-2x-6 9.如图,在正方形ABCD 的外侧,作等边三角形ADE ,AC 、BE 相交于点F ,则∠BFC 为( )A 、75︒B 、60︒C 、55︒D 、45︒10.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y (m)与挖掘时间x (h )之间的关系如图5所示.根据图象所提供的信息,下列说法正确的是( ) A .甲队开挖到30 m 时,用了2 h B .开挖6 h 时,甲队比乙队多挖了60 mC .乙队在0≤x ≤6的时段,y 与x 之间的关系式为y =5x +20D .当x 为4 h 时,甲、乙两队所挖河渠的长度相等 二、填空题(每题3分,本大题共24分) 11、函数y=12xx-+中,自变量x 的取值范围为 . 12、若函数y = -2x m +2 +n -2正比例函数,则m 的值是 ,n 的值为________.243221323+⨯-÷13、 如图,菱形ABCD 的对角线AC 和BD 相交于点O ,过点O 的直线分别交AB 和CD 于点E 、F ,BD=6,AC=4,则图中阴影部分的面积和为 .14.、一组数据1,6,x ,5,9的平均数是5,那么这组数据的中位数是______,方差是______.15、将矩形纸片ABCD 沿直线AF 翻折,使点B 恰好落在CD 边的中点E 处,点F 在BC 边上,若CD =6,则FC = .16、如图,直线y =x +b 与直线y =kx +6交于点P (3,5),则关于 x 的不等式kx +6<x +b 的解集是_____________.17、如图所示,四边形OABC 是正方形,边长为4,点A 、C 分别在x 轴、y 轴的正半轴上,点D 在OA 上,且D 点的坐标为 (1,0),P 是OB 上一动点,则PA +PD 的最小值为 .18.、如图,平行四边形 ABCD 的周长是 52cm ,对角线 AC 与 BD 交于点 O ,AC ⊥AB ,E 是BC 中点,△AOD 的周长比 △AOB 的周长多 6cm ,则 AE 的长度为 .三、解答题(本大题共66分) 19、计算.(每小题4分,共计8分)(1)(2)20、(7分)已知a ,b ,c 满足|a -8|+b -5+(c -18)2=0. (1)求a ,b ,c 的值;并求出以a,b,c 为三边的三角形周长; (2)试问以a ,b ,c 为边能否构成直角三角形?请说明理由。
不等式的性质八年级数学下学期重要考点精讲精练
2.2不等式的性质不等式的基本性质不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a >b ,那么a±c >b±c不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a >b ,c >0,那么ac >bc(或). 不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变. 用式子表示:如果a >b ,c <0,那么ac <bc(或). 注意:对不等式的基本性质的理解应注意以下几点:(1)不等式的基本性质是对不等式变形的重要依据,是学习不等式的基础,它与等式的两条性质既有联系,又有区别,注意总结、比较、体会.(2)运用不等式的性质对不等式进行变形时,要特别注意性质2和性质3的区别,在乘(或除以)同一个数时,必须先弄清这个数是正数还是负数,如果是负数,不等号的方向要改变.题型1:利用不等式的性质判定正误1.如果a >b ,那么下列结论一定正确的是( )A .a ﹣3<b ﹣3B .>C .a +3<b +3D .﹣3a >﹣3b【变式1-1】已知a <b ,则( )A .a +1<b +2B .a ﹣1>b ﹣2C .ac <bcD .>(c ≠0)【变式1-2】以下是两位同学在复习不等式过程中的对话:小明说:不等式a >2a 永远都不会成立,因为如果在这个不等式两边同时除以a ,就会出现1>2这样的错误结论!a b c c>a b c c <题型2:利用不等式确定字母的取值范围2.已知x>1,x+a=1,则a的取值范围是()A.a<0B.a≤0C.a>0D.a≥0【变式2-1】若x<y,且(6﹣a)x>(6﹣a)y,则a的取值范围是.题型3:利用不等式的性质将不等式变形3.根据不等式的性质,把下列不等式化成x>a或x<a的形式.(1)x+7>9;(2)6x<5x﹣3;(3);(4)﹣.【变式3-1】根据要求,回答下列问题:(1)由2x>x﹣,得2x﹣x>﹣,其依据是;(2)由x>x﹣,得2x>6x﹣3,其依据是;(3)不等式x>(x﹣1)的解集为.【变式3-2】根据不等式的基本性质,把下列不等式化成x<a或x>a的形式:(1)x﹣2<3;(2)4x>3x﹣5;(3)x<;(4)﹣8x<10.题型4:利用不等式的性质比较大小4.若﹣2a>﹣2b,则a与b的大小关系为.题型5:利用不等式的性质化简不等式5.已知关于x的不等式(m﹣1)x>6,两边同除以m﹣1,得x<,试化简:|m﹣1|﹣|2﹣m|.【变式5-1】已知关于x的不等式(1﹣a)x>2,两边都除以(1﹣a),得x<,试化简:|a﹣1|+|a+2|.【变式5-2】已知x满足不等式组,化简|x+3|+|x﹣2|.题型6:利用不等式的性质求最值6.代数式|x﹣1|﹣|x+4|﹣5的最大值为()A.0B.﹣10C.﹣5D.3【变式6-1】已知0≤m﹣n≤2,2≤m+n≤4,则当m﹣2n达到最小值时,3m+4n=.题型7:数轴与不等式7.若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是()A.a﹣c>b﹣c B.a+c<b+c C.ac>bc D.<【变式7-1】已知有理数a、b、c在数轴上对应的位置如图所示,则下列式子中正确的是()A.ab2>ac2B.ab<ac C.ab>ac D.c+b>a+b【变式7-2】已知实数a、b、c在数轴上对应的点如图所示,请判断下列不等式的正确性.(1)bc>ab(2)ac>ab(3)c﹣b<a﹣b(4)c+b>a+b(5)a﹣c>b﹣c(6)a+c<b+c.题型8:不等式的简单应用8.江南三大名楼指的是:滕王阁、黄鹤楼、岳阳楼.其中岳阳楼位于湖南省岳阳市的西门城头、紧靠洞庭湖畔,始建于三国东吴时期.自古有“庭天下水,岳阳天下楼”之誉,因北宋范仲淹脍炙人口的《岳阳楼记》而著称于世.某兴趣小组参观过江南三大名楼的人数,同时满足以下三个条件:(1)参观过滕王阁的人数多于参观过岳阳楼的人数;(2)参观过岳阳楼的人数多于参观过黄鹤楼的人数;(3)参观过黄鹤楼的人数的2倍多于参观过滕王阁的人数.若参观过黄鹤楼的人数为4,则参观过岳阳楼的人数的最大值为()A.4B.5C.6D.7【变式8-1】如图,一个倾斜的天平两边分别放有2个小立方体和3个砝码,每个砝码的质量都是5克,每个小立方体的质量都是m克,则m的取值范围是()A.m<15B.m>15C.m>D.m<【变式8-2】有一个两位数,个位上的数字为a,十位上的数字为b,如果把这个两位数的个位与十位上。
2023—2024学年度下学期济南市八年级期末考试数学试卷及参考答案
2023—2024学年度下学期八年级数学学科参考答案及评分标准一、选择题(每小题3分,共计30分)二、填空题(每小题3分,共计30分)三、解答题(其中21题6分,22-24题各8分,25-27题各10分,共计60分)21.(本题6分)解:22231x x x -+=+22410x x -+=......................................................................1分241a b c ==-=,,224(4)b ac D =-=--4×2×1=8>0.....................................................2分方程有两个不等的实数根................................2分即12222222x x +-==,........................................................1分22.(本题8分)解:(1)如图1,正确画图(答案不唯一)...................................................4分(2)如图2,正确画图....................................................................4分12345678910ABBBCDCDAC题号1112131415答案x≠2-18x≥223题号1617181920答案5.8205±12②③(第22题答案图1)(第22题答案图2)23.(本题8分)解:(1)14.5.............................................................................2分+分(2)∠BCD 是直角,理由:连接BD.由勾股定理得,2222420BC =+=,222125CD =+=,2223425BD =+=......................................................................1分∴22220525BC CD BD +=+==.........................................................2分∴∠BCD 是直角...........................................................................1分24.(本题8分)解:(1)设(0)y kx b k =+≠根据题意,得0.2200.2822k b k b +=⎧⎨+=⎩...............................................................2分解得2515k b =⎧⎨=⎩.............................................................................2分2515y x ∴=+............................................................................1分(2)当0.3x m =时,250.31522.5()y m =⨯+=................................................2分∴当这种树的胸径为0.3m 时,其树高为22.5m ................................................1分25.(本题10分)解:(1)450.............................................................................2分6750....................................................................................2分(2)设销售单价定位x 元时,利润为8000元.根据题意,得[](40)50010(50)8000x x ---=.................................................2分解得126080x x ,==......................................................................1分当x=60时,销售量为500-10(60-50)=400(套),成本为400×40=16000>10000...................1分当x=80时,销售量为500-10(80-50)=200(套),成本为200×40=8000<10000....................1分∴x=80答:月销售成本不超过10000元的情况下,该商品的销售单价应定为每套80元可使月销售利润达到8000元......................................................................................1分26.(本题10分)解:(1)①∠DEF 的大小不发生变化,∠DEF=90°............................................1分理由:如图1,作EG⊥AB,EH⊥AD,垂足分别为点G、H.∵四边形ABCD 是正方形∴∠DAB=90°,∠BAC=∠DAC=12∠DAB=45°,AC⊥BD ∴EG=EH又∵EF=DE∴Rt△EFG≌Rt△EDH.............................................1分∴AG=AH,∠FEG=∠DEH 在四边形AGEH 中,∠GEH=360°-90°-90°-90°=90°∴∠DEF=∠DEH+∠FEH=∠FEG+∠FEH=∠GEH=90°..............................................1分∴∠DEF 的大小不发生变化,∠DEF=90°②AF=2OE..............................................................................1分理由:如图1,令AG=m,OE=2n ,则AH=m.在Rt△AEH 中∵∠AEH=90°-∠EAH=90°-45°=45°=∠EAH∴EH=AH=m∴22222AE AH EH m m m =+=+=.....................................................1分∴OA=AE+OE=222()m n m n +=+同理:在Rt△OAD 中,22()2()AD m n m n =⨯+=+∴DH=AD-AH=2(m+n)-m=m+2n=FG ∴AF=FG-AG=m+2n-m=2n∴AF=2OE......................1分(2)AF=CE理由:如图2,作EM⊥AB,EN⊥AD,垂足分别为点M、N.令AM=a,OE=b.∵四边形ABCD 是菱形∴AB=BC=AD ,∠BAC=∠DAC,AC⊥BD,AC=2OA......................1分∴EM=EN 又∵EF=DE∴Rt△EFM≌Rt△EDN.............................................1分∴FM=DN∵AB=BC,∠ABC=60°∴△ABC 为等边三角形∴∠DAC=∠BAC=60°,AC=AB∵∠EAM=∠EAN,∠EMA=∠ENA=90°,AE=AE ∴△AEM≌Rt△AEN∴AN=AM=a在Rt△AEN 中∵∠AEN=90°-∠EAN=90°-60°=30°∴AE=2AN=2a...........................1分∴OA=AE+OE=2a+b ∴AC=2OA=4a+2b=AD∴CE=AC-AE=4a+2b-2a=2a+2b∵FM=DN=AD-AN=4a+2b-a=3a+2b ∴AF=FM-AM=3a+2b-a=2a+2b=CE.............................1分27.(本题10分)解:(1)y=3x+3当x=0时,y=3×0+3=3∴C(0,3)当y=0时,0=3x+3∴x=-1∴B(-1,0)..........................................1分∴OB=1∴OA=3×1=3∴A(3,0)设直线AC 解析式为y=kx+b∴303bk b=⎧⎨=+⎩解得13k b =-⎧⎨=⎩(第26题答案图1)(第26题答案图2)∴直线AC 的解析式为y=-x+3...............................................................1分(2)如图1,∵点D 是线段AC 上一个动点,且横坐标为t∴D(t,-t+3)过点D 作DK⊥x 轴于K,则DK=-t+3..........................................................1分∵A(3,0),B(-1,0)∴AB=3-(-1)=4∴12ABC ABD S S S △△=-=×AB×OC-12×AB×DK=12×4×3-12×4×(-t+3)=2t.....................2分(3)过点D 作DR⊥x 轴于R,过点G 作GP⊥AE 于P,过点G 作直线l∥x 轴交y 轴于T,过点A 作AN⊥l于N,过点E 作EM⊥l 于M,交x 轴于L.∵AE∥BD,BF//AC ∴四边形ADBF 是平行四边形,∠DAR=∠FBO ∴AD=BF又∵∠ARD=∠BOF=90°∴△ADR≌△BFO∴AR=OB=1,OF=DR∴t=OR=OA-AR=3-1=2∴OF=DR=-t+3=1,S=2t=4∴F(0,-1).................................................1分设直线AF 的解析式为y=mx+n∴103n m n -=⎧⎨=+⎩解得131m n ⎧=⎪⎨⎪=-⎩∴直线AF 的解析式为113y x =-由33113y x y x =+⎧⎪⎨=-⎪⎩解得3232x y ⎧=-⎪⎪⎨⎪=-⎪⎩∴E(32-,32-)∵MN∥AL ∴∠ALE+∠M=180°∴∠ALE=180°-90°=90°=∠M=∠N ∴四边形ALMN 为矩形∴AN=ML,MN=AL=3+32=92在Rt△AEL 中,2222333()(3)10222AE EL AL =+=++=∵454545432328AEG S S ==´=△∴12×3102×GP=458∴GP=3104...................1分∵GE=GA,GP⊥AE∴AP=EP=12AE=3104=GP ∴∠PEG=∠PGE,∠PAG=∠PGA,2222333(10)(10)5442EG EP GP =+=+=又∵∠PEG+∠PGE=90°,∠PAG+∠PGA=90°∴∠PGE=∠PGA=45°∴∠EGA=90°(第27题答案图1)(第27题答案图2)∴∠AGN+∠EGM=90°又∵∠GEM+∠EGM=90°∴∠AGN=∠GEM 又∵∠N=∠M=90°,AG=EG∴△AGN≌△GEM∴GN=EM,AN=MG 令EM=c,则GN=c,MG=AN=ML=c+32∵MG+GN=MN ∴c+32+c=92∴c=32∴MG=3=AN=ML ∴GT=MG-MT=3-32=32∵∠OLM=∠M=∠LOT=90°∴四边形OLMT 为矩形∴OT=ML=3∴G(32,-3)..............1分当点G,E,H 在同一条直线时,GH EH EG-=当点G,E,H 不在同一条直线时,在△EGH 中,GH EH EG -<综上所述:GH EH EG -£=,GH EH -...........................1分此时点H 是直线EG 与x 轴的交点设直线EG 的解析式为y=ex+f∴3322332e f e f ⎧-=-+⎪⎪⎨⎪-=+⎪⎩解得1294e f ⎧=-⎪⎪⎨⎪=-⎪⎩∴直线EG 的解析式为1924y x =--当y=0时,19024x =--∴x=92-∴H(92-,0)....................................1分(以上各解答题如有不同解法并且正确,请按相应步骤给分)。
八年级下册书数学知识点
八年级下册书数学知识点在八年级下册的数学学习中,同学们需要掌握多个知识点,本文将围绕几个重点内容进行讲解。
一、平面图形与立体图形的计算在平面图形与立体图形的计算中,需要掌握图形的特征和相关计算公式。
例如,对于矩形,其特征为有四条边,相邻两条边长度相等,对角线相等且垂直相交;其面积计算公式为长乘以宽。
对于正方体,其特征为六个面都是正方形;其表面积计算公式为六倍边长的平方,体积计算公式为边长的立方。
二、函数初步函数是数学中的一个重要概念,涵盖了函数的定义、概念和基本性质等方面。
学生需要通过练习掌握函数的常见形式,如一次函数和二次函数等,并熟悉其图像特征和解析式的表示方式。
在解题中,需要理解函数的自变量与函数值之间的关系和如何求出函数值。
三、三角函数初步三角函数是三角学中的重要内容之一,在八年级下册的学习中也会有重点涵盖。
同学们需要了解正弦函数、余弦函数、正切函数等三角函数的基本概念,并学会根据角度大小计算函数值。
此外,三角函数在解决实际问题中也起到重要作用,例如船只航线问题、建筑工地斜坡问题等。
四、方程与不等式在方程和不等式的学习中,需要理解其基本概念、性质和解法,并在练习中掌握解题技巧。
同时,方程和不等式在数学的应用中也十分广泛,包括化学化学方程式、物理运动问题等许多领域。
五、统计学初步统计学作为一门应用数学,重点研究数据的收集、整理、描述、分析等内容。
在学习中,需要了解数据的类型与特征、常见统计指标的计算方法、表格和图表的制作等。
对于实际问题,统计学也有着广泛的应用,例如市场调查、人口普查等。
以上是八年级下册数学的主要知识点,同学们可以通过反复练习和深入思考来掌握这些知识,不断提高自己的数学能力。
八年级数学下目录
八年级数学下第一章三角形证明1.等腰三角形2.直角三角形3.线段的垂直平分线4.角平分线4在中考中会出1道大题,分值在8—10分,还会和其他知识点结合出现;1—2道选择题或填空题,分值在3—8分,主要考察等腰三角形的相关概念、性质和判定,线段垂直平分线的性质,直角三角形的勾股定理及其逆定理,角平分线的性质。
不定第二章一元一次不等式与一元一次不等式组1.不等式关系2.不等式的基本性质3.不等式的解集4一元一次不等式5.一元一次不等式与一次函数6.一元一次不等式组4在中考中会出现1道选择题或填空题,分值在3—4分,主要考察不等式及其性质,一元一次不等式组及其解法,一元一次不等式的应用。
3-4分第三章图形的平移与旋转1.图形的平移2.图形的旋转3.中心对称4.简单的图案设计2在中考中最多出一道选择题或填空题,分值3—4分,主要考察图形的平移、旋转,中心对称3-4分第四章因式分解1.因式分解2.提公因式法3.公式法3中考中会出现1道填空题或在计算题中出现,分值4分,主要考察用提公因式法和公式法进行因式分解不定第五章分式与分式方程1.认识分式2.分式的乘除法3.分式的加减法4.分式方程4中考中会出现1道填空题,分值在4分,主要考察通分和约分以及分式的计算4分第六章平行四边形1.平行四边形的性质2.平行四边形的判定3.三角形的中位线4.多边形的内角和与外角和4中考中会出现1—2道大题,分值在8—20分;1—2道选择题或填空题分值在3—8分,主要考察平行四边形的概念和性质以及平行四边形的判定不定。
八年级数学下学期期末测试卷(含答案)
八年级数学下学期期末测试卷题号一二三总分得分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 木工师傅想利用木条制作一个直角三角形,那么下列各组数据不符合直角三角形的三边长的是( )A. 3,4,5B. 6,8,10C. 5,12,13D. 7,15,172. 要使二次根式√ 2x−4在实数范围内有意义,则x的取值范围是( )A. x>2B. x≥2C. x<2D. x=23. 下列各式计算正确的是( )A. √ 2+√ 3=√ 5B. 2+√ 2=2√ 2C. 3√ 2−√ 2=2√ 2D. √ 12−√ 10=√ 6−√ 524. 数形结合是解决数学问题常用的思想方法.如图,直线y=x+5和直线y=ax+b相交于点P,根据图象可知,方程x+5=ax+b的解是( )A. x=20B. x=5C. x=25D. x=155. 甲、乙、丙、丁四位同学3次数学成绩的平均分都是120分,方差分别是S2甲=8.6,S2乙=2.6,S2丙=5.0,S2丁=7.2,则这四位同学3次数学成绩最稳定的是()A. 甲B. 乙C. 丙D. 丁6. 下列不能确定四边形ABCD为平行四边形的是( )A. ∠A=∠C,∠B=∠DB. ∠A=∠B=∠C=90∘C. ∠A+∠B=180∘,∠B+∠C=180∘D. ∠A+∠B=180∘,∠C+∠D=180∘7. 棱形ABCD中,对角线AC=5,BD=12,则棱形的高等于()A. 1513B. 3013C. 6013D. 308. 如图,矩形ABCD中,AC、BD交于点O,M、N分别为BC、OC的中点,若∠ACB=30°,AB=8,则MN的长为()A. 2B. 4C. 8D. 169. 如图,在矩形ABCD中,AB=6,AD=4,DM=2,动点P从点A出发,沿路径A→B→C→M 运动,则△AMP的面积y与点P经过的路径长x之间的函数关系用图像表示大致是()A. B.C. D.10. 如图,在正方形ABCD中,E是BC边上的一点,BE=4,EC=8,将正方形边AB沿AE 折叠到AF,延长EF交DC于G,连接CF,现在有如下4个结论:①∠EAG=45°;②FG=FC;③FC//AG;④S△GFC=14其中正确结论的个数是()A. 1B. 2C. 3D. 4二、填空题(本大题共6小题,共18.0分)11. 在数轴上表示实数a的点如图所示,化简√ (a−5)2+|a−2|的结果为.12. 计算:(√ 3+√ 2)2−√ 24=______.13. 如图,在△ABC中,∠ACB=90°,以它的三边为边分别向外作正方形,面积分别为S1,S2,S3,已知S1=5,S2=12,则S3=________.14. 将直线y=2x+1的图象向下平移3个单位长度后所得直线的解析式是.15. 观察下列等式:①3−2√ 2=(√ 2−1)2,②5−2√ 6=(√ 3−√ 2)2,③7−2√ 12=(√ 4−√ 3)2,…请你根据以上规律,写出第6个等式______.16. 春耕期间,市农资公司连续8天调进一批化肥,并在开始调进化肥的第七天开始销售.若进货期间每天调进化肥的吨数与销售期间每天销售化肥的吨数都保持不变,这个公司的化肥存量s(单位:吨)与时间t(单位:天)之间的函数关系如图所示,则该公司这次化肥销售活动(从开始进货到销售完毕)所用的时间是______ 天.三、解答题(本大题共8小题,共52.0分。
八年级数学下期教学计划(精选10篇)
八年级数学下期教学方案〔精选10篇〕八年级数学下期教学方案〔精选10篇〕八年级数学下期教学方案篇1一、学情分析八年级是初中学习过程中的关键时期,起着承上启下的作用。
下学期尤为重要,学生根底的好坏,直接影响到将来是否能升学。
学生通过上学期的学习,算才能、阅读理解才能、理论探究才能得到了开展与培养,对图形及图形间数量关系有初步的认识,逻辑思维与逻辑推理才能得到了开展与培养,通过教育教学培养,绝大局部学生可以认真对待每次作业并及时纠正作业中的错误,课堂上能专心致志的进展学习与考虑,学生的学习兴趣得到了激发和进一步的开展,课堂整体表现较为活泼。
本学期将继续促进学生自主学习,让学生亲身参与活动,进展探究与发现,以自身的体验获取知识与技能;努力实现根底性与现代性的统一,进步学生的创新精神和理论才能;进一步激发学生的数学兴趣和爱好,通过各种教学手段帮助学生理解概念,操作运算,扩展思路。
要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生是学的主体,老师是教的主体作用,注重方法,培养才能。
关注学困生和女生。
二、教材分析本学期教学内容共计五章,知识的前后联络,教材的教学目的,重、难点分析如下:第十六章二次根式本章主要内容是二次根式的概念、性质、化简和有关的计算。
本章重点是理解二次根式的性质,及二次根式的化简和计算。
本章的难点是正确理解二次根式的性质和运算法那么。
第十七章勾股定理直角三角形是一种特殊的三角形,它有许多重要的性质,如两个锐角互余,30度角所对的直角边等于斜边的一半,本章所研究的勾股定理,也是直角三角形的性质,而且是一条非常重要的性质,本章分为两节,第一节介绍勾股定理及其应用,第二节介绍勾股定理的逆定理。
第十八章平行四边形四边形是人们日常生活中应用较广泛的一种图形,尤其是平行四边形、矩形、菱形、正方形等特殊四边形的用途更多。
因此,四边形既是几何中的根本图形,也是“空间与图形”领域研究的主要对象之一。
人教版八年级数学下学期期末重难点知识专题04一次函数重难点知识1(解析版).doc
学校班级姓名1【本文档由书林工作坊整理发布,谢谢你的下载和关注!】【本文档由书林工作坊整理发布,谢谢你的下载和关注!】2专题04 一次函数期末总复习重难点知识一遍过1一、基础知识点综述基础讲解基 础 知 识函数与变量一般地,如果在一个变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一的值与它对应,那么就说x 是自变量,y 是x 的函数.常见自变量取值范围:00100y x x y x xy x x =≥=≠=≠ ()() ()常量:其值在变化过程中始终保持不变的量叫常量. 变量:其值在变化过程中会发生变化的量叫变量. 正比例函数 解析式 y =kx (k ≠0)形状一条过(0,0)、(1,k )的直线 坐标系中位置k >0时过一、三象限;k <0时过二、四象限 增减性k >0时,y 随x 的增大而增大;k <0时,y 随x 的增大而减小一次函数解析式 y =kx +b (k ≠0)形状一条过(0,b )、(bk-,0)的直线 坐标系中位置k >0,b >0时过一、二、三象限;k >0,b <0时过一、三、四象限;k <0,b >0时过一、二、四象限;k <0,b <0时过二、三、四象限增减性k >0时,y 随x 的增大而增大;k <0时,y 随x 的增大而减小【本文档由书林工作坊整理发布,谢谢你的下载和关注!】3基 础 知 识一次函数图象的位置关系 l 1∥l 2,则k 1=k 2,b 1≠b 2;l 1⊥l 2,则k 1·k 2=-1一次函数图象平移 上下平移与b 有关,上加下减;左右平移与x 有关,左加右减一次函数图象的对称y =kx +b 关于y 轴对称的解析式为:y =-kx +b ;y =kx +b 关于x 轴对称的解析式为:y =-kx -b ;一次函数与二元一次方程组方程组的解是两条直线的交点坐标一次函数与不等式会借助图象判断y =0,y <0,y >0时自变量取值范围;会借助图象判断y 1=y 2,y 1<y 2,y 1>y 2时自变量取值范围;求一次函数解析式方法待定系数法上表中,l 1:y 1=k 1x +b 1;l 2:y 2=k 2x +b 2二、典型例题讲解题1. (1)函数11y x x=+-自变量的取值范围是(2)函数()02y x x=--自变量的取值范围是(3)函数214y x x =-+自变量的取值范围是(4)在三角形中,它的一条边是a ,这条边上的高是h ,则其面积S =0.5ah ,当a 为定长时,在此式中变量是,常量是(5)将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水(如图所示),则小水杯内水面的高度h (cm )与注水时间t (min )的函数图象大致为( )【答案】(1)x ≥-1且x ≠0;(2)x >0且x ≠2;(3)全体实数;(4)S 、h ;0.5、a ;(5)B ;【本文档由书林工作坊整理发布,谢谢你的下载和关注!】4【解析】解:(1)由10x x +≥⎧⎨≠⎩,解得:x ≥-1且x ≠0;(2)由020x x >⎧⎨-≠⎩,解得:x >0且x ≠2;(3)由2211042x x x ⎛⎫-+=-≥ ⎪⎝⎭,得x 为全体实数;(4)由题意知S 随h 的变化而变化,所以S 和h 是变量,a 、0.5是常量;(5)通过分析可知,在注水开始至水面与小玻璃杯水面平齐过程中,水面高度不变,随后增大至最大后不再变化,故选B .题2. (1)正比例函数y =kx (k ≠0)的函数值y 随x 的增大而增大,则一次函数y =x +k 的图象过象限;(2)若函数y =(m +1)x ﹣(4m ﹣3)的图象在第一、二、四象限,则m 的取值范围(3)在平面直角坐标系中,将直线l 1:y =-3x -3平移后,得到直线l 2:y =-3x +2,则应向上平移个单位,或向右平移个单位;(4)已知点A (﹣5,y 1),B (10,y 2)在一次函数y =﹣x +9的图象上,则y 1y 2(5)直线y =k 1x +b 1(k 1>0)与y =k 2x +b 2(k 2<0)相交于点(﹣2,0),且两直线与y 轴围成的三角形面积为4,那么b 1﹣b 2等于(6)一次函数y =(m 2-4)x +(1-m )和y =(m -1)x +m 2-3的图象与y 轴分别交于点P 和点Q ,若点P 与点Q 关于x 轴对称,则m =(7)函数y =-2x +4的图象上存在点P ,使得点P 到y 轴的距离等于1,则点P 的坐标为 . (8)过点(﹣1,7)的一条直线与x 轴,y 轴分别相交于点A ,B ,且与直线123+-=x y 平行.则在线段AB 上,横、纵坐标都是整数的点的坐标是【答案】(1)一、二、三;(2)m <-1;(3)5,53;(4)>;(5)4或-4;(6)-1; (7)(1,2)或(-1,6);(8)(1,4)、(3,1);【解析】解:(1)∵正比例函数y =kx (k ≠0)的函数值y 随x 的增大而增大, ∴k >0,则y =x +k 的图象过一、二、三象限;(2)∵函数y =(m +1)x ﹣(4m ﹣3)的图象在第一、二、四象限,【本文档由书林工作坊整理发布,谢谢你的下载和关注!】5∴()10430m m +<⎧⎨-->⎩,解得:m <-1;(3)y =-3x -3平移后,得到直线l 2:y =-3x +2,可向上平移5个单位;设向右平移m 个单位,则y =-3(x -m )-3,即-3(x -m )-3=-3x +2,解得:m =53即向右平移53个单位; (4)y =﹣x +9中,y 随x 的增大而减小,因为A (﹣5,y 1),B (10,y 2)在一次函数图象上, 而-5<10,所以y 1>y 2 (5)由题意知:12122S b b =⨯⨯-, 即121422b b =⨯⨯-解得:b 1﹣b 2=4或-4 (6)由题意知:221304010m m m m ⎧-+-=⎪-≠⎨⎪-≠⎩,解得:m =-1; (7)点P 到y 轴的距离等于1,则P 点的横坐标为1或-1, 在y =-2x +4中,当x =1时,y =2;x =-1时,y =6, 即P 点坐标为(1,2)或(-1,6);(8)设直线AB 解析式为y =kx +b ,由题意知:k =32-, 将(﹣1,7)代入得:7=32-×(-1)+b ,解得:b =112, 即直线AB 解析式为:y =32-x +112,整理得:2y +3x =11,由题意知x 、y 均为整数时,有x =1,y =4;x =3,y =1,即符合要求的点的坐标是(1,4)、(3,1). 题3. (1)一次函数y =kx +b ,当1≤x ≤4时,3≤y ≤6,求k 、b 的值.【本文档由书林工作坊整理发布,谢谢你的下载和关注!】6【答案】见解析.【解析】解:①当k >0时,由当1≤x ≤4时,3≤y ≤6得: x =1,y =3;x =4,y =6,代入y =kx +b 得:346k b k b +=⎧⎨+=⎩,解得:12k b =⎧⎨=⎩ ②当k <0时,由当1≤x ≤4时,3≤y ≤6得: x =1,y =6;x =4,y =3,代入y =kx +b 得:643k b k b +=⎧⎨+=⎩,解得:17k b =-⎧⎨=⎩即k =1,b =2或k =-1,b =7.(2)如图3-1,函数y =2x 和y =ax +4的图象相交于点A (m ,4),则不等式2x <ax +4的解集为图3-1【答案】x <2.【解析】解:因为函数y =2x 和y =ax +4的图象相交于点A (m ,4), 所以当y =4时,x =2,由图象知:不等式2x <ax +4的解集为x <2.(3)甲骑摩托车从A 地去B 地,乙开汽车从B 地去A 地,同时出发,匀速行驶,各自到达终点后停止,设甲、乙两人间距离为s (千米),甲行驶的时间为t (小时),s 与t 之间的函数关系如图3-2所示.有下列结论:①出发1小时时,甲、乙在途中相遇; ②出发1.5小时时,乙比甲多行驶了60千米; ③出发3小时时,甲、乙同时到达终点; ④甲的速度是乙速度的一半. 其中正确结论是.【本文档由书林工作坊整理发布,谢谢你的下载和关注!】7图3-2【答案】①②④.【解析】解:由图象可得:出发1小时,甲、乙在途中相遇,故①正确;甲骑摩托车的速度为:120÷3=40(千米/小时),设乙开汽车的速度为a 千米/小时, 则120140a=+,解得:a =80,∴乙开汽车的速度为80千米/小时, ∴甲的速度是乙速度的一半,故④正确;∴出发1.5小时,乙比甲多行驶了:1.5×(80-40)=60(千米),故②正确; 乙到达终点所用的时间为1.5小时,甲得到终点所用的时间为3小时,故③错误; ∴正确的结论是①②④.题4. 如图4-1所示,在平面直角坐标系xOy 中,矩形ABCD 的AB 边在x 轴上,AB =3,AD =2,经过点C 的直线y =x ﹣2与x 轴、y 轴分别交于点E 、F .(1)求:①点D 的坐标;②经过点D ,且与直线FC 平行的直线的函数表达式;(2)直线y =x ﹣2上是否存在点P ,使得△PDC 为等腰直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.(3)在平面直角坐标系内确定点M ,使得以点M 、D 、C 、E 为顶点的四边形是平行四边形,请直接写出点M 的坐标.图4-1【答案】见解析.【解析】解:(1)①设点C的坐标为(m,2),∵点C在直线y=x﹣2上,∴2=m﹣2,解得m=4,即点C的坐标为(4,2),∵四边形ABCD是矩形,∴AB=CD=3,AD=BC=2,∴点D的坐标为(1,2);②设经过点D且与FC平行的直线函数表达式为y=x+b,将D(1,2)代入y=x+b,得b=1,∴经过点D且与FC平行的直线函数表达式为y=x+1;(2)存在.∵△EBC为等腰直角三角形,∴∠CEB=∠ECB=45°,∵DC∥AB,∴∠DCE=∠CEB=45°,∴△PDC是以P、D为直角顶点的等腰直角三角形,如图4-2所示,图4-2①当∠D=90°时,延长DA与直线y=x﹣2交于点P1,8【本文档由书林工作坊整理发布,谢谢你的下载和关注!】【本文档由书林工作坊整理发布,谢谢你的下载和关注!】9∵点D 的坐标为(1,2), ∴点P 1的横坐标为1,把x =1代入y =x ﹣2得,y =﹣1,即P 1(1,﹣1);②当∠DPC =90°时,作DC 的垂直平分线与直线y =x ﹣2的交点即为点P 2, 点P 2的横坐标为52, 将x =52代入y =x ﹣2得,y =12,即P 2(52,12), 综上所述,符合条件的点P 的坐标为(1,﹣1)、(52,12); (3)当y =0时,x ﹣2=0,解得x =2, ∴OE =2,∵以点M 、D 、C 、E 为顶点的四边形是平行四边形, ①若DE 是对角线,则EM =CD =3, OM =EM ﹣OE =3﹣2=1, 点M 的坐标为(﹣1,0),②CE 是对角线,则EM =CD =3,OM =OE +EM =2+3=5, 点M 的坐标为(5,0),③CD 是对角线,则平行四边形的中心坐标为(52,2), 设点M 的坐标为(x ,y ), 则2522x +=,22y=, 解得x =3,y =4,此时,点M 的坐标为(3,4),综上所述,点M 的坐标为(﹣1,0),(5,0)(3,4).题5. 小华和爸爸上山游玩,爸爸乘电缆车,小华步行,两人相约在山顶的缆车终点会合.已知小华行走到缆车终点的路程是爸爸乘缆车到山顶的线路长的2倍,爸爸在小华出发后50min 才乘上电缆车,电缆车的平均速度为180m /min .设小华出发x (min )行走的路程为y (m ),图5-1中的折线表示小华在整个行走过程中y (m )与x (min )之间的函数关系.(1)小华行走的总路程是_____m ,他途中休息了_____min ; (2)当50≤x ≤80时,求y 与x 的函数关系式;【本文档由书林工作坊整理发布,谢谢你的下载和关注!】10(3)当爸爸到达缆车终点时,小华离缆车终点的路程是多少?图5-1【答案】(1)3600,20;(2)(3)见解析. 【解析】解:(2)①当50≤x ≤80时, 设y 与x 的函数关系式为y =kx +b , 根据题意,当x =50时,y =1950; 当x =80时,y =3600,得:195050360080k bk b =+=+⎧⎨⎩解得k =55,b =-800,∴函数关系式为:y =55x -800;(3)缆车到山顶的线路长为3600×2=1800米, 缆车到达终点所需时间为1800÷180=10分钟 小颖到达缆车终点时,小亮行走的时间为10+50=60分钟, 把x =60代入y =55x ﹣800,得y =55×60﹣800=2500, ∴当小颖到达缆车终点时,小亮离缆车终点的路程是3600﹣2500=1100米.题6. 某校运动会需购买A 、B 两种奖品.若购买A 种奖品3件和B 种奖品2件,共需60元;若购买A 种奖品5件和B 种奖品3件,共需95元.(1)求A 、B 两种奖品单价各是多少元?(2)学校计划购买A 、B 两种奖品共100件,购买费用不超过1150元,且A 种奖品的数量不大于B 种奖品数量的3倍.设购买A 种奖品m 件,购买费用为W 元,写出W (元)与m (件)之间的函数关系式,求出自变量m 的取值范围,并确定最少费用W 的值.【答案】见解析.【本文档由书林工作坊整理发布,谢谢你的下载和关注!】11【解析】解:(1)设A 奖品的单价是x 元,B 奖品的单价是y 元,由题意,得:60329553x y x y =+=+⎧⎨⎩, 解得:1015x y ==⎧⎨⎩.答:A 奖品的单价是10元,B 奖品的单价是15元;(2)由题意,得W =10m +15(100-m )=-5m +1500∴()150051150310m m m -≤≤-⎧⎨⎩, 解得:70≤m ≤75.∵m 是整数,∴m =70,71,72,73,74,75.在W =-5m +1500中,∴-5<0,∴W 随m 的增大而减小,∴m =75时,W 最小=1125.∴应买A 种奖品75件,B 种奖品25件,才能使总费用最少为1125元.题7. 在平面直角坐标系xOy 中,直线y =kx +4(k ≠0)与y 轴交于点A .(1)如图,直线y =-2x +1与直线y =kx +4(k ≠0)交于点B ,与y 轴交于点C ,点B 的横坐标为-1.①求点B 的坐标及k 的值;②直线y =-2x +1与直线y =kx +4与y 轴所围成的△ABC 的面积等于;(2)直线y =kx +4(k ≠0)与x 轴交于点E (x 0,0),若-2<x 0<-1,求k 的取值范围.【答案】见解析.【本文档由书林工作坊整理发布,谢谢你的下载和关注!】12【解析】解:(1)①∵直线y =-2x +1过点B ,点B 的横坐标为-1,∴y =2+1=3,即B (-1,3),∵直线y =kx +4过B 点,∴3=-k +4,解得:k =1;②∵k =1,∴直线AB 的解析式为:y =x +4,∴A (0,4),在y =-2x +1中,当x =0时,y =1,∴C (0,1),∴AC =4-1=3, ∴△ABC 的面积为:12×1×3=32; 故答案为:32; (2)∵直线y =kx +4(k ≠0)与x 轴交于点E (x 0,0),-2<x 0<-1,∴当x 0=-2,则E (-2,0),代入y =kx +4得:0=-2k +4,解得:k =2,当x 0=-1,则E (-1,0),代入y =kx +4得:0=-k +4,解得:k =4,故k 的取值范围是:2<k <4.中考数学知识点代数式一、 重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
新人教版八年级(下)数学期末试卷及答案
新人教版八年级(下)数学期末试卷及答案八年级下期末考试数学试题一、选择题(本小题共12小题,每小题3分,共36分)1、如果分式 $\frac{1}{x-1}$ 有意义,那么 x 的取值范围是A、$x>1$B、$x<1$C、$x\neq1$D、$x=1$2、已知反比例数 $y=\frac{k}{x}$ 的图象过点(2,4),则下面也在反比例函数图象上的点是A、(2,-4)B、(4,-2)C、(-1,8)D、(16,1)3、一直角三角形两边分别为3和5,则第三边为A、4B、$\frac{3}{4}$或$\frac{4}{3}$C、4或$\frac{4}{3}$ D、24、用两个全等的等边三角形,可以拼成下列哪种图形A、矩形B、菱形C、正方形D、等腰梯形5、菱形的面积为2,其对角线分别为 x、y,则 y 与 x 的图象大致为无法确定,需补充题意)6、小明妈妈经营一家服装专卖店,为了合理利用资金,小明帮妈妈对上个月各种型号的服装销售数量进行了一次统计分析,决定在这个月的进货中多进某种型号服装,此时小明应重点参考A、众数B、平均数C、加权平均数D、中位数7、王英在荷塘边观看荷花,突然想测试池塘的水深,她把一株竖直的荷花(如右图)拉到岸边,花柄正好与水面成60夹角,测得 AB 长60cm,则荷花处水深 OA 为A、120cmB、60$\sqrt{3}$cmC、60cmD、20$\sqrt{3}$cm8、如图,□ABCD的对角线 AC、BD 相交于 O,EF 过点O 与 AD、BC 分别相交于 E、F,若 AB=4,BC=5,OE=1.5,则四边形 EFCD 的周长为A、16B、14C、12D、109、如图,把菱形 ABCD 沿 AH 折叠,使 B 点落在 BC 上的 E 点处,若∠B=70,则∠EDC 的大小为A、10B、15C、20D、3010、下列命题正确的是A、同一边上两个角相等的梯形是等腰梯形;B、一组对边平行,一组对边相等的四边形是平行四边形;C、如果顺次连结一个四边形各边中点得到的是一个正方形,那么原四边形一定是正方形。
八年级数学(下)第二学期期末考试含答案
八年级数学(下)第二学期期末考试总分:120分 时量:120分钟一、选择题(本大题共12小题,共36分)1.下列各式运算结果是负数的是( )A.()2--B.02--C.22-D.()22- 2.为庆祝中华人民中国成立70周年,我国于2019年10月1日在北京天安门广场举行大型阅兵仪式,在此次活动中,共有15个徒步方队,32个装备方队,空中梯队12个,约15000名官兵通过天安门广场接受党和人民的检阅.将数字15000用科学计数法表示为( )A.31510⨯B.41.510⨯C.51.510⨯D.60.1510⨯3.下列运算中正确的是( )A.2323a a a =⋅B.()224ab ab =C.2222ab b a ÷=D.()222a b a b +=+4.如图,在三角形ABC 中,45A ∠=︒,三角形ABC 的高线BD ,CE 交于点O ,则BOC ∠的度数( )A.120︒B.125︒C.135︒D.145︒5.如图,AB//CD ,AF 交CD 于点E ,45A ∠=︒,则CEF ∠等于( )A.135︒B.120︒C.45︒D.35︒6.一个样本的方差是0,若中位数是a ,那么它的平均数是( )A.等于aB.不等于aC.大于aD.小于a7.下列命题是真命题的是( )A.一组对边平行另一组对边相等的四边形是平行四边形B.一组邻边相等的平行四边形是菱形C.对角线相等的四边形是矩形D.对角线垂直的四边形是菱形8.我国古代数学名著《孙子算经》中记载了一道题,大意是:求100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x 匹,小马有y 匹,那么可列方程组为( )A.10033100x y x y +=⎧⎨+=⎩B.1003100x y x y +=⎧⎨+=⎩C.100131003x y x y +=⎧⎪⎨+=⎪⎩D.1003100x y x y +=⎧⎨+=⎩9.如图所示为抛物线()20y ax bx c a =++≠在坐标系中的位置,以下六个结论:①0a >;②0b >;③0c >;④240b ac ->;⑤0a b c ++<;⑥20a b +>.其中正确的个数是( )A.3B.4C.5D.610.已知圆锥的底面半径为3cm ,母线长为9cm ,则圆锥的侧面积是( )A.218cm πB.227cm πC.236cm πD.254cm π11.一次函数()0y ax c a =+≠与二次函数()20y ax bx c a =++≠在同一平面直角坐标系中的图象可能是( )A. B.C.D.12.如图,抛物线21322y x x =-++的图象与坐标轴交于点A ,B ,D ,顶点为E ,以AB 为直径画半圆交y 负半轴交于点C ,圆心为M ,P 是半圆上的一动点,连接EP .①点E 在M 的内部;②CD 的长为332-;③若P 与C 重合,则15DPE ∠=︒;④在P 的运动过程中,若3AP =26PE =+;⑤N 是PE 的中点,当P 沿半圆从点A 运动至点B 时,点N 运动的路径长是π.则正确的选项为( )A.①②④B.②③④C.②③⑤D.③④⑤二、填空题(本大题共6小题,每小题3分,共18分)13.分解因式()24a b ab +-的结果是________.14.若一元二次方程2220x x --=有两个实数根1x ,2x ,则1212x x x x +-的值是________.15.正六边形的外接圆的半径与内切圆的半径之比为________.16.如图,点A ,B ,C 都在O 上,若30C ∠=︒,则AOB ∠的度数是________度. 17.将二次函数2y x =的图象先向右平移1个单位,再向上平移2个单位,平移后的得到图像函数表达式是________.18.抛物线23y x x =--与直线y x b =+交于A 、B 两点,且26AB =,则b =________.三、解答题(本大题共8个小题)19.计算:(1)()10120209322-⎛⎫+--+- ⎪⎝⎭; (2)解一元二次方程2890x x +-=.20.先化简代数式:22321124a a a a -+⎛⎫-+ ⎪+-⎝⎭,再从2-,0,2这三个数中,选择一个恰当的数作为a 的值,代入求值.21.某中学对本校学生每天完成作业所用时间的情况进行了抽样调查.随机调查了九年级部分学生每天完成作业所用的时间,并根据统计结果制成了条形统计图(时间取整数,图中从左至右依次为第1、2、3、4、5组)和扇形统计图,请结合图中信息回答下列问题:(1)本次调查的学生人数为________;(2)补全条形统计图;(3)根据图中提供的信息,可知下列结论正确的是________(只填所有正确的代号);A.由图(1)知,学生完成作业所用时间的中位数在第三组内B.由图(1)知学生完成作业所用时间的众数在第二组内C.图中,90~120时间段对应的扇形圆心角为108(4)学生每天完成作业的时间不超过120分钟,视为课业负担适中,根据以上调查,估计该校九年级560名学生中,课业负担适中的学生有多少人?22.如图,平行四边形ABCD 中,过点D 作DE AB ⊥于点E ,点F 在边CD 上,CF AE =,连AF ,BF . (1)求证:四边形BFDE 是矩形;(2)已知60DAB ∠=︒,AF 是DAB ∠的平分线,若3AD =,求DC 的长度.23.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售y (件)与销售单价x (元)之间存在一次函数关系,如图所示.(1)求y 与x 之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.24.如图,O 是直角三角形ABC 的外接圆,直径4AC =,过C 点作O 的切线,与AB 延长线交于点D ,M 为CD 的中点,连接BM ,OM ,且BC 与OM 相交于点N .(1)求证:BM 与O 相切;(2)当60A ∠=︒时,求弦AB 和弧AB 所夹图形的面积;(3)在(2)的条件下,在O 的圆上取点F ,使15ABF ∠=︒,求点F 到直线AB 的距离.25.阅读下面材料:对于二次函数()20y ax bx c a =++>,当m x n ≤≤时,二次函数在何处取得最值?对此,我们可做如下探究:当0a >时,观察图①到图④:(1)由图①可知,当x n =时取最小值,当x m =时取最大值,点离对称轴越近,函数值越小;(2)由图②、图③可知,当2b x a=-时取最小值,点离对称轴越近,函数值越小; (3)由图④可知,当x m =时取最小值,当x n =时取最大值,点离对称轴越近,函数值越小.结论:1.当抛物线开口向上时,抛物线上的点,离对称轴越近,其对应的函数值越小;2.若对称轴在自变量的取值范围内,则二次函数在2b x a=-时取最小值; 3.若对称轴不在自变量的取值范围内,则二次函数在离对称轴最近的点处取得最小值.请结合以上结论,解决下列问题:(1)已知二次函数222y x x =--,当32x -≤≤时,此时函数的最大值和最小值; (2)已知二次函数数222y x x =--在1m x m ≤≤+的范围内有最小值2m ,求出m 的值;(3)二次函数222y x x =--,当m x n ≤≤时,()m y n m n ≤≤≠,求出此时的m ,n 的值.26.如图,抛物线218333y x x =--与x 轴交于A 、B 两点,与y 轴交于C 点.以AB 为直径作M .(1)求出M的坐标并证明点C在M上;(2)若P为抛物线上一动点,求出当CP与M相切时P的坐标;,若存在,求出D点坐标,若不存在,请说明(3)在抛物线上是否存在一点D,使得BC平分ABD理由.参考答案考试时间:120分钟 满分:120分一、选择题(本大题共12小题,每小题3分,共36分)1-5:BBCCA 6-11:ABCBB 11-12:DB二、填空题(本大题共6小题,每小题3分,共18分)13.分解因式(a +a )2−4aa 的结果是 (a-b)2 ;14.若一元二次方程0222=--x x 有两个实数根21,x x ,则2121x x x x -+的值是___4__;16. 如图,点 A ,B ,C 都在 ⊙O 上,若 ∠C =30∘,则 ∠AOB 的度数是 60 度. 17.将二次函数的图象先向右平移1个单位,再向上平移2个单位,平移后的得到图像函数表达式是 y=(x-1)2+2 ;18.抛物线32--=x x y 与直线b x y +=交于A 、B 两点,且AB =62,则b = -1 .三、解答题(本大题共8个小题)19.计算:(1)239)2020()21(01-+--+-; (2)解一元二次方程a 2+8a −9=0.解:原式=2-3 ----3分 1,921=-=x x -------3分 20.先化简代数式:412)231(22-+-÷+-a a a a ,再从−2,0,2这三个数中,选择一个恰当的数作为a 的值,代入求值.解:原式=12--a a ; -----3分 当a=0时,原式=2----3分21.某中学对本校学生每天完成作业所用时间的情况进行了抽样调查。
八年级下册数学课本答案人教版答案
八年级下册数学课本答案人教版答案【篇一:人教版八年级数学下学期课后习题与答案】析:(1)由a+2≥0,得a≥-2;(2)由3-a≥0,得a≤3;(3)由5a≥0,得a≥0;(4)由2a+1≥0,得a≥? 2、计算:解析:(1)(2)(1. 22?5;2?(?1)2?2?0.2; 22?; 7(3)(4)(52?52?2?125;??10;(6)(?2?(?7)2?2?14;(72??;32???. 52(8) 3、解析:(1)设半径为r(r0),由?r?s,得r??;,得x所以两条邻边长为 4、解析:(1)9=32;(2)5=2(3)2.5=; 2;(4)0.25=0.52;(5)25、解析:?r 6、2???22???32,??r2?13?,r?0,?r?7、答案:(1)x为任意实数;(2)x为任意实数;(3)x>0;(4)x>-1.9、答案:(1)2,9,14,17,18;(2)6.18、答案:h=5t2n是6.10、答案:r?2习题16.21.、答案:(1)(3(4(2)?(3)(4) 2、答案:(1);(432;(2)33、答案:(1)14;(2)(3)7 4、答案:(1(2(3(4(5)(6) 5、答案:(1)?5?(26、(2)240. 7、答案:(1)(2) 8、答案:(1)1.2;(2);答案:(1)32;(3)1;(4)15.9、答案:0.707,2.828.10、11、312、答案:(1)10;(2)100;(3)1000;(4)10000.100213、答案:n个0.0.习题16.31、.答案:(1(2)不正确,2(3)不正确,???.22(2(42、答案:(1)(3)(4)17a’ 3、答案:(1)0;(2(3)(4)?? 4.4、答案:(1)6?5、答案:7.83.4(2)-6;(3)95?;(4)36、答案:(1)12;(2)28、答案:..(2)?5. 9、答案:(1)复习题161、答案:(1)x≥-3;(2)x?12;(3)x?;(4)x≠1. 232、答案:(1)(2);(3;(4(5)(6(5)35?(6)5 3、答案:(1(2(3)6;(4)4.答案: 5、答案:.5.6、答案:2?7答案:2.45a.8、答案:21.9、答案:(1)例如,相互垂直的直径将圆的面积四等分;(2)设oa=r,则od?1r,oc?,ob?. 210、答案:?只要注意到n?习题17.1nn?1?n3n?12,再两边开平方即可.1、答案:(1)13;(22、答案:8m.3、答案:2.5.4、答案:43.4mm.5、答案:4.9m. 7、答案:(1)bc(31?c,ac?; 2(2)bc?c,ac?. 228、答案:(1)2.94;(2)3.5;(3)1.68.39、答案:82mm. 10、答案:12尺,13尺. 11、12、答案:分割方法和拼接方法分别如图(1)和图(2)所示.13、答案:s1ac21半圆aec?2?(2)?8?ac2,s1半圆cfd?8?cd2s?1半圆acd8?ad2.s阴影=s△acd+ s半圆aec+s半圆cfd-s半圆acd,即s阴影=s△acd.14、证明:证法1:如图(1),连接bd.在rt△adb中,ad2+db2=ab2,得ad2+ae2=ac2+cb2,即ae2+ad2=2ac2.证法2:如图(2),作af⊥ec,ag⊥cd,由条件可知,ag=fc.在rt△afc中,根据勾股定理得af2+fc2=ac2.∴af2+ag2=ac2.在等腰rt△afe和等腰rt△agd中,由勾股定理得 af2+fe2=ae2,ag2+gd2=ad2.又af=fe,ag=gd,4,∴2af2=ae2,2ag2=ad2.而2af2+2ag2=2ac2,∴ae2+ad2=2ac2.习题17.21、答案:(1)是;(2)是;(3)是;(4)不是.2、答案:(1)两直线平行,同旁内角互补.成立.(2)如果两个角相等,那么这两个角是直角.不成立.(3)三条边对应相等的三角形全等.成立.(4)如果两个实数的平方相等,那么这两个实数相等.不成立.3、答案:向北或向南. 4、答案:13. 5、答案:36.∴ae2=(4k)2+(2k)2=20k2.同理,ef2=5k2,af2=25k2.∴ae2+ef2=af2.7、答案:因为(3k)2+(4k)2=9k2+16k2=25k2=(5k)2,所以3k,4k,5k(k是正整数)为勾股数.如果a,b,c为勾股数,即a2+b2=c2,那么(ak)2+(bk)2=a2k2+b2k2=(a2+b2)k2=c2k2=(ck)2.因此,ak,bk,ck(k是正整数)也是勾股数.复习题171、答案:361m.2、答案:2.3、答案:109.7mm. 4 ,答案:33.5m2.5、答案:设这个三角形三边为k,2k,其中k>0.由于k2?)2?4k2?(2k)2,根据勾股定理的逆定理,这个三角形是直角三角形.6、答案:(1)同位角相等,两直线平行.成立.(2)如果两个实数的积是正数,那么这两个实数是正数.不成立.(3)锐角三角形是等边三角形.不成立.(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.成立. 7、8、.. 9、答案:(1)14.5,5【篇二:人教版八年级数学下学期课后习题与答案】a是怎样的实数时,下列各式在实数范围内有意义?(1(2(3(4.解析:(1)由a+2≥0,得a≥-2;(2)由3-a≥0,得a≤3;(3)由5a≥0,得a≥0;(4)由2a+1≥0,得a≥?2、计算:(1)2;(2)(2;(3)1. 22(4)2;;(5(6)(?解析:(1)2?5; 2(7(8);(2)(2?(?1)2?2?0.2;(3)22?; 7(4)2?52?2?125;(5??10;(6)(?2?(?7)2?2?14;(7?2?; 3(8)???2. 53、用代数式表示:(1)面积为s的圆的半径;(2)面积为s且两条邻边的比为2︰3的长方形的长和宽.解析:(1)设半径为r(r0),由?r?s,得r?2;,得x?所以两条邻边长为4、利用a?2(a≥0),把下列非负数分别写成一个非负数的平方的形式:(1)9;(2)5;(3)2.5;(4)0.25;(5)1;(6)0. 2解析:(1)9=32;(2)5=2;(3)2.5=2;(4)0.25=0.52;(5)5、半径为r cm的圆的面积是,半径为2cm和3cm的两个圆的面积之和.求r的值.解析:?r2???22???32,??r2?13?,6、△abc的面积为12,ab边上的高是ab边长的4倍.求ab的长.7、当x是怎样的实数时,下列各式在实数范围内有意义?(1(2(31(6)0=02. ?2;2r?0,?r? (4答案:(1)x为任意实数;(2)x为任意实数;(3)x>0;(4)x>-1.8、小球从离地面为h(单位:m)的高处自由下落,落到地面所用的时间为t(单位:s).经过实验,发现h与t2成正比例关系,而且当h=20时,t=2.试用h表示t,并分别求当h=10和h=25时,小球落地所用的时间.答案:h=5t2是整数,求自然数n所有可能的值;(2n的最小值.答案:(1)2,9,14,17,18;(2)6.n是6.答案:r?2习题16.21、计算:(1(2(;(3(4.答案:(1)(2)?(3)(4)2、计算:(1(2;(3(4.答案:(1)3、化简: 3 ;(2)(3(42(1(2(3(4答案:(1)14;(24、化简: 3 ;(47(1);(2(3;(4;(5;(6. 2答案:(1(2)(3);(4)(5)(6) 32305(1)a=1,b=10,c=-15;(2)a=2,b=-8,c=5.答案:(1)?5?(26、设长方形的面积为s,相邻两边分别为a,b.(1)已知a?b?s;(2)已知a?b?,求s.答案:(1);(2)240.7、设正方形的面积为s,边长为a.(1)已知s=50,求a;(2)已知s=242,求a.答案:(1)(2)8、计算:(1(2(3(4;答案:(1)1.2;(2)13;(3);(4)15. 329?1.414答案:0.707,2.828.10、设长方形的面积为s,相邻两边长分别为a,b.已知s?a?b.11、已知长方体的体积v?h?s.答案:. 312、如图,从一个大正方形中裁去面积为15cm2和24cm2的两个小正方形,求留下部分的面积.答案:2.13、用计算器计算:(1(2;(3;(4.观察上面几题的结果,你能发现什么规律?用你发现的规律直接写出下题的结果:?________.0.答案:(1)10;(2)100;(3)1000;(4)10000.100 n个0习题16.31、下列计算是否正确?为什么?(1? (2)2?;(3)?3;(4)??3?2?1. 2答案:(1(2)不正确,2(3)不正确,?【篇三:人教版八年级数学下学期课后习题与答案】a是怎样的实数时,下列各式在实数范围内有意义?(1(2(3;(4.解析:(1)由a+2≥0,得a≥-2;(2)由3-a≥0,得a≤3;(3)由5a≥0,得a≥0;(4)由2a+1≥0,得a≥?2、计算:(1)2;(2)(2;(3)1. 22(4)2;;(5(6)(?解析:(1)2?5; 2(7(8);(2)(2?(?1)2?2?0.2;)22?; 7(4)2?52?2?125;(5??10;(6)(?2?(?7)2?2?14;(7?2?; 3(8)???2. 53、用代数式表示:(1)面积为s的圆的半径;(2)面积为s且两条邻边的比为2︰3的长方形的长和宽.解析:(1)设半径为r(r0),由?r?s,得r?2;,得x?所以两条邻边长为4、利用a?2(a≥0),把下列非负数分别写成一个非负数的平方的形式:(1)9;(2)5;(3)2.5;(4)0.25;(5)1;(6)0. 2解析:(1)9=32;(2)5=2;(3)2.5=2;(4)0.25=0.52;(5)5、半径为r cm的圆的面积是,半径为2cm和3cm的两个圆的面积之和.求r的值.解析:?r2???22???32,??r2?13?,6、△abc的面积为12,ab边上的高是ab边长的4倍.求ab的长.7、当x是怎样的实数时,下列各式在实数范围内有意义?(1(21(6)0=02. ?2;2r?0,?r? (4答案:(1)x为任意实数;(2)x为任意实数;(3)x>0;(4)x>-1.8、小球从离地面为h(单位:m)的高处自由下落,落到地面所用的时间为t(单位:s).经过实验,发现h与t2成正比例关系,而且当h=20时,t=2.试用h表示t,并分别求当h=10和h=25时,小球落地所用的时间.答案:h=5t29、(1是整数,求自然数n所有可能的值;(2n的最小值.答案:(1)2,9,14,17,18;(2)6.n是6.答案:r?2习题16.21、计算:(1(2(;(3(4.答案:(1)(2)?(3)(4)2、计算:(1(2;(3(4.答案:(1)3、化简: 3 ;(2)(3(42(1(2(3(4答案:(1)14;(2)(3)4、化简: 3 ;(47(1);(2(3;(4;(5;(6. 2答案:(1(2)(3);(4)(5)(6) 32305(1)a=1,b=10,c=-15;(2)a=2,b=-8,c=5.答案:(1)?5?(26、设长方形的面积为s,相邻两边分别为a,b.(1)已知a?b?s;)已知a?b?,求s.答案:(1);(2)240.7、设正方形的面积为s,边长为a.(1)已知s=50,求a;(2)已知s=242,求a.答案:(1)(2)8、计算:(1(2(3(4;答案:(1)1.2;(2)13;(3);(4)15. 329?1.414答案:0.707,2.828.10、设长方形的面积为s,相邻两边长分别为a,b.已知s?a?b.11、已知长方体的体积v?h?s.答案:. 312、如图,从一个大正方形中裁去面积为15cm2和24cm2的两个小正方形,求留下部分的面积.答案:2.13、用计算器计算:(1(2(3;(4.观察上面几题的结果,你能发现什么规律?用你发现的规律直接写出下题的结果:?________.0.答案:(1)10;(2)100;(3)1000;(4)10000.100 n个0习题16.31、下列计算是否正确?为什么?(1? (2)2?;(3)?3;(4)??3?2?1. 2答案:(1(2)不正确,2(3)不正确,?。
中心对称八年级数学下学期重要考点精讲精练
3.3中心对称题型1:中心对称1.(2022春•江都区月考)最近北京2022年冬奥会的吉祥物“冰墩墩”成为了互联网的“顶流”,他呆萌的形象受到了人们的青睐,结合你所学知识,从下列四个选项中选出能够和如图的图片成中心对称的是()A.B.C.D.【变式1-1】(2021秋•黄陂区期中)如图,点A,B分别是两个半圆的圆心,则该图案的对称中心是()A.点A B.点BC.线段AB的中点D.无法确定【变式1-2】(2021•集美区模拟)下列各组图形中,△A'B'C'与△ABC成中心对称的是()A.B.C.D.题型2:中心对称的性质2.(2020秋•饶平县校级期末)如图,已知△ABC和△A'B'C'关于点O成中心对称,则下列结论错误的是()A.∠ABC=∠A'B'C'B.∠AOB=∠A'OB'C.AB=A'B'D.OA=OB'【变式2-1】(2021春•清苑区期末)如图,△ABC与△A′B′C′关于点O成中心对称,则下列结论不成立的是()A.点A与点A′是对称点B.BO=B′OC.AB∥A′B′D.∠ACB=∠C′A′B′(2021秋•淮南月考)如图,△ABC与△A′B'C'关于O成中心对称,下列结论中不成立的是()【变式2-2】A.OC=OC′B.∠ABC=∠A'C'B'C.点B的对称点是B′D.BC∥B'C'题型3:中心对称作图3.如图,△ABC和△A'B'C'关于某一点成中心对称,某同学不小心把墨水泼在纸上,只能看到△ABC和线段BC的对应线段B'C',请你帮该同学找到对称中心O,且补全△A'B'C'.【变式3-1】18.如图所示,已知线AB和点P,求作平行四边形ABCD,使点P是它的对称中心.【变式3-2】如图,已知四边形ABCD和点O,画四边形A'B'C'D',使四边形A'B'C'D'与四边形ABCD关于点O 成中心对称题型4:中心对称图形4.(2022•石家庄模拟)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【变式4-1】(2022•齐齐哈尔模拟)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.关于原点对称的点的坐标特征关于原点对称的两个点的横、纵坐标均互为相反数.即点关于原点的对称点坐标为,反之也成立.题型5:关于原点对称的点的坐标5.(2021秋•开封期末)已知点M(a,b)在第二象限内,且|a|=1,|b|=2,则该点关于原点对称点的坐标是()A.(﹣2,1)B.(﹣1,2)C.(2,﹣1)D.(1,﹣2)【变式5-1】(2021秋•韶关期末)已知点P(4,﹣3)和点Q(x,y)关于原点对称,则x+y=.题型6:坐标系中的对称图形及作图6.(2021秋•桓台县期末)如图,在直角坐标系内,已知点A(﹣1,0).(1)图中点B的坐标是;(2)点B关于原点对称的点D的坐标是;点A关于y轴对称的点C的坐标是;(3)四边形ABCD的面积是;(4)在y轴上找一点F,使S△ADF=S△ABC.那么点F的坐标为.【变式6-1】(2021秋•济宁期末)如图,在平面直角坐标系中,已知点A(2,﹣2),点P是x轴上的一个动点.(1)A1,A2分别是点A关于原点的对称点和关于y轴对称的点,直接写出点A1,A2的坐标,并在图中描出点A1,A2.(2)求使△APO为等腰三角形的点P的坐标.题型7:中心对称与平分几何图形面积7.如图是由两个矩形组成的组合图形,能否在图形中找到一点P,沿过点P的某一条直线折叠该图形,能将该图形分成面积相等的两部分?若能,请你在图中做出点P,并说明点P的位置;若不能,请说明理由.【变式7-1】如图.AF∥ED∥BC,AB∥EF∥DC,用一条直线平分图面积.简单描述作法.【变式7-2】如图,在矩形中挖去一个正方形.并用无刻度的直尺(即直尺只具有连线的功能),准确作出直线l,将剩下图形的面积平分.(保留作图痕迹)题型8:构造中心对称图形在计算中的应用8.(2019春•港南区期中)如图,在△ABC中,点D是AB边上的中点,已知AC=4,BC=6,(1)画出△BCD关于点D的中心对称图形;(2)根据图形说明线段CD长的取值范围.【变式8-1】(2021春•宽城区期末)如图,在△ABC中,AD是BC边上的中线,△A'BD与△ACD关于点D 成中心对称.(1)直接写出图中所有相等的线段.(2)若AB=5,AC=3,求线段AD的取值范围.题型9:中心对称的综合应用9.(2021秋•建安区期中)数学兴趣小组活动时,提出了如下问题:如图1,在△ABC中若AB=5,AC=3,求BC边上的中线AD的取值范围.解决方法:延长AD到E.使得DE=AD.再连接BE(或将MCD绕点D逆时针旋转180°得到△EBD).把AB,AC,2AD集中在△ABE中,利用三角形的三边关系可得2<AE<8,则1<AD<4.感悟:解题时,条件中若出现“中点”“中线”字样,可以考虑构造以中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同一个三角形中.迁移应用:请参考上述解题方法,证明下列命题:如图2,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.(1)求证:BE+CF>EF;(2)若∠A=90°,探索线段BE,CF,EF之间的等量关系,并加以证明.【变式9-1】(2021秋•晋安区校级月考)如图,线段AC、BD相交于点O,AB∥CD,AB=CD.线段AC 上的两点E、F关于点O对称.求证:AE=CF.【变式9-2】(2021•鄂温克族自治旗二模)如图,△ABC中,BC=2AB,D,E分别是边BC,AC的中点.将△CDE绕点E旋转180度,得△AFE.(1)判断四边形ABDF的形状,并证明;(2)已知AB=5,AD+BF=14,求四边形ABDF的面积S.。
初二下学期数学 八年级下学期数学知识点总结(精选8篇)
初二下学期数学八年级下学期数学知识点总结(精选8篇)初二下册数学知识点篇一1、平行四边形性质:对边相等;对角相等;对角线互相平分。
判定:两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;一组对边平行而且相等的四边形是平行四边形。
推论:三角形的中位线平行第三边,并且等于第三边的一半。
2、特殊的平行四边形:矩形、菱形、正方形(1)矩形性质:矩形的四个角都是直角;矩形的对角线相等;矩形具有平行四边形的所有性质判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;推论:直角三角形斜边的中线等于斜边的一半。
(2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。
(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。
3、梯形:直角梯形和等腰梯形等腰梯形:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等;同一个底上的两个角相等的梯形是等腰梯形。
第五章数据的分析加权平均数、中位数、众数、极差、方差初二下册数学知识点归纳北师大版篇二第一章分式1、分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变2、分式的运算(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减3、整数指数幂的加减乘除法4、分式方程及其解法第二章反比例函数1、反比例函数的表达式、图像、性质图像:双曲线表达式:y=k/x(k不为0)性质:两支的增减性相同;2、反比例函数在实际问题中的应用第三章勾股定理1、勾股定理:直角三角形的两个直角边的平方和等于斜边的平方2、勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级下学期数学
苏州市2010-2011学年度第二学期期末试卷
班级初一( _____)学号______ 姓名_______ 成绩_______ 一、填空题(每题2分,共20分)
1.计算:_______.
2.在显微镜下,一种细胞的截面可以近似地看成圆,它的半径约为0. 000 000 78m,用科学记数法,我们可以把0. 000 000 78m写成_______m.
3.据统计,某市今年参加初三毕业考试的学生为48000人.为了了解全市初三考生毕业考试数学考试情况,从中随机抽取了600名考生的数学成绩进行统计分析,在这个问题中,样本容量是________.
4.计算:_______.
5.计算:• _______.(n是整数)
6.若方程组的解是,则_______.
7.一个多边形的每一个外角都是60°,则这个多边形的内角和为________°.
8.若x-y=2,xy=3,则x2y-xy2=________.9.若=ab-c,=ad-bc,则×_______.
10.如图a是长方形纸带,∠DEF=25°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是
_______°.
二、选择题(每题3分,共24分,请将答案填写在表格中)题号 11 12 13 14 15 16 17 18
答案
11.下列各计算中,正确的是( )
A.B.
C.•D.
12.下列四种说法;①为了了解某批灯泡的使用寿命可以用普查的方式;②“在同一年出生的367名学生中,至少有两人的生日是同一天”是必然事件;③“打开电视机,正在播放少儿节目”是随机事件;④如果一个事件发生的概率只有十亿分之一,那么它是不可能事件.其中,正确的说法是( ) A.②④B.①②C.③④D.②③
13.某人不慎将一块三角形的玻璃摔碎成如下图所示的四块(即图中标有1、2、3.,4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来形状相同的三角形玻璃.应该带( )
A.第1块B.第2块C.第3块D.第4块
14.如下图,AB=DB,∠1=∠2,添加了下面的条件但仍不能判定△ABC≌△DBE的是( )
A.BC=BE B.∠ACB=∠DEB C.∠A=∠D D.AC =DE
15.如图,DE‖BC,CF为BC的延长线,若∠ADE=50°,∠ACF=110°,则∠A的度数是( )
A.60°B.50°C.40°D.不能确定
16.如图,与左边正方形图案属于全等的图案是( )
17.某中学七年级—班40名同学为灾区捐款,共捐款2000元,捐款情况如下表:
由于疏忽,表格中捐款40元和50元的人数忘记填写了,若设捐款40元的有x名同学,捐款50元的有y名同学,根据题意,可得方程组( )
A.B.
C.D.
18.若关于x,y的二元一次方程组的解满足不等式x<0,y>0,则k的取值范围是( )
A.-7<k< B.-7<k<-C.-3<k< D.-
7<k<3
三、解答题(56分,写出必要的解答过程)
19.计算:(每小题3分,共6分)
(1) (2) •
20.因式分解:(每小题3分,共6分)
(1) x2+5x+6 (2) ac-bc+3a-3b 21.(本题4分)先化简,再求值:(x-1)(x-2)-3x(x +3)+2(x+2)(x-1),其中x=.
22.解方程组:(每小题4分,共8分)
(1) (2)
23.(本题4分)学习了统计知识后,某班的数学老师要求学生就本班同学的上学方式进行一次调查统计,下图是通过收集数据后绘制的两幅不完整的统计图.请根据图中提供的信息,解答下列问题:
(1)该班共有_______名学生;
(2)将“骑自行车”部分的条形统计图补充完整;
(3)在扇形统计图中:“乘车”部分所对应的圆心角的度数是_______°;
(4)若全年级有700名学生,估计该年级骑自行车上学的学生人数大约是_______人.
本班同学上学方式条形统计图本班同学上学方式扇形统计图
24.(本题5分)如图,已知:AB=AC,BD=CD,E为AD上一点,求证:
(1) △ABD∽△ACD;
(2) ∠BED=∠CED.
25.(本题4分)如图,∠DBC和∠ECB是△ABC的两个外角.
(1)用直尺和圆规分别作∠DBC和∠ECB的平分线,设它们相交于点P;(保留作图痕迹,不写画法)
(2)过点P分别画AB、AC、BC的垂线段PM PN、PQ,垂足为M、N、Q;
(3)垂线段PM、PN、PQ相等吗?(直接给出结论,不需说明理由)
26.(本题6分)先阅读下面的内容,再解决问题,
例题:若m2+2mn+2n2-6n+9=0,求m和n的值.
解:∵m2+2mn+2n2—6n+9=0
∴m2+2mn+n2+n2-6n+9=0
∴(m+n)2+(n-3)2=0
∴m+n=0,n-3=0
∴m=-3,n=3
问题(1)若x2+2y2-2xy+4y+4=0,求xy的值.
(2)已知a,b,c是△ABC的三边长,满足a2+b2=10a+8b-41,且c是△ABC中最长的边,求c的取值范围.
27.(本题6分)某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所示的竖式与横式两种无盖的长方体纸盒.(长方形的宽与正方形的边长相等)
(1)现有正方形纸板50张,长方形纸板100张,若要做竖式纸盒个x,横式纸盒y个.
①根据题意,完成以下表格:
②若纸板全部用完,求x、y的值;
(2)若有正方形纸板90张,长方形纸板a张(a是整数),做成上述两种纸盒,纸板恰好全部用完.已知164<a<174,求a的值.
28.(本题7分)如图,已知∠AOB=120°,OM平分∠AOB,将等边三角形的一个顶点P放在射线OM上,两边分别与OA、OB(或其所在直线)交于点C、D.
(1)如图①,当三角形绕点P旋转到PC⊥OA时,证明:PC =PD.
(2)如图②,当三角形绕点P旋转到PC与OA不垂直时,线段PC和PD相等吗?请说明理由.
(3)如图③,当三角形绕点P旋转到PC与OA所在直线相交的位置时,线段PC和PD相等吗?直接写出你的结论,不需证明.。