初三数学寒假班第10讲-垂径定理(提高)-学案

合集下载

九年级数学上册《垂径定理》教案、教学设计

九年级数学上册《垂径定理》教案、教学设计
3.培养学生克服困难的意志,使其在面对挑战时保持积极向上的心态。
4.通过解决实际问题,使学生认识到数学在生活中的重要作用,增强学生的社会责任感。
二、学情分析
九年级的学生已经具备了一定的数学基础,掌握了圆的基本概念和相关性质,能运用这些知识解决一些简单问题。但在垂径定理这一部分,学生可能会在理解与应用上存在一定的困难。因此,在教学过程中,要注意以下几点:
-在复杂问题中,如何识别和应用垂径定理,以及如何将垂径定理与圆的其他性质相结合解决综合问题。
(二)教学设想
1.教学策略:
-采用探究式教学法,引导学生通过观察、猜想、验证、总结的学习过程,自主发现垂径定理。
-利用多媒体和实物模型辅助教学,增强学生的直观体验,帮助学生建立起对圆的几何直觉。
-设计梯度性问题,由浅入深,逐步引导学生掌握垂径定理的运用,提高学生的解题技巧。
-总结反思:引导学生总结垂径定理的特点和应用方法,反思学习过程中的困惑和收获。
3.教学评价:
-采用形成性评价和终结性评价相结合的方式,关注学生的学习过程和结果。
-通过课堂问答、小组讨论、课后作业、阶段测试等多种形式,全面评估学生对垂径定理的理解和应用水平。
-鼓励学生自我评价和同伴评价,培养学生的自我反思能力和批判性思维。
3.关注学生的情感态度,激发学习兴趣,培养克服困难的意志。
4.突出数学与生活的联系,使学生认识到数学知识在实际生活中的重要性。
在此基础上,教师应制定针对性的教学策略,帮助学生在掌握垂径定理的基础上,提高解决实际问题的能力,培养他们热爱数学、勇于探索的精神。
五、作业布置
为了巩固学生对垂径定理的理解和应用,以及提高他们的解题技能,特此布置以下作业:
1.学生在理解垂径定理时,可能会对定理的证明过程感到困惑决问题时,可能会对如何找出垂径和弦的关系感到迷茫。教师应通过典型例题,帮助学生总结解题方法,提高解题能力。

人教版九年级上册《垂径定理》教案

人教版九年级上册《垂径定理》教案

人教版九年级上册《垂径定理》教案
《人教版九年级上册《垂径定理》教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!
教学背景
学生在学习了圆的基本定义(旋转定义和集合定义)和相关弦,弧等概念后,结合轴对称性质来探讨的定理。

教学目标
1、知识目标:
(1)充分认识圆的轴对称性;
(2)利用轴对称探索垂直于弦的直径的有关性质,掌握垂径
定理及其推论;
(3)运用垂径定理进行简单的证明、计算和作图。

2、能力目标:
(1)让学生经历“实验—观察—猜想—验证—归纳”的研究
过程,培养学生动手实践、观察分析、归纳问题和解决
问题的能力。

(2)让每个学生动手、动口、动眼、动脑,培养学生直觉思
维能力。

3、情感目标:
通过实验操作探索数学规律,激发学生的好奇心和求知
欲,同时培养学生勇于探索的精神。

教学重点
垂直于弦的直径的性质及其应用
教学难点
(1)垂径定理的证明
(2)垂径定理的题设与结论的区分
教学辅助
多媒体
教学方法
本节课采用的教学方法是“主体探究式。

整堂课充分发挥教师的主导作用和学生的主体作用,注重学生探究能力的培养,鼓励学生认真观察、大胆猜想、小心求证。

令学生参与到“实验--观察--猜想--验证--归纳”的活动中,与教师共同探究新知识最后得出定理。

学生不再是知识的接受者,而是知识的发现者,是学习的主人。

教学过程
教学总结
人教版九年级上册《垂径定理》教案这篇文章共6626字。

垂径定理优秀教案

垂径定理优秀教案

垂径定理【教学目标】一、教学知识点。

(一)圆的轴对称性。

(二)垂径定理及其逆定理。

(三)运用垂径定理及其逆定理进行有关的计算和证明。

二、能力训练要求。

(一)经历探索圆的对称性及相关性质的过程,进一步体会和理解研究几何图形的各种方法。

(二)培养学生独立探索,相互合作交流的精神。

三、情感与价值观要求。

通过学习垂径定理及其逆定理的证明,使学生领会数学的严谨性和探索精神,培养学生实事求是的科学态度和积极参与的主动精神。

【教学重点】垂径定理及其逆定理。

【教学难点】垂径定理及其逆定理的证明。

【教学方法】指导探索和自主探索相结合。

【教学过程】一、创设问题情境,引入新课。

[师]前面我们已探讨过轴对称图形,并且通过折叠研究出圆是轴对称图形,今天我们继续用前面的方法来进一步研究圆的对称性。

二、讲授新课。

下面我们一起来按下面的步骤做一做:(一)在一张纸上任意画一个⊙O,沿圆周将圆剪下,把这个圆对折,使圆的两半部分重合。

(二)得到一条折痕CD.(三)在⊙O上任取一点A,过点A作CD折痕的垂线,得到新的折痕,其中,点M是两条折痕的交点,即垂足。

(四)将纸打开,新的折痕与圆交于另一点B,如图。

[师]老师和大家一起动手。

(教师叙述步骤,师生共同操作)[师]通过第一步,我们可以得到什么?[生齐声]可以知道:圆是轴对称图形,过圆心的直线是它的对称轴。

[师]很好。

在上述的操作过程中,你发现了哪些相等的线段和相等的弧?[生]我发现了,AM=BM,弧AC=弧BC,弧AD=弧BD。

[师]为什么呢?[生]因为折痕AM与BM互相重合,A点与D点重合。

[师]还可以怎么说呢?能不能利用构造等腰三角形得出上面的等量关系?[师生共析]如右图示,连接OA、OB得到等腰△OAB,即OA=OB。

因CD⊥AB,故△OAM与△OBM都是Rt△,又OM为公共边,所以两个直角三角形全等,则AM=BM。

又⊙O关于直径CD对称,所以A点和B点关于CD对称,当圆沿着直径CD对折时,点A与点B重合,弧AC与弧BC重合。

《垂径定理》教学设计教案

《垂径定理》教学设计教案

《垂径定理》教学设计教案第一章:教学目标1.1 知识与技能目标:让学生掌握垂径定理的内容及其应用。

1.2 过程与方法目标:通过观察、分析、推理等方法,引导学生发现垂径定理。

1.3 情感态度与价值观目标:培养学生对数学的兴趣,培养学生的观察能力和思考能力。

第二章:教学内容2.1 教材分析:本节课主要通过探究圆中的性质,引导学生发现垂径定理。

2.2 学情分析:学生在学习本节课之前,已经掌握了圆的基本性质和几何图形的观察分析能力。

第三章:教学过程3.1 导入:通过展示一些与圆有关的实际问题,引发学生对圆的性质的思考。

3.2 新课导入:引导学生观察圆中的垂径关系,引导学生发现垂径定理。

3.3 讲解与演示:通过几何画板或实物模型,讲解垂径定理的内容,并展示其应用。

3.4 练习与讨论:设计一些练习题,让学生巩固垂径定理的理解,并进行小组讨论。

第四章:教学策略4.1 教学方法:采用问题驱动法、观察分析法、小组合作法等教学方法。

4.2 教学媒体:几何画板、实物模型、PPT等。

第五章:教学评价5.1 评价标准:学生能够正确理解垂径定理,能够运用垂径定理解决实际问题。

5.2 评价方式:课堂问答、练习题、小组讨论等。

第六章:教学资源6.1 教具准备:几何画板、实物模型、PPT、练习题等。

6.2 教学环境:教室环境舒适,学生座位有序,教学设备齐全。

第七章:教学步骤7.1 回顾圆的性质:回顾已学过的圆的性质,如圆的周长、直径等。

7.2 观察垂径关系:引导学生观察圆中的垂径关系,发现垂径定理。

7.3 讲解垂径定理:详细讲解垂径定理的内容,解释其含义和应用。

7.4 演示应用实例:通过几何画板或实物模型,展示垂径定理的应用实例。

7.5 练习与巩固:设计一些练习题,让学生运用垂径定理解决问题,巩固所学知识。

第八章:作业布置8.1 设计一些相关的练习题,让学生巩固垂径定理的理解。

8.2 鼓励学生自主探究,寻找生活中的圆的性质应用,增强对数学的应用意识。

垂径定理(学案)

垂径定理(学案)
(2)你能总结这个结论吗?
(3)如果弦CD是直径,以上结论还成立吗?画一画,试一试。
变式3连接OC,OD,设OC=OD,求证:AC=BD.
巩固知识精练拓展
学习收获
1、如图,AB是⊙O的一条直径,弦CD⊥AB,垂足为E.
(1)你能得到那些相等的线段和弧?
(2)你能用符号表示这个结论吗?
(3)你能用文字语言描述这个结论吗?
2、如上图,AB是⊙O的一条直径,AB平分弦CD,
(1)直径AB是否垂直弦CD,平分弦所对的两条弧?
课题
24.1.2垂直于弦的直径
班级
9.1
时间
10.30
姓名
杨超男
巩固知识精练拓展
学习收获
3、下列哪些图形可以用垂径ቤተ መጻሕፍቲ ባይዱ理?你能说明理由吗?
4、如图,已知在两同心圆⊙O中,大圆弦AB交小圆于C,D,则AC与BD间可能存在什么关系?
变式1如图,若将AB向下平移,当移到过圆心时,结论AC=BD还成立吗?
变式2如图,连接OA,OB,设AO=BO,求证:AC=BD

初中垂径定理的应用教案

初中垂径定理的应用教案

初中垂径定理的应用教案教学目标:1. 理解并掌握垂径定理的内容及应用。

2. 能够运用垂径定理解决实际问题。

3. 培养学生的观察能力、推理能力和解决问题的能力。

教学重点:1. 垂径定理的理解和应用。

2. 培养学生的解决问题的能力。

教学难点:1. 如何正确运用垂径定理解决实际问题。

教学准备:1. 教师准备PPT或黑板,展示垂径定理的定义和图像。

2. 准备一些实际问题,用于引导学生应用垂径定理。

教学过程:一、导入(5分钟)1. 引导学生回顾圆的基本概念,如圆、半径、弦、直径等。

2. 提问:你们认为圆有什么特殊的性质吗?二、新课讲解(15分钟)1. 介绍垂径定理的定义和图像,解释垂径定理的意义。

2. 通过示例,演示如何应用垂径定理解决实际问题。

三、课堂练习(15分钟)1. 让学生独立完成一些应用垂径定理的实际问题。

2. 引导学生分组讨论,互相解答疑问。

四、总结与拓展(10分钟)1. 让学生总结垂径定理的应用方法和步骤。

2. 提问:你们还能想到其他的应用垂径定理的问题吗?五、课后作业(5分钟)1. 布置一些应用垂径定理的实际问题,让学生回家练习。

教学反思:本节课通过讲解垂径定理的定义和图像,引导学生理解并掌握垂径定理的应用方法。

通过课堂练习和分组讨论,培养学生的观察能力、推理能力和解决问题的能力。

在教学过程中,要注意引导学生正确应用垂径定理,解决实际问题,提高学生的解决问题的能力。

同时,教师应根据学生的实际情况,适当调整教学内容和教学方法,以提高教学效果。

垂径定理初中教案

垂径定理初中教案

垂径定理初中教案1. 知识与技能:通过观察、实验和证明,使学生理解圆的轴对称性,掌握垂径定理,理解其证明,并会用它解决有关的证明与计算问题。

2. 过程与方法:经历运用圆的轴对称性探索圆的相关性质的过程,进一步体会和理解研究几何图形的各种方法。

3. 情感态度价值观:培养学生类比分析、猜想探索的能力,通过学习垂径定理及其逆定理的证明,使学生领会数学的严谨性和探索精神,培养学生学习实事求是的科学态度和积极参与的主动精神。

二、教学重难点1. 教学重点:利用圆的轴对称性研究垂径定理。

2. 教学难点:垂径定理的证明。

三、教学过程1. 导入:回顾轴对称图形的概念和性质,引出圆也是轴对称图形,并提问:圆的轴对称性有哪些应用?2. 探索:让学生分组进行实验,观察和记录圆中垂直于弦的直径的性质,引导学生发现垂径定理。

3. 证明:引导学生运用已学的三角形全等的知识,证明垂径定理。

在此过程中,教师应给予学生适当的提示和引导,帮助学生完成证明。

4. 应用:让学生运用垂径定理解决一些有关的证明与计算问题,巩固所学知识。

四、教学策略1. 采用问题驱动的教学方法,引导学生主动探索和发现垂径定理。

2. 利用分组实验,让学生亲身体验和观察圆的轴对称性,增强学生的实践能力。

3. 在证明过程中,引导学生运用已学的三角形全等的知识,培养学生的逻辑思维能力。

4. 设计一些有关的证明与计算问题,让学生运用所学知识解决实际问题,提高学生的应用能力。

五、教学评价1. 课堂讲解:关注学生的参与度和理解程度,观察学生在探索和证明过程中的表现。

2. 课后作业:布置一些有关的证明与计算问题,检验学生对垂径定理的掌握程度。

3. 学生互评:鼓励学生之间相互评价,共同提高。

六、教学反思本节课通过观察、实验和证明,使学生掌握了垂径定理,并能够运用它解决有关的证明与计算问题。

在教学过程中,注重了学生的参与和实践,培养了学生的逻辑思维能力和应用能力。

同时,通过问题驱动的教学方法,激发了学生的学习兴趣和探索精神。

《垂径定理》教学设计教案

《垂径定理》教学设计教案

《垂径定理》教学设计教案第一章:导入教学目标:1. 激发学生对垂径定理的兴趣。

2. 引导学生通过实际问题发现垂径定理。

教学内容:1. 引导学生回顾圆的性质和基本概念。

2. 提出问题:在圆中,如何判断一条直线是否垂直于一条弦?教学活动:1. 利用实物或图片展示圆和直线,引导学生观察和思考。

2. 引导学生通过实际操作,尝试判断直线是否垂直于弦。

教学评估:1. 观察学生在实际操作中的表现,了解他们对垂径定理的理解程度。

第二章:探索垂径定理教学目标:1. 帮助学生理解和掌握垂径定理的内容。

2. 培养学生通过几何推理解决问题的能力。

教学内容:1. 引导学生通过几何推理,探索垂径定理。

2. 引导学生验证垂径定理的正确性。

教学活动:1. 引导学生通过画图和几何推理,探索垂径定理。

2. 组织学生进行小组讨论,分享各自的解题思路和方法。

教学评估:1. 观察学生在探索过程中的表现,了解他们的思考和解决问题的能力。

第三章:应用垂径定理教学目标:1. 帮助学生掌握垂径定理的应用方法。

2. 培养学生解决实际问题的能力。

教学内容:1. 引导学生学习和掌握垂径定理的应用方法。

2. 引导学生运用垂径定理解决实际问题。

教学活动:1. 引导学生学习和掌握垂径定理的应用方法。

2. 组织学生进行实际问题解决练习,引导学生运用垂径定理。

教学评估:1. 观察学生在实际问题解决中的表现,了解他们运用垂径定理的能力。

第四章:巩固与提高教学目标:1. 帮助学生巩固垂径定理的知识。

2. 提高学生解决实际问题的能力。

教学内容:1. 引导学生进行垂径定理的知识巩固练习。

2. 引导学生运用垂径定理解决更复杂的问题。

教学活动:1. 组织学生进行垂径定理的知识巩固练习。

2. 引导学生运用垂径定理解决更复杂的问题。

教学评估:1. 观察学生在练习中的表现,了解他们巩固垂径定理的能力。

2. 观察学生在解决更复杂问题中的表现,了解他们运用垂径定理的能力。

第五章:总结与拓展教学目标:1. 帮助学生总结垂径定理的主要内容和应用方法。

《垂径定理》教学设计教案

《垂径定理》教学设计教案

《垂径定理》教学设计教案第一章:教学目标1.1 知识与技能:让学生掌握垂径定理的内容及其应用。

培养学生运用几何知识解决实际问题的能力。

1.2 过程与方法:通过观察、猜想、证明的过程,让学生体验数学的探究过程。

运用图形计算器或信息技术工具,帮助学生更好地理解垂径定理。

1.3 情感态度与价值观:培养学生对数学的兴趣和自信心。

培养学生合作交流的能力,提高学生的团队协作能力。

第二章:教学内容2.1 教材分析:分析教材中关于垂径定理的定义、证明和应用。

理解垂径定理在圆的性质和几何图形中的应用。

2.2 学情分析:了解学生对圆的基本知识和垂线的概念。

了解学生对几何证明的掌握程度,为学生提供必要的支持。

第三章:教学重难点3.1 教学重点:让学生掌握垂径定理的证明过程和定理的内容。

能够运用垂径定理解决相关的几何问题。

3.2 教学难点:理解并证明垂径定理。

灵活运用垂径定理解决实际问题。

第四章:教学方法与手段4.1 教学方法:采用问题驱动的教学方法,引导学生观察、猜想、证明。

运用小组合作学习,鼓励学生互相交流、讨论。

4.2 教学手段:使用图形计算器或信息技术工具,展示几何图形,帮助学生更好地理解垂径定理。

提供相关的练习题和案例,供学生实践和应用垂径定理。

第五章:教学过程5.1 导入:通过引入实际问题或情境,激发学生的兴趣和好奇心。

引导学生观察和猜想垂径定理的内容。

5.2 探究与证明:引导学生进行小组合作学习,共同探究垂径定理的证明过程。

引导学生运用几何知识和证明方法,进行逻辑推理和证明。

5.3 应用与练习:提供相关的练习题和案例,让学生运用垂径定理解决问题。

引导学生进行自主学习和合作交流,解答练习题和案例。

鼓励学生反思自己的学习过程,提出问题和建议,为后续学习做好准备。

1. 导入新课通过展示实际问题,引入垂径定理的概念和意义。

提供具体的垂径定理案例,让学生观察和分析,引导学生猜想垂径定理的内容。

第五章:垂径定理的证明通过引导学生运用已有知识,尝试证明垂径定理。

《垂径定理》教学设计教案

《垂径定理》教学设计教案

《垂径定理》教学设计教案第一章:教学目标1.1 知识与技能目标理解垂径定理的概念和意义。

学会运用垂径定理解决实际问题。

1.2 过程与方法目标通过观察和实验,发现垂径定理的规律。

学会运用几何画图工具,准确地画出垂直平分线。

1.3 情感态度与价值观目标培养学生的观察能力和思维能力。

培养学生的合作意识和解决问题的能力。

第二章:教学内容2.1 教材分析介绍垂径定理的内容和证明过程。

通过实际例题,展示垂径定理的应用。

2.2 学情分析学生已经掌握了直线、圆的基本概念和性质。

学生具备一定观察和实验的能力。

第三章:教学过程3.1 导入新课通过一个实际问题,引发学生对垂径定理的思考。

引导学生观察和实验,发现垂径定理的规律。

3.2 探究与发现学生分组进行实验,观察垂直平分线与弦的关系。

引导学生总结垂径定理的表述。

3.3 知识讲解讲解垂径定理的证明过程。

通过示例,解释垂径定理的应用。

3.4 练习与巩固学生独立完成一些练习题,巩固对垂径定理的理解。

教师引导学生互相讨论和解答问题。

第四章:教学评价4.1 课堂评价教师通过观察学生的实验和练习情况,评价学生对垂径定理的理解和应用能力。

学生之间互相评价,分享解题经验和思路。

4.2 课后评价教师布置一些相关的课后作业,检验学生对垂径定理的掌握程度。

学生通过完成作业,进一步巩固和提高垂径定理的应用能力。

第五章:教学资源5.1 教材教师使用的教材,包括课本和相关教辅材料。

5.2 实验材料学生分组进行实验所需的材料,如几何画图工具、圆规、直尺等。

5.3 多媒体教学资源利用多媒体课件和教学视频,帮助学生更好地理解和掌握垂径定理。

第六章:教学策略6.1 讲授法教师通过讲解垂径定理的证明过程和应用实例,引导学生理解和掌握知识点。

6.2 实验法学生通过分组实验,观察和验证垂径定理,培养动手能力和观察能力。

6.3 讨论法教师组织学生进行小组讨论,分享解题经验和思路,促进互动交流。

第七章:教学难点与重点7.1 教学难点学生对垂径定理的证明过程的理解和应用。

垂径定理 优秀教学设计(教案)

垂径定理  优秀教学设计(教案)

垂径定理重难点教学设计
A
B
O E C
D
弦(a )半径(r )弦心距(d ),弓高(h ) 四个量关系1、 2、 探究三:
垂径定理推论:平分非直径弦的直径_______,并且__________________。

数学语言:∵CD 是平分_____, CD 是⊙O______,
∴____=____,____=____,_____=______。

例4、已知: 在⊙O 中,弦AB 的长为24 cm ,C 为AB 中点,OC=5 cm ,求⊙O 的半径。

三、当堂训练:
1、已知圆的两条平行弦AB 、CD 长分别是 6cm 和8cm ,圆的半径为5cm ,求两条平行弦之间的距离。

2、
教师引导学生添加辅助线并分析使用方程思想,后学生到前展示答案,并简单讲解
学生复述推论内容,并总结学语言
巩固提高对定理的认
识。

直观引入定理,并上升到理论上。

能够应用。

垂径定理课堂教学设计

垂径定理课堂教学设计

垂径定理课堂教学设计一、教学目标本节课的教学目标是让学生掌握并理解垂径定理的概念和应用,能够准确运用垂径定理解题。

二、教学内容1. 垂径定理的概念介绍和基本性质2. 垂径定理的应用实例三、教学过程1. 导入新知识(5分钟)学生在上一节课已学过勾股定理的内容,通过复习勾股定理的概念和应用,引入今天的课程内容。

教师可以提出一个问题,如:“如何求一个等腰直角三角形的高?”,并引导学生思考和讨论。

2. 引入垂径定理(10分钟)教师通过给出一个具体的图形示例,如一个半径为r的圆,和一个直线段AB与圆相交于两个点C和D,其中CD是直径。

教师向学生解释CD是直径的概念,并引导学生观察并发现CD的特性。

教师提问:在这个图形中,你们观察到了什么特点?学生通过观察和思考,发现CD是一个垂线段。

教师提出问题:我们能否得出结论,对于任意与圆相交于两个点的直线段AB,它的中垂线也必然与圆相交于两个点,并且这两个点与原直线段的交点构成的线段也是直径?3. 垂径定理的概念和证明(15分钟)教师向学生介绍垂径定理的概念和基本性质,同时告知学生本定理的证明过程。

教师可以通过画图和数学推理的方式来展示垂径定理的证明过程,并引导学生思考和理解。

垂径定理:对于任意与圆相交于两个点的直线段AB,它的中垂线也必然与圆相交于两个点,并且这两个点与原直线段的交点构成的线段也是直径。

教师带领学生进行垂径定理的证明过程,教师可以通过提问引导学生思考和推理。

4. 垂径定理的应用实例(15分钟)教师通过给出具体的题目例子,来让学生运用垂径定理解题。

教师可以设计一些有趣的题目,如:“已知一个圆的半径为5cm,且一个直线段与圆相交于两个点,这个直线段的长度是8cm,请问这个直线段的中点到这个圆心的距离是多少?”教师引导学生利用垂径定理解决这个问题,并指导学生解答过程。

5. 总结和讨论(5分钟)教师对本节课的内容进行总结,并与学生讨论垂径定理的实际应用和拓展思考。

《垂径定理》教学设计教案完整版

《垂径定理》教学设计教案完整版
02
圆的性质包括圆心到圆上任意一点 的距离都等于半径,以及圆上任意 两点间的弧长与这两点间所夹圆心 角的大小成正比。
直径、半径和弧的概念
直径是穿过圆心、连 接圆上任意两点的线 段,其长度等于两倍 的半径。
弧是圆上两点间的部 分,根据圆心角的大 小可分为优弧、劣弧 和半圆。
半径是从圆心到圆上 任意一点的线段,其 长度等于圆的半径。
分享交流探究成果
分享方式
每个小组选派一名代表, 向全班展示他们的探究 过程和成果,可以通过 口头报告、PPT演示、 板书等方式进行。
交流内容
包括问题背景、解决方 法、遇到的困难、取得 的成果以及心得体会等。
互动环节
其他小组可以提问、补 充或发表不同看法,促 进全班范围内的深入交 流和讨论。
教师点评与总结
布置适量练习题,让学生独立完 成,检验学生的学习效果。
课程引入(5分钟)
通过实例引入垂径定理的概念, 激发学生的学习兴趣。
课程总结(5分钟)
回顾本课所学内容,总结垂径定 理及其逆定理的应用方法,鼓励 学生课后继续探究相关问题。
02 基础知识回顾
圆的性质与定义
01
圆是平面上所有与定点(圆心)距 离等于定长(半径)的点的集合。
05 学生自主探究活动
分组探究垂径定理的应用
分组
将全班学生分成若干小组,每组4-6人,确保每组学生具有不同 的数学能力和背景。
探究任务
给每个小组分配一个与垂径定理相关的数学问题或应用场景,例 如求解圆的弦长、判断点与圆的位置关系等。
探究过程
学生小组内进行讨论、分析、尝试解决问题,并记录探究过程和 结果。
垂径定理的表述
在平面内,垂直于弦的直 径平分这条弦,并且平分 弦所对的两条弧。

初三数学下垂径定理—知识讲解(提高)+巩固练习

初三数学下垂径定理—知识讲解(提高)+巩固练习

垂径定理—知识讲解(提高)【学习目标】1.理解圆的对称性;2.掌握垂径定理及其推论;3.学会运用垂径定理及其推论解决有关的计算、证明和作图问题.【要点梳理】知识点一、垂径定理1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点诠释:(1)垂径定理是由两个条件推出两个结论,即(2)这里的直径也可以是半径,也可以是过圆心的直线或线段.知识点二、垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(1)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.(4)圆的两条平行弦所夹的弧相等.要点诠释:在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)【典型例题】类型一、应用垂径定理进行计算与证明1. 如图,⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD,已知CE=1,ED=3,则⊙O的半径是.【答案】5.【解析】作OM⊥AB于M、ON⊥CD于N,连结OA,∵AB=CD,CE=1,ED=3,∴OM=EN=1,AM=2,∴OA=222+1=5.【点评】对于垂径定理的使用,一般多用于解决有关半径、弦长、弦心距之间的运算(配合勾股定理)问题.举一反三:【变式1】如图所示,⊙O两弦AB、CD垂直相交于H,AH=4,BH=6,CH=3,DH=8,求⊙O半径.【答案】如图所示,过点O分别作OM⊥AB于M,ON⊥CD于N,则四边形MONH为矩形,连结OB,∴12MO HN CN CH CD CH==-=-11()(38)3 2.522CH DH CH=+-=+-=,111()(46)5222BM AB BH AH==+=+=,∴在Rt△BOM中,22552OB BM OM=+=.【高清ID号:356965 关联的位置名称(播放点名称):例2-例3】【变式2】(春•安岳县月考)如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD长.【答案与解析】解:过O作OF⊥CD,交CD于点F,连接OD,∴F为CD的中点,即CF=DF,∵AE=2,EB=6,∴AB=AE+EB=2+6=8,∴OA=4,∴OE=OA﹣AE=4﹣2=2,在Rt△OEF中,∠DEB=30°,∴OF=OE=1,在Rt△ODF中,OF=1,OD=4,根据勾股定理得:DF==,则CD=2DF=2.【高清ID号:356965 关联的位置名称(播放点名称):例2-例3】2.已知:⊙O的半径为10cm,弦AB∥CD,AB=12cm,CD=16cm,求AB、CD间的距离.【思路点拨】在⊙O中,两平行弦AB、CD间的距离就是它们的公垂线段的长度,若分别作弦AB、CD的弦心距,则可用弦心距的长表示这两条平行弦AB、CD间的距离.【答案与解析】(1)如图1,当⊙O的圆心O位于AB、CD之间时,作OM⊥AB于点M,并延长MO,交CD于N点.分别连结AO、CO.∵AB∥CD∴ON⊥CD,即ON为弦CD的弦心距.∵AB=12cm,CD=16cm,AO=OC=10cm,=8+6=14(cm)图1 图2(2)如图2所示,当⊙O的圆心O不在两平行弦AB、CD之间(即弦AB、CD在圆心O的同侧)时,同理可得:MN=OM-ON=8-6=2(cm)∴⊙O中,平行弦AB、CD间的距离是14cm或2cm.【点评】解这类问题时,要按平行线与圆心间的位置关系,分类讨论,千万别丢解.举一反三:【变式】在⊙O中,直径MN⊥AB,垂足为C,MN=10,AB=8,则MC=_________.【答案】2或8.类型二、垂径定理的综合应用3.(•普陀区一模)如图,某新建公园有一个圆形人工湖,湖中心O处有一座喷泉,小明为测量湖的半径,在湖边选择A、B两个点,在A处测得∠OAB=45°,在AB延长线上的C处测得∠OCA=30°,已知BC=50米,求人工湖的半径.(结果保留根号)【答案与解析】解:过点O作OD⊥AC于点D,则AD=BD,∵∠OAB=45°,∴AD=OD,∴设AD=x,则OD=x,OA=x,CD=x+BC=x+50.∵∠OCA=30°,∴=33,即=3,解得x=25﹣25,∴OA=x=×(25﹣25)=(25﹣25)(米).答:人工湖的半径为(25﹣25)米.【点评】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.4. 不过圆心的直线l交⊙O于C、D两点,AB是⊙O的直径,AE⊥l于E,BF⊥l于F.(1)在下面三个圆中分别画出满足上述条件的具有不同位置关系的图形;(2)请你观察(1)中所画图形,写出一个各图都具有的两条线段相等的结论(OA=OB除外)(不再标注其他字母,找结论的过程中所连辅助线不能出现在结论中,不写推理过程);(3)请你选择(1)中的一个图形,证明(2)所得出的结论.【答案与解析】(1)如图所示,在图①中AB、CD延长线交于⊙O外一点;在图②中AB、CD交于⊙O内一点;在图③中AB∥CD.(2)在三个图形中均有结论:线段EC=DF.(3)证明:过O作OG⊥l于G.由垂径定理知CG=GD.∵ AE⊥l于E,BF⊥l于F,∴ AE∥OG∥BF.∵ AB为直径,∴ AO=OB,∴ EG=GF,∴ EC=EG-CG=GF-GD=DF.【点评】在运用垂径定理解题时,常用的辅助线是过圆心作弦的垂线,构造出垂径定理的基本图形.垂径定理—巩固练习(提高)【巩固练习】一、选择题1.如图所示,三角形ABC的各顶点都在⊙O上,AC=BC,CD平分∠ACB,交圆O于点D,下列结论:①CD是⊙O的直径;②CD平分弦AB;③AC BC=;④AD BD=;⑤CD⊥AB.其中正确的有()A.2个 B.3个 C.4个D.5个2.下面四个命题中正确的是( ).A.平分一条直径的弦必垂直于这条直径B.平分一条弧的直线垂直于这条弧所对的弦C.弦的垂线必过这条弦所在圆的圆心D.在一个圆内平分一条弧和它所对弦的直线必过这个圆的圆心COBDA3.如图,弦CD垂直于⊙O的直径AB,垂足为H,且CD=22,BD=3,则AB的长为()A.2 B.3 C.4 D.5第3题第5题第6题4.⊙O的半径OA=1,弦AB、AC的长分别是2、3,则∠BAC的度数为( ).A.15° B.45° C.75° D.15°或75°5.(•河东区一模)如图,在△ABC中,∠C=90°,∠A=25°,以点C为圆心,BC为半径的圆交AB于点D,交AC于点E,则的度数为()A.25°B.30°C.50°D.65°6.如图,EF是⊙O的直径,AB是弦,EF=10cm,AB=8cm,则E、F两点到直线AB的距离之和为().A.3cm B.4cm C.8cm D.6cm二、填空题7.如图,⊙O的弦AB垂直于CD,E为垂足,AE=3,BE=7,则圆心O到CD的距离是______.8.如图,P为⊙O的弦AB上的点,P A=6,PB=2,⊙O的半径为5,则OP=______.7题图8题图9题图9.如图,⊙O的弦AB垂直于AC,AB=6cm,AC=4cm,则⊙O的半径等于______cm.10.(•徐州)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC.若∠CAB=22.5°,CD=8cm,则⊙O的半径为 cm.11.在图11中,半圆的直径AB=4cm,O为圆心,半径OE⊥AB,F为OE的中点,CD∥AB,则弦CD的长为.(第12题)12.如图,点A、B是⊙O上两点,AB=10,点P是⊙O上的动点(P与A,B不重合)连结AP,PB,过点O分别作OE⊥AP于点E,OF⊥PB于点F,则EF= .三、解答题13.如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,CD=15,35OE OC∶∶,求弦AB和AC的长.14.如图所示,C为ACB的中点,CD为直径,弦AB交CD于P点,PE⊥BC于E,若BC=10cm,且CE:BE=3:2,求弦AB的长.15.如图所示,已知O是∠MPN的平分线上的一点,以O为圆心的圆与角的两边分别交于点A、B和C、D.⑴求证:PB=PD.⑵若角的顶点P在圆上或圆内,⑴中的结论还成立吗?若不成立,请说明理由;若成立,请加以证明.16.(•杭州模拟)如图,⊙O的两条弦AB、CD交于点E,OE平分∠BED.(1)求证:AB=CD;(2)若∠BED=60°,EO=2,求DE﹣AE的值.AEOFBPEODCBA【答案与解析】 一、选择题 1.【答案】D .【解析】由圆的对称性、等腰三角形的三线合一的性质可得到5个结论都是正确的. 2.【答案】D .【解析】根据垂径定理及其推论来判断. 3.【答案】B . 【解析】由垂径定理得HD=2,由勾股定理得HB=1,设圆O 的半径为R ,在Rt △ODH 中,则()()22221R R =+-,由此得R=32, 所以AB=3.故选 B. 4.【答案】D .【解析】分弦AB 、AC 在圆心的同侧和异侧讨论. 5.【答案】C ;【解析】连接CD ,∵在△ABC 中,∠C=90°,∠A=25°, ∴∠ABC=90°﹣25°=65°, ∵BC=CD ,∴∠CDB=∠ABC=65°,∴∠BCD=180°﹣∠CDB ﹣∠CBD=180°﹣65°﹣65°=50°,∴=50°.故选C .6.【答案】D .【解析】E 、F 两点到直线AB 的距离之和为圆心O 到AB 距离的2倍. 二、填空题 7.【答案】2. 8.【答案】.13 9.【答案】.13 10.【答案】42 .【解析】解:连接OC ,如图所示:∵AB 是⊙O 的直径,弦CD ⊥AB , ∴CE=DE=CD=4cm ,∵OA=OC ,∴∠A=∠OCA=22.5°, ∵∠COE 为△AOC 的外角, ∴∠COE=45°,∴△COE 为等腰直角三角形, ∴OC=CE=4cm , 故答案为:411.【答案】23cm .【解析】连接OC,易求CF= 3. CD=23cm . 12.【答案】5.【解析】易证EF 是△APB 的中位线,EF=15.2AB =三、解答题13.【答案与解析】连结OA ,∵CD=15,35OE OC =∶∶, ∴OA=OC=7.5,OE=4.5,CE=3,∴222222227.5 4.562126335AE OA OE AB AE AC AE CE =-=-====+=+=,14.【答案与解析】因为C 为ACB 的中点,CD 为直径,弦AB 交CD 于P 点,所以 CD ⊥AB. 由BC=10cm ,且CE :BE=3:2,得CE=6cm ,BE=4cm ,设,,BP a CP b ==则22222221046a b a b ⎧+=⎪⎨-=-⎪⎩解得210a =,2410AB a cm ==. 15.【答案与解析】(1)证明:过O 作OE ⊥PB 于E ,OF ⊥PD 于F.∵ PO 平分∠MPN∴ OE=OF ,PE=PF ∴ AB=CD ,BE=DF ∴ PE+BE=PF+DF ∴ PB=PD(2)上述结论仍成立.如下图所示.证明略.A A E EP O P O F FC C PA=PC PA=PC16.【答案与解析】 解:(1)过点O 作AB 、CD 的垂线,垂足为M 、N ,如图1,图1NMEODC BA∵OE 平分∠BED ,且OM ⊥AB ,ON ⊥CD , ∴OM=ON , ∴AB=CD ;(2)如图2所示,A BC DOEMN图2由(1)知,OM=ON ,AB=CD ,OM ⊥AB ,ON ⊥CD , ∴DN=CN=AM=BM ,在Rt △EON 与Rt △EOM 中, ∵,∴Rt △EON ≌Rt △EOM (HL ), ∴NE=ME ,∴CD ﹣DN ﹣NE=AB ﹣BM ﹣ME , 即AE=CE ,∴DE ﹣AE=DE ﹣CE=DN+NE ﹣CE=CN+NE ﹣CE=2NE ,∵∠BED=60°,OE平分∠BED,∴∠NEO=BED=30°,∴ON=OE=1,在Rt△EON中,由勾股定理得:NE==,∴DE﹣AE=2NE=2.11 / 11。

垂径定理教学设计(共19篇)

垂径定理教学设计(共19篇)

垂径定理教学设计〔共19篇〕篇1:垂径定理教学反思垂径定理教学反思本节课的教学目的是使学生理解圆的轴对称性,掌握垂径定理,并学会运用垂径定理解决有关弦、弧、弦心距以及半径之间的证明和计算问题。

垂径定理是圆的轴对称性的重要表达,是今后解决有关计算、证明和作图问题的重要根据,它有着广泛的应用,因此,本节课的教学重点是:垂径定理及其应用。

垂径定理的推导利用了圆的轴对称性,它是一种运动变换,这种证明方法学生不常用到,与严格的逻辑推理比拟,在证明的表述上学生会发生困难,因此垂径定理的推导是本节课的难点。

这节课我通过七个环节来完本钱节课的教学目的,采用了类比,启发等教学方法。

圆是轴对称图形,每一条直径所在的直线都是对称轴。

这点学生理解的很好。

根据这个性质先按课本进展合作学习1.任意作一个圆和这个圆的任意一条直径CD;2.作一条和直径CD的垂线的弦,AB与CD相交于点E.提出问题:把圆沿着直径CD所在的直线对折,你发现哪些点、线段、圆弧重合?在学生探究的根底上,得出结论:〔先介绍弧相等的概念〕①EA=EB;②AC=BC,AD=BD.理由如下:∵∠OEA=∠OEB=Rt∠,根据圆的轴轴对称性,可得射线EA与EB重合,∴点A与点B重合,弧AC和弧BC重合,弧AD和弧BD重合。

∴EA=EB,AC=BC,AD=BD.然后把此结论归纳成命题的形式:垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的`弧。

垂径定理的几何语言∵CD为直径,CD⊥AB〔OC⊥AB〕∴EA=EB,AC=BC,AD=BD.在学生掌握了垂径定理后,及时应用定理画图和解决实际问题,练习由根底到进步,层层深化,学生很有兴趣。

做完题目后总计解题的主要方法:〔1〕画弦心距是圆中常见的辅助线;〔2〕半径〔r〕、半弦、弦心距〔d〕组成的直角三角形是研究与圆有关问题的主要思路,它们之间的关系:弦长本节课缺乏之处是在处理垂径定理的推论时,应归纳相关垂径定理的五个元素:直径、弦中点、垂直、优弧中点、劣弧中点的规律:“知二得三”。

垂径定理教案

垂径定理教案

垂径定理教案教案标题:探索垂径定理教案目标:1. 通过本课学习,学生将理解并掌握垂径定理的概念和应用。

2. 学生将能够运用垂径定理解决几何问题并进行相关证明。

3. 培养学生的逻辑思维能力、问题解决能力和团队合作意识。

教学重点:1. 理解垂径定理的基本概念和性质。

2. 掌握垂径定理的证明方法。

3. 运用垂径定理解决几何问题。

教学难点:1. 学生对垂径的理解和运用能力。

2. 学生对垂径定理的证明理解和能力。

教学准备:1. 教师准备投影仪、电脑、教学课件、纸板和笔等教学工具。

2. 学生准备几何工具、笔记本和教材等学习用具。

教学过程:步骤一:导入(5分钟)1. 教师用一幅图形或实物引入垂径的概念,激发学生对垂径的兴趣,并提出一个与垂径有关的问题。

2. 引导学生思考,让学生尝试从直观上解答问题。

步骤二:学习垂径定理(20分钟)1. 教师通过投影仪展示垂径定理的定义和相关的性质,引导学生分析和理解。

2. 教师示范垂径定理的证明过程,解释每一步的思路和理由。

3. 学生跟随教师一起完成标注图和注释,加深对垂径定理的理解。

步骤三:运用垂径定理(25分钟)1. 学生个人或小组合作,完成教材上的练习题,通过练习问题的解答,增强对垂径定理的运用能力。

2. 教师引导学生思考,提出一个垂径定理的应用问题,并组织学生探讨答案和解决方法。

3. 学生自主解答并展示答案,教师引导学生分析答案的准确性和方法的合理性。

步骤四:归纳总结(10分钟)1. 教师引导学生回顾本节课所学内容,总结垂径定理的要点和证明方法。

2. 学生自主进行笔记整理,并将重点、难点等内容记录下来。

步骤五:拓展延伸(10分钟)1. 学生个人或小组自主探索垂径定理在其他几何问题中的应用。

2. 学生将其拓展的问题和解决思路进行分享和讨论。

步骤六:作业布置(5分钟)1. 布置相关练习题作为课后作业,并要求学生在完成作业的过程中思考垂径定理的应用和证明方法。

教学反思:通过本节课的教学,学生对垂径定理有了较好的理解和掌握,能够应用垂径定理解决实际问题,并能运用相关的证明方法进行推理。

垂径定理教案

垂径定理教案

垂径定理教案[教案]主题:垂径定理教学方案教学目标:1. 了解垂径定理的概念和相关性质;2. 掌握垂径定理在几何问题中的应用方法;3. 提高学生的思维逻辑能力和问题解决能力。

教学重点:1. 掌握垂径定理的基本原理;2. 熟练应用垂径定理解决几何问题。

教学难点:1. 理解垂径定理的证明过程;2. 运用垂径定理解决复杂几何问题。

教学准备:1. 教学课件;2. 相关绘图工具;3. 示例题和练习题。

教学过程:一、导入(5分钟)1. 引入垂径定理的概念,与学生分享一个相关的现实生活或几何问题,激发学生的兴趣;2. 提出问题,让学生思考并尝试解决,引入垂径定理。

二、理论讲解(15分钟)1. 通过课件或黑板,讲解垂径定理的定义和基本原理;2. 结合示意图,解释垂径定理的证明过程;3. 鼓励学生提问和互动,确保学生理解垂径定理的内涵。

三、例题演练(20分钟)1. 给出一个简单的几何问题,引导学生运用垂径定理解决;2. 逐步展示解题过程,引导学生思考和讨论;3. 鼓励学生展示自己的解题思路,培养合作学习和表达能力。

四、拓展练习(25分钟)1. 提供一些具有一定难度的练习题,要求学生独立解答;2. 学生在解答过程中可以相互交流和讨论,学习不同的解题方法;3. 教师及时给予指导和解答,引导学生更好地掌握垂径定理的应用。

五、归纳总结(10分钟)1. 教师帮助学生总结垂径定理的关键点和应用方法;2. 学生通过讨论和归纳,进一步理解和掌握垂径定理的本质;3. 教师给予肯定和激励,鼓励学生继续努力提高几何问题解决能力。

六、作业布置(5分钟)1. 布置一些相关的作业题目,要求学生独立完成;2. 鼓励学生自主思考和探索,加深对垂径定理的理解;3. 提醒学生按时提交作业,及时纠正错误。

教学反思:本节课通过引入实际问题、理论讲解、例题演练和拓展练习等环节,旨在帮助学生理解和应用垂径定理。

教学内容紧密结合实例,注重培养学生的思维逻辑能力和问题解决能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三数学寒假班第10讲-垂径定理(提高)-
学案
学科教师辅导讲义学员编号_________年级九年级(下)课时数3学员姓名辅导科目数学学科教师授课主题
第08讲-----垂径定理授课类型T同步课堂P实战演练S归纳总结教学目标深刻理解垂径定理及其推论的内容;熟练掌握垂径定理及其推论的应用条件与结论;应用垂径定理解决实际问题。

授课日期及时段T(Textbook-Based)同步课堂体系搭建
一.知识梳理
二.知识概念垂径定理
1.内容垂直于弦的直径平分这条弦,并且平分这条弦所对的两段弧
2.逆定理平分弦不是直径的直径垂直于这条弦,并且平分这条弦所对的两段弧
3.推论弦的垂直平分线经过圆心,并且平分这条弦所对的弧平分弦所对的一条弧的直径垂直平分这条弦,并且平分这条弦所对的另一条弧在同圆或者等圆中,两条平行弦所夹的弧相等
4.使用条件一条直线,在下列4条中只要具备其中任意两条作为条件,就可以推出其他三条结论(1)平分弦所对的弧(2)平分
弦不是直径(3)垂直于弦(4)经过圆心考点一垂径定理及其推论例
1.下列说法不正确的是()A圆是轴对称图形,它有无数条对称轴B圆的半径.弦长的一半.弦上的弦心距能组成一直角三角形,且圆的半径是此直角三角形的斜边C弦长相等,则弦所对的弦心距也相等D垂直于弦的直径平分这条弦,并且平分弦所对的弧例
2.如图,AB是O的直径,CDAB,ABD60,CD2,则阴影部分的面积为()ABC2D4例
3.如图,在55正方形网格中,一条圆弧经过A,B,C三点,已知点A的坐标是(2,3),点C的坐标是(1,2),那么这条圆弧所在圆的圆心坐标是()A(0,0)B(1,1)C(1,0)D(1,1)例
4.如图,AB是O的弦,C是AB的三等分点,连接OC并延长交O于点D若OC3,CD2,则圆心O到弦AB的距离是()
A6B9CD253例
5.如图,O的半径为5,弦AB8,则圆上到弦AB所在的直线距离为2的点有()个A1B2C3D0考点二
应用垂径定理解决实际问题例
1.李明到某影剧城游玩,看见一圆弧形门如图所示,李明想知道这扇门的相关数据于是她从景点管理人员处打听到这个圆弧形门所在的圆与水平地面是相切的,ABCD40cm,BD320cm,且AB,
CD与水平地面都是垂直的根据以上数据,请你帮助李明计算出这个圆弧形门的最高点离地面的高度是多少例
2.用工件槽(如图1)可以检测一种铁球的大小是否符合要求,已知工件槽的两个底角均为90,尺寸如图(单位cm)将形状规则的铁球放入槽内时,若同时具有图1所示的
A.
B.E三个接触点,该球的大小就符合要求图2是过球心O及
A.
B.E三点的截面示意图,求这种铁球的直径PPractice-Oriented实战演练实战演练课堂狙击
1.下列说法中,不成立的是()A弦的垂直平分线必过圆心B弧的中点与圆心的连线垂直平分这条弧所对的弦C垂直于弦的直线经过圆心,且平分这条弦所对的弧D垂直于弦的直径平分这条弦
2.O的半径为13,弦AB的长度是24,ONAB,垂足为N,则ON ()A5B7C9D1
13.如图,O的直径AB垂直于弦CD,垂足是E,A30,CD6,则圆的半径长为()A2B2C4D
4.如图,以O为圆心的两个同心圆中,小圆的弦AB的延长线交大圆于点C,若AB4,BC1,则下列整数与圆环面积最接近的是()A10B13C16D1
95.如图,CD为O的直径,弦ABCD于E,CE2,AE3,则ACB
的面积为()A3B5C6D
86.如图,圆柱形水管内原有积水的水平面宽CD20cm,水深GF2cm,若水面上升2cm(EG2cm),则此时水面宽AB为多少
7.如图是一个半圆形桥洞截面示意图,圆心为O,直径AB是河底线,弦CD是水位线,CDAB,且AB26m,OECD于点E水位正常时测得OECD524(1)求CD的长;(2)现汛期来临,水面要以每小时4m的速度上升,则经过多长时间桥洞会刚刚被灌满课后反击
1.下列说法正确的是()A长度相等的两条弧是等弧B平分弦的直径垂直于弦C直径是同一个圆中最长的弦D过三点能确定一个圆
2.下列说法正确的是()A平分弦的直径垂直于弦B把(a2)根号外的因式移到根号内后,其结果是C相等的圆心角所对的弧相等D如果一个角的两边与另一个角的两边分别平行,那么这两个角相等
3.如图,AB为O的直径,弦CDAB于点E,若AE8,BE2,则CD()A5B8C2D
44.如图,在O中,弦ABAC,ODAB于点D,OEAC于点E,若AB8cm,AC6cm,则O的半径OA的长为()A7cmB6cmC5cmD4cm
5.如图,已知AB是O的直径,弦CDAB于E,连接BC,BD,AC,则下列结论中不一定正确的是()
AACB90BDECECOEBEDACEABC
6.如图,O的直径AB10,C是AB上一点,矩形ACND交O于M,N两点,若DN8,则AD的值为()A4B6C2D
37.如图所示,有一座拱桥圆弧形,它的跨度AB为60米,拱高PM为18米,当洪水泛滥到跨度只有30米时,就要采取紧急措施,若拱顶离水面只有4米,即PN4米时,是否采取紧急措施(
1.414)
8.赵州桥的主桥拱是圆弧形,它的跨度(弧所对的弦)长为
37.4m,拱高(弧的中点到弦的距离)为
7.2m,请求出赵州桥的主桥拱半径(结果保留小数点后一位)直击中考
1.
【xx牡丹江】
如图,在半径为5的O中,弦AB6,OPAB,垂足为点P,则OP 的长为()A3B
2.5C4D
3.
52.
【xx三明】
如图,AB是O的弦,半径OCAB于点D,若O的半径为5,AB8,则CD的长是()A2B3C4D
53.
【xx黔南州】
如图,AB是O的直径,弦CDAB于点E,CDB30,O的半径为5cm,则圆心O到弦CD的距离为()AcmB3cmC3cmD6cm
4.
【xx济南】
如图,O的半径为1,ABC是O的内接等边三角形,点
D.E在圆上,四边形BCDE为矩形,这个矩形的面积是
()A2BCD
5.
【xx三明】
如图,AB是O的直径,弦CDAB于点E,则下列结论正确的是()AOEBEBCBOC是等边三角形D四边形ODBC是菱形
6.
【xx深圳】
如图所示,该小组发现8米高旗杆DE的影子EF落在了包含一圆弧型小桥在内的路上,于是他们开展了测算小桥所在圆的半径的活动小刚身高
1.6米,测得其影长为
2.4米,同时测得EG的长为3米,HF的长为1米,测得拱高(弧GH的中点到弦GH的距离,即MN的长)为2米,求小桥所在圆的半径SSummary-Embedded归纳总结重点回顾垂径定理及其逆定理内容及应用条件;应用垂径定理解决实际问题。

名师点拨熟练掌握垂径定理.逆定理及其推论的内容及应用条件,多加练习,
注意总结,熟悉常作的辅助线,是解决本节问题的关键。

学霸经验本节课我学到我需要努力的地方是9。

相关文档
最新文档