液压缸缓冲参数计算

合集下载

液压缸计算公式

液压缸计算公式

液压缸计算公式液压缸是一种常见的液压传动装置,广泛应用于各个行业。

液压缸的计算公式是用来计算液压缸的力和速度的。

下面将详细介绍液压缸的计算公式以及其应用。

液压缸的计算公式主要包括液压缸的力计算公式和速度计算公式。

液压缸的力计算公式可以通过以下公式得出:F = P × A其中,F表示液压缸的输出力,P表示液压缸的工作压力,A表示液压缸的有效工作面积。

液压缸的工作压力可以通过液压系统的设计压力确定,液压缸的有效工作面积可以通过液压缸的结构参数计算得出。

通过这个公式,可以很方便地计算出液压缸的输出力。

液压缸的速度计算公式可以通过以下公式得出:V = (Q × 1000) / A其中,V表示液压缸的运动速度,Q表示液压缸的流量,A表示液压缸的有效工作面积。

液压缸的流量可以通过液压系统的流量计算得出。

通过这个公式,可以计算出液压缸的运动速度。

液压缸的计算公式的应用非常广泛。

在液压系统的设计和工程中,液压缸的计算公式可以用来确定液压缸的尺寸和工作参数,从而满足系统的工作要求。

在机械制造和工程维修中,液压缸的计算公式可以用来评估液压缸的工作性能和故障排除。

液压缸的计算公式还可以用来优化液压系统的设计。

通过合理选择液压缸的尺寸和工作参数,可以提高液压系统的效率和稳定性。

同时,液压缸的计算公式也可以用来对液压系统进行性能测试和评估,为系统的优化提供依据。

液压缸的计算公式是液压系统设计和工程应用中的重要工具。

通过合理应用这些公式,可以方便地计算液压缸的力和速度,从而满足系统的工作要求。

液压缸的计算公式的应用范围广泛,对于液压系统的设计、制造和维修都具有重要意义。

希望本文的介绍对读者有所帮助。

液压缸计算

液压缸计算

液压缸设计计算说明 系统压力为1p =25 MPa本系统中有顶弯缸、拉伸缸以及压弯缸。

以下为这三种液压缸的设计计算。

一、 顶弯缸 1 基本参数的确定(1)按推力F 计算缸筒内径D根据公式 3.5710D -=⨯ ① 其中,推力F=120KN系统压力1p =25 MPa带入①式,计算得D= 78.2mm ,圆整为D = 80 mm (2)活塞杆直径d 的确定确定活塞杆直径d 时,通常应先满足液压缸速度或速比的要求,然后再校核其结构强度和稳定性。

若速比为ϕ,则d = ② 取ϕ=1.6,带入②式,计算得d =48.9mm ,圆整为d =50mm8050D d ϕ===1.6 (3)最小导向长度H 的确定对一般的液压缸,最小导向长度H 应满足202L DH ≥+ ③ 其中,L 为液压缸行程,L=500mm带入③式,计算得H=65mm (4)活塞宽度B 的确定活塞宽度一般取(0.6~1.0)B D = ④ 得B=48mm~80mm ,取B=60mm (5)导向套滑动面长度A 的确定在D <80mm 时,取(0.6~1.0)A D = ⑤ D >80mm 时,取(0.6~1.0)A d = ⑥ 根据⑤式,得A=48mm~80mm ,取A=50mm (6)隔套长度C 的确定 根据公式2A BC H +=-⑦ 代入数据,解得C=10mm 2 结构强度计算与稳定校核 (1)缸筒外径缸筒内径确定后,有强度条件确定壁厚δ,然后求出缸筒外径D 1假设此液压缸为厚壁缸筒,则壁厚1]2D δ=⑧ 液压缸筒材料选用45号钢。

其抗拉强度为σb =600MPa 其中许用应力[]b nσσ=,n为安全系数,取n=5将数据带入⑧式,计算得δ=8.76mm故液压缸筒外径为D 1=D+2δ=97.52mm ,圆整后有 D 1=100mm ,缸筒壁厚δ=10mm (2)液压缸的稳定性和活塞杆强度验算按速比要求初步确定活塞杆直径后,还必须满足液压缸的稳定性及其强度要求。

液压缸设计与密封

液压缸设计与密封

图5.12 活塞环密封
密封圈密封(1/5)
3、密封圈密封 (a)O形密封圈。O形密封圈的截面为圆形,主要 用于静密封和滑动密封(转动密封用得较少)。其结构 简单紧凑,摩擦力较其他密封圈小,安装方便,价格便 宜,可在-40 ℃~120 ℃温度范围内工作。但与唇形密 封圈(如Y形圈)相比,其寿命较短,密封装置机械部 分的精度要求高,启动阻力较大。O形圈的使用速度范 围为0.005 ~ 0.3 m/s。O形圈密封原理如图5.13所示。
图5.16 宽断面Y形密封圈
Y型密封
(a)等唇高通用型
(b)轴用
(c)孔用
等唇高Y型密封圈的安装
密封圈密封(5/5)
宽断面Y形圈一般适用于工作压力p ≤20 MPa、工作温 度-30℃ ~ +100℃、使用速度 ≤0.5 m/s的场合。 窄断面Y形圈如图5.17所示。窄断面Y形圈是宽断面Y 形圈的改型产品,其截面的长宽比在2倍以上,因而不易翻 转,稳定性好,它有等高唇Y形圈和不等高唇Y形圈两种。 后者又有孔用和轴用之分,其短唇与运动表面接触,滑动摩 擦阻力小,耐磨性好,寿命长;长唇与非运动表面接触有较 大的预压缩量,摩擦阻力大,工作时不窜动。 窄断面Y形圈一般适用于工作压力p ≤32 MPa,使用温 度为-30℃ ~ +100℃的条件下工作。
n — 安全系数 n=5
D / 10 时,为厚壁筒(铸造)
[ ] 0 . 4 p D y 1 2 [ ] 1 . 3 p y
缸筒外径:D1 D 2
注意:圆整为标准壁厚 1)铸造:满足最小尺寸 2)无缝钢管:查手册 (无缝钢管外径不需加工)
图5.17 窄断面Y形密封圈
八、液压缸的安装、调整与维护

液压缸的设计和计算

液压缸的设计和计算

液压缸设计和计算液压缸的设计和计算液压缸的设计是整个液压系统设计中的一部分,它是在对整个系统进行了工况分析,编制了负载图,选定了工作压力之后进行的; 一、设计依据:1了解和掌握液压缸在机械上的用途和动作要求;2了解液压缸的工作条件;3了解外部负载情况;4了解液压缸的最大行程,运动速度或时间,安装空间所允许的外形尺寸以及缸本身的动作;5设计已知液压系统的液压缸,应了解液压系统中液压泵的工作压力和流量的大小、管路的通径和布置情况、各液压阀的控制情况;6了解有关国家标准、技术规范及参考资料;二、设计原则:1保证缸运动的出力、速度和行程;2保证刚没各零部件有足够的强度、刚度和耐用性;3保证以上两个条件的前提下,尽量减小缸的外形尺寸;4在保证刚性能的前提下,尽量减少零件数量,简化结构;5要尽量避免缸承受横向负载,活塞杆工作时最好承受拉力,以免产生纵向弯曲;6缸的安装形式和活塞杆头部与外部负载的连接形式要合理,尽量减小活塞杆伸出后的有效安装长度,增加缸的稳定性;三、设计步骤:1根据设计依据,初步确定设计档案,会同有关人员进行技术经济分析;2对缸进行受力分析,选择液压缸的类型和各部分结构形式;3确定液压缸的工作参数和结构尺寸;4结构强度、刚度的计算和校核;5根据运动速度、工作出力和活塞直径,确定泵的压力和流量;6审定全部设计计算资料,进行修改补充;7导向、密封、防尘、排气和缓冲等装置的设计;8绘制装配图、零件图、编写设计说明书;四、液压缸设计中应注意的问题液压缸的设计和使用正确与否,直接影响到它的性能和是否易于发生故障;所以,在设计液压缸时,必须注意以下几点:1、尽量使液压缸的活塞杆在受拉状态下承受最大负载,或在受压状态下具有良好的稳定性;2、考虑液压缸行程终了处的制动问题和液压缸的排气问题;3、正确确定液压缸的安装、固定方式;4、液压缸各部分的结构需根据推荐的结构形式和设计标准进行设计,尽可能做到结构简单、紧凑、加工、装配和维修方便;5、在保证能满足运动行程和负载力的条件下,应尽可能地缩小液压缸的轮廓尺寸;6、要保证密封可靠,防尘良好;五、计算液压缸的结构尺寸1、缸筒内径D 根据负载的大小来选定工作压力或往返运动速度比,求得液压缸的有效工作面积,从而得到缸筒内径D,再从GB2348-80标准中选取最近的标准值作为所设计的缸筒内径;液压缸的有效工作面积为…… 24D p F A π== 以无杆腔作工作腔时………… p FD π4=以有杆腔作工作腔时………… 24d p F D +=π 2、活塞杆外径d 通常先从满足速度或速度比的要求来选择,然后再校核其结构强度和稳定性;若速度比为v λ,则 vv Dd λλ1-= 也可根据活塞杆受力状况来确定:受拉力作用时,d =~; 受压力作用时,则有3、缸筒长度L 缸筒长度L 由最大工作行程长度加上各种结构需要来确定,即:l —— 活塞的最大工作行程;B —— 活塞宽度,一般为~1D ;A —— 活塞杆导向长度,取~D ;M —— 活塞杆密封长度,由密封方式定;C —— 其他长度; 注意:从制造工艺考虑,缸筒的长度最好不超过其内径的20倍;六、强度校核对液压缸的缸筒壁厚δ、活塞杆直径d和缸盖固定螺栓的直径,在高压系统中必须进行强度校核;1、缸筒壁厚校核δ 缸筒壁厚校核分薄壁和厚壁两种情况;当D/δ≥10时为薄壁,壁厚按下式进行校核:δ≥δδδ2[δ]当D/δ<10时为厚壁,壁厚按下式进行校核:δ≥δ2(√[δ]+0.4δδ[δ]−1.3δδ−1)pt ——缸筒试验压力,随缸的额定压力的不同取不同的值D ——缸筒内径σ——缸筒材料许用应力2、活塞杆直径校核活塞杆的直径d按下式进行校核:3、液压缸盖固定螺栓直径校核液压缸盖固定螺栓直径按下式计算:F ——液压缸负载k ——螺纹拧紧系数~Z ——固定螺栓个数σ——螺栓材料许用应力七、液压缸稳定性校核活塞杆轴向受压时,其直径d一般不小于长度L的1/15;当L/d≥15时,须进行稳定性校核,应使活塞杆承受的力F不能超过使它保持稳定工作所允许的临界负载Fk ,以免发生纵向弯曲,破坏液压缸的正常工作;Fk 的值与活塞杆材料性质、截面形状、直径和长度以及缸的安装方式等因素有关,验算可按材料力学有关公式进行;• 当活塞杆细长比 21/ψψ>k r l 时,则• 当活塞杆细长比21/ψψ≤k r l 且120~2021=ψψl -- 安装长度,其值与安装方式有关;Ψ1 -- 柔性系数,对钢取Ψ1=85;Ψ2 -- 末端系数,由液压缸支承方式决定;E -- 活塞杆材料的弹性模量,对钢取E=× 1011Pa ;J -- 活塞杆横截面惯性矩;A -- 活塞杆横截面面积;f -- 由材料强度决定的实验数值,对钢取f=×108 N /m2; α--系数,对钢取α=1/5000;rk --活塞杆横截面的最小回转半径;八、缓冲计算液压缸的缓冲计算主要是估计缓冲时缸中出现的最大冲击压力,以便用来校核缸筒强度、制动距离是否符合要求;液压缸在缓冲时,缓冲腔内产生的液压能E 1和工作部件产生的机械能E 2分别为:当E 1=E 2时,工作部件的机械能全部被缓冲腔液体所吸收,则有九、油缸的试验1.油缸试验压力,低于16MPa乘以工作压力的,高于16乘以工作压力的;2.最低启动压力:是指液压缸在无负载状态下的最低工作压力,它是反映液压缸零件制造和装配精度以及密封摩擦力大小的综合指标;3.最低稳定速度:是指液压缸在满负荷运动时没有爬行现象的最低运动速度,它没有统一指标,承担不同工作的液压缸,对最低稳定速度要求也不相同;4.内部泄漏:液压缸内部泄漏会降低容积效率,加剧油液的温升,影响液压缸的定位精度,使液压缸不能准确地、稳定地停在缸的某一位置;。

液压缸计算公式(液压缸内径和活塞杆直径的确定等)

液压缸计算公式(液压缸内径和活塞杆直径的确定等)

液压缸计算公式(液压缸内径和活塞杆直径的确定等)Determining the ___ DiameterFor the hydraulic cylinder。

Q235 seamless steel pipe is chosen as the material。

while Q235 is ___.___:D = 4F/πp = 4 x 3.14 x F/(A x P)where F is the load force in Newtons。

A is the area of the non-rod side in square millimeters。

P is the oil supply pressure in Megapascals。

and D is the ___.___π×δ×D/(4×η×≤≥σ×ψ×μ)1) When δ/D ≤ 0.08:δ。

p_max x D/(2 x σ) (in millimeters)where p_max is the maximum operating pressure ___.2) When 0.08 < δ/D ≤ 0.3:δ ≥ 2.3 x p_max x D/(3 x σ) (in millimeters)3) When δ/D ≥ 0.3:δ/D ≥ (2 x σ x (p + 0.4 x p_max))/(σ x p - 1.3 x p_max) (in millimeters)where σ_b is the ___。

σ_s is the yield point of the cylinder material。

and n is the safety factor.Checking the ___PN ≤ 0.35 x σ_s x (D_1^2 - D^2)/(D_1^2 x D) (in Megapascals)where PN is the rated pressure。

常用液压设计计算公式

常用液压设计计算公式

常用液压设计计算公式液压设计计算是指根据液压原理和工作条件,对液压系统进行各种设计参数的计算。

常用的液压设计计算公式包括以下几个方面:1.流量计算公式:流量是液压系统中液体通过单位时间内的体积或质量,常用的流量计算公式有:-液体通过管道的流速公式:v=A/t其中,v为液体的流速,A为液体通过的横截面积,t为流经该横截面的时间。

-流量公式:Q=Av其中,Q为液体的流量,A为液体通过的横截面积,v为液体的流速。

2.压力计算公式:压力是液体对单位面积的作用力,常用的压力计算公式有:-压力公式:P=F/A其中,P为液体的压力,F为作用在液体上的力,A为液体所受力的面积。

- 泊松公式:P=gh其中,g为重力加速度,h为液体的高度。

3.功率计算公式:功率是液压系统中单位时间内产生或消耗的能量,常用的功率计算公式有:-功率公式:P=Q×P其中,P为液体的功率,Q为液体的流量,P为液体的压力。

-功率公式:P=F×v其中,P为液体的功率,F为作用在液体上的力,v为液体的流速。

4.流速计算公式:流速是单位时间内液体通过管道的速度,常用的流速计算公式有:-流速公式:v=Q/A其中,v为液体的流速,Q为液体的流量,A为液体通过的横截面积。

- 流速公式:v=√(2gh)其中,v为液体的流速,g为重力加速度,h为液体的高度。

5.根据功率计算液压缸的力和速度:-液压缸力的计算公式:F=P/A其中,F为液压缸的力,P为液体的压力,A为液压缸的有效工作面积。

-液压缸速度的计算公式:v=Q/A其中,v为液压缸的速度,Q为液体的流量,A为液压缸的有效工作面积。

以上是液压设计常用的一些计算公式,根据具体液压系统的工作条件和设计要求,可以选择适合的公式进行计算。

在实际设计中,还需要考虑液体的黏度、泄漏、阻力等因素对计算结果的影响,综合考虑才能得到更精确的设计结果。

液压缸设计计算

液压缸设计计算

液压缸设计计算第四章液压缸的设计计算在上一章液压系统的设计中,已对液压缸的主要结构尺寸作了计算,本章继续对液压缸的其余主要尺寸及结构进行设计计算。

液压缸是液压传动的执行元件,它和主机工作机构有直接的联系,对于不同的机种和机构,液压缸具有不同的用途和工作要求。

因此,在设计液压缸之前,必须对整个液压系统进行工况分析,编制工况图,选定系统的工作压力(详见第三章),然后根据使用要求进行结构设计。

本章只对抬升缸做上述设计计算。

4.1计算液压缸的结构尺寸液压缸的结构尺寸主要有三个:缸筒内径D、活塞杆外径d和缸筒长度L。

在上一章中已经作过缸筒内径D及活塞杆外径的计算,此处从略。

缸筒内径D—80?活塞杆外径d—45?(详见第三章)4.1.1缸筒长度L缸筒长度由最大工作行程长度加上各种结构需要来确定,即:L=l+B+A+M+C (4-1) 式中: l—活塞的最大工作行程;l=450?B—活塞宽度,一般为(0.6-1)D;取B=1×80=80?A—活塞杆导向长度,取(0.6-1.5)D;取A=1×80=80?M—活塞杆密封长度,由密封方式定;C—其他长度,取C=35?故缸筒长度为:L=80+35+450+80+15=660?4.2.2.最小导向长度的确定当活塞杆全部外伸时,从活塞支承面中点到导向套滑动面中点的距离称为最小导向长度H(如图4-1所示)。

如果导向长度过小,将使液压缸的初始挠度(间隙引起的挠度)增大,影响液压缸的稳定性,因此设计时必须保证有一最小导向长度。

图4-1 油缸的导向长度对于一般的液压缸,其最小导向长度应满足下式:H?L/20+D/2 (4-2)式中: L—液压缸最大工作行程(m);L=0.45mD—缸筒内径(m),D=0.08m。

故最小导向长度H?62.5?4.2.液压缸主要零部件设计4.2.1缸筒1.缸筒结构缸筒与缸头的连接用法兰连接,其优点是:结构简单,易加工,易装卸;缺点是重量比螺纹连接的大,但比拉杆连接的小;外径较大。

液压设计需要哪些计算公式

液压设计需要哪些计算公式

液压设计需要哪些计算公式液压系统是一种利用液体传递能量的动力传动系统,广泛应用于机械工程、航空航天、船舶、汽车等领域。

在液压系统的设计过程中,需要进行各种计算以确保系统的安全可靠性和性能指标的满足。

本文将介绍液压系统设计中常用的计算公式,包括液压缸的推力计算、液压泵的流量计算、液压阀的压降计算等内容。

1. 液压缸的推力计算。

液压缸是液压系统中常用的执行元件,其推力的计算是设计液压系统时的重要参数。

液压缸的推力计算公式为:F = P × A。

其中,F为液压缸的推力,单位为牛顿(N);P为液压缸的工作压力,单位为帕斯卡(Pa);A为液压缸的有效工作面积,单位为平方米(m²)。

2. 液压泵的流量计算。

液压泵是液压系统中的动力源,其流量的计算是设计液压系统时的关键参数。

液压泵的流量计算公式为:Q = V × n。

其中,Q为液压泵的流量,单位为立方米每秒(m³/s);V为液压泵的排量,单位为立方厘米每转(cm³/r);n为液压泵的转速,单位为转每分钟(r/min)。

3. 液压阀的压降计算。

液压阀是液压系统中的控制元件,其压降的计算是设计液压系统时的重要参数。

液压阀的压降计算公式为:ΔP = K × Q²。

其中,ΔP为液压阀的压降,单位为帕斯卡(Pa);K为液压阀的流量系数,是与液压阀的结构和工作原理相关的参数;Q为液压阀的流量,单位为立方米每秒(m³/s)。

4. 液压管路的压力损失计算。

液压管路是液压系统中的传输元件,其压力损失的计算是设计液压系统时的重要参数。

液压管路的压力损失计算公式为:ΔP = f × L × (Q/D)²。

其中,ΔP为液压管路的压力损失,单位为帕斯卡(Pa);f为液压管路的摩阻系数,是与管路材料和管路形状相关的参数;L为液压管路的长度,单位为米(m);Q为液压管路的流量,单位为立方米每秒(m³/s);D为液压管路的直径,单位为米(m)。

液压系统计算公式

液压系统计算公式

液压系统计算公式1.液压缸的力和速度计算:液压缸的力和速度计算可以通过液压系统的压力和流量来求解。

液压缸的力计算公式为:F=P×A其中,F表示液压缸的力(单位为N),P表示液压系统的工作压力(单位为Pa),A表示液压缸的有效工作面积(单位为㎡)。

液压缸的速度计算公式为:v=Q/(A×1000)其中,v表示液压缸的速度(单位为m/s),Q表示液压系统的流量(单位为L/min),A表示液压缸的有效工作面积(单位为㎡)。

这里将液压系统的流量单位转换为升每分钟(L/min)是因为速度的单位为米每秒(m/s)。

2.液体流量计算:液体流量计算主要是用于选择液压泵和计算液压系统的流量。

液体流量计算公式为:Q=A×v×1000其中,Q表示液体的流量(单位为L/min),A表示液压缸的有效工作面积(单位为㎡),v表示液体的速度(单位为m/s)。

这里将液体的速度单位转换为米每秒(m/s)是因为流量的单位为升每分钟(L/min)。

3.泵和马达的工作参数计算:液压系统中的泵和马达是系统的核心部件,其工作参数计算涉及到流量、压力、功率等方面。

泵的工作参数计算公式为:Pump Power (KW) = (Flow Rate (L/min) × Pressure (Bar)) ÷ 600其中,Pump Power表示泵的功率(单位为千瓦,KW),Flow Rate表示泵的流量(单位为L/min),Pressure表示泵的压力(单位为巴,Bar)。

马达的工作参数计算公式为:Motor Power (KW) = (Torque (Nm) × Speed (RPM)) ÷ 9550其中,Motor Power表示马达的功率(单位为千瓦,KW),Torque表示马达的扭矩(单位为牛顿米,Nm),Speed表示马达的转速(单位为转每分钟,RPM)。

4.液体管道的压力损失计算:液体管道的压力损失计算主要用于确定液体输送过程中的管道直径和管道长度。

液压油缸设计计算公式

液压油缸设计计算公式

液压油缸的主要设计技术参数一、液压油缸的主要技术参数:1.油缸直径;油缸缸径,内径尺寸。

2. 进出口直径及螺纹参数3.活塞杆直径;4.油缸压力;油缸工作压力,计算的时候经常是用试验压力,低于16MPa乘以1.5,高于16乘以1.255.油缸行程;6.是否有缓冲;根据工况情况定,活塞杆伸出收缩如果冲击大一般都要缓冲的。

7.油缸的安装方式;达到要求性能的油缸即为好,频繁出现故障的油缸即为坏。

应该说是合格与不合格吧?好和合格还是有区别的。

二、液压油缸结构性能参数包括:1.液压缸的直径;2.活塞杆的直径;3.速度及速比;4.工作压力等。

液压缸产品种类很多,衡量一个油缸的性能好坏主要出厂前做的各项试验指标,油缸的工作性能主要表现在以下几个方面:1.最低启动压力:是指液压缸在无负载状态下的最低工作压力,它是反映液压缸零件制造和装配精度以及密封摩擦力大小的综合指标;2.最低稳定速度:是指液压缸在满负荷运动时没有爬行现象的最低运动速度,它没有统一指标,承担不同工作的液压缸,对最低稳定速度要求也不相同。

3.内部泄漏:液压缸内部泄漏会降低容积效率,加剧油液的温升,影响液压缸的定位精度,使液压缸不能准确地、稳定地停在缸的某一位置,也因此它是液压缸的主要指标之。

液压油缸常用计算公式液压油缸常用计算公式项目公式符号意义液压油缸面积(cm 2 ) A =πD 2 /4 D :液压缸有效活塞直径(cm) 液压油缸速度(m/min) V = Q / A Q :流量(l / min)液压油缸需要的流量(l/min) Q=V×A/10=A×S/10tV :速度(m/min)S :液压缸行程(m)t :时间(min)液压油缸出力(kgf) F = p × AF = (p × A) -(p×A)( 有背压存在时)p :压力(kgf /cm 2 )泵或马达流量(l/min) Q = q × n / 1000 q :泵或马达的几何排量(cc/rev) n :转速(rpm )泵或马达转速(rpm) n = Q / q ×1000 Q :流量(l / min) 泵或马达扭矩(N.m) T = q × p / 20π液压所需功率(kw) P = Q × p / 612管内流速(m/s) v = Q ×21.22 / d 2 d :管内径(mm)管内压力降(kgf/cm 2 )△P=0.000698×USLQ/d 4U :油的黏度(cst)S :油的比重L :管的长度(m)Q :流量(l/min)d :管的内径(cm)液压常用计算公式项目公式符号意义液壓缸面積(cm2) A =πD2/4D:液壓缸有效活塞直徑 (cm)液壓缸速度(m/min)V = Q / A Q:流量 (l / min) 液壓缸需要的流Q=V×A/10=A×V:速度 (m/min)非标液压、机电、试验、工控设备开发研制。

液压缸的计算

液压缸的计算
所以
3.4液压系统设计
3.4.1液压系统设计图
在绘制液压系统图的过程中应力求系统的结构简单。注意各元件间的联系。避免无动作发生,既要减少能量损失,还要提高系统的工作效率。为了便于液压系统的维护和检测,本系统中要安装必要检测元件(如压力表,温度计)。各液压元件尽量采用国家标准件。在图中要按国家标准规定的液压元件职能符号的常态位置绘制,对于自行设计的非标准元件可用结构原理图绘制,系统图中应注明各液压执行元件的名称和动作,注明各液压元件的序号及各电磁铁代号,并附有电磁铁,行程阀及其他控制元件的动作表。基于以上准则,本设计的液压系统图拟定如下图所示
1)导向套(环式)的结构形式
活塞杆的导向的结构形式有三种:无导向套(环)、金属导向套(环)和非金属导向套(环)。
本课题选用金属导向套。
2)导向套(环)的长度
导向支承长度是端盖长度减去防尘圈沟槽的长度值后的剩余部分。
3)导向套(环)的材料和加工要求
导向套(环)外圆与端盖内孔配合多为H8/f7,内孔与活塞杆的配合多为H9/f9。
其中 ————-液压缸最大压力
所以
在本设计中,因其径向载荷小,结构简单,而选择用定量叶片泵,这样也可以使运动中的噪音降低,流量脉动小。根据表23.5-20[9]选取
图3-2 液压泵
YB1-16,
其技术规格为: 排量:16ml/r
额定压力:6.3Mpa
转速:960r/min
驱动功率:2.2KW
(3-16)
式中 -----缸底止口外径, ;
-----油口直径, ;
-----工作压力, ;
----材料许用应力安全系数( ), 。
3.4.7缸筒头部法兰厚度
选择螺钉连接法兰,法兰厚度 为

简述液压缸主要参数的设计计算过程

简述液压缸主要参数的设计计算过程

摘要:液压缸一般来说是标准件,但有时也需要自行设计。

液压缸的设计是在对所设计的液压系统进行工况分析、负载计算和确定了其工作压力的基础上进行的。

本文主要介绍液压缸主要尺寸的计算及强度,刚度的验算方法。

关键词:液压缸缸径活塞杆1确定液压缸结构类型和各部分的连接形式在确定液压缸结构类型和各部分连接形式时,应综合考虑主机的用途、工作条件、液压缸负载的性质和运动要求。

具体如下:①确定液压缸的结构类型、安装方式。

②确定缸体和缸盖的连接形式。

③确定活塞和活塞杆的连接形式。

④确定缓冲装置形式、密封和防尘结构。

2主要零件的材料和技术要求①缸体。

缸体常用材料为20、35、45号无缝钢管制造。

35、45号钢用的较多,并在粗加工后调质。

②活塞。

活塞材料常用耐磨铸铁,在工作压力及冲击载荷较大时采用钢材。

为了避免活塞与缸体直接接触,在活塞上套有聚四氟乙烯或尼龙支承环,以防止活塞划伤缸体表面。

③活塞杆。

有实心和空心两种。

用35、45号钢制造。

为了提高活塞杆的耐磨和防锈性能及抗碰撞能力,常在活塞杆表面高频淬火或火焰淬火(深度0.5~1mm),然后再镀铬(0.03~0.05mm)抛光。

④导向套。

导向套应具有良好的耐磨性能和一定的机械性能,材质不能太硬。

一般用铸铁、黄铜、青铜、尼龙等耐磨材料制成。

3设计输入本文以一小型液压机的工作主缸研究对象,简述了其主要参数、尺寸的确定及强度、稳定性的校核方法过程。

液压机主机概况:①液压机公称力400kN;②液压系统最大工作压力20Mpa;③滑块行程400MM;④压头工进速度10mm/s;⑤压头快进速度40mm/s。

4液压缸主要参数的确定4.1缸径。

由F=P·A·η;F———液压缸负载;P———工作压力;A———液压缸无杆腔面积;η———液压缸效率,按照0.9计算。

得:40×1000×9.8=20×106×A×0.9,求得:A=21778mm2根据A=πD24;D———液压缸缸径,mm。

液压油缸设计计算公式.

液压油缸设计计算公式.

液压油缸的主要设计技术参数一、液压油缸的主要技术参数:1.油缸直径;油缸缸径,内径尺寸。

2. 进出口直径及螺纹参数3.活塞杆直径;4.油缸压力;油缸工作压力,计算的时候经常是用试验压力,低于16MPa乘以1.5,高于16乘以1.255.油缸行程;6.是否有缓冲;根据工况情况定,活塞杆伸出收缩如果冲击大一般都要缓冲的。

7.油缸的安装方式;达到要求性能的油缸即为好,频繁出现故障的油缸即为坏。

应该说是合格与不合格吧?好和合格还是有区别的。

二、液压油缸结构性能参数包括:1.液压缸的直径;2.活塞杆的直径;3.速度及速比;4.工作压力等。

液压缸产品种类很多,衡量一个油缸的性能好坏主要出厂前做的各项试验指标,油缸的工作性能主要表现在以下几个方面:1.最低启动压力:是指液压缸在无负载状态下的最低工作压力,它是反映液压缸零件制造和装配精度以及密封摩擦力大小的综合指标;2.最低稳定速度:是指液压缸在满负荷运动时没有爬行现象的最低运动速度,它没有统一指标,承担不同工作的液压缸,对最低稳定速度要求也不相同。

3.内部泄漏:液压缸内部泄漏会降低容积效率,加剧油液的温升,影响液压缸的定位精度,使液压缸不能准确地、稳定地停在缸的某一位置,也因此它是液压缸的主要指标之。

液压油缸常用计算公式液压油缸常用计算公式项目公式符号意义液压油缸面积 (cm 2 A =πD 2/4D :液压缸有效活塞直径(cm液压油缸速度 (m/min V = Q / AQ :流量(l / min液压油缸需要的流量(l/minQ=V×A/10=A×S/10tV:速度(m/minS:液压缸行程 (mt:时间(min液压油缸出力 (kgfF = p × AF = (p ×A -(p×A( 有背压存在时p:压力(kgf/cm 2泵或马达流量 (l/min Q = q × n/ 1000q :泵或马达的几何排量(cc/r evn :转速( rp m )泵或马达转速 (rpm n = Q / q×1000Q :流量(l /泵或马达扭矩 (N.m T = q × p/ 20π液压所需功率 (kw P = Q × p/ 612管内流速 (m/s v = Q×21.22 / d 2d :管内径(mm管内压力降 (kgf/cm 2△P=0.000698×USLQ/d 4U:油的黏度(cstS:油的比重L:管的长度(m:流量(l/mind:管的内径(cm 液压常用计算公式项目公式符号意义液壓缸面積(cm2 A =πD2/4D:液壓缸有效活塞直徑(cm 液壓缸速度(m/min V = Q / AQ:流量(l /min液壓缸需要的流量(l/minQ=V×A/10=A×S/10tV:速度(m/minS:液壓缸行程(mt:時間(min液 F = p ×壓缸出力(kgfAF = (p × A-(p×A(有背壓存在時p:壓力(kgf /cm2泵或馬達流量(l/minQ = q ×n / 1000q:泵或马达的幾何排量(cc/revn:转速(rpm)泵或馬達轉速(rpmn = Q / q×1000Q:流量(l / min泵或馬達扭矩(N.mT = q × p / 20π液壓所需功率(kwP = Q × p / 612管內流速(m/sv = Q×21.22 / d2d:管內徑(mm管內壓力降(kgf/cm2△P=0.000698×USLQ/d4U:油的黏度(cstS:油的比重L:管的長度(mQ:流量(l/mind:管的內徑(cm非标液压、机电、试验、工控设备开发研制。

液压缸设计结构参数及计算公式表

液压缸设计结构参数及计算公式表

590
31.5
法兰外径
螺孔1中心
螺孔1径
大法兰外径
440
400
22
380
1. 法兰强度的计算
缸筒法兰厚度
缸底法兰厚度 44.58081558
导向套法兰厚度 79.66815503
缸筒法兰厚度
缸底法兰厚度
导向套法兰厚度 大法兰厚度
35
35
150
150
结论
NO, 需重新确定各设计参数
2. 螺栓抗拉强度的计算
卡键厚度
键外缸筒长
键屈服强度
214
180
16
16
440
1. 卡键挤压强度及剪切强度的计算
卡键剪应力 安全系数
卡键压应力1 安全系数
卡键压应力2
87.5 5.942857143 193.236715
6.7275 147.3684211
结论
OK, 卡键设计参数正确
2. 卡键槽挤压、抗拉、剪切强度的计算
键槽拉应力 安全系数
441 335 305 245 205 785 835 930 850 屈服强度
400~450 500~550 600~650
800
430 325 295 235 195
屈服强度 8 6 4
伸长率
1. 一般缸径、杆径及压力的计算
缸径(mm)
一般缸筒长不超过内径20倍
1.1 已知推力、压力求缸径(效率0.9-0.98)
221.8181818 50.42
缸筒内壁处最大合应力
226.7345455 安全系数
3.528355145
缸底支承时缸筒内壁处最大合 应力
244.2867845 安全系数

液压缸设计计算

液压缸设计计算

第一部分总体计算1、压力油液作用在单位面积上的压强Pa式中:F——作用在活塞上的载荷,NA——活塞的有效工作面积,从上式可知,压力值的建立是载荷的存在而产生的。

在同一个活塞的有效工作面积上,载荷越大,克服载荷所需要的压力就越大。

换句话说,如果活塞的有效工作面积一定,油液压力越大,活塞产生的作用力就越大。

额定压力(公称压力)PN,是指液压缸能用以长期工作的压力。

最高允许压力,也是动态实验压力,是液压缸在瞬间所能承受的极限压力。

通常规定为:MPa。

耐压实验压力,是检验液压缸质量时需承受的实验压力,即在此压力下不出现变形、裂缝或破裂。

通常规定为:MPa。

液压缸压力等级见表1。

表1 液压缸压力等级单位MPa压力范围0~2.5 >2.5~8 >8~16 >16~32 >32 级别低压中压中高压高压超高压2、流量单位时间内油液通过缸筒有效截面的体积:L/min由于L 则L/min对于单活塞杆液压缸:当活塞杆伸出时当活塞杆缩回时式中:V——液压缸活塞一次行程中所消耗的油液体积,L;t——液压缸活塞一次行程所需的时间,min;D——液压缸缸径,m;d——活塞杆直径,m;——活塞运动速度,m/min。

3、速比液压缸活塞往复运动时的速度之比:式中:——活塞杆的伸出速度,m/min;——活塞杆的缩回速度,m/min;D——液压缸缸径,m;d——活塞杆直径,m。

计算速比主要是为了确定活塞杆的直径和是否设置缓冲装置。

速比不宜过大或过小,以免产生过大的背压或造成因活塞杆太细导致稳定性不好。

4、液压缸的理论推力和拉力活塞杆伸出时的理推力:N活塞杆缩回时的理论拉力:N式中:——活塞无杆腔有效面积,;——活塞有杆腔有效面积,;P——工作压力,MPa;D——液压缸缸径,m;d——活塞杆直径,m。

5、液压缸的最大允许行程活塞行程S,在初步确定时,主要是按实际工作需要的长度来考虑的,但这一工作行程并不一定是油缸的稳定性所允许的行程。

为了计算行程,应首先计算出活塞的最大允许计算长度。

液压缸缓冲参数计算

液压缸缓冲参数计算

油缸缓冲设计计算说明:本公式在确定油缸的缸径、杆径、活塞杆上的受力等主要参数后,根据需要的缓冲时间,的压力。

再适当地调整缓冲套的外径、间隙和有效缓冲长度,就可设计出期望达到缓冲效一、无杆腔缓冲的设计缸径Do=125.00缓冲套外径D1=82.90有效缓冲长度L1=50.00作用在活塞杆上的力(朝缸尾方向)Fo=300.00缓冲腔环形面积Ao=6874.27mm^2缓冲容积Vo=343713.41缓冲间隙Δ=0.05mm缓冲缝隙环形面积A1=13.03流量系数Cd=0.6油液密度ρ=0.91bar=100000.00N/m^21N= 1.00缓冲腔的压力ΔP=34.79bar有杆腔的最小压力P1=24.83bar二、有杆腔缓冲的设计缸径Do=125.00缓冲套外径D1=85.90有效缓冲长度L1=50.00作用在活塞杆上的力(朝缸尾方向)Fo=300.00缓冲腔环形面积Ao=6476.54mm^2缓冲容积Vo=323827.12缓冲间隙Δ=0.05mm缓冲缝隙环形面积A1=13.50流量系数Cd=0.6油液密度ρ=0.9 1bar=100000.00N/m^21N= 1.00缓冲腔的压力ΔP=28.77bar有杆腔的最小压力P1=22.19bar后,根据需要的缓冲时间,即可设计出缓冲的相关尺寸、以及油缸两腔所必须就可设计出期望达到缓冲效果的结构尺寸。

mm缓冲时间to=0.50sKg有杆腔环形面积Ao'=8423.40mm^2mm^3缓冲流量Qo=38.86L/min mm^2缓冲缝隙流速v1=47.97m/sg/cm^3(矿物油850-960Kg/m^3)Kgm/s^21bar=100000.00g/mm*s^2在缓冲腔产生的压力Po= 2.44bar。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

油缸缓冲设计计算
说明:本公式在确定油缸的缸径、杆径、活塞杆上的受力等主要参数后,根据需要的缓冲时间,的压力。

再适当地调整缓冲套的外径、间隙和有效缓冲长度,就可设计出期望达到缓冲效
一、无杆腔缓冲的设计
缸径Do=125.00
缓冲套外径D1=82.90
有效缓冲长度L1=50.00
作用在活塞杆上的力(朝缸尾方向)Fo=300.00
缓冲腔环形面积Ao=6874.27mm^2缓冲容积Vo=343713.41
缓冲间隙Δ=0.05mm缓冲缝隙环形面积A1=13.03
流量系数Cd=0.6油液密度ρ=0.9
1bar=100000.00N/m^21N= 1.00缓冲腔的压力ΔP=34.79bar
有杆腔的最小压力P1=24.83bar
二、有杆腔缓冲的设计
缸径Do=125.00
缓冲套外径D1=85.90
有效缓冲长度L1=50.00
作用在活塞杆上的力(朝缸尾方向)Fo=300.00缓冲腔环形面积Ao=6476.54mm^2缓冲容积Vo=323827.12缓冲间隙Δ=0.05mm缓冲缝隙环形面积A1=13.50
流量系数Cd=0.6油液密度ρ=0.9 1bar=100000.00N/m^21N= 1.00缓冲腔的压力ΔP=28.77bar
有杆腔的最小压力P1=22.19bar
后,根据需要的缓冲时间,即可设计出缓冲的相关尺寸、以及油缸两腔所必须就可设计出期望达到缓冲效果的结构尺寸。

mm缓冲时间to=0.50s
Kg有杆腔环形面积Ao'=8423.40mm^2
mm^3缓冲流量Qo=38.86L/min mm^2缓冲缝隙流速v1=47.97m/s
g/cm^3(矿物油850-960Kg/m^3)
Kgm/s^21bar=100000.00g/mm*s^2在缓冲腔产生的压力Po= 2.44bar。

相关文档
最新文档