平面直角坐标系内几何图形的面积及答案
【期末复习】浙教版八年级上册提分专题:一次函数与几何图形面积探究(解析版)
【期末复习】浙教版八年级上册提分专题:一次函数与几何图形面积探究考点一 一次函数图象与坐标轴围成图形的面积 【知识点睛】❖ 求三角形面积时,三角形有边在水平或者竖直边上,常以这条边为底,再由底所对顶点的坐标确定高; 类型一 一条直线与坐标轴围成的三角形面积 解题步骤:①求出直线与x 轴、y 轴的交点坐标,从而得出直线与坐标轴围成的直角三角形的两条直角边长; ②利用三角形面积公式求出三角形的面积 【类题训练】1.已知一次函数图象经过A (﹣4,﹣10)和B (3,4)两点,与x 轴的交于点C ,与y 轴的交于点D . (1)求该一次函数解析式;(2)点C 坐标为 ,点D 坐标为 ;(3)画出该一次函数图象,并求该直线和坐标轴围成的图形面积.【分析】(1)用待定系数法求直线AB 的解析式; (2)令y =0求得点C 的坐标,令x =0求得点D 的坐标;(3)利用已知的点A 和点B 画出一次函数的图象,然后利用求得的点C 和点D 求出OC 和OD 的长度,最后求得直线和坐标轴围成的图形面积.【解答】解:(1)设一次函数的解析式为y =kx +b (k ≠0),则,解得:,∴一次函数的解析式为y =2x ﹣2.(2)当x =0时,y =﹣2,当y =0时,x =1, ∴C (1,0),D (0,﹣2). 故答案为:(1,0),(0,﹣2).(3)由点A和点B,可以画出一次函数的图象,如下如所示,∵C(1,0),D(0,﹣2),∴OC=1,OD=2,∴S△OCD==1,∴一次函数与坐标轴围成的图形的面积为1.2.在平面直角坐标系中,一条直线经过A(﹣1,5),与B(3,﹣3)两点.(1)求这条直线与坐标轴围成的图形的面积.(2)若这条直线与y=﹣x+1交于点C,求点C的坐标.【分析】(1)根据待定系数法求得直线的解析式,进一步求出直线与x轴和y轴的交点坐标,然后根据三角形面积公式求解;(2)联立方程,解方程即可.【解答】(1)解:设直线解析式为y=kx+b(k≠0),将A(﹣1,5),与B(3,﹣3)两点代入得,解得,∴直线解析式为y=﹣2x+3,将x=0代入得y=3,∴与y轴交于点(0,3),将y=0代入得x=,∴与x轴交于点(,0),∴S=×3×=.(2)解得,∴点C的坐标是(2,﹣1).变式.已知一次函数y=kx+b(k≠0)的图象过点(2,0),且与两坐标轴围成的三角形的面积为1,则这个一次函数的解析式是.【分析】先根据一次函数y=kx+b(k≠0)图象过点(2,0)可知b=﹣2k,用k表示出函数图象与y轴的交点,再利用三角形的面积公式得到关于k的方程,解方程即可求出k的值.【解答】解:∵一次函数y=kx+b(k≠0)图象过点(2,0),∴2k+b=0,b=﹣2k,∴y=kx﹣2k,令x=0,则y=﹣2k,∵函数图象与两坐标轴围成的三角形面积为1,∴×2×|﹣2k|=1,即|2k|=1,解得:k=±,则函数的解析式是y=x﹣1或y=﹣x+1.故答案为y=x﹣1或y=﹣x+1.类型二两条直线与坐标轴围成的三角形面积解题标准:在平面直角坐标系内求三角形的面积,通常以坐标轴上的边为底,高就是底所对的顶点到这条边的距离【类题训练】1.如图,若直线y=﹣2x+1与直线y=kx+4交于点B(﹣1,m),且两条直线与y轴分别交于点C、点A;那么△ABC 的面积为.【分析】根据B点在直线y=﹣2x+1上,且横坐标为﹣1,求出B点的坐标,再根据直线y=kx+4过B点,将(﹣1,3)代入直线y=kx+4解析式,即可求出答案,根据已知得出B点的坐标,再根据直线y=﹣2x+1和直线y=x+4求得与y轴交点A和C点的坐标,再根据三角形的面积公式得出S△ABC.【解答】解:∵B点在直线y=﹣2x+1上,且横坐标为﹣1,∴y=﹣2×(﹣1)+1=3,即B点的坐标为(﹣1,3)又直线y=kx+4过B点,将(﹣1,3)代入直线y=kx+4得:3=﹣k+4,解得k=1;∴直线AB的解析式为y=x+4,∴直线AB与y轴交点A的坐标为(0,4),∵直线y=﹣2x+1与y轴交点C的坐标为(0,1),∴AC=4﹣1=3,∴S△ABC=AC•|x B|=×3×1=.故答案为.2.如图,直线l1:y=﹣2x+b与直线l2:y=kx﹣2相交于点P(1,﹣1),直线l1交y轴于点A,直线交y轴于点B,则△PAB的面积为.【分析】利用一次函数y=kx+b(k,b为常数,k≠0)可得直线l1与直线l2:与y轴交点,然后可求出△PAB 的面积.【解答】解:∵直线l1:y=﹣2x+b与直线l2:y=kx﹣2相交于点P(1,﹣1),∴﹣1=﹣2×1+b,解得:b=1,∴A点坐标为(0,1),∵直线l2:y=kx﹣2交y轴于B,∴B(0,﹣2),∴AB=3,∴△PAB的面积为:3×1=,故答案为:.变式.已知直线y=kx﹣4(k<0)与两坐标轴所围成的三角形面积等于4,则直线的解析式为()A.y=﹣x﹣4 B.y=﹣2x﹣4 C.y=﹣3x+4 D.y=﹣3x﹣4【分析】首先求出直线y=kx﹣4(k<0)与两坐标轴的交点坐标,然后根据三角形面积等于4,得到一个关于k 的方程,求出此方程的解,即可得到直线的解析式.【解答】解:直线y=kx﹣4(k<0)与两坐标轴的交点坐标为(0,﹣4)(,0),∵直线y=kx﹣4(k<0)与两坐标轴所围成的三角形面积等于4,∴4×(﹣)×0.5=4,解得k=﹣2,则直线的解析式为y=﹣2x﹣4.故选:B.类型三三条直线围成的三角形面积解题标准:在平面直角坐标系内求三角形的面积,通常以坐标轴上的边为底,高就是底所对的顶点到这条边的距离【类题训练】1.如图,已知点A(2,4),B(﹣2,2),C(4,0),求△ABC的面积.【分析】先利用待定系数法求直线AB的解析式,再确定直线AB与x轴的交点D的坐标,然后根据三角形面积公式和以S△ABC=S△ACD﹣S△BDC进行计算.【解答】解:设直线AB的解析式为y=kx+b,把A(2,4)、B(﹣2,2)代入得,解得.所以直线AB的解析式为y=x+3,当y=0时,y=x+3=0,解得x=﹣6,则D点坐标为(﹣6,0),所以S△ABC=S△ACD﹣S△BDC=×(4+6)×4﹣×(4+6)×2=10.2.如图,在平面直角坐标系xOy中,直线y=﹣x+4与x轴、y轴分别交于点A、点B,点D(0,﹣6)在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处,直线CD交AB于点E.(1)求点A、B、C的坐标;(2)求△ADE的面积;(3)y轴上是否存在一点P,使得S△PAD=S△ADE,若存在,请直接写出点P的坐标;若不存在,请说明理由.【分析】(1)利用一次函数图象上点的坐标特征可求出点A ,B 的坐标,在Rt △AOB 中,利用勾股定理可求出AB 的长度,由折叠的性质可得出AC =AB ,结合OC =OA +AC 可得出OC 的长度,进而可得出点C 的坐标;(2)根据点E 为直线AB 与直线CD 的交点,联立两直线解析式可求出点E 坐标,再由△ADE 和△ADB 组成△BDE ,得△ADE 的面积=△BDE 的面积-△ABD 的面积,即可求出△ADE 的面积;(3)假设存在,设点P 的坐标为(0,m ),则DP =|m +6|,利用三角形的面积公式可得出关于m 的含绝对值符号的一元一次方程,解之即可得出结论. 【解答】解:(1)当x =0时,y =﹣x +4=4, ∴点B 的坐标为(0,4); 当y =0时,﹣x +4=0, 解得:x =3,∴点A 的坐标为(3,0). 在Rt △AOB 中,OA =3,OB =4, ∴AB ==5.由折叠的性质,可知:∠BDA =∠CDA ,∠D =∠C ,AC =AB =5, ∴OC =OA +AC =8, ∴点C 的坐标为(8,0). (2)∵C (8,0),D (0,﹣6), ∴直线CD 的解析式为:y=43x-6, ∵点E 为直线AB 与直线CD 的交点.由⎪⎩⎪⎨⎧-=+-=643434x y x y 求得点E 坐标为⎪⎭⎫ ⎝⎛512-524,, ∴S △ADE =S △BDE ﹣S △ABD =BD •|x E |﹣BD •|x A |=9(3)假设存在,设点P 的坐标为(0,m ),则DP =|m +6|. ∵S △PAD =S △ADE ,即DP •OA =×OD •OA ,∴|m+6|=3,解得:m=﹣3或m=﹣9,∴假设成立,即y轴上存在一点P(0,﹣3)或(0,﹣9),使得S△PAD=S△ADE.3.如图,已知:直线AB:分别与x轴、y轴交于点A、B,直线CD:y=x+b分别与x轴、y轴交于点C、D,直线AB与CD相交于点P,S△ABD=2.求:(1)b的值和点P的坐标;(2)求△ADP的面积.【分析】(1)首先根据分别与x轴、y轴交于点A、B可求得A、B坐标,然后根据S△ABD=2可求得D点坐标,代入直线CD:y=x+b可求得b,直线AB与CD相交于点P,联立两方程可求得P点坐标.(2)可把S△ADP的面积分解为S△ABD+S△BDP,而S△BDP=|x P|,即可求得.【解答】解:(1)∵直线AB:分别与x轴、y轴交于点A、B,令y=0则x=﹣2,A(﹣2,0),令x=0则y=1∴B(0,1),又∵S△ABD=2∴|BD|•|OA|=2而|OA|=2∴|BD|=2,又B(0,1),∴D(0,﹣1)∴b=﹣1;∵直线AB与CD相交于点P,联立两方程得:,解得x=4,y=3,∴P(4,3);(2)由图象坐标可知:S△ADP=S△ABD+S△BDP=2+|x P|=6或S△ADP=S△PAC+S△DAC=|y P|)=×3×(1+3)=6.4.已知直线m经过两点(1,6)、(﹣3,﹣2),它和x轴、y轴的交点式B、A,直线n过点(2,﹣2),且与y轴交点的纵坐标是﹣3,它和x轴、y轴的交点是D、C;(1)分别写出两条直线解析式,并画草图;(2)计算四边形ABCD的面积;(3)若直线AB与DC交于点E,求△BCE的面积.【分析】(1)利用待定系数法可分别求出直线AB的解析式为y=2x+4;直线CD的解析式为y=x﹣3;然后利用两点确定一直线画函数图象;(2)利用坐标轴上点的坐标特征确定A点坐标为(0,4)=B点坐标为(﹣2,0)、D点坐标为(6,0),然后根据三角形面积公式和四边形ABCD的面积=S△ABD+S△CBD进行计算;(3)根据一次函数的交点问题通过解方程组得到E点坐标,然后利用△BCE的面积=S△EBD﹣S△CBD进行计算.【解答】解:(1)设直线AB的解析式为y=kx+b,把(1,6)、(﹣3,﹣2)代入得,解得.所以直线AB的解析式为y=2x+4;设直线CD的解析式为y=mx+n,把(2,﹣2)、(0,﹣3)代入得,解得,所以直线CD的解析式为y=x﹣3;如图所示;(2)把x=0代入y=2x+4得y=4,则A点坐标为(0,4);把y=0代入y=2x+4得2x+4=0,解得x=﹣2,则B点坐标为(﹣2,0);把y=0代入y=x﹣3得x﹣3=0,解得x=6,则D点坐标为(6,0),所以四边形ABCD的面积=S△ABD+S△CBD=×(6+2)×4+×(6+2)×3=28;(3)解方程组得,所以E点坐标为(﹣,﹣),所以△BCE的面积=S△EBD﹣S△CBD=×(6+2)×﹣×(6+2)×3=.变式.已知点A(2,4),B(﹣2,2),C(x,2),若△ABC的面积为10,求x的值.【分析】审题知B、C纵坐标相等,所以BC是一条平行于x轴的直线,所以A到BC的距离为2,而且B、C两点之间的距离可用两点的横坐标之差的绝对值表示,即x+2的绝对值.已知三角形的面积为10,依此列出方程求解即可.【解答】解:由B、C纵坐标相等,所以BC是一条平行于x轴的直线,所以A到BC的距离为4﹣2=2,BC=|x ﹣(﹣2)|=|x+2|,因为△ABC的面积为10,所以×2×|x+2|=10,|x+2|=10,x+2=10,或x+2=﹣10,解得:x=8,或x=﹣12.考点二一次函数图象与几何图形动点面积【知识点睛】❖此类问题需要将动点所在几何图形与一次函数图象同时分析,对照一次函数图象得出动点所在几何图形的边长信息❖对函数图象的分析重点抓住以下两点:①分清坐标系的x轴、y轴的具体意义②特别分析图象的拐点——拐点一般表示动点运动到几何图形的一个顶点❖动点所在几何图形如果是特殊图形,如等腰三角形、等腰直角三角形、含30°的直角三角形,注意对应图形性质与辅助线的应用。
人教版八年级数学下册期末复习专题在直角坐标系中求几何图形的面积(含答案)
人教版八年级数学下册期末复习专题训练——在直角坐标系中求几何图形的面积1.如图,四边形是矩形,点,在坐标轴上,是由绕点顺时针旋转得到的,点在轴上,直线交轴于点,交于点,线段=2,=4(1)求直线的解析式.(2)求的面积.2.直线a:y=x+2和直线b:y=﹣x+4相交于点A,分别与x轴相交于点B和点C,与y轴相交于点D和点E.(1)在同一坐标系中画出函数图象;(2)求△ABC的面积;(3)求四边形ADOC的面积;(4)观察图象直接写出不等式x+2≤﹣x+4的解集和不等式﹣x+4≤0的解集.3.如果两个一次函数y=k1x+b1和y=k2x+b2满足k1=k2,b1≠b2,那么称这两个一次函数为“平行一次函数”.已知函数y=﹣2x+4的图象与x轴、y轴分别交于A、B两点,一次函数y=kx+b 与y=﹣2x+4是“平行一次函数”(1)若函数y=kx+b的图象过点(3,1),求b的值;(2)若函数y=kx+b的图象与两坐标轴围成的面积是△AOB面积的,求y=kx+b的解析式.4.如图,10个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l将这10个正方形分成面积相等的两部分,求该直线l的解析式5.如图1,直线3=xy分别与y轴、x轴交于点A、点B,点C的坐标为(-3,0),D -3+3为直线AB上一动点,连接CD交y轴于点E(1) 点B的坐标为__________,不等式+-x的解集为___________3>33(2) 若S△COE=S△ADE,求点D的坐标(3) 如图2,以CD为边作菱形CDFG,且∠CDF=60°.当点D运动时,点G在一条定直线上运动,请求出这条定直线的解析式.6.在直角坐标系中,一条直线经过A(﹣1,5),P(﹣2,a),B(3,﹣3)三点.(1)求a的值;(2)设这条直线与y轴相交于点D,求△OPD的面积.7.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=10,点A、B的坐标分别为(2,0)、(8,0),将△ABC沿x轴向右平移,当点C落在直线y=x﹣5上时,求线段BC扫过的面积8.已知:如图,已知直线AB的函数解析式为y=﹣2x+8,与x轴交于点A,与y轴交于点B.(1)求A、B两点的坐标;(2)若点P(m,n)为线段AB上的一个动点(与A、B不重合),作PE⊥x轴于点E,PF⊥y轴于点F,连接EF,若△PAO的面积为S,求S关于m的函数关系式,并写出m的取值范围;9. 如图,已知直线343+=x y 与坐标轴交于B,C 两点,点A 是x 轴正半轴上一点,并且15=∆ABC S .点F 是线段AB 上一动点(不与端点重合),过点F 作FE ∥x 轴,交BC 于E.(1) 求AB 所在直线的解析式;(2) 若FD ⊥x 轴于D,且点D 的坐标为)0,(m ,请用含m 的代数式,表示DF 与EF 的长;(3) 在x 轴上是否存在一点P,使得△PEF 为等腰直角三角形,若存在,请直接写出点P 的坐标,若不存在,请说明理由.10.如图,在平面直角坐标系xOy 中,直线y=﹣2x +a 与y 轴交于点C (0,6),与x 轴交于点B .(1)求这条直线的解析式;(2)直线AD 与(1)中所求的直线相交于点D (﹣1,n ),点A 的坐标为(﹣3,0).①求n 的值及直线AD 的解析式; ②求△ABD 的面积;③点M 是直线y=﹣2x+a 上的一点(不与点B 重合),且点M 的横坐标为m ,求△ABM 的面积S 与m 之间的关系式.11.已知一次函数的图象经过(1,1)和(﹣1,﹣5).(1)求这个一次函数的表达式;(2)求这个一次函数的图象与x 轴、y 轴的交点坐标,并求出该图象与两坐标轴围成的三角形的面积.12.如图,边长为5的正方形OABC的顶点0在坐标原点处,点A、C分别在x轴、y轴的正半轴上,点E是0A边上的点(不与点A重合),EF⊥CE,且与正方形外角平分线AG交于点P.(1)求证:CE=EP;(2)若点E的坐标为(3,O),在y轴上是否存在点M,使得四边形BMEP是平行四边形?若存在,求出点M的坐标:若不存在,说明理由.13.已知一次函数的图象经过(1,1)和(﹣1,﹣5).(1)求这个一次函数的表达式;(2)求这个一次函数的图象与x轴、y轴的交点坐标,并求出该图象与两坐标轴围成的三角形的面积.14.直线AB与x轴交于点A(1,0),与y轴交于点B(0,-2).(1)求直线AB的解析式;(2)若直线AB上一点C在第一象限且点C的坐标为(2,2),求△BOC的面积.15.在平面直角坐标系xOy中,直线y=kx+4(k≠0)与y轴交于点A.(1)如图,直线y=-2x+1与直线y=kx+4(k≠0)交于点B,与y轴交于点C,点B的横坐标为-1.①求点B的坐标及k的值;②直线y=-2x+1、直线y=kx+4与y轴所围成的△ABC的面积等于____________;(2)直线y=kx+4(k≠0)与x轴交于点E(x0,0),若-2<x0<-1,求k的取值范围.16.如图,己知直线l:y=x+1(k≠0)的图象与x轴、y轴交于A、B两点.(1)直接写出A、B两点的坐标;(2)若P是x轴上的一个动点,求出当△PAB是等腰三角形时P的坐标;(3)在y轴上有点C(0,3),点D在直线l上.若△ACD面积等于4.请直接写出D的坐标.17.如图①所示,正方形ABCD的边长为6 cm,动点P从点A出发,在正方形的边上沿A→B →C→D运动,设运动的时间为t(s),三角形APD的面积为S(cm2),S与t的函数图象如图②所示,请回答下列问题:(1)点P在AB上运动的时间为________s,在CD上运动的速度为________cm/s,三角形APD的面积S的最大值为________cm2;(2)求出点P在CD上运动时S与t之间的函数解析式;(3)当t为何值时,三角形APD的面积为10 cm2?18.已知:如图,已知直线AB的函数解析式为y=﹣2x+8,与x轴交于点A,与y轴交于点B.(1)求A、B两点的坐标;(2)若点P(m,n)为线段AB上的一个动点(与A、B不重合),作PE⊥x轴于点E,PF ⊥y轴于点F,连接EF,若△PAO的面积为S,求S关于m的函数关系式,并写出m的取值范围;答案:1. (1)OC=4,BC=2,B(-2,4),.设解析式为,.(2),.直线,.当,,,.2.(1)依照题意画出图形,如图所示.(2)令y=x+2中y=0,则x+2=0,解得:x=﹣2,∴点B(﹣2,0);令y=﹣x+4中y=0,则﹣x+4=0,解得:x=4,∴点C(4,0);联立两直线解析式得:,解得:,∴点A (1,3).S △ABC =BC•y A =×[4﹣(﹣2)]×3=9.(3)令y=x +2中x=0,则y=2,∴点D (0,2).S 四边形ADOC =S △ABC ﹣S △DBO =9﹣×2×2=7.(4)观察函数图形,发现:当x <1时,直线a 在直线b 的下方,∴不等式x +2≤﹣x +4的解集为x ≤1;当x >4时,直线b 在x 轴的下方,∴不等式﹣x +4≤0的解集为x ≥4.3.(1)∵一次函数y=kx +b 与y=﹣2x +4是“平行一次函数”,∴k=﹣2,即y=﹣2x +b . ∵函数y=kx +b 的图象过点(3,1),∴1=﹣2×3+b ,∴b=7.(2)在y=﹣2x +4中,令x=0,得y=4,令y=0,得x=2,∴A (2,0),B (0,4),∴S △AOB =OA•OB=4.由(1)知k=﹣2,则直线y=﹣2x +b 与两坐标轴交点的坐标为(,0),(0,b ),于是有|b |•||=4×=1,∴b=±2,即y=kx +b 的解析式为y=﹣2x +2或y=﹣2x ﹣2.4.设直线l 和10个正方形的最上面交点为A ,过A 作AB ⊥OB 于B ,过A 作AC ⊥OC 于C , ∵正方形的边长为1,∴OB=3,∵经过原点的一条直线l将这10个正方形分成面积相等的两部分,∴两边分别是5,∴三角形ABO 面积是7,∴OB•AB=7,∴AB=,∴OC=AB=,由此可知直线l 经过(,3),设直线方程为y=kx (k ≠0),则3=k ,解得k=∴直线l 解析式为y=x .故答案为:y=x .5.(1) (3,0)、x <3(2) ∵S △COE =S △ADE ∴S △AOB =S △CBD 即33321621⨯⨯=⨯⨯D y ,y D =233 当y =233时,23233333==+-x x ,∴D (23323,) (3) 连接CF ∵∠CDF =60°∴△CDF 为等边三角形连接AC ∵AB =AC =BC =6∴△ABC 为等边三角形∴△CAF ≌△CBD (SAS )∴∠CAF =∠ACB =60°∴AF ∥x 轴设D (m ,333+-m )过点D 作DH ⊥x 轴于H ∴BH =3-m ,DB =6-2m =AF∴F (2m -6,33)由平移可知:G (m -9,m 3-)令⎪⎩⎪⎨⎧-=-=m y m x 39∴点G 在直线393--=x y 上6. (1)设直线的解析式为y=kx +b ,把A (﹣1,5),B (3,﹣3)代入,可得:{533=+--=+b k b k ,解得:,所以直线解析式为:y=﹣2x +3,把P (﹣2,a )代入y=﹣2x +3中,得:a=7; (2)由(1)得点P 的坐标为(﹣2,7),令x=0,则y=3,所以直线与y 轴的交点坐标为(0,3),所以△OPD 的面积=.7.∵点A 、B 的坐标分别为(2,0)、(8,0),∴AB=6,∵∠CAB=90°,BC=10, ∴CA==8,∴C 点纵坐标为:8,∵将△ABC 沿x 轴向右平移,当点C 落在直线y=x ﹣5上时,∴y=8时,8=x ﹣5,解得:x=13,即A 点向右平移13﹣2=11个单位, ∴线段BC 扫过的面积为:11×8=88.故选:B .8.(1)令x=0,则y=8,∴B (0,8),令y=0,则﹣2x +8=0,∴x=4,∴A (4,0), (2)∵点P (m ,n )为线段AB 上的一个动点,∴﹣2m +8=n ,∵A (4,0),∴OA=4,∴0<m <4∴S △PAO =OA ×PE=×4×n=2(﹣2m +8)=﹣4m +16,(0<m <4) )3,0(30343)1(,9B y x x y 即时,中,当在==+= ∴OB=3同理OC=4 ∵15)(21=⋅+OB OA OC ,153)4(21=⨯+⨯OA ∴OA=6 即点A 的坐标为(6,0) 设AB 所在直线的解析式为y=kx+b⎩⎨⎧⎩⎨⎧=+=-==213063k b b k b 解得则∴AB 所在直线的解析式为 (2)在中,当,即DF= 在中,当m x m y 32,321-=+-=时 mm m EF 35)32(=--= (3)10.(1)∵直线y=﹣2x +a 与y 轴交于点C (0,6),∴a=6,∴该直线解析式为y=﹣2x +6 (2)①∵点D (﹣1,n )在直线BC 上,∴n=﹣2×(﹣1)+6=8,∴点D (﹣1,8)设直线AD 的解析式为y=kx +b ,将点A (﹣3,0)、D (﹣1,8)代入y=kx +b 中,得:,解得:,∴直线AD 的解析式为y=4x +12.②令y=﹣2x +6中y=0,则﹣2x +6=0,解得:x=3,∴点B (3,0).∵A (﹣3,0)、D (﹣1,8),∴AB=6.S △ABD =AB•y D =×6×8=24.③∵点M 在直线y=-2x+6上,∴M (m ,-2m+6),时,即S=6m-18.11. (1)设函数解析式为y=kx +b , 由题意将两点代入得:{15=+-=+-b k b k ,解得:{32=-=k b .∴一次函数的解析式为:y=3x ﹣2;(2)令y=0,得x=32,令x=0,得y=﹣2, 3232221=⨯⨯=∴s 12.(1)在OC 上截取OK =OE .连接EK .∵OC =OA ,∠1=90°,∠OEK =∠OKE =45°,∵AP 为矩形外角平分线,∴∠BAP =45°∴∠EKC =∠PAE =135°.∴CK =EA .∵EC ⊥EP ,∴∠3=∠4.∴△EKC ≌△PAE . ∴EC =EP (2)y 轴上存在点M ,使得四边形BMEP 是平行四边形.如图,过点B 作BM ∥PE 交y 轴于点M ,∴∠5=∠CEP =90°,∴∠6=∠ 4.在△BCM 和△COE 中,⎪⎩⎪⎨⎧∠=∠=∠=∠,,,46C O E B C M OC BC ∴△BCM ≌△COE ,∴BM =CE 而CE =EP ,∴BM =EP .由于BM ∥EP ,∴四边形BMEP是平行四边形由△BCM ≌△COE 可得CM =OE =3,∴OM =CO -CM =2.故点M 的坐标为(0,2).13.(1)设函数解析式为y=kx +b ,由题意将两点代入得:,解得:.∴一次函数的解析式为:y=3x ﹣2;(2)令y=0,得x=,令x=0,得y=﹣2,∴S=×2×=.14.(1)设直线AB 的解析式为y =kx +b(k ≠0).将A(1,0),B(0,-2)代入解析式,得⎩⎪⎨⎪⎧k +b =0,b =-2.解得⎩⎪⎨⎪⎧k =2,b =-2.∴直线AB 的解析式为y =2x -2.(2)S △BOC =12×2×2=2.15.(1)32 当x =-1时,y =-2×(-1)+1=3,∴B(-1,3).将B(-1,3)代入y =kx +4,得k =1.(2)y =kx +4与x 轴的交点为(-4k ,0),∵-2<x 0<-1,∴-2<-4k<-1,(1)解得2<k<4.16.(1)当y=0时,x+1=0,解得x=﹣2,则A(﹣2,0),当x=0时,y=x+1=1,则B(0,1);(2)AB==,当AP=AB时,P点坐标为(﹣,0)或(,0);当BP=BA时,P点坐标为(2,0);当PA=PB时,作AB的垂直平分线交x轴于P,连结PB,如图1,则PA=PB,设P(t,0),则OA=t+2,OB=t+2,在Rt△OBP中,12+t2=(t+2)2,解得t=﹣,此时P点坐标为(﹣,0);(3)如图2,设D(x,x+1),当x>0时,∵S△ABC+S△BCD=S△ACD,∴•2•2+•2•x=4,解得x=2,此时D点坐标为(2,2);当x<0时,∵S△BCD﹣S△ABC=S△ACD,∴•2•(﹣x)﹣•2•2=4,解得x=﹣6,此时D点坐标为(﹣6,﹣2),综上所述,D点坐标为(2,2)或(﹣6,﹣2).故答案为(﹣2,0),(0,1);(2,2)或(﹣6,﹣2).17.略18.(1)令x=0,则y=8,∴B(0,8),令y=0,则﹣2x+8=0,∴x=4,∴A(4,0),(2)∵点P(m,n)为线段AB上的一个动点,∴﹣2m+8=n,∵A(4,0),∴OA=4,∴0<m<4∴S△PAO=OA×PE=×4×n=2(﹣2m+8)=﹣4m+16,(0<m<4)。
平面直角坐标系中如何求几何图形的面积
图1图2图3平面直角坐标系中如何求几何图形的面积一、 求三角形的面积1、有一边在坐标轴上或平行于坐标轴例1:如图1,平面直角坐标系中,△ABC 的顶点坐标分别为(-3,0)、(0,3)、(0,-1),你能求出三角形ABC 的面积吗2、无边在坐标轴上或平行于坐标轴例2:如图2,平面直角坐标系中,已知点A (-3,-1)、B (1,3)、C (2,-3),你能求出三角形ABC 的面积吗归纳:求三角形面积的关键是确定某条边及这条边上的高,如果在坐标系中,某个三角形中有一条边在坐标轴上或平行于坐标轴,则根据这条边的两个顶点的坐标易求出这边的长,根据这条边的相对的顶点可求出他的高。
二、求四边形的面积例3:如图3,你能求出四边形ABCD 的面积吗分析:四边形ABCD 是不规则的四边形,面积不能直接求出,我们可以利用分割或补形来求。
归纳:会将图形转化为有边与坐标轴平行的图形进行计算。
怎样确定点的坐标一、 象限点解决有关象限点问题的关键是熟记各象限的符号特征,由第一到底四象限点的符号特征分别为(+,+)、 (-,+)、(-,-)、(+,-)。
例1:已知点M (a 3-9,1-a )在第三象限,且它的坐标都是整数,则a =( )A 、1B 、2C 、3D 、0二、轴上的点解决有关轴上点问题的关键是把握“0”的特征,x 轴上点的纵坐标为0,可记为(x ,0);y 轴上点的横坐标为0,可记为(0,y );原点可记为(0,0)。
例2:点P (m+3,m+1)在直角坐标系的x 轴上,则P 点的坐标为( )A 、(0,-2)B 、(2,0)C 、(4,0)D 、(0,-4)三、象限角平分线上的点 所谓象限角平分线上的点,就是各象限坐标轴夹角平分线上的点。
解决这类问题的关键是掌握“y x =”的特征,一、三象限角平分线上点的横、纵坐标相等,可记为(x ,x );二、四象限角平分线上的点横、纵坐标互为相反数,可记为(x ,-x )。
人教版八年级数学下册期末复习专题在直角坐标系中求几何图形的面积(含详解)
人教版八年级数学下册期末复习专题训练——在直角坐标系中求几何图形的面积1.如图,四边形OABC是矩形,点A,C在坐标轴上,△ODE是由△OCB绕点O顺时针旋转90∘得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H,线段BC =2,OC=4(1)求直线BD的解析式.(2)求△OFH的面积.2.直线a:y=x+2和直线b:y=﹣x+4相交于点A,分别与x轴相交于点B和点C,与y轴相交于点D和点E.(1)在同一坐标系中画出函数图象;(2)求△ABC的面积;(3)求四边形ADOC的面积;(4)观察图象直接写出不等式x+2≤﹣x+4的解集和不等式﹣x+4≤0的解集.3.如果两个一次函数y=k1x+b1和y=k2x+b2满足k1=k2,b1≠b2,那么称这两个一次函数为“平行一次函数”.已知函数y=﹣2x+4的图象与x轴、y轴分别交于A、B两点,一次函数y=kx+b与y=﹣2x+4是“平行一次函数”(1)若函数y=kx+b的图象过点(3,1),求b的值;(2)若函数y=kx+b的图象与两坐标轴围成的面积是△AOB面积的,求y=kx+b的解析式.4.如图,10个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l将这10个正方形分成面积相等的两部分,求该直线l的解析式5.如图1,直线3y分别与y轴、x轴交于点A、点B,点C的坐标为(-3,0),D为直线AB -=x3+3上一动点,连接CD交y轴于点E(1) 点B的坐标为__________,不等式+3>-x的解集为___________33(2) 若S△COE=S△ADE,求点D的坐标(3) 如图2,以CD为边作菱形CDFG,且∠CDF=60°.当点D运动时,点G在一条定直线上运动,请求出这条定直线的解析式.6.在直角坐标系中,一条直线经过A(﹣1,5),P(﹣2,a),B(3,﹣3)三点.(1)求a的值;(2)设这条直线与y轴相交于点D,求△OPD的面积.7.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=10,点A、B的坐标分别为(2,0)、(8,0),将△ABC沿x轴向右平移,当点C落在直线y=x﹣5上时,求线段BC扫过的面积8.已知:如图,已知直线AB的函数解析式为y=﹣2x+8,与x轴交于点A,与y轴交于点B.(1)求A、B两点的坐标;(2)若点P(m,n)为线段AB上的一个动点(与A、B不重合),作PE⊥x 轴于点E,PF⊥y轴于点F,连接EF,若△PAO 的面积为S ,求S 关于m 的函数关系式,并写出m 的取值范围;9. 如图,已知直线343+=x y 与坐标轴交于B,C 两点,点A 是x 轴正半轴上一点,并且15=∆ABC S .点F 是线段AB 上一动点(不与端点重合),过点F 作FE ∥x 轴,交BC 于E.(1) 求AB 所在直线的解析式;(2) 若FD ⊥x 轴于D,且点D 的坐标为)0,(m ,请用含m 的代数式,表示DF 与EF 的长;(3) 在x 轴上是否存在一点P,使得△PEF 为等腰直角三角形,若存在,请直接写出点P 的坐标,若不存在,请说明理由.10.如图,在平面直角坐标系xOy 中,直线y=﹣2x +a 与y 轴交于点C (0,6),与x 轴交于点B . (1)求这条直线的解析式;(2)直线AD 与(1)中所求的直线相交于点D (﹣1,n ),点A 的坐标为(﹣3,0).①求n 的值及直线AD 的解析式; ②求△ABD 的面积;③点M 是直线y=﹣2x+a 上的一点(不与点B 重合),且点M 的横坐标为m ,求△ABM 的面积S 与m 之间的关系式.11.已知一次函数的图象经过(1,1)和(﹣1,﹣5).(1)求这个一次函数的表达式;(2)求这个一次函数的图象与x 轴、y 轴的交点坐标,并求出该图象与两坐标轴围成的三角形的面积.12.如图,边长为5的正方形OABC的顶点0在坐标原点处,点A、C分别在x轴、y轴的正半轴上,点E是0A边上的点(不与点A重合),EF⊥CE,且与正方形外角平分线AG交于点P.(1)求证:CE=EP;(2)若点E的坐标为(3,O),在y轴上是否存在点M,使得四边形BMEP是平行四边形?若存在,求出点M的坐标:若不存在,说明理由.13.已知一次函数的图象经过(1,1)和(﹣1,﹣5).(1)求这个一次函数的表达式;(2)求这个一次函数的图象与x轴、y轴的交点坐标,并求出该图象与两坐标轴围成的三角形的面积.14.直线AB与x轴交于点A(1,0),与y轴交于点B(0,-2).(1)求直线AB的解析式;(2)若直线AB上一点C在第一象限且点C的坐标为(2,2),求△BOC的面积.15.在平面直角坐标系xOy中,直线y=kx+4(k≠0)与y轴交于点A.(1)如图,直线y=-2x+1与直线y=kx+4(k≠0)交于点B,与y轴交于点C,点B的横坐标为-1.①求点B的坐标及k的值;②直线y=-2x+1、直线y=kx+4与y轴所围成的△ABC的面积等于____________;(2)直线y=kx+4(k≠0)与x轴交于点E(x0,0),若-2<x0<-1,求k的取值范围.16.如图,己知直线l:y=x+1(k≠0)的图象与x轴、y轴交于A、B两点.(1)直接写出A、B两点的坐标;(2)若P是x轴上的一个动点,求出当△PAB是等腰三角形时P的坐标;(3)在y轴上有点C(0,3),点D在直线l上.若△ACD面积等于4.请直接写出D的坐标.17.如图①所示,正方形ABCD的边长为6 cm,动点P从点A出发,在正方形的边上沿A→B→C→D运动,设运动的时间为t(s),三角形APD的面积为S(cm2),S与t的函数图象如图②所示,请回答下列问题:(1)点P在AB上运动的时间为________s,在CD上运动的速度为________cm/s,三角形APD的面积S的最大值为________cm2;(2)求出点P在CD上运动时S与t之间的函数解析式;(3)当t为何值时,三角形APD的面积为10 cm2?18.已知:如图,已知直线AB的函数解析式为y=﹣2x+8,与x轴交于点A,与y轴交于点B.(1)求A、B两点的坐标;(2)若点P(m,n)为线段AB上的一个动点(与A、B不重合),作PE⊥x轴于点E,PF⊥y轴于点F,连接EF,若△PAO的面积为S,求S关于m的函数关系式,并写出m的取值范围;答案:1. (1) OC=4,BC=2,B(-2,4)∵OD =OC =4,∴D (4,0).设 BD 解析式为 y =kx +b (k ≠0), ∴{−2k +b =4,4k +b =0 ∴{k =−23,b =83.∴y =−23x +83. (2) ∵DE =2, ∴E (4,2). ∴ 直线 OE:y =12x ,∴{y =−23x +83,y =12x, ∴{x =167,y =87, ∴H (167,87).当 x =0,y =83, ∴F (0,83), ∴S △OFH =12×83×167=6421. 2.(1)依照题意画出图形,如图所示.(2)令y=x +2中y=0,则x +2=0,解得:x=﹣2,∴点B (﹣2,0);令y=﹣x +4中y=0,则﹣x +4=0,解得:x=4,∴点C (4,0);联立两直线解析式得:,解得:,∴点A (1,3).S △ABC =BC•y A =×[4﹣(﹣2)]×3=9.(3)令y=x +2中x=0,则y=2,∴点D (0,2).S 四边形ADOC =S △ABC ﹣S △DBO =9﹣×2×2=7.(4)观察函数图形,发现:当x <1时,直线a 在直线b 的下方,∴不等式x +2≤﹣x +4的解集为x ≤1;当x >4时,直线b 在x 轴的下方,∴不等式﹣x +4≤0的解集为x ≥4.3.(1)∵一次函数y=kx +b 与y=﹣2x +4是“平行一次函数”,∴k=﹣2,即y=﹣2x +b . ∵函数y=kx +b 的图象过点(3,1),∴1=﹣2×3+b ,∴b=7.(2)在y=﹣2x +4中,令x=0,得y=4,令y=0,得x=2,∴A (2,0),B (0,4),∴S △AOB =OA•OB=4.由(1)知k=﹣2,则直线y=﹣2x +b 与两坐标轴交点的坐标为(,0),(0,b ),于是有|b |•||=4×=1,∴b=±2,即y=kx +b 的解析式为y=﹣2x +2或y=﹣2x ﹣2.4.设直线l 和10个正方形的最上面交点为A ,过A 作AB ⊥OB 于B ,过A 作AC ⊥OC 于C , ∵正方形的边长为1,∴OB=3,∵经过原点的一条直线l 将这10个正方形分成面积相等的两部分,∴两边分别是5,∴三角形ABO 面积是7,∴OB•AB=7,∴AB=,∴OC=AB=,由此可知直线l 经过(,3),设直线方程为y=kx (k ≠0),则3=k ,解得k=∴直线l 解析式为y=x .故答案为:y=x .5.(1) (3,0)、x <3(2) ∵S △COE =S △ADE ∴S △AOB =S △CBD 即33321621⨯⨯=⨯⨯D y ,y D =233 当y =233时,23233333==+-x x ,∴D (23323,) (3) 连接CF ∵∠CDF =60°∴△CDF 为等边三角形连接AC ∵AB =AC =BC =6∴△ABC 为等边三角形∴△CAF ≌△CBD (SAS )∴∠CAF =∠ACB =60°∴AF ∥x 轴设D (m ,333+-m )过点D 作DH ⊥x 轴于H ∴BH =3-m ,DB =6-2m =AF∴F (2m -6,33)由平移可知:G (m -9,m 3-)令⎪⎩⎪⎨⎧-=-=m y m x 39∴点G 在直线393--=x y 上6. (1)设直线的解析式为y=kx +b ,把A (﹣1,5),B (3,﹣3)代入,可得:{533=+--=+b k b k ,解得:,所以直线解析式为:y=﹣2x +3,把P (﹣2,a )代入y=﹣2x +3中,得:a=7;(2)由(1)得点P 的坐标为(﹣2,7),令x=0,则y=3,所以直线与y 轴的交点坐标为(0,3),所以△OPD 的面积=.7.∵点A 、B 的坐标分别为(2,0)、(8,0),∴AB=6,∵∠CAB=90°,BC=10, ∴CA==8,∴C 点纵坐标为:8,∵将△ABC 沿x 轴向右平移,当点C 落在直线y=x ﹣5上时,∴y=8时,8=x ﹣5,解得:x=13,即A 点向右平移13﹣2=11个单位, ∴线段BC 扫过的面积为:11×8=88.故选:B .8.(1)令x=0,则y=8,∴B (0,8),令y=0,则﹣2x +8=0,∴x=4,∴A (4,0), (2)∵点P (m ,n )为线段AB 上的一个动点,∴﹣2m +8=n ,∵A (4,0),∴OA=4,∴0<m <4∴S △PAO =OA ×PE=×4×n=2(﹣2m +8)=﹣4m +16,(0<m <4) )3,0(30343)1(,9B y x x y 即时,中,当在==+= ∴OB=3同理OC=4 ∵15)(21=⋅+OB OA OC ,153)4(21=⨯+⨯OA ∴OA=6 即点A 的坐标为(6,0) 设AB 所在直线的解析式为y=kx+b⎩⎨⎧⎩⎨⎧=+=-==213063k b b k b 解得则∴AB 所在直线的解析式为 (2)在中,当,即DF= 在中,当mx m y 32,321-=+-=时mm m EF 35)32(=--= (3)10.(1)∵直线y=﹣2x +a 与y 轴交于点C (0,6),∴a=6,∴该直线解析式为y=﹣2x +6 (2)①∵点D (﹣1,n )在直线BC 上,∴n=﹣2×(﹣1)+6=8,∴点D (﹣1,8) 设直线AD 的解析式为y=kx +b ,将点A (﹣3,0)、D (﹣1,8)代入y=kx +b 中, 得:,解得:,∴直线AD 的解析式为y=4x +12.②令y=﹣2x +6中y=0,则﹣2x +6=0,解得:x=3,∴点B (3,0).∵A(﹣3,0)、D (﹣1,8),∴AB=6.S △ABD =AB•y D =×6×8=24.③∵点M 在直线y=-2x+6上,∴M (m ,-2m+6),当m <3时,S=16(26)2m ⨯⨯-+即618S m =-+;当m >3时,即S=6m -18.11. (1)设函数解析式为y=kx +b ,由题意将两点代入得:{15=+-=+-b k b k ,解得:{32=-=k b .∴一次函数的解析式为:y=3x ﹣2;(2)令y=0,得x=32,令x=0,得y=﹣2, 3232221=⨯⨯=∴s 12.(1)在OC 上截取OK =OE .连接EK .∵OC =OA ,∠1=90°,∠OEK =∠OKE =45°,∵AP 为矩形外角平分线,∴∠BAP =45°∴∠EKC =∠PAE =135°.∴CK =EA .∵EC ⊥EP ,∴∠3=∠4.∴△EKC ≌△PAE . ∴EC =EP (2)y 轴上存在点M ,使得四边形BMEP 是平行四边形.如图,过点B 作BM ∥PE 交y 轴于点M ,∴∠5=∠CEP =90°,∴∠6=∠ 4.在△BCM 和△COE 中,⎪⎩⎪⎨⎧∠=∠=∠=∠,,,46COE BCM OC BC ∴△BCM ≌△COE ,∴BM =CE 而CE =EP ,∴BM =EP .由于BM ∥EP ,∴四边形BMEP 是平行四边形由△BCM ≌△COE可得CM =OE =3,∴OM =CO -CM =2.故点M 的坐标为(0,2).13.(1)设函数解析式为y=kx +b ,由题意将两点代入得:,解得:.∴一次函数的解析式为:y=3x ﹣2;(2)令y=0,得x=,令x=0,得y=﹣2,∴S=×2×=.14.(1)设直线AB 的解析式为y =kx +b(k ≠0).将A(1,0),B(0,-2)代入解析式,得⎩⎪⎨⎪⎧k +b =0,b =-2.解得⎩⎪⎨⎪⎧k =2,b =-2.∴直线AB 的解析式为y =2x -2.(2)S △BOC =12×2×2=2.15.(1)32 当x =-1时,y =-2×(-1)+1=3,∴B(-1,3).将B(-1,3)代入y =kx +4,得k =1.(2)y =kx +4与x 轴的交点为(-4k ,0),∵-2<x 0<-1,∴-2<-4k <-1,(1) 解得2<k <4.16.(1)当y=0时,x+1=0,解得x=﹣2,则A (﹣2,0),当x=0时,y=x+1=1,则B (0,1);(2)AB==,当AP=AB 时,P 点坐标为(﹣,0)或(,0);当BP=BA时,P点坐标为(2,0);当PA=PB时,作AB的垂直平分线交x轴于P,连结PB,如图1,则PA=PB,设P(t,0),则OA=t+2,OB=t+2,在Rt△OBP中,12+t2=(t+2)2,解得t=﹣,此时P 点坐标为(﹣,0);(3)如图2,设D(x,x+1),当x>0时,∵S△ABC+S△BCD=S△ACD,∴•2•2+•2•x=4,解得x=2,此时D点坐标为(2,2);当x<0时,∵S△BCD﹣S△ABC=S△ACD,∴•2•(﹣x)﹣•2•2=4,解得x=﹣6,此时D点坐标为(﹣6,﹣2),综上所述,D点坐标为(2,2)或(﹣6,﹣2).故答案为(﹣2,0),(0,1);(2,2)或(﹣6,﹣2).17.略18.(1)令x=0,则y=8,∴B(0,8),令y=0,则﹣2x+8=0,∴x=4,∴A(4,0),(2)∵点P(m,n)为线段AB上的一个动点,∴﹣2m+8=n,∵A(4,0),∴OA=4,∴0<m<4∴S△PAO=OA×PE=×4×n=2(﹣2m+8)=﹣4m+16,(0<m<4)。
中考数学压轴题:二次函数中的面积问题(含答案)
学生/课程年级日期学科时段课型数学授课教师核心内容二次函数中求面积最值,图形平移或折叠面积问题1.会利用函数的图象性质来研究几何图形的面积最值问题;教学目标重、难点2.掌握几种求图形面积的常见解题方法与技巧,如:割补法、平行等积变换法等。
3.掌握图形平移或折叠变换过程中找等量关系列函数解析式求图形面积问题的一般方法.割补法求三角形面积,动态问题一般解题思路。
了解学生的学习情况S△ = a h或S△ = a d (d表示已知点到直线的距离)以动点作垂直(平行)x轴的直线,即铅垂高,再分别过点A,C作PF的高,即和为水平宽。
S△ = ×水平宽×铅垂高如下图:①等底等高的两个三角形面积相等.②底在同一条直线上并且相等,该底所对角的顶点是同一个点或在与底平行的直线上,这两个三角形面积相等.如图,AD∥BC中,AC与BD交点O,则S△ABC = S△DBC,S△AOB = S△COD2如图,在平面直角坐标系中,抛物线y=mx -8mx+4m+2(m>0)与y轴的交点为A,与x轴的交点分别为B(x ,10),C(x ,0),且x -x =4,直线AD∥x轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线,直线AD2 2 1的交点分别为P,Q.(1)求抛物线的解析式;(2)当0<t≤8时,求△APC面积的最大值.图形面积的求法常见有三种,分别是:(1)_______________________________(2)_______________________________(3)_______________________________[学有所获答案] (1)直接公式求法 割补法 平行线等积变换法(2)(3) 2 如图,已知抛物线y =x +bx +c 与 轴交于A ,B 两点(点A 在点B 的左侧)与 轴交于点C (0,-3),对称轴是直线x=1,直线BC 与抛物线的对称轴交于点D ,点E 为y 轴上一动点,CE 的垂直平分线交抛物线于P ,Q 两点(点P 在第三象限)(1)求抛物线的函数表达式和直线BC 的函数表达式;(2)当△CDE 是直角三角形,且∠CDE =90°时,求出点P 的坐标;(3)当△PBC 的面积为 时,求点E 的坐标.2 如图,已知抛物线y = x +ax +4a 与x 轴交于点A ,B ,与y 轴负半轴交于点C 且OB =OC ,点P 为抛物线上的一个动点,且点P 位于x 轴下方,点P 与点C 不重合.(1)求该抛物线的解析式;(2)若△PAC 的面积为 ,求点P 的坐标;(3)若以A ,B ,C ,P 为顶点的四边形面积记作S ,则S 取何值时,对应的点P 有且只有2个?将()的图像如何平移到的图像。
在平面直角坐标系中求几何图形的面积
如图所示,求△ OAB的面积。
y
方法三:
5 4 3 2 1
N
B(3,4)
•
M
s1 s3
1 2 3 4
s2
• A(5,2)
-2
o• -1 -1 -2
5P
x
S=S长方形OPMN– S1 – S2 –S3
二、坐标系中四边形面积的求法
例4.如图所示,则四边形AOBC的面积是
y
。
方法一:
5 4 3
•
C(3,4)
• s1 A(0,2)
2 1 -2 o• -1 -1 -2 1 2
s2
3
4
5
• B(5,0)
x
S=S1+S2
如图所示,则四边形AOBC的面积是
y
。
方法二:
5 4 3
•
C(3,4)
• A(0,2)
2 1 -2 o• -1 -1 -2 1
s1
2 3
H
s2
4 =9+4 =13 5
• B(5,0)
x
S=S1+S2
5 4 3 2 1
N
B(3,4)
•
M
s1
s2
• A(5,2)
-2
o• -1 -1 -2
1
2
3
4
5
x
S=S梯形OAMN– S1 –S2
如图所示,求△ OAB的面积。
y
方法二:
5 4 3 2 1
B(3,4)
•
M
s1
• A(5,2)
s2
1 2 3 4 5P x
-2
o• -1 -1 -2
几何概型中_面积型_测度典型问题例析
1 2 = 60 × 40 2
2
1 2 2 2 ×40 = 60 - 40 , 2
设“ 两人能会面 ” 为事件 A, 则 2 2 d 60 - 40 2 2 5 P (A ) = = =1 - ( ) = , 2 D 3 9 60
・14・
数理化学习 (高中版 ) 分析 : 雨点落在地图 上的 概 率 问 题 是 几 何 概 型 , 用面积比计算 . 雨点 打在 地 图 和 板 上 是 随 机 的 , 地图上有 9 个雨点痕 迹 , 板上其他位置有 18 个 雨点痕迹 , 由此计算雨点 落在地图上的概率 , 反过来推导地图面积 . 解 :由题意 , 雨点落在地图上的概率 P = 9 1 = , 又正方形板的面积为 1平方米 , 故 9 + 18 3 1 1 所求地图面积为 1 × = 平方米 . 3 3 点评 :本题有别于常规的面积型概率计算 , 设计新颖 , 不直接问事件的概率 , 而是通过随机 性先求出雨点落在地图上的概率 , 再由几何概 型的公式来求地图面积 . 江苏省张家港市暨阳高级中学 ( 215600 ) ●王 杰
上点的最近距离是 2. 2 51若抛物线 y = ax - 1 ( a > 0 ) 上存在关
●吕兆勇
几何概型中“ 面积型 ” 测度典型问题例析
解决几何概型问题的关键是利用己知条 件建立适当的几何模型 , 从建立的几何模型入 手 , 来解决概率问题 . 本文从几何概型“ 面积 型” 测度中的几个典型问题来说明如何解决此 类问题 . 例 1 在面积为 S的 △AB C内任选一点 P, 则 △PB C 的面积小于
约定见车就乘的事件所表示的区域d为图中4个黑的小方格所示所求概率约定最多等一班车的事件所表示的区域d为图中10个黑的小方格所示所求概率为1016从上面几例我们可以看出要解决面积型测度概率问题关键在于如何将文字语言转化为与之对应的图形语言在这点上需认真地体会
平面直角坐标系与几何图形的综合(解析版)
【期末复习】浙教版八年级上册提分专题:平面直角坐标系与几何图形的综合各问题归纳总结若点()11y x A ,、()22y x B ,、()b a P ,问题一:若点P 在x 轴上,则b=0; 若点P 在y 轴上,则a=0;若点P 在第一象限,则a >0,b >0; 若点P 在第二象限,则a <0,b >0; 若点P 在第三象限,则a <0,b <0; 若点P 在第四象限,则a >0,b <0;问题二:若点A 、B 在同一水平线上,则21y y =; 若点A 、B 在同一竖直线上,则21x x =; 若点P 在第一、三象限角平分线上,则b a =;若点P 在第二、四象限角平分线上,则b a -=;问题三:点()b a P ,关于x 轴对称的点P 1坐标为()b a P -,1; 点()b a P ,关于y 轴对称的点P 2坐标为()b a P ,-2;点()b a P ,关于原点对称的点P 3坐标为()b a P --,3; 问题四:点的平移口诀“左减右加,上加下减”; 问题五:线段AB 的中点公式:⎪⎭⎫⎝⎛++222121y y x x ,;若点A 、B 在同一水平线上,则AB=21x x -;若点A 、B 在同一竖直线上,则AB=21y y -;若点A 、B 所在直线是倾斜的,则AB=()()221221y y x x AB -+-=(两点间距离公式)问题六:点()b a P ,到x 轴的距离=|b|;点()b a P ,到y 轴的距离=|a|;问题七:割补法,优先分割,然后才是补全 问题八:周期型:①判断周期数(一般3到4个);②总数÷周期数=整周期……余数(余数是谁就和每周期的第几个规律一样) 注意横纵坐标的规律可能不同。
【类题训练】1.如图,A (8,0),B (0,6),以点A 为圆心,AC 长为半径画弧,交y 轴正半轴于点B ,则点C 的坐标为( )A .(10,0)B .(0,10)C .(﹣2,0)D .(0,﹣2)【分析】根据勾股定理求出AB ,根据坐标与图形性质解答即可. 【解答】解:由题意得,OB =6,OA =8, ∴AB ==10,则AC =10, ∴OC =AC ﹣OA =2, ∴点C 坐标为(﹣2,0), 故选:C .2.在平面直角坐标系中,点A 的坐标为(﹣1,3),点B 的坐标为(5,3),则线段AB 上任意一点的坐标可表示为( )A.(3,x)(﹣1≤x≤5)B.(x,3)(﹣1≤x≤5)C.(3,x)(﹣5≤x≤1)D.(x,3)(﹣5≤x≤1)【分析】根据A、B两点纵坐标相等,可确定AB与x轴平行,即可求解.【解答】解:∵点A的坐标为(﹣1,3),点B的坐标为(5,3),A、B两点纵坐标都为3,∴AB∥x轴,∴线段AB上任意一点的坐标可表示为(x,3)(﹣1≤x≤5),故选:B.3.如图,在四边形ABCD中,AD∥BC∥x轴,下列说法中正确的是()A.点A与点D的纵坐标相同B.点A与点B的横坐标相同C.点A与点C的纵坐标相同D.点B与点D的横坐标相同【分析】根据与x轴平行的直线上点的坐标特征计算判断.【解答】解:∵平行四边形ABCD中,AD∥BC∥x轴,∴点A与D的纵坐标相同,点B与C的纵坐标相同.故选:A.4.如图,已知∠AOB=30°,∠AOC=60°,∠AOD=90°,∠AOE=120°,∠AOF=150°,若点B可表示为点B(2,30),点C可表示为点C(1,60),点E可表示为点E(3,120),点F可表示为点F(4,150),点B 可表示为点B(2,30),则D点可表示为()A.D(0,90)B.D(90,0)C.D(90,5)D.D(5,90)【分析】根据题干得出规律,从而得出答案.【解答】解:根据题意知:横坐标表示长度,纵坐标表示角度,从而得出D点可表示为(5,90),故选:D.5.在平面直角坐标系中,若A(m+3,m﹣1),B(1﹣m,3﹣m),且直线AB∥x轴,则m的值是()A.﹣1B.1C.2D.3【分析】根据平行于x轴的直线上的点的纵坐标相等,建立方程求解即可求得答案.【解答】解:∵直线AB∥x轴,∴m﹣1=3﹣m,解得:m=2,故选:C.6.如图,在平面直角坐标系中,半径均为1个单位长度的半圆组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2022秒时,点P的坐标是()A.(2021,0)B.(2022,﹣1)C.(2021,﹣1)D.(2022,0)【分析】利用坐标与图形的关系,结合路程问题求解.【解答】解:一个半圆的周长是π,速度是每秒,所以走一个半圆需要2秒,2022秒正好可以走1011个半圆,故选:D.7.如图,在平面直角坐标系中,点A(1,1),B(3,1),C(3,3),D(1,3),动点P从点A出发,以每秒1个单位长度的速度沿AB﹣BC﹣CD﹣DA﹣AB﹣…路线运动,当运动到2022秒时,点P的坐标为()A.(1,1)B.(3,1)C.(3,3)D.(1,3)【分析】利用路程找规律,看最后的路脚点,再求解.【解答】解:由题意得:四边形ABCD是正方形,且边长是2,点P运动一周需要8秒,2022÷8商252余6,结果到点D处,故坐标为(1,3),故选:D.8.如图,在平面直角坐标系中,三角形ABC三个顶点A、B、C的坐标A(0,4),B(﹣1,b),C(2,c),BC 经过原点O,且CD⊥AB,垂足为点D,则AB•CD的值为()A.10B.11C.12D.14【分析】AB•CD可以联想到△ABC的面积公式,根据S△ABO+S△ACO=S△ABC即可求解.【解答】解:∵A(0,4),∴OA=4,∵B(﹣1,b),C(2,c),∴点B,C到y轴的距离分别为1,2,∵S△ABO+S△ACO=S△ABC,∴×4×1+×4×2=×AB•CD,∴AB•CD=12,故答案为:C.9.如图,在平面直角坐标系中,A,B,C三点坐标分别为(0,a),(0,3﹣a),(1,2),且点A在点B的下方,连接AC,BC,若在AB,BC,AC若所围成区域内(含边界),横坐标和纵坐标都为整数的点的个数为5个,那么a的取值范围是()A.﹣1<a≤0B.﹣1≤a≤1C.1≤a<2D.0<a≤1【分析】根据题意得出除了点C外,其它三个横纵坐标为整数的点落在所围区域的边界上,即线段AB上,从而求出a的取值范围.【解答】解:∵点A(0,a),点B(0,3﹣a),且A在B的下方,∴a<3﹣a,解得:a<1.5,若在AB,BC,AC所围成区域内(含边界),横坐标和纵坐标都为整数的点的个数为5个,∵点A,B,C的坐标分别是(0,a),(0,3﹣a),(1,2),∴区域内部(不含边界)没有横纵坐标都为整数的点,∴已知的5个横纵坐标都为整数的点都在区域的边界上,∵点C(1,2)的横纵坐标都为整数且在区域的边界上,∴其他的4个都在线段AB上,∴3≤3﹣a<4.解得:﹣1<a≤0,故选:A.10.如图,在平面直角坐标系中,OABC是正方形,点A的坐标是(4,0),点P为边AB上一点,∠CPB=60°,沿CP折叠正方形,折叠后,点B落在平面内点B′处,则B′点的坐标为()A.(2,2)B.(,)C.(2,)D.(,)【分析】过点B′作B′D⊥OC,因为∠CPB=60°,CB′=OC=OA=4,所以∠B′CD=30°,B′D=2,根据勾股定理得DC=2,故OD=4﹣2,即B′点的坐标为(2,).【解答】解:过点B′作B′D⊥OC∵∠CPB=60°,CB′=OC=OA=4∴∠B′CD=30°,B′D=2根据勾股定理得DC=2∴OD=4﹣2,即B′点的坐标为(2,)故选:C.11.如图,在x轴,y轴上分别截取OA,OB,使OA=OB,再分别以点A,B为圆心,以大于AB长为半径画弧,两弧交于点P.若点P的坐标为(a,2a﹣3),则a的值为.【分析】根据作图方法可知点P在∠BOA的角平分线上,由角平分线的性质可知点P到x轴和y轴的距离相等,可得关于a的方程,求解即可.【解答】解:∵OA=OB,分别以点A,B为圆心,以大于AB长为半径画弧,两弧交于点P,∴点P在∠BOA的角平分线上,∴点P到x轴和y轴的距离相等,又∵点P的坐标为(a,2a﹣3),∴a=2a﹣3,∴a=3.故答案为:3.12.如图,△ABC中,点A的坐标为(0,1),点C的坐标为(4,3),如果要使△ABD与△ABC全等,那么点D的坐标是.【分析】因为△ABD与△ABC有一条公共边AB,故本题应从点D在AB的上边、点D在AB的下边两种情况入手进行讨论,计算即可得出答案.【解答】解:△ABD与△ABC有一条公共边AB,当点D在AB的下边时,点D有两种情况:①坐标是(4,﹣1);②坐标为(﹣1,﹣1);当点D在AB的上边时,坐标为(﹣1,3);点D的坐标是(4,﹣1)或(﹣1,3)或(﹣1,﹣1).13.教材上曾让同学们探索过线段的中点坐标:在平面直角坐标系中,有两点A(x1,y1)、B(x2,y2),所连线段AB的中点是M,则M的坐标为(,),如:点A(1,2)、点B(3,6),则线段AB的中点M 的坐标为(,),即M(2,4).利用以上结论解决问题:平面直角坐标系中,若E(a﹣1,a),F(b,a﹣b),线段EF的中点G恰好位于y轴上,且到x轴的距离是1,则4a+b的值等于.【分析】根据中点坐标公式求出点G的坐标,根据线段EF的中点G恰好位于y轴上,且到x轴的距离是1,得到点G的横坐标等于0,纵坐标的绝对值为1,列出方程组求解即可.【解答】解:根据题意得:G(,),∵线段EF的中点G恰好位于y轴上,且到x轴的距离是1,∴,解得:4a+b=4或0.故答案为:4或0.14.在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”给出如下定义:若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,则点P1与点P2的“非常距离”为|y1﹣y2|,例如:点P1(1,2),点P2(3,5),因为|1﹣3|<|2﹣5|,所以点P1与点P2的“非常距离”为|2﹣5|=3,也就是图中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q的交点).已知点,B为y轴上的一个动点.(1)若点A与点B的“非常距离”为2,写出一个满足条件的点B的坐标;(2)直接写出点A与点B的“非常距离”的最小值.【分析】(1)根据点B位于y轴上,可以设点B的坐标为(0,y).由“非常距离”的定义可以确定|0﹣y|=2,据此可以求得y的值;(2)设点B的坐标为(0,y).因为|﹣﹣0|≥|0﹣y|,所以点A与点B的“非常距离”最小值为|﹣﹣0|=.【解答】解:(1)∵B为y轴上的一个动点,∴设点B的坐标为(0,y).∵|﹣﹣0|=≠4,∴|0﹣y|=2,解得y=2或y=﹣2;∴点B的坐标是(0,2)或(0,﹣2);故答案为:(0,2)或(0,﹣2);(2)∵|﹣﹣0|≥|0﹣y|,∴点A与点B的“非常距离”最小值为|﹣﹣0|=;∴点A与点B的“非常距离”的最小值为.故答案为:.15.如图,在平面直角坐标系中,已知三点的坐标分别为A(0,4),B(2,0),C(2,5),连接AB,AC,BC.(1)求AC,AB的长;(2)∠CAB是直角吗?请说明理由.【分析】(1 )过点A作AH⊥BC于点H,再利用勾股定理求解即可;(2 )利用勾股定理的逆定理即可得出结论.【解答】解:(1)如图,∵A(0,4),B(2,0),C(2,5),∴OA=4,OB=2,BC=5,过点A作AH⊥BC于点H,∴BH=OA=4,AH=OB=2,∴CH=BC﹣BH=5﹣4=1,在Rt△OAB中,AB=,在Rt△ACH中,AC=;(2)∠CAB是直角,理由:由(1)得,AC=,AB=2,BC=5,∵,∴AC2+AB2=BC2,∴∠CAB是直角.16.对于某些三角形或四边形,我们可以直接用面积公式或者用割补法来求它们的面积.下面我们再研究一种求某些三角形或四边形面积的新方法:如图1,2所示,分别过三角形或四边形的顶点A,C作水平线的铅垂线l1,l2,l1,l2之间的距离d叫做水平宽;如图1所示,过点B作水平线的铅垂线交AC于点D,称线段BD的长叫做这个三角形的铅垂高;如图2所示,分别过四边形的顶点B,D作水平线l3,l4,l3,l4之间的距离h叫做四边形的铅垂高.【结论提炼】容易证明:“三角形的面积等于水平宽与铅垂高乘积的一半”,即“S=dh”【结论应用】为了便于计算水平宽和铅垂高,我们不妨借助平面直角坐标系.已知:如图3,点A(﹣5,2),B(5,0),C(0,5),则△ABC的水平宽为10,铅垂高为,所以△ABC 面积的大小为.【再探新知】三角形的面积可以用“水平宽与铅垂高乘积的一半”来求,那四边形的面积是不是也可以这样求呢?带着这个问题,我们进行如下探索:(1)在图4所示的平面直角坐标系中,取A(﹣4,2),B(1,5),C(4,1),D(﹣2,﹣4)四个点,得到四边形ABCD.运用“水平宽与铅垂高乘积的一半”进行计算得到四边形ABCD面积的大小是;用其它的方法进行计算得到其面积的大小是,由此发现:用“S=dh”这一方法对求图4中四边形的面积.(填“适合”或“不适合”)(2)在图5所示的平面直角坐标系中,取A(﹣5,2),B(1,5),C(4,2),D(﹣2,﹣3)四个点,得到了四边形ABCD.运用“水平宽与铅垂高乘积的一半”进行计算得到四边形ABCD面积的大小是,用其它的方法进行计算得到面积的大小是,由此发现:用“S=dh”这一方法对求图5中四边形的面积.(“适合”或“不适合”)(3)在图6所示的平面直角坐标系中,取A(﹣4,2),B(1,5),C(5,1),D(﹣1,﹣5)四个点,得到了四边形ABCD.通过计算发现:用“S=dh”这一方法对求图6中四边形的面积.(填“适合”或“不适合”)【归纳总结】我们经历上面的探索过程,通过猜想、归纳,验证,便可得到:当四边形满足某些条件时,可以用“S=dh”来求面积.那么,可以用“S=dh”来求面积的四边形应满足的条件是:.【分析】【结论应用】直接代入公式即可;【再探新知】(1)求出水平宽,铅垂高,代入公式求出面积,再利用矩形面积减去周围四个三角形面积可得答案;(2)(3)与(1)同理;【归纳总结】当四边形满足一条对角线等于水平宽或铅垂高时,四边形可以用“S=dh”来求面积.【解答】解:【结论应用】由图形知,铅垂高为4,S△ABC==20,故答案为:4,20;【再探新知】(1)∵四边形ABCD的水平宽为8,铅垂高为9,∴运用“水平宽与铅垂高乘积的一半”进行计算得到四边形ABCD面积的大小为36,利用四边形ABCD所在的矩形面积减去周围四个三角形面积为8×9﹣=37.5,∴用“S=dh”这一方法对求图4中四边形的面积不合适,故答案为:36,37.5,不合适;(2)∵四边形ABCD的水平宽为9,铅垂高为8,∴运用“水平宽与铅垂高乘积的一半”进行计算得到四边形ABCD面积的大小为36,利用四边形ABCD所在的矩形面积减去周围四个三角形面积为8×9﹣=36,∴用“S=dh”这一方法对求图4中四边形的面积,合适,故答案为:36,36,合适;(3)∵四边形ABCD的水平宽为9,铅垂高为10,∴运用“水平宽与铅垂高乘积的一半”进行计算得到四边形ABCD面积的大小为45,利用四边形ABCD所在的矩形面积减去周围四个三角形面积为10×9﹣=45,∴用“S=dh”这一方法对求图4中四边形的面积,合适,故答案为:合适;【归纳总结】当四边形满足一条对角线等于水平宽或铅垂高时,四边形可以用“S=dh”来求面积,故答案为:一条对角线等于水平宽或铅垂高.17.如图所示,在平面直角坐标系中,P(2,2),(1)点A在x的正半轴运动,点B在y的正半轴上,且P A=PB,①求证:P A⊥PB;②求OA+OB的值;(2)点A在x的正半轴运动,点B在y的负半轴上,且P A=PB,③求OA﹣OB的值;④点A的坐标为(8,0),求点B的坐标.【分析】(1)①过点P作PE⊥x轴于E,作PF⊥y轴于F,根据点P的坐标可得PE=PF=2,然后利用“HL”证明Rt△APE和Rt△BPF全等,根据全等三角形对应角相等可得∠APE=∠BPF,然后求出∠APB=∠EPF=90°,再根据垂直的定义证明;②根据全等三角形对应边相等可得AE=BF,再表示出OA、OB,然后列出方程整理即可得解;(2)③根据全等三角形对应边相等可得AE=BF,再表示出PE、PF,然后列出方程整理即可得解;④求出AE的长度,再根据全等三角形对应边相等可得AE=BF,然后求出OB,再写出点B的坐标即可.【解答】(1)①证明:如图1,过点P作PE⊥x轴于E,作PF⊥y轴于F,∵P(2,2),∴PE=PF=2,在Rt△APE和Rt△BPF中,,∴Rt△APE≌Rt△BPF(HL),∴∠APE=∠BPF,∴∠APB=∠APE+∠BPE=∠BPF+∠BPE=∠EPF=90°,∴P A⊥PB;②解:∵Rt△APE≌Rt△BPF,∴BF=AE,∵OA=OE+AE,OB=OF﹣BF,∴OA+OB=OE+AE+OF﹣BF=OE+OF=2+2=4;(2)解:③如图2,∵Rt△APE≌Rt△BPF,∴AE=BF,∵AE=OA﹣OE=OA﹣2,BF=OB+OF=OB+2,∴OA﹣2=OB+2,∴OA﹣OB=4;④∵PE=PF=2,PE⊥x轴于E,作PF⊥y轴于F,∴四边形OEPF是正方形,∴OE=OF=2,∵A(8,0),∴OA=8,∴AE=OA﹣OE=8﹣2=6,∵Rt△APE≌Rt△BPF,∴AE=BF=6,∴OB=BF﹣OF=6﹣2=4,∴点B的坐标为(0,﹣4).18.如图,在平面直角坐标系xOy中,点B(1,0),点C(5,0),以BC为边在x轴的上方作正方形ABCD,点M(﹣5,0),N(0,5).(1)点A的坐标为;点D的坐标为;(2)将正方形ABCD向左平移m个单位,得到正方形A'B'C'D',记正方形A'B'C'D'与△OMN重叠的区域(不含边界)为W:①当m=3时,区域内整点(横,纵坐标都是整数)的个数为;②若区域W内恰好有3个整点,请直接写出m的取值范围.【分析】(1)先求出正方形的边长为BC=4,再求点的坐标即可;(2)①画出正方形A'B'C'D',结合图形求解即可;②在△OMN中共有6个整数点,在平移正方形ABCD,找到恰好有3个整数解的情况即可.【解答】解:(1)∵点B(1,0),点C(5,0),∴BC=4,∵四边形ABCD是正方形,∴A(1,4),D(5,4),故答案为:(1,4),(5,4);(2)①如图:共有3个,故答案为:3;②在△OMN中共有6个整数点,分别是(﹣1,1),(﹣1,2),(﹣1,3),(﹣2,1),(﹣2,2),(﹣3,1),∵区域W内恰好有3个整点,∴2<m≤3或6≤m<7.19.类比学习是知识内化的有效途径,认真读题是正确审题的第一步:对于平面直角坐标系xOy中的点P(a,b),若点P'的坐标为(其中k为常数,且k≠0),则称点P'为点P的“k系好友点”;例如:P(1,2)的“3系好友点”为即.请完成下列各题.(1)点P(﹣3,1)的“2系好友点”P'的坐标为.(2)若点P在y轴的正半轴上,点P的“k系好友点”为P'点,若在三角形OPP'中,pp′=3OP,求k的值.(3)已知点A(x,y)在第四象限,且满足xy=﹣8;点A是点B(m,n)的“﹣2系好友点”,求m﹣2n的值.【分析】(1)根据“k系好友点”的定义列式计算求解;(2)设P(0,t)(t>0),根据定义得点P′(kt,t),则PP′=|kt|=3OP=3t,即可求解;(3)点A是点B(m,n)的“﹣2系好有点”,可得点A(m﹣2n,n﹣),由xy=﹣8得到(m﹣2n)2=16,即可求解.【解答】解:(1)点P(﹣3,1),根据“k系好友点”的求法可知,k=2,∵﹣3+2×1=﹣1,1+=﹣,∴P′的坐标为(﹣1,﹣),故答案为(﹣1,﹣);(2)设P(0,t)其中t>0,根据“k系好友点”的求法可知,P′(kt,t),∴PP'∥x轴,∴PP'=|kt|,又∵OP=t,PP'=3OP,∴|kt|=3t,∴k=±3;(3)∵B(m,n)的﹣3系好有点A为(m﹣2n,n﹣),∴x=m﹣2n,y=n﹣,又∵xy=﹣8,∴(m﹣2n)•(n﹣)=﹣8,∴m﹣2n=±4,∵点A在第四象限,∴x>0,即m﹣2n=4.20.如图,在以点O为原点的平面直角坐标系中点A,B的坐标分别为(a,0),(a,b),点C在y轴上,且BC∥x轴,a,b满足|a﹣3|+=0.点P从原点出发,以每秒2个单位长度的速度沿着O﹣A﹣B﹣C﹣O的路线运动(回到O为止).(1)直接写出点A,B,C的坐标;(2)当点P运动3秒时,连接PC,PO,求出点P的坐标,并直接写出∠CPO,∠BCP,∠AOP之间满足的数量关系;(3)点P运动t秒后(t≠0),是否存在点P到x轴的距离为t个单位长度的情况.若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)利用绝对值和二次根式的非负性即可求得;(2)当P运动3秒时,点P运动了6个单位长度,根据AO=3,即可得点P在线段AB上且AP=3,写出P 的坐标即可;作PE∥AO.利用平行线的性质证明即可;(3)由t≠0得点P可能运动到AB或BC或OC上.再分类讨论列出一元一次方程解得t即可.【解答】解:(1)∵|a﹣3|+=0且|a﹣3|≥0,≥0,∴|a﹣3|=0,=0,∴a=3,b=4,∴A(3,0),B(3,4),C(0,4);(2)如图,当P运动3秒时,点P运动了6个单位长度,∵AO=3,∴点P运动3秒时,点P在线段AB上,且AP=3,∴点P的坐标是(3,3);如图,作PE∥AO.∵CB∥AO,PE∥AO,∴CB∥PE,∴∠BCP=∠EPC,∠AOP=∠EPO,∴∠CPO=∠BCP+∠AOP;(3)存在.∵t≠0,∴点P可能运动到AB或BC或OC上.①当点P运动到AB上时,2t≤7,∵0<t≤,P A=2t﹣OA=2t﹣3,∴2t﹣3=t,解得:t=2,∴P A=2×2﹣3=1,∴点P的坐标为(3,1);②当点P运动到BC上时,7≤2t≤10,即≤t≤5,∵点P到x轴的距离为4,∴t=4,解得t=8,∵≤t≤5,∴此种情况不符合题意;③当点P运动到OC上时,10≤2t≤14,即5≤t≤7,∵PO=OA+AB+BC+OC﹣2t=14﹣2t,∴14﹣2t=t,解得:t=,∴PO=﹣2×+14=,∴点P的坐标为(0,).综上所述,点P运动t秒后,存在点P到x轴的距离为t个单位长度的情况,点P的坐标为(3,1)或(0,).。
一次函数与几何图形面积问题含答案
一次函数与几何图形面积问题解析课时小练一、新课导入(一)学习目标学会运用数形结合思想,能根据题意处理与面积有关的一次函数问题,依据函数性质及图形特征学会面积转化,建立相应的数式关系,运用方程或不等式的知识来解决问题.(二)预习导入如图,已知A(0,2),B(6,0),C(2,m)),当S△ABC=1时,m=______..二、典型问题知识点一:与静态图形有关的面积问题例1如图,点A,B的坐标分别为(0,2),(1,0),直线y=12x−3与y轴交于点C、与x 轴交于点D.(1)直线AB解析式为y=kx+b,求直线AB与CD交点E的坐标;(2)四边形OBEC的面积是________;分析:(1)运用待定系数法即可得到直线AB解析式,再根据方程组的解,即可得到直线AB 与CD交点E的坐标;(2)根据坐标轴上点的特征求出C、D两点的坐标,然后根据S四边形OBEC=S△DOC−S△DBE 面积公式计算即可;知识点二:与动态图形有关的面积问题例2如图,平面直角坐标系中,直线AB:y=﹣x+b交y轴于点A,交x轴于点B,S△AOB=8.(1)求点B的坐标和直线AB的函数解析式;(2)直线a垂直平分OB交AB于点D,交x轴于点E,点P是直线a上一动点,且在点D 的上方,设点P的纵坐标为m.①用含m的代数式表示△ABP的面积;②当S△ABP=6时,点P的坐标为;③在②的条件下,在坐标轴上,是否存在一点Q,使得△ABQ与△ABP面积相等?若存在,直接写出点Q的坐标,若不存在,请说明理由.分析:(1)利用一次函数图象上点的坐标特征可找出点A、B的坐标,结合S△AOB=8即可求出b值,进而可得出点B的坐标和直线AB的函数表达式;(2)①由OB的长度结合直线a垂直平分OB,可得出OE、BE的长度,利用一次函数图象上点的坐标特征可求出点D的坐标,进而可用含m的代数式表示出DP的值,再利用三角形的面积公式即可用含m的代数式表示△ABP的面积;②由①的结论结合S△ABP=6,即可求出m值,此题得解;③分点Q在x轴及y轴两种情况考虑,利用三角形的面积公式即可求出点Q的坐标,此题得解.三、阶梯训练A组:基础练习1.直线y=kx-4与两坐标轴所围成三角形的面积是4,则k=.2.已知直线y=2x+4与x轴、y轴分别交于A,B两点,点P(﹣1,m)为平面直角坐标系内一动点,若△ABP面积为1,则m的值为.3.如图,过点A(2,0)的两条直线l1,l2分别交y轴于B,C,其中点B在原点上方,点C在原点下方,已知AB=13.(1)则点B的坐标为;(2)若△ABC的面积为4,求l2的解析式为.4.如图,直线y=12x+2分别与x轴、y轴相交于点A,B两点.(1)求点A和点B的坐标;(2)若点P是y轴上的一点,设△AOB、△ABP的面积分别为S△AOB与S△ABP,且S△ABP=2S△AOB,求点P的坐标.5.如图,点N(0,6),点M在x轴负半轴上,ON=3OM,A为线段MN上一动点,AB ⊥x轴,垂足为点B,AC⊥y轴,垂足为点C.(1)点M的坐标为;(2)求直线MN的解析式;(3)若点A的横坐标为﹣1,求四边形ABOC的面积.6.如图,在平面直角坐标系中,O为坐标原点,直线l1:y=12x与直线l2:y=−x+6交于点A,l2与x轴交于B,与y轴交于点C.(1)求△OAC的面积;(2)若点M在直线l2上,且使得△OAM的面积是△OAC面积的34,求点M的坐标.B组:拓展练习7.如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数解析式是().A.y=x+5B.y=x+10C.y=-x+5D.y=-x+108.如图,直线AB:y=12x+1分别与x轴、y轴交于点A.点B,直线CD:y=x+b分别与x轴、y 轴交于点C.点D.直线AB与CD相交于点P,已知S△ABD=4,则点P的坐标是.9.如图,在平面直角坐标系中,矩形OABC的顶点A(4,0),C(0,3),直线y=﹣32x+92交OA于点D,交BC于点E,动点P从点O出发,以每秒2个单位长度的速度沿OA﹣AB运动,到点B停止,设△PDE的面积为S(平方单位),点P的运动时间为t(秒).(1)求点D和点E的坐标;(2)求S与t之间的函数关系式,并写出t的取值范围;(3)当点P在边AB上运动,且PD+PE的值最小时,直接写出直线EP的解析式.四、归纳小结方法、规律解决有关图形面积问题,着眼于相应条件在环境下的集中和转化,利用函数的性质及图形特征,运用全等、勾股及方程等相关知识进行处理,如何建立相应的方程或进行相应的计算,从而确定点的坐标,灵活运用条件是处理问题的关键.一次函数与几何图形面积问题解析课时小练答案预习导入1或53.例1(1)点A,B的坐标分别为(0,2),(1,0),∴k+b=0,b=2.解得k=−2,b=2.∴直线AB的解析式是y=-2x+2.∴y=−2x+2,y=12x−3.解得x=2,y=−2.∴E(2,-2).(2直线CD的解析式为y=12x−3.当x=0时,y=-3,当y=0时,x=6,则点C的坐标是(0,-3),点D的坐标是(6,0).S四边形OBEC=S△DOC−S△DBE=12×6×3−12×5×2=4.例2(1)∵直线AB:y=﹣x+b交y轴于点A,交x轴于点B,∴点A的坐标为(0,b),点B的坐标为(b,0).∵S△AOB=12b2=8,∴b=±4.∵点A在y轴正半轴上,∴b=4.∴点B的坐标为(4,0),直线AB的函数解析式为y=﹣x+4;(2)①∵直线a垂直平分OB,OB=4,∴OE=BE=2.当x=2时,y=﹣x+4=2.∴点D的坐标为(2,2).∵点P的坐标为(2,m)(m>2),∴PD=m﹣2.∴S△ABP=S△APD+S△BPD=12DP•OE+12DP•BE=12×2(m﹣2)+12×2(m﹣2)=2m﹣4;②∵S△ABP=6,∴2m﹣4=6.∴m=5.∴点P的坐标为(2,5);③假设存在.当点Q在x轴上时,设其坐标为(x,0).∵S△ABQ=12AO•BQ=12×4×|x﹣4|=6,∴x1=1,x2=7.∴点Q的坐标为(1,0)或(7,0);当点Q在y轴上时,设其坐标为(0,y).∵S△ABQ=12BO•AQ=12×4×|y﹣4|=6,∴y1=1,y2=7.∴点Q的坐标为(0,1)或(0,7).综上所述:假设成立,即在坐标轴上,存在一点Q,使得△ABQ与△ABP面积相等,且点Q 的坐标为(1,0)或(7,0)或(0,1)或(0,7).1.±2.2.由y=2x+4,当x=0时,y=4;当y=0时,x=﹣2∴点A(﹣2,0),点B(0,4).如图,过点P作PE⊥x轴,交线段AB于点E.∴点E横坐标为﹣1.∴y=﹣2+4=2.∴点E(﹣1,2).=12×PE×2=1,∴|m﹣2|=1.∴m=3或1.∵S△ABP故答案为3或1.3.(1)(0,3);(2)y=12x−1.4(1)在y=12x+2中,令y=0,则12x+2=0,解得x=-4,∴点A的坐标为(-4,0).令x=0,则y=2,∴点B的坐标为(0,2);(2)∵点P是y轴上的一点,∴设点P的坐标为(0,y).又∵点B的坐标为(0,2),∴BP=y−2.∵S△AOB=12OA·OB=12×4×2=4,S△ABP=12BP·OA=12|y-2|×4=2|y-2|,又∵S△ABP=2S△AOB,∴2y−2=2×4.解得y=6或y=-2.∴点P的坐标为(0,6)或(0,-2).5.(1)(﹣2,0);(2)设直线MN的函数解析式为y=kx+b,把点(﹣2,0)和(0,6)分别代入上式,得−2k+b=0,b=6.解得k=3,b=6.∴直线MN的函数解析式为y=3x+6;(3)把x=﹣1代入y=3x+6,得y=3×(﹣1)+6=3.∴点A(﹣1,3).∴点C(0,3).∵AB⊥x轴,AC⊥y轴,∠BOC=90°,∴四边形ABOC为矩形,OB=1,OC=3.∴四边形ABOC的面积=1×3=3.6.(1)联立{y=12x,y=−x+6,解之得{x=4,y=2.∴A(4,2)由y=-x+6,当x=0,y=6,∴C(0,6).∴S△OAC=12×6×4=12;(2)当△OMC的面积是△OAC的面积的34时,∴M点的横坐标是34×4=3,当点M在线段OA上时,把x=3代入y=12x得y=32,则此时M(3,32);当点M在线段AC上时,把x=3代入y=-x+6得y=3,则此时M(3,3).综上所述,M的坐标为(1,32)或(3,3).7.C.8.(8,5).9.(1)由y=﹣32x+92,当y=0时,x=3.∴点D(3,0),当y=3时,x=1.∴点E(1,3).(2)如图1,①当点P在OD段时,此时0≤t≤32,S =12×PD ×OC =12×3t −2t ×3=﹣3t +92;②当点P 在DA 段时,此时32<t ≤2,同理可得S =3t ﹣92;③当点P (P ′)在AB 段时,此时2<t ≤72,S =S 梯形DABE ﹣S △ADP ′﹣S △BEP ′=6﹣12×1×(2t ﹣4)﹣12×3×(7﹣2t )=2t ﹣52;故S =−3t +92,0≤t ≤323t −92,32<t ≤22t −52,2<t ≤72;(3)在x 轴上取点D 的对称点D ′(5,0),连接D ′E 交AB 于点P ,则此时PD +PE 的值最小,将点E ,D ′的坐标代入一次函数解析式y =kx +b ,得5k +b =0,k +b =3.解得k =−34,b =154.故直线EP 的解析式为y =﹣34x +154.。
五年级数学 平面几何图形的面积训练题 带详细答案
平面几何图形的面积板块一:基础巩固1、一个三角形的面积比与他等底等高的平行四边形的面积少12平方分米,则平行四边形的面积是()平方分米,三角形的面积是()平方分米。
2、李叔叔在院子里靠着墙边围城了一个鸡笼,围鸡笼的网子长20.5米,求这个鸡笼的占地面积是多少平方米?3、有一个长方形,如果宽减少2米,或长减少3米,则面积均减少24平方米,求这个长方形的是是多少平方米?324、如图是由边长分别为4厘米、8厘米的两个正方形组成的图形,求阴影部分面积。
5、如图是由边长分别为4、8、6厘米的三个正方形组成的图形,求阴影部分面积。
板块二:拓展提高【例题1】下图(单位:厘米)是两个相同的直角梯形重叠在一起,求阴影部分的面积.【例题2】右图中甲的面积比乙的面积大__________平方厘米.6厘米8厘米4厘米【例3】右图中,矩形ABCD 的边AB 为4厘米,BC 为6厘米,三角形ABF 比三角形EDF 的面积大9平方厘米,求ED 的长.A BC DEF【巩固】如图所示,CA=AB=4厘米,△ABE 比△CDE 的面积小2平方厘米,求CD 的长为多少厘米?A BECD【例4】一块长方形铁板,长15分米,宽12分米,如果长和宽各减少2分米,面积比原来减少多少平方分米?1215222【巩固】一个长方形,如果长减少5厘米,宽减少2厘米,那么面积就减少66平方厘米,这时剩下的部分恰好成为一个正方形,求原来长方形的面积?5×225【例5】下面图形中,长方形ABCD的面积是32平方厘米,EF都是所在边的中点,求三角形AEF的面积。
【例6】四边形ABCD是直角梯形,AD=12厘米,AB=8厘米,BC=15厘米,且三角形ADE,四边形DEBF,三角形CDF的面积相等,求阴影三角形的面积是多少平方厘米?【例7】一块长方形,用垂直于长和宽的两条线分成四块,其中三块面积分别为15、18、30平方米。
第四块面积是多少平方米?【巩固】如图有9个小长方形,其中的5个小长方形的面积分别为4、8、12、16、20平方米,其余4个长方形的面积分别是多少平方米?【例8】如下图,在一个之间三角形铁皮上剪下一个正方形,并且使正方形的面积尽可能的大,正方形的面积最大是多少?【巩固】如图,直角三角形ABC套住了一个正方形CDEF,E恰好在AB边上,直角边AC长40厘米,BC长12厘米,求正方形的边长是多少?【例9】如图,长方形ABCD 长是8厘米,宽是7厘米,点E 、F 、G 分别是长方形ABCD 边上的中点,H 为AD 边上的任意一点,求阴影部分的面积.E【巩固】如图,三角形ABC 的面积是24,D 、E 和F 分别是BC 、AC 和AD 的中点.求三角形DEF 的面积.FE DC BA【例10】如图,三角形ABC 中,DC=2BD ,CE=3AE ,三角形ADE 的面积是20平方厘米,三角形ABC 的面积是多少?ED CB A【巩固】图中三角形ABC 的面积是180平方厘米,D 是BC 的中点,AD 的长是AE 长的3倍,EF 的长是BF 长的3倍.那么三角形AEF 的面积是多少平方厘米?C B【答案】板块一:1、24 122、上底+下底=20.5-8.5=12(米)梯形面积=12×8.5÷2=51(平方米)3、原长方形的长:24÷2=12(米)原长方形的宽:24÷3=8(米)原来长方形的面积:12×8=96(平方米)4、方法一:可以分割成两个钝角三角形第一个钝角三角形的底是4,高是4,第二个钝角三角形的高是8,底是8-4=4,所以总共的面积是:4×4÷2+8×(8-4)÷2=24(平方厘米)方法二:两个正方形的面积-2处空白的面积=4×4+8×8-8×8÷2-4×(4+8)÷2=24(平方厘米)方法一:可以分割成三个钝角三角形第一个钝角三角形的底是4,高是4,面积是:4×4÷2=8(平方厘米)第二个钝角三角形的高是8,底是(8-4),面积:8×(8-4)÷2=16(平方厘米)第三个钝角三角形的高是8,底是6,面积是:6×8÷2=24(平方厘米)一共的面积:8+16+24=48(平方厘米)方法二:把右上角补起来阴影面积=三个正方形的面积+小长方形面积-两处空白的面积=4×4+8×8+6×6+6×(8-6)-(8+4)×4÷2-8×(6+8)÷2=48(平方厘米)板块二:拓展提高【例题1】、阴影部分+中间空白=中间空白+下面空白所以阴影部分=下面空白20-5=15(厘米)(15+20)×8÷2=140(平方厘米)【例题2】、利用同增同减差不变甲-乙=(甲+空白)-(乙+空白)=大三角形面积-小三角形面积=6×8÷2-4×8÷2=24-16=8(平方厘米)【例题3】、利用同增同减差不变三角形ABF-三角形EDF的面积=9平方厘米同时增加梯形BCDF的面积,则:长方形ABCD-三角形BCE=9长方形ABCD的面积=4×6=24(平方厘米)则三角形BCE的面积=24-9=15(平方厘米)EC=15×2÷6=5(厘米)ED=5-4=1(厘米)【巩固】、利用同增同减差不变三角形CDE-三角形ABE的面积=2平方厘米同时增加三角形BCE的面积,则:三角形BCD-三角形ABC=2三角形ABC的面积=4×4÷2=8(平方厘米)则三角形BCD的面积=8+2=10(平方厘米)CD=10×2÷4=5(厘米)【例题4】原来的面积=15×12=180(平方分米)现在的的面积=(15-2)×(12-2)=130(平方厘米)减少的面积:180-130=50(平方厘米)【巩固】66-2×5=56(平方厘米)设剩下的部分正方形的边长为x厘米5x+2x=56X=8原来长方形的长:8+5=13(厘米)原来长方形的宽:8+2=10(厘米)原来长方形的面积:13×10=130(平方厘米)【例题5】三角形ADF的面积:32÷2÷2=8(平方厘米)三角形ABE的面积:32÷2÷2=8(平方厘米)三角形CEF的面积:32÷2÷2÷2=4(平方厘米)三角形AEF的面积:32-8-8-4=12(平方厘米)【例题6】梯形的面积:(12+15)×8÷2=108(平方厘米)三角形ADE的面积:108÷3=36(平方厘米)AE 的长:36×2÷12=6(厘米)三角形ACF 的面积:108÷3=36(平方厘米)CF 的长:36×2÷8=9(厘米)BE 的长:8-6=2(厘米)BF 的长:15-9=6(厘米)阴影部分面积=2×6÷2=6(平方厘米)【例题7】15×30÷18=25(平方米)【巩固】A 面积:4×16÷8=8(平方米)B 面积:16×12÷8=24(平方米)D 面积:20×24÷16=30(平方米)C 面积:8×20÷16=10(平方米)【例题8】连接DB ,把大三角形分成两个小三角形,正方形的边长就是这两个三角形的高大三角形ABC 的面积是:40×10÷2=200(平方厘米)设正方形的边长为x 厘米40x÷2+10x÷2=20025x=200 X=8正方形面积=8×8=64(平方厘米)【巩固】连接CE ,把大三角形分成两个小三角形,正方形的边长就是这两个三角形的高大三角形ABC 的面积是:40×12÷2=240(平方厘米)设正方形的边长为x 厘米40x÷2+12x÷2=24026x=240X=120/13【例题9】长方形的面积:8×7=56(平方厘米) A B C D阴影部分面积:56÷2=28(平方厘米)【巩固】24÷2÷2÷2=3【例题10】三角形CDE的面积:20×3=60(平方厘米)三角形ADC的面积:20+60=80(平方厘米)三角形ABD的面积:80÷2=40(平方厘米)三角形ABC的面积:40+80=120(平方厘米)【巩固】三角形ABD的面积:180÷2=90(平方厘米)三角形ABE的面积:90÷3=30(平方厘米)三角形AEF的面积:30÷4×3=22.5(平方厘米)。
初二数学平面直角坐标系面积问题
初二数学平面直角坐标系面积问题一、概述在初中数学学习中,平面直角坐标系是一个重要的概念。
在这个坐标系中,我们可以通过两个数值来确定平面上的一个点的位置,进而计算出所需图形的面积。
本文将从初二数学的角度出发,探讨平面直角坐标系下的面积问题,并为大家解析面积问题的解题思路和方法。
希望能够对同学们的学习有所帮助。
二、平面直角坐标系下的基本概念1. 坐标系平面直角坐标系由两条相互垂直的直线,它们被称为坐标轴,通常用x 和y来表示。
这两条坐标轴把平面分成了四个部分,它们分别是第一象限、第二象限、第三象限和第四象限。
2. 点的坐标在平面直角坐标系中,我们可以用一个有序数对(x, y)来表示一个点P 的坐标,其中x为点P在x轴上的坐标,y为点P在y轴上的坐标。
3. 面积的计算在平面直角坐标系中,我们可以通过连接坐标轴上的点和直线,来确定一个图形的面积。
面积的计算方法有很多种,例如利用基本几何图形的面积公式进行计算,或者利用积分的方法进行计算。
三、常见的面积计算题型1. 长方形的面积计算我们来看一个简单的例子。
如果给出了一个长方形的两个顶点的坐标,我们要计算这个长方形的面积该怎么做呢?解题思路:(1)首先计算长方形的边长,可以利用坐标点之间的距离公式进行计算。
(2)根据长方形的面积公式S=长×宽,计算出长方形的面积。
2. 三角形的面积计算另外一个常见的题型是给出三角形的三个顶点的坐标,要求计算三角形的面积。
解题思路:(1)利用三角形的面积公式S=(1/2)×底边长度×高,计算出三角形的面积。
(2)可以利用向量运算的方法进行计算,例如计算三角形的两条边的向量,然后利用向量叉乘的方法得到三角形的面积。
3. 多边形的面积计算对于给出多边形的各个顶点的坐标,要求计算多边形的面积这样的题型,我们可以采用分割成若干个三角形,再分别计算每个三角形的面积,最后将各个三角形的面积相加来得到多边形的面积。
中考数学模拟题《几何综合》专项测试题(附带参考答案)
中考数学模拟题《几何综合》专项测试题(附带参考答案)学校:___________班级:___________姓名:___________考号:___________考点解读在中考数学中有这么一类题它是以点线几何图形的运动为载体集合多个代数知识几何知识及数学解题思想于一题的综合性试题它就是动态几何问题。
动态几何问题经常在各地以中考试卷解答压轴题出现也常会出现在选择题最后一题的位置考察知识面较广综合性强可以提升学生的空间想象能力和综合分析问题的能力但同时难度也很大令无数初中学子闻风丧胆考场上更是丢盔弃甲解题思路1 熟练掌握平面几何知识﹕要想解决好有关几何综合题首先就是要熟练掌握关于平面几何的所有知识尤其是要重点把握三角形特殊四边形圆及函数三角函数相关知识.几何综合题重点考查的是关于三角形特殊四边形(平行四边形矩形菱形正方形)圆等相关知识2 掌握分析问题的基本方法﹕分析法综合法“两头堵”法﹕1)分析法是我们最常用的解决问题的方法也就是从问题出发执果索因去寻找解决问题所需要的条件依次向前推直至已知条件例如我们要证明某两个三角形全等先看看要证明全等需要哪些条件哪些条件已知了还缺少哪些条件然后再思考要证缺少的条件又需要哪些条件依次向前推直到所有的条件都已知为止即可综合法﹕即从已知条件出发经过推理得出结论适合比较简单的问题3)“两头堵”法﹕当我们用分析法分析到某个地方不知道如何向下分析时可以从已知条件出发看看能得到什么结论把分析法与综合法结合起来运用是我们解决综合题最常用的办策略3 注意运用数学思想方法﹕对于几何综合题的解决我们还要注意运用数学思想方法这样会大大帮助我们解决问题或者简化我们解决问题的过程加快我们解决问题的速度毕竟考场上时间是非常宝贵的.常用数学思想方法﹕转化类比归纳等等模拟预测1 (2024·江西九江·二模)如图 在矩形()ABDC AB AC >的对称轴l 上找点P 使得PAB PCD 、均为直角三角形 则符合条件的点P 的个数是( )A .1B .3C .4D .52 (2024·江西吉安·模拟预测)如图 在平面直角坐标系中 边长为23ABC 的顶点A B ,分别在y 轴的正半轴 x 轴的负半轴上滑动 连接OC 则OC 的最小值为( )A .2B .3C .33D .333 (2024·江西吉安·一模)如图 矩形ABCD 中 4AB = 6AD = 点E 在矩形的边上 则当BEC 的一个内角度数为60︒时 符合条件的点E 的个数共有( )A .4个B .5个C .6个D .7个4 (2023·江西·中考真题)如图 在ABCD 中 602B BC AB ∠=︒=, 将AB 绕点A 逆时针旋转角α(0360α︒<<︒)得到AP 连接PC PD .当PCD 为直角三角形时 旋转角α的度数为 .5 (2024·江西吉安·二模)如图 在矩形ABCD 中 6,10,AB AD E ==为CD 的中点 点P 在AE 下方矩形的边上.当APE 为直角三角形 且P 为直角顶点时 BP 的长为 .6 (2024·江西九江·二模)如图 在平面直角坐标系中 已知矩形OABC 的顶点()20,0A ()0,8C D 为OA 的中点 点P 为矩形OABC 边上任意一点 将ODP 沿DP 折叠得EDP △ 若点E 在矩形OABC 的边上 则点E 的坐标为 .7 (2024·江西·模拟预测)如图 ABC 中 AB AC = 30A ∠=︒ 射线CP 从射线CA 开始绕点C 逆时针旋转α角()075α︒<<︒ 与射线AB 相交于点D 将ACD 沿射线CP 翻折至A CD '△处 射线CA '与射线AB 相交于点E .若A DE '是等腰三角形 则α∠的度数为 .8 (2024·江西赣州·二模)在Rt ABC △中 已知90C ∠=︒ 10AB = 3cos 5B = 点M 在边AB 上 点N 在边BC 上 且AM BN = 连接MN 当BMN 为等腰三角形时 AM = .9 (2024·江西吉安·模拟预测)如图 在矩形ABCD 中 6,10AB AD == E 为BC 边上一点 3BE = 点P 沿着边按B A D →→的路线运动.在运动过程中 若PAE △中有一个角为45︒ 则PE 的长为 .10 (2024·江西吉安·三模)如图 在ABC 中 AB AC = 30B ∠=︒ 9BC = D 为AC上一点 2AD DC = P 为边BC 上的动点 当APD △为直角三角形时 BP 的长为 .11 (2024·江西吉安·一模)如图 矩形ABCD 中 4AB = 6AD = E 为CD 的中点 连接BE 点P 在矩形的边上 且在BE 的上方 则当BEP △是以BE 为斜边的直角三角形时 BP 的长为 .12 (2024·江西九江·二模)如图 在等腰ABC 中 2AB AC == 30B ∠=︒ D 是线段BC 上一动点 沿直线AD 将ADB 折叠得到ADE 连接EC .当DEC 是以DE 为直角边的直角三角形时 则BD 的长为 .13 (2024·江西·模拟预测)如图 在菱形ABCD 中 对角线AC BD 相交于点O 23AB = 60ABC ∠=︒ E 为BC 的中点 F 为线段OD 上一动点 当AEF △为等腰三角形时 DF 的长为 .14 (2024·江西上饶·一模)如图 在三角形纸片ABC 中 90,60,6C B BC ∠=︒∠=︒= 将三角形纸片折叠 使点B 的对应点B '落在AC 上 折痕与,BC AB 分别相交于点E F 当AFB '为等腰三角形时 BE 的长为 .15 (2024·江西抚州·一模)课本再现(1)如图1 CD 与BE 相交于点,A ABC 是等腰直角三角形 90C ∠=︒ 若DE BC ∥ 求证:ADE 是等腰直角三角形.类比探究(2)①如图2 AB 是等腰直角ACB △的斜边 G 为边AB 的中点 E 是BA 的延长线上一动点 过点E 分别作AC 与BC 的垂线 垂足分别为,D F 顺次连接,,DG GF FD 得到DGF △ 求证:DGF △是等腰直角三角形.②如图3 当点E 在边AB 上 且①中其他条件不变时 DGF △是等腰直角三角形是否成立?_______(填“是”或“否”).拓展应用(3)如图4 在四边形ABCD 中 ,90,BC CD BCD BAD AC =∠=∠=︒平分BAD ∠ 当1,22AD AC == 求线段BC 的长.16 (2023·江西·中考真题)课本再现思考我们知道菱形的对角线互相垂直.反过来对角线互相垂直的平行四边形是菱形吗?可以发现并证明菱形的一个判定定理对角线互相垂直的平行四边形是菱形.(1)定理证明:为了证明该定理小明同学画出了图形(如图1)并写出了“已知”和“求证”请你完成证明过程.已知:在ABCD中对角线BD AC⊥垂足为O.求证:ABCD是菱形.(2)知识应用:如图2在ABCD中对角线AC和BD相交于点O586AD AC BD===,,.①求证:ABCD是菱形②延长BC至点E连接OE交CD于点F若12E ACD∠=∠求OFEF的值.17 (2022·江西·中考真题)问题提出:某兴趣小组在一次综合与实践活动中提出这样一个问题:将足够大的直角三角板()90,60PEF P F ∠=︒∠=︒的一个顶点放在正方形中心O 处 并绕点O 逆时针旋转 探究直角三角板PEF 与正方形ABCD 重叠部分的面积变化情况(已知正方形边长为2).(1)操作发现:如图1 若将三角板的顶点P 放在点O 处 在旋转过程中 当OF 与OB 重合时 重叠部分的面积为__________ 当OF 与BC 垂直时 重叠部分的面积为__________ 一般地 若正方形面积为S 在旋转过程中 重叠部分的面积1S 与S 的关系为__________(2)类比探究:若将三角板的顶点F 放在点O 处 在旋转过程中 ,OE OP 分别与正方形的边相交于点M N .①如图2 当BM CN =时 试判断重叠部分OMN 的形状 并说明理由②如图3 当CM CN =时 求重叠部分四边形OMCN 的面积(结果保留根号)(3)拓展应用:若将任意一个锐角的顶点放在正方形中心O 处 该锐角记为GOH ∠(设GOH α∠=) 将GOH ∠绕点O 逆时针旋转 在旋转过程中 GOH ∠的两边与正方形ABCD 的边所围成的图形的面积为2S 请直接写出2S 的最小值与最大值(分别用含α的式子表示)(参考数据:6262sin15tan1523-+︒=︒=︒=18 (2024·江西吉安·二模)如图 在ABC 和ADE 中 (),AB AC AD AE AD AB ==< 且BAC DAE ∠=∠.连接CE BD .(1)求证:BD CE =.(2)在图2中 点B D E 在同一直线上 且点D 在AC 上 若,AB a BC b == 求AD CD的值(用含a b 的代数式表示).19 (2024·江西九江·二模)初步探究(1)如图1 在四边形ABCD 中 ,AC BD 相交于点O AC BD ⊥ 且ABD CBD S S = 则OA 与OC 的数量关系为 .迁移探究(2)如图2 在四边形ABCD 中 ,AC BD 相交于点O ABD CBD SS = (1)中OA 与OC 的数量关系还成立吗?如果成立 请说明理由.拓展探究(3)如图3 在四边形ABCD 中 ,AC BD 相交于点O 180,ABD CBD BAD BCD S S ∠∠+=︒=△△ 且 33OB OD == 求AC 的长.20 (2024·江西九江·二模)课本再现如图1 四边形ABCD 是菱形 30ACD ∠=︒ 6BD =.(1)求,AB AC 的长.应用拓展(2)如图2 E 为AB 上一动点 连接DE 将DE 绕点D 逆时针旋转120︒ 得到DF 连接EF .①直接写出点D 到EF 距离的最小值②如图3 连接,OF CF 若OCF △的面积为6 求BE 的长.21 (2024·江西赣州·三模)某数学小组在一次数学探究活动过程中经历了如下过程:AB=P为对角线AC上的一个动点以P为直角顶问题提出:如图正方形ABCD中8△.点向右作等腰直角DPM(1)操作发现:DM的最小值为_______ 最大值为_______(2)数学思考:求证:点M在射线BC上=时求CM的长.(3)拓展应用:当CP CM22 (2024·江西赣州·二模)【课本再现】 思考我们知道 角的平分线上的点到角的两边的距离相等 反过来 角的内部到角的两边的距离相等的点在角的平分线上吗?可以发现并证明角的平分线的性质定理的逆定理角的内部到角的两边的距离相等的点在角的平分线上.【定理证明】(1)为证明此逆定理 某同学画出了图形 并写好“已知”和“求证” 请你完成证明过程.已知:如图1 在ABC ∠的内部 过射线BP 上的点P 作PD BA ⊥ PE BC ⊥ 垂足分别为D E 且PD PE =.求证:BP 平分ABC ∠.【知识应用】(2)如图2 在ABC 中 过内部一点P 作PD BC ⊥ PE AB ⊥ PF AC ⊥ 垂足分别为D E F 且PD PE PF == 120A ∠=︒ 连接PB PC .①求BPC ∠的度数②若6PB=23PC=求BC的长.23 (2024·江西吉安·模拟预测)一块材料的形状是锐角三角形ABC下面分别对这块材料进行课题探究:课本再现:(1)在图1中若边120mmBC=高80mmAD=把它加工成正方形零件使正方形的一边在BC上其余两个顶点分别在AB AC上这个正方形零件的边长是多少?类比探究(2)如图2 若这块锐角三角形ABC材料可以加工成3个相同大小的正方形零件请你探究高AD与边BC的数量关系并说明理由.拓展延伸(3)①如图3 若这块锐角三角形ABC材料可以加工成图中所示的4个相同大小的正方形零件则ADBC的值为_______(直接写出结果)②如图4 若这块锐角三角形ABC材料可以加工成图中所示的()3n m≥相同大小的正方形零件求ADBC的值.24 (2024·江西吉安·三模)课本再现 矩形的定义 有一个角是直角的平行四边形是矩形.定义应用(1)如图1 已知:在四边形ABCD 中 90A B C ∠=∠=∠=︒用矩形的定义求证:四边形ABCD 是矩形.(2)如图2 在四边形ABCD 中 90A B ∠=∠=︒ E 是AB 的中点 连接DE CE 且DE CE = 求证:四边形ABCD 是矩形.拓展延伸(3)如图3 将矩形ABCD 沿DE 折叠 使点A 落在BC 边上的点F 处 若图中的四个三角形都相似 求AB BC的值.25 (2024·江西吉安·一模)课本再现在学习了平行四边形的概念后进一步得到平行四边形的性质:平行四边形的对角线互相平分.=(1)如图1 在平行四边形ABCD中对角线AC与BD交于点O 求证:OA OC =.OB OD知识应用=延长AC到E 使得(2)在ABC中点P为BC的中点.延长AB到D 使得BD AC∠=︒请你探究线段BE与线段AP之间的BACCE AB=连接DE.如图2 连接BE若60数量关系.写出你的结论并加以证明.26 (2024·江西九江·二模)问题提出在综合与实践课上 某数学研究小组提出了这样一个问题:如图1 在边长为4的正方形ABCD 的中心作直角EOF ∠ EOF ∠的两边分别与正方形ABCD 的边BC CD 交于点E F (点E 与点B C 不重合) 将EOF ∠绕点O 旋转.在旋转过程中 四边形OECF 的面积会发生变化吗?爱思考的浩浩和小航分别探究出了如下两种解题思路.浩浩:如图a 充分利用正方形对角线垂直 相等且互相平分等性质 证明了OEC OFD ≌ 则OEC OFD S S = OEC OCF OFD OCF OCD OECF S S S S S S =+=+=四边形.这样 就实现了四边形OECF 的面积向OCD 面积的转化.小航:如图b 考虑到正方形对角线的特征 过点O 分别作OG BC ⊥于点G OH CD ⊥于点H 证明OGE OHF ≌△△ 从而将四边形OECF 的面积转化成了小正方形OGCH 的面积.(1)通过浩浩和小航的思路点拨﹐我们可以得到OECF S =四边形__________ CE CF +=__________.类比探究(2)①如图⒉ 在矩形ABCD 中 3AB = 6AD = O 是边AD 的中点 90EOF ∠=︒ 点E 在AB 上 点F 在BC 上 则EB BF +=__________.②如图3 将问题中的正方形ABCD 改为菱形ABCD 且45ABC ∠=︒ 当45EOF ∠=︒时 其他条件不变 四边形OECF 的面积还是一个定值吗?若是 请求出四边形OECF 的面积 若不是 请说明理由.拓展延伸(3)如图4 在四边形ABCD 中 7AB = 2DC = 60BAD ∠=︒ 120BCD ∠=︒ CA 是BCD ∠的平分线 求四边形ABCD 的面积.27 (2024·江西九江·模拟预测)【课本再现】(1)如图1 四边形ABCD 是一个正方形 E 是BC 延长线上一点 且AC EC = 则DAE ∠的度数为 .【变式探究】(2)如图2 将(1)中的ABE 沿AE 折叠 得到AB E ' 延长CD 交B E '于点F 若2AB = 求B F '的长.【延伸拓展】(3)如图3 当(2)中的点E 在射线BC 上运动时 连接B B ' B B '与AE 交于点P .探究:当EC 的长为多少时 D P 两点间的距离最短?请求出最短距离.28 (2024·江西上饶·一模)课本再现:(1)如图1 ,D E 分别是等边三角形的两边,AB AC 上的点 且AD CE =.求证:CD BE =.下面是小涵同学的证明过程:证明:ABC 是等边三角形,60AC BC A ACB ∴=∠=∠=︒.AD CE =()SAS ADC CEB ∴≌CD BE ∴=.小涵同学认为此题还可以得到另一个结论:BFD ∠的度数是______迁移应用:(2)如图2 将图1中的CD 延长至点G 使FG FB = 连接,AG BG .利用(1)中的结论完成下面的问题.①求证:AG BE ∥②若25CF BF = 试探究AD 与BD 之间的数量关系.参考答案考点解读在中考数学中有这么一类题它是以点线几何图形的运动为载体集合多个代数知识几何知识及数学解题思想于一题的综合性试题它就是动态几何问题。
几何图形的面积问题(与函数值域转化)(解析版)
几何图形的面积问题(与函数值域转化)一、考情分析圆锥曲线中几何图形的面积问题,是近几年高考命题的重点和难点。
在2018年的全国卷和2019年的全国卷中,都有圆锥曲线的大题压轴的第二问出现。
题目的难度是可想而知的,这其中涉及到:距离,斜率,切线,直线与圆,三角形的面积,四边形的面积等。
此专题,从这个出发点出发,梳理了最近的高考题和诊断性考试题,得出曲径通幽的解题之法。
归根结底,最终都是转换到函数值域。
二、经验分享圆锥曲线中的几何图形的面积问题,以及围绕与几何图形的面积问题关键是: 其一,选取合适的变量,第二,建立目标函数,转化函数的取值范围与最值问题(也就是转化成函数值域问题), 第三,构造函数,用导数的方法求其最大值与最小值。
其求解策略一般有以下几种:①几何法:根据题目上传达的几何图形以及几何关系,建立目标函数,若目标函数有明显几何特征和意义,则考虑几何图形的性质求解;②代数法: 若目标函数的几何意义不明显,利用基本不等式、导数等方法求函数的值域或最值,注意变量的范围,在对目标函数求最值前,常要对函数进行变换,注意变形技巧,若一个函数式的分母中含有一次式或二次式、分子中含有一次式或二次式的二次根式,则可以通过换元的方法把其转化为分母为二次式、分子为一次式的函数式,这样便于求解此函数式的最值.三、题型分析(一)角的最值问题例1. 已知椭圆22221(0)x y a b a b +=>>上一点A 关于原点O 的对称点为,B F 为其右焦点,若,AF BF ⊥设,ABF α∠=且,,124ππα⎡⎤∈⎢⎥⎣⎦则椭圆离心率的取值范围是 .【答案】26[,]23【点评】本题的关键是利用椭圆的定义建立等量关系式2sin 2cos 2c c a αα+=,然后借助已知条件,,124ππα⎡⎤∈⎢⎥⎣⎦利用三角函数的图象求解离心率的范围. 【变式训练1】【百校联盟2018届TOP202018届高三三月联考】.已知平行四边形ABCD 内接于椭圆()2222:10x y a b a b Ω+=>>,且AB , AD 斜率之积的范围为32,43⎛⎫-- ⎪⎝⎭,则椭圆Ω离心率的取值范围是( ) A. 13,23⎛⎫⎪⎪⎝⎭ B. 32,32⎛⎫⎪ ⎪⎝⎭ C. 13,43⎛⎫⎪ ⎪⎝⎭D. 11,43⎛⎫⎪⎝⎭【答案】A【变式训练2】【2019届河北武邑中学高三周考】已知直线:60l x y +-=和曲线22:2220M x y x y +---=,点A 在直线l 上,若直线AC 与曲线M 至少有一个公共点C ,且030MAC ∠=,则点A 的横坐标的取值范围是( )A .()0,5B .[]1,5C .[]1,3D .(]0,3 【答案】B【解析】设()00,6A x x -,依题意有圆心到直线的距离sin302d AM =≤,即()()22001516x x -+-≤,解得[]01,5x ∈.【变式训练3】【2019届山东省济宁市高三3月模拟】已知双曲线22221(0,0)x y a b a b-=>>的左右焦点分别为12,F F ,焦距为2(0)c c >,抛物线22y cx =的准线交双曲线左支于,A B 两点,且0120(AOB O ∠=为坐标原点),则该双曲线的离心率为 ( ) A.31 B. 2 C. 21 D. 51【答案】A【解析】由题意得,当()22222424c a b cx y a-=-⇒= ,则 ()()2222222244,,2424ca b ca b c cA B aa⎛⎛-- -- ⎝⎝,又因为120AOB ∠=︒, ()22242242244244tan 384084032ca b c c a c a c a a aπ-==-+=⇒-+=4222840423(4231,)331e e e e e ∴-+=⇒=±-<⇒=⇒=舍去.(二)距离的最值问题例2.【2019届山东菏泽一中宏志部高三上学期月考】若过点()2 3 2P --,的直线与圆224x y +=有公共点,则该直线的倾斜角的取值范围是( )A .0 6π⎛⎫ ⎪⎝⎭,B .0 3π⎡⎤⎢⎥⎣⎦, C. 0 6π⎡⎤⎢⎥⎣⎦, D .0 3π⎛⎤ ⎥⎝⎦, 【答案】B【解析】当过点(23,2)P --的直线与圆224x y += 相切时,设斜率为k ,则此直线方程为+2=k(23)y x +,即k 2320x y k -+-=.由圆心到直线的距离等于半径可得2|232|21k k -=+,求得0k =或3k =,故直线的倾斜角的取值范围是[0,]3π,所以B 选项是正确的.【变式训练1】【2020届河北省武邑中学高三上学期测试】在平面直角坐标系x y O 中,圆1C :()()221625x y ++-=,圆2C :()()2221730x y r -+-=.若圆2C 上存在一点P ,使得过点P 可作一条射线与圆1C 依次交于点A ,B ,满足2PA =AB ,则半径r 的取值范围是( ) A .[]5,55 B .[]5,50 C .[]10,50 D .[]10,55 【答案】A【解析】由题,知圆1C 的圆心为(1,6)-,半径为5,圆2C 的圆心为(17,30),半径为r ,两圆圆心距为22(171)(306)30++-=,如图,可知当AB 为圆1C 的直径时取得最大值,所以当点P 位于点1P 所在位置时r 取得最小值,当点P 位于点2P 所在位置时r 取得最大值.因为max ||10AB =,||2||PA AB =,所以min 5r =,max 55r =,故选A .(三)几何图形的面积的范围问题例3.在平面直角坐标系中,,A B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线240x y +-=相切,则圆C 面积的最小值为( )A.45πB.34πC.(625)π-D.54π 【答案】A【解析】设直线l :240x y +-=.因为1||||2C l OC AB d -==,所以圆心C 的轨迹为以O 为焦点,l 为准线的抛物线.圆C 半径最小值为11422255O l d -=⨯=,圆C 面积的最小值为1. 【变式训练1】【北京市朝阳区2018届高三第一学期期末】阿波罗尼斯(约公元前262-190年)证明过这样一个命题:平面内到两定点距离之比为常数k (0k >且1k ≠)的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点,A B 间的距离为2,动点P 与A , B 距离之比为2,当,,P A B 不共线时, PAB ∆面积的最大值是 A. 22 B. 2 C.223 D. 23【答案】A【变式训练2】【吉林省普通中学2020届第二次调研】已知F 为抛物线2y x =的焦点,点,A B 在该抛物线上且位于x 轴的两侧,而且·6OAOB =(O 为坐标原点),若ABO ∆与AFO ∆的面积分别为1S 和2S ,则124S S +最小值是( )A .73 B . 6 C . 132D . 3【答案】B【变式训练3】【2016高考新课标1卷】设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E . (I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.【解析】(Ⅰ)因为||||AC AD =,AC EB //,故ADC ACD EBD ∠=∠=∠, 所以||||ED EB =,故||||||||||AD ED EA EB EA =+=+.又圆A 的标准方程为16)1(22=++y x ,从而4||=AD ,所以4||||=+EB EA . 由题设得)0,1(-A ,)0,1(B ,2||=AB ,由椭圆定义可得点E 的轨迹方程为:13422=+y x (0≠y ). (Ⅱ)当l 与x 轴不垂直时,设l 的方程为)0)(1(≠-=k x k y ,),(11y x M ,),(22y x N .由⎪⎩⎪⎨⎧=+-=134)1(22y x x k y 得01248)34(2222=-+-+k x k x k .可得当l 与x 轴不垂直时,四边形MPNQ 面积的取值范围为)38,12[.当l 与x 轴垂直时,其方程为1=x ,3||=MN ,8||=PQ ,四边形MPNQ 的面积为12.综上,四边形MPNQ 面积的取值范围为)38,12[.(四)函数转化例4.【2019届成都一诊】设椭圆()012222>>=+b a by a x C :的左右顶点为A,B.P 是椭圆上不同于A,B 的一点,设直线AP,BP 的斜率分别为m,n ,则当()||ln ||ln 32323n m mnmn b a +++⎪⎭⎫ ⎝⎛-取得最小值时,椭圆C 的离心率为( )A.51 B.22 C.54D.23【答案】D【解析】设()()(),,,0,,0,00y x P a B a A -,点P 在双曲线上,得()01220220>>=+b a b y a x C :,2202220)(ax a b y -=,所以a x y m +=00,a x y m -=00,化简,22ab mn -=原式⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+-+⎪⎪⎪⎪⎭⎫⎝⎛--=b a b a b a b a a b a b a b b a ln 63232ln 62323232222所以设1>=b a t ,函数t t t t t f ln 63232)(23++-=,求导可以得到:2t =时,函数取得最小值=)2(f ,2=ba,23=e 。
2023学年北师大版八年级数学上学期压轴题专题09 一次函数与几何图形综合问题的五种类型含解析
专题09 一次函数与几何图形综合问题的五种类型类型一、面积问题例1.在平面直角坐标系xOy 中,已知直线AB 与x 轴交于A 点 (2,0)与y 轴交于点B (0,1). (1)求直线AB 的解析式;(2)点M (-1,y 1),N (3,y 2)在直线AB 上,比较y 1与y 2的大小. (3)若x 轴上有一点C ,且S △ABC =2,求点C 的坐标【变式训练1】已知一次函数12y kx =+的图象与x 轴交于点(2,0)B -,与正比例函数2y mx =的图象交于点(1,)A a .(1)分别求k ,m 的值;(2)点C 为x 轴上一动点,如果ABC 的面积是6,请求出点C 的坐标.【变式训练2】如图,在正方形ABCD 中,4AB =,点P 为线段DC 上的一个动点.设DP x =,由点,,,A B C P 首尾顺次相接形成图形的面积为y .(1)求y 关于x 的函数表达式及x 的取值范围;(2)设(1)中函数图象的两个端点分别为M N 、,且P 为第一象限内位于直线MN 右侧的一个动点,若MNP △正好构成一个等腰直角三角形,请求出满足条件的P 点坐标;(3)在(2)的条件下,若l 为经过(1,0)-且垂直于x 轴的直线,Q 为l 上的一个动点,使得MNQNMPS S=,请直接写出符合条件的点Q 的坐标.【变式训练3】如图,已知直线1:3l y x =+与过点A (3,0)的直线2l 交于点C (1,m ),且与x 轴交于点B ,与y 轴交于点D . (1)求直线2l 的解析式;(2)若点D 关于x 轴的对称点为P ,求△PBC 的面积.类型二、一次函数与平行四边形例1.如图,在平面直角坐标系中,直线AB 与x ,y 轴分别交于点(4,0)A ,(0,3)B ,点C 是直线554y x =-+上的一个动点,连接BC .(1)求直线AB 的函数解析式;(2)如图1,若//BC x 轴,求点C 到直线AB 的距离;(3)如图2,点(1,0)E ,点D 是直线AB 上的动点,试探索点C ,D 在运动过程中,是否存在以B ,C ,D ,E 为顶点的四边形是平行四边形,若存在,请直接写出点C ,D 的坐标;若不存在,请说明理由.【变式训练1】一次函数y = kx+1(k ≠ 0)的图象过点P (-3,2),与x 轴交于点A ,与y 轴交于点B .(1)求k 的值及点A 、B 的坐标;(2)已知点C (-1,0),若以A ,B ,C ,D 为顶点的四边形是平行四边形,请直接写出所有符合条件的点D 的坐标.【变式训练2】平面直角坐标系xOy 中,直线1l :2y x b =+与直线2l :12y x =交于点()2,P m . (1)求m ,b 的值;(2)直线()0x n n =≠与直线1l ,2l 分别交于M ,N 两点,当MN =3时,若以M ,N ,P ,Q 为顶点的四边形是平行四边形,请直接写出点Q 的坐标.类型三、一次函数与等腰三角形例1.一次函数的图像与x 轴、y 轴分别交于点A 0),B (0,1),以AB 为边在第一象限内做等边△ABC . (1)线段AB 的长是 ,△BAO = °,点C 的坐标是 ;(2)如果在第二象限内有一点P (a ,1),试用含a 的代数式表示四边形ABPO 的面积. (3)在y 轴上存在点M ,使△MAB 为等腰三角形,请直接写出点M 的坐标.【变式训练1】如图一,已知直线l :6y x =-+与x 轴交于点A ,与y 轴交于点B ,直线m 与v 轴交于点(0,2)C -,与直线l 交于点(,1)D t .(1)求直线m 的解析式;(2)如图二,点P 在直线l 上且在y 轴左侧,过点P 作//PQ y 轴交直线m 于点Q ,交x 轴于点G ,当2PCG QCG S S ∆∆=,求出P ,Q 两点的坐标;(3)将直线l :6y x =-+向左平移12个单位得到直线n 交x 轴于E 点,点F 是点C 关于原点对称点.过点F 作直线//k x 轴.点M 在直线k 上,写出以点C ,E ,M ,为顶点且CE 为腰的等腰三角形,并把求其中一个点M 的坐标的过程写出来.【变式训练2】在如图的平面直角坐标系中,直线n 过点A (0,﹣2),且与直线l 交于点B (3,2),直线l 与y 轴交于点C .(1)求直线n 的函数表达式;(2)若△ABC 的面积为9,求点C 的坐标;(3)若△ABC 是等腰三角形,求直线l 的函数表达式.【变式训练3】如图,直线1:l y ax a =-,1l 与x 轴交于点B ,直线2l 经过点(4,0)A ,直线1l ,2l 交于点(2,3)C -.(1)a =______;点B 的坐标为______. (2)求直线2l 的解析表达式; (3)求ABC 的面积;(4)在直线2l 上存在异于点C 的另一点P ,使得ABP △为等腰三角形,请直接写出P 点的横坐标?类型四、一次函数与直角三角形例1.如图,在平面直角坐标系中,函数y =-x +2的图象与x 轴,y 轴分别交于点A ,B ,与函数y =13x +b 的图象交于点C (-2,m ). (1)求m 和b 的值;(2)函数y =-x +b 的图象与x 轴交于点D ,点E 从点D 出发沿DA 向,以每秒2个单位长度匀速运动到点M (到A 停止运动),设点E 的运动时间为t 秒. ①当ΔACE 的面积为12时,求t 的值;②在点E 运动过程中,是否存在t 的值,使ΔACE 为直角三角形?若存在,请求出t 的值;若不存在,请说明理由.【变式训练1】如图1,在菱形ABCD 中,60ABC ∠=︒,对角线AC BD 、交于点,O P 从B 点出发,沿B DC →→方向匀速运动,P 点运动速度为1cm/s .图2是点P 运动时,APC △的面积2()cm y 随P 点运动时间()s x变化的函数图像.(1)AB =_______cm,a =_____;(2)P 点在BD 上运动时,x 为何值时,四边形ADCP ; (3)在P 点运动过程中,是否存在某一时刻使得APB △为直角三角形,若存在,求x 的值;若不存在,请说明理由.【变式训练2】在平面直角坐标系xOy 中,将直线2y x =向下平移2个单位后,与一次函数132y x =-+的图象相交于点A .(1)将直线2y x =向下平移2个单位后对应的解析式为 ; (2)求点A 的坐标;(3)若P 是x 轴上一点,且满足△OAP 是等腰直角三角形,直接写出点P 的坐标.类型五、最值问题例1.如图,将直线34y x=-向上平移后经过点()4,3A,分别交x轴y轴于点B、C.(1)求直线BC的函数表达式;(2)点P为直线BC上一动点,连接OP.问:线段OP的长是否存在最小值?若存在,求出线段OP的最小值,若不存在,请说明理由.【变式训练1】如图,四边形OABC是张放在平面直角坐标系中的正方形纸片,点O与坐标原点重合,点A在x轴正半轴上,点C在y轴正半轴上,5OC=,点E在边BC上.(1)若点N的坐标为(3,0),过点N且平行于y轴的直线MN与EB交于点M,将纸片沿直线OE折叠,顶点C恰好落在MN上,并与MN上的点G重合.①求点G、点E的坐标;②若直线:l y mx n=+平行于直线OE,且与长方形ABMN有公共点,请直接写出n的取值范围.(2)若点E为BC上的一动点,点C关于直线OE的对称点为G,连接BG,请求出线段BG的最小值.专题09 一次函数与几何图形综合问题的五种类型类型一、面积问题例1.在平面直角坐标系xOy 中,已知直线AB 与x 轴交于A 点 (2,0)与y 轴交于点B (0,1). (1)求直线AB 的解析式;(2)点M (-1,y 1),N (3,y 2)在直线AB 上,比较y 1与y 2的大小. (3)若x 轴上有一点C ,且S △ABC =2,求点C 的坐标 【答案】(1)112y x =-+;(2)y 1>y 2;(3)()6,0C 或()2,0-. 【解析】(1)解:设直线AB 的解析式为y kx b =+△A (2,0)B (0,1),△201k b b +=⎧⎨=⎩,解得:k =12-,b =12△直线AB 的解析式为112y x =-+ (2)△y =﹣12x +1中k =﹣12<0,△y 值随x 值的增大而减小, △﹣1<3,△y 1>y 2;(3)△x 轴上有一点C ,设点C (x ,0),△AC =|2﹣x |, △S △ABC =2,△12×|2﹣x |×1=2,△x =﹣2或x =6, △C (﹣2,0)或C (6,0). 故答案为:(1)112y x =-+;(2)y 1>y 2;(3)()6,0C 或()2,0-. 【变式训练1】已知一次函数12y kx =+的图象与x 轴交于点(2,0)B -,与正比例函数2y mx =的图象交于点(1,)A a .(1)分别求k ,m 的值;(2)点C 为x 轴上一动点,如果ABC 的面积是6,请求出点C 的坐标. 【答案】(1)1k =,3m =;(2)点C 的坐标为(2,0)或(6,0)- 【解析】(1)一次函数1=2y kx +的图象与x 轴交于点2,0B -(),220k ∴-+=1k ∴=12y x ∴=+一次函数12y x =+的图象与正比例函数2y mx =的图象交于点(1,)A a ,12a ∴=+,a m =,3m ∴=; (2)设点C 的坐标为(,0)n ,过点A 作AD x ⊥轴,垂足为点D .ABC 的面积是6,162BC AD ∴⋅=,1|(2)|362n ∴--⨯=,2n ∴=或6n =-∴点C 的坐标为(2,0)或(6,0)-,或过点A 作AD x ⊥轴,垂足为点D .ABC 的面积是6,162BC AD ∴⋅=,1362BC ∴⨯=,4BC ∴=,点B 的坐标为(2,0)-,∴点C 的坐标为(2)0,或(60)-,. 【变式训练2】如图,在正方形ABCD 中,4AB =,点P 为线段DC 上的一个动点.设DP x =,由点,,,A B C P 首尾顺次相接形成图形的面积为y .(1)求y 关于x 的函数表达式及x 的取值范围;(2)设(1)中函数图象的两个端点分别为M N 、,且P 为第一象限内位于直线MN 右侧的一个动点,若MNP △正好构成一个等腰直角三角形,请求出满足条件的P 点坐标;(3)在(2)的条件下,若l 为经过(1,0)-且垂直于x 轴的直线,Q 为l 上的一个动点,使得MNQNMPS S=,请直接写出符合条件的点Q 的坐标.【答案】(1)y =-2x +16,0<x <4;(2)(12,12)或(8,20)或(6,14);(3)(-1,-2)或(-1,8)或(-1,38)或(-1,28)【解析】(1)由线段的和差,得PC =(4-x ),由梯形的面积公式,得y =-2x +16, △四边形ABCD 是正方形,△AB =CD =4,△x 的取值范围是0<x <4; (2)设P 点坐标是(a ,b ),M (0,16),N (4,8),以MN 为边,在MN 右侧做正方形,MNAB ,正方形中心为H ,则易知A ,B ,H 即为所求P 的坐标;示意图如下求得A (12,12),B (8,20),O (6,14),故P 点可能的坐标为(12,12)或(8,20)或(6,14); (3)由S △MNQ =S △NMP ,设Q (-1,m ),QN 所在直线方程为y =kx +b , 把Q 和N 代入方程,求得b =845m +,则可求S △NMP =12|16-b |×[4-(-1)]=|36-2m |当P 为(12,12)时,S △MNQ =40,△|36-2m |=40;解得m =-2或38,当P (8,20),同理解得m =-2或38,当P (8,20),有S △MNQ =20,解得m =8或28, 综上,符合条件的Q 的坐标为(-1,-2)或(-1,8)或(-1,38)或(-1,28).【变式训练3】如图,已知直线1:3l y x =+与过点A (3,0)的直线2l 交于点C (1,m ),且与x 轴交于点B ,与y 轴交于点D . (1)求直线2l 的解析式;(2)若点D 关于x 轴的对称点为P ,求△PBC 的面积.【答案】(1)-26y x =+;(2)12.【解析】(1)把(1,)C m 代入y =x +3,得1+3=m ,△m =4,△(1,4)C设2l 的解析式为:y =kx +b (k ≠0),将点A ,C 的坐标代入,则430k b k b +=⎧⎨+=⎩ 解得26k b =-⎧⎨=⎩,△2l 的解析式为:-26y x =+(2)当y =0时,30x += ,△3x =-,△(3,0)B -, 当x =0时,y =3,△(0,3)D ,△点P 、D 关于x 轴对称,△(0,3)P - ,如图,连接BP ,PC ,设PC 与x 轴的交点为Q ,设直线PC 的解析式为(0)y kx b k =+≠,将点(1,4),(0,3)C P -代入:43k b b +=⎧⎨=-⎩,解得73k b =⎧⎨=-⎩,△直线PC 的解析式为:73y x =-,令y =0,解得37x =, △BPCBQP BQCSSS=+1122c BQ OP BQ y =+1124()712227c BQ OP y =+=⨯⨯=.类型二、一次函数与平行四边形例1.如图,在平面直角坐标系中,直线AB 与x ,y 轴分别交于点(4,0)A ,(0,3)B ,点C 是直线554y x =-+上的一个动点,连接BC .(1)求直线AB 的函数解析式;(2)如图1,若//BC x 轴,求点C 到直线AB 的距离;(3)如图2,点(1,0)E ,点D 是直线AB 上的动点,试探索点C ,D 在运动过程中,是否存在以B ,C ,D ,E 为顶点的四边形是平行四边形,若存在,请直接写出点C ,D 的坐标;若不存在,请说明理由.【答案】(1)334y x =-+;(2)2425;(3)17(2,45)8-、15(2-,69)8或1(2-,45)8、1(2,21)8或17(2,45)8-、15(2,21)8- 【解析】(1)设直线AB 的表达式为y kx b =+,则304b k b =⎧⎨=+⎩,解得343k b ⎧=-⎪⎨⎪=⎩,故AB 的表达式为334y x =-+;(2)//BC x 轴,故点C 的纵坐标为3,当3y =时,即5534y x =-+=,解得85x =,即点C 的坐标为8(5,3),则85BC =;由点A 、B的坐标得,5AB ==,过点C 作CH AB ⊥于点H ,在△ABC 中,S △ABC =1122BC OB AB CH ⨯⨯=⨯⨯,即18135252CH ⨯⨯=⨯⨯,解得:2425CH =,即点C 到直线AB 的距离为2425;(3)设点C 、D 的坐标分别为5(,5)4m m -+、3(,3)4n n -+,当EB 是对角线时,由中点坐标公式得:01m n +=+且53305344m n +=-+-+,解得172152m n ⎧=⎪⎪⎨⎪=-⎪⎩,故点C 、D 的坐标分别为17(2,45)8-、15(2-,69)8;当EC 是对角线时,同理可得:1m n +=且5353344m n -+=-++,解得,1212m n ⎧=-⎪⎪⎨⎪=⎪⎩故点C 、D 的坐标分别为1(2-,45)8、1(2,21)8;当ED 是对角线时,同理可得:1n m +=且35035344n m -+=-++,解得152172m n ⎧=⎪⎪⎨⎪=⎪⎩,故点C 、D 的坐标分别为17(2,45)8-、15(2,21)8-.综上,点C 、D 的坐标分别为17(2,45)8-、15(2-,69)8或1(2-,45)8、1(2,21)8或17(2,45)8-、15(2,21)8-.【变式训练1】一次函数y = kx+1(k ≠ 0)的图象过点P (-3,2),与x 轴交于点A ,与y 轴交于点B .(1)求k 的值及点A 、B 的坐标;(2)已知点C (-1,0),若以A ,B ,C ,D 为顶点的四边形是平行四边形,请直接写出所有符合条件的点D 的坐标.【答案】(1)13k =-,与x 轴交于点A (3,0),与y 轴交于点B (0,1);(2)D (4,1)或D (2,-1)或D (-4,1).【解析】(1)将P (-3,2)代入()10y kx k =+≠,得:13k =-函数表达式:113y x =-+,令y =0,x =3,令x =0,y =1,△与x 轴交于点A (3,0),与y 轴交于点B (0,1);(2)分三种情况:①BC 为对角线时,点D 的坐标为(-4,1);②AB 为对角线时,点D 的坐标为(4,1),③AC 为对角线时,点D 的坐标为(2,-1).综上所述,点D 的坐标是(4,1)或(-4,1)或(2,-1).【变式训练2】平面直角坐标系xOy 中,直线1l :2y x b =+与直线2l :12y x =交于点()2,P m . (1)求m ,b 的值;(2)直线()0x n n =≠与直线1l ,2l 分别交于M ,N 两点,当MN =3时,若以M ,N ,P ,Q 为顶点的四边形是平行四边形,请直接写出点Q 的坐标.【答案】(1)13m b ==-,;(2)点Q 的坐标为()2,4,()2,2-或()6,6 【解析】(1)△直线1l :2y x b =+与直线2l :12y x =交于点()2,P m ,△4122m b m =+⎧⎪⎨=⨯⎪⎩,△1 3.m b ==-, (2)依题意可得直线1l :23y x =-,△直线1l 与y 轴的交点为(0,-3) △直线()0x n n =≠与直线1l ,2l 分别交于M ,N 两点, MN =3, △M ,N 不是y 轴上的点,设M (x ,2x -3),则N (x ,12x ) 由MN =3,得(2x -3)-12x =3,解得x =4,△M (4,5),则N (4,2) △以M ,N ,P ,Q 为顶点的四边形是平行四边形,①当MN 为四边形MPNQ 的对角线时,MN 的中点坐标为(4,3.5) 故()2,1P 、Q 关于(4,3.5)对称,△点Q 的坐标为()6,6,②当MN 为四边形MNQP 的一边时,MN =PQ =3,且PQ 与y 轴平行,故点Q 的坐标为()2,4或()2,2- 综上,点Q 的坐标为()2,4,()2,2-或()6,6. 类型三、一次函数与等腰三角形例1.一次函数的图像与x 轴、y 轴分别交于点A0),B (0,1),以AB 为边在第一象限内做等边△ABC . (1)线段AB 的长是 ,△BAO = °,点C 的坐标是 ;(2)如果在第二象限内有一点P (a ,1),试用含a 的代数式表示四边形ABPO 的面积. (3)在y 轴上存在点M ,使△MAB 为等腰三角形,请直接写出点M 的坐标.【答案】(1)2,30,C2);(22a-;(3)(0,-1)或(0,3)【解析】(1)(3A ,0),(0,1)B ,在Rt AOB ∆中,2AB =,2OB =AB ,可30BAO ∴∠=︒,以AB 为边在第一象限内做等边ABC ∆,60ACB ∠=︒∴,AB AC =,90OAC ∴∠=︒,C ∴2),故答案为2,30,C 2);(2)四边形ABPO 的面积BAO =∆的面积OBP +∆的面积1111()222a a =+⨯⨯-=;(3)2AB =,30BAO ∠=︒,60OBA ∴∠=︒,①当AB BM =时,2BM =,(0,1)M -或(0,3)M ;②当AB AM =时,ABM ∆是等边三角形,M ∴与B 关于x 轴对称,(0,1)M ∴-; ③当BM AM =时,ABM ∆是等边三角形,M ∴与B 关于x 轴对称,(0,1)M ∴-; 综上所述:MAB ∆为等腰三角形时,M 点坐标为(0,1)-或(0,3).【变式训练1】如图一,已知直线l :6y x =-+与x 轴交于点A ,与y 轴交于点B ,直线m 与v 轴交于点(0,2)C -,与直线l 交于点(,1)D t .(1)求直线m 的解析式;(2)如图二,点P 在直线l 上且在y 轴左侧,过点P 作//PQ y 轴交直线m 于点Q ,交x 轴于点G ,当2PCG QCG S S ∆∆=,求出P ,Q 两点的坐标;(3)将直线l :6y x =-+向左平移12个单位得到直线n 交x 轴于E 点,点F 是点C 关于原点对称点.过点F 作直线//k x 轴.点M 在直线k 上,写出以点C ,E ,M ,为顶点且CE 为腰的等腰三角形,并把求其中一个点M 的坐标的过程写出来. 【答案】(1)直线m 的解析式为325y x =-;(2)P 点的坐标为(-10,16),Q 点坐标为(-10,-8);(3)当CE 为腰时,点M 的坐标为:M (2)或M (-2)或M (0,2).过程见解析. 【解析】(1)△D (t ,1)在直线l :y =-x +6上,△1=-t +6,△t =5,△D (5,1),设直线m 的解析式为y =kx +b ,将点C ,D 代入得,512k b b +=⎧⎨=-⎩,解得,352k b ⎧=⎪⎨⎪=-⎩,所以,直线m 的解析式为325y x =-; (2)设P (a ,6-a ),△点P 在x 轴的左侧,△0a < △PQ △轴,G (a ,0),Q (a ,325a -),如图,点P 、Q 在x 轴两侧,△S △PCG =12PG •(-a ),S △QCG =12GQ •(-a )且S △PCG =2S △QCG , △PG =2QG ,△6-a =2(2-35a ),解得:a =-10, △66(10)16a -=--=,332(10)2855a -=⨯--=-△P 点的坐标为(-10,16),Q 点坐标为(-10,-8);(3)对于直线l :y =-x +6,当x =0时,y =6;当y =0时,x =6.△A (6,0),B (0,6),△将直线l :y =-x +6向左平移12个单位得直线n 交x 轴于点E ,点F 是点C 关于原点的对称点.点C (0,-2), △E (-6,0),F (0,2), 如图,△将直线l :y =-x +6向左平移12个单位得直线n ,△直线n :y =-x -6, 又△F (0,2)△k 的解析式为:y =2,设M (a ,2),则MCME,CE ,当△MCE 为等腰三角形,且CE 为腰,有:①CE =MCa =a =-M (2).M (-2), ②ME =CE解得,a =0或a =-12(此时三点共线,不构成三角形,舍去),即M (0,2),综上,当CE 为腰时,点M 的坐标为:M (2)或M (-2)或M (0,2).【变式训练2】在如图的平面直角坐标系中,直线n 过点A (0,﹣2),且与直线l 交于点B (3,2),直线l 与y 轴交于点C .(1)求直线n 的函数表达式;(2)若△ABC 的面积为9,求点C 的坐标;(3)若△ABC 是等腰三角形,求直线l 的函数表达式.【答案】(1)y =43x ﹣2;(2)C (0,4)或(0,﹣8);(3)直线l 的解析式为:y =﹣13x +3或y =3x ﹣7或y =﹣43x +6或y =724x +98 【解析】(1)设直线n 的解析式为:y =kx +b ,△直线n :y =kx +b 过点A (0,﹣2)、点B (3,2),△232b k b =-⎧⎨+=⎩ ,解得:432k b ⎧=⎪⎨⎪=-⎩ ,△直线n 的函数表达式为:y =43x ﹣2; (2)△△ABC 的面积为9,△9=12•AC •3,△AC =6, △OA =2,△OC =6﹣2=4或OC =6+2=8,△C (0,4)或(0,﹣8); (3)分四种情况:①如图1,当AB =AC 时,△A (0,﹣2),B (3,2),△AB 22(22)=5,△AC =5,△OA =2,△OC =3,△C (0,3),设直线l 的解析式为:y =mx +n ,把B (3,2)和C (0,3)代入得:323m n n +=⎧⎨=⎩ ,解得:133m n ⎧=-⎪⎨⎪=⎩ ,△直线l 的函数表达式为:y =13-x +3; ②如图2,AB =AC =5,△C (0,﹣7),同理可得直线l 的解析式为:y =3x ﹣7; ③如图3,AB =BC ,过点B 作BD △y 轴于点D ,△CD =AD =4,△C (0,6),同理可得直线l 的解析式为:y =43-x +6; ④如图4,AC =BC ,过点B 作BD △y轴于D ,设AC =a ,则BC =a ,CD =4﹣a ,根据勾股定理得:BD 2+CD 2=BC 2,△32+(4﹣a )2=a 2,解得:a =258, △OC =258﹣2=98 ,△C (0,98),同理可得直线l 的解析式为:y =724x +98; 综上,直线l 的解析式为:y =13-x +3或y =3x ﹣7或y =43-x +6或y =724x +98. 【变式训练3】如图,直线1:l y ax a =-,1l 与x 轴交于点B ,直线2l 经过点(4,0)A ,直线1l ,2l 交于点(2,3)C -.(1)a =______;点B 的坐标为______. (2)求直线2l 的解析表达式; (3)求ABC 的面积;(4)在直线2l 上存在异于点C 的另一点P ,使得ABP △为等腰三角形,请直接写出P 点的横坐标?【答案】(1)3a =-,()10B ,;(2)362y x =-;(3)92;(4)52,2813【解析】(1)△直线1:l y ax a =-经过点(2,3)C -,32a a ∴-=-,解得:3a =-;即直线1:l y ax a =-的解析式为33y x =-+;当y =0时,-3x +3=0,解得1x =,则()10B ,;故答案为:-3,(1,0);(2)设直线2l 的解析式为:y kx b =+, △经过点()4,0A 和点(2,3)C -,△0432k b k b=+⎧⎨-=+⎩,解得:32k ,6b =-.△直线2l 的解析式为:362y x =-; (3)设ABC 的面积的面积为ABC S ;则413AB =-=,ABC 的高为3,则193322ABCS=⨯⨯=; (4)存在,设点P 的坐标为(x ,362x ),分三种情况: ①当AP=BP 时,点P 在线段AB 的垂直平分线上,△A (4,0),B (1,0),△点P 的横坐标为:41522+=; ②当AP=AB =3时,过点P 作PH △x 轴于点H ,△222PH AH AP +=,△2223(6)(4)32x x -+-=,解得x③当AB=BP =3时,作PM △x 轴于点M , △222PM BM BP +=,△2223(6)(1)32x x -+-=,解得x =2813或x =4(舍去);综上,符合条件的P 点的横坐标是52,2813,5213± 类型四、一次函数与直角三角形例1.如图,在平面直角坐标系中,函数y =-x +2的图象与x 轴,y 轴分别交于点A ,B ,与函数y =13x +b 的图象交于点C (-2,m ). (1)求m 和b 的值;(2)函数y =-x +b 的图象与x 轴交于点D ,点E 从点D 出发沿DA 向,以每秒2个单位长度匀速运动到点M (到A 停止运动),设点E 的运动时间为t 秒. ①当ΔACE 的面积为12时,求t 的值;②在点E 运动过程中,是否存在t 的值,使ΔACE 为直角三角形?若存在,请求出t 的值;若不存在,请说明理由.【答案】(1)m =4,b =143;(2)①t =5;②t =4或t =6 【解析】(1)△点C (−2,m )在直线y =−x +2上, △m =−(−2)+2=2+2=4,△点C (−2,4), △函数y =13x +b 的图象过点C (−2,4),△4=13×(−2)+b ,得b =143,即m 的值是4,b 的值是143; (2)①△函数y =−x +2的图象与x 轴,y 轴分别交于点A ,B ,△点A (2,0),点B (0,2), △函数y =13x +143的图象与x 轴交于点D ,△点D 的坐标为(−14,0),△AD =16, △△ACE 的面积为12,△(16−2t )×4÷2=12,解得,t =5.即当△ACE 的面积为12时,t 的值是5; ②当t =4或t =6时,△ACE 是直角三角形,理由:当△ACE =90°时,AC △CE , △点A (2,0),点B (0,2),点C (−2,4),点D (−14,0),△OA =OB ,AC =,△△BAO =45°,△△CAE =45°,△△CEA =45°,△CA =CE =,△AE =8, △AE =16−2t ,△8=16−2t ,解得,t =4;当△CEA =90°时,△AC =,△CAE =45°,△AE =4, △AE =16−2t ,△4=16−2t ,解得,t =6;由上可得,当t =4或t =6时,△ACE 是直角三角形.【变式训练1】如图1,在菱形ABCD 中,60ABC ∠=︒,对角线AC BD 、交于点,O P 从B 点出发,沿B DC →→方向匀速运动,P 点运动速度为1cm/s .图2是点P 运动时,APC △的面积2()cm y 随P 点运动时间()s x变化的函数图像.(1)AB =_______cm,a =_____;(2)P 点在BD 上运动时,x 为何值时,四边形ADCP; (3)在P 点运动过程中,是否存在某一时刻使得APB △为直角三角形,若存在,求x 的值;若不存在,请说明理由.【答案】(1)2;(2;(3或1【解析】(1)在菱形ABCD 中,60ABC ∠=︒,则ABC ∆、ACD ∆为全等的两个等边三角形,设ABC ∆的边长为a,则其面积为24a , 由图2知,当点P 在点A 时,y ABC =∆的面积2=,解得2a =(负值已舍去), 即菱形的边长为2,则2()AB cm =,由题意知,点P 与点O 重合时,对于图2的a 所在的位置,则1AO =,故a BO ====2(2)由(1)知点P 在BO 段运动时,对于图2第一段直线,而该直线过点、0),设其对应的函数表达式为y kx t =+,则0t t ⎧=⎪+=,解得1k t =-⎧⎪⎨=⎪⎩,故该段函数的表达式为=-+y x ,当点P 在BD 上运动时,四边形ADCP,则点P 只能在BO 上,则四边形ADCP 的面积ACD S y ∆=+=x x =;(3)存在,理由:由(1)知,菱形的边长为2,则BP =1AO =,过点A 作AP DC ''⊥于点P ''交BD 于点P ',ABC ∆、ACD ∆均为等边三角形,则30PAP DAP ∠'=∠''=︒,①当点P 和点O 重合时,APB ∠为直角,则x BP ==②当BAP ∠'为直角时,则同理可得:PP '=x BP PP =+'=;③当BAP ∠''为直角时,则112x BD DP AD =+''=+=,综上,x 或1. 【变式训练2】在平面直角坐标系xOy 中,将直线2y x =向下平移2个单位后,与一次函数132y x =-+的图象相交于点A .(1)将直线2y x =向下平移2个单位后对应的解析式为 ; (2)求点A 的坐标;(3)若P 是x 轴上一点,且满足△OAP 是等腰直角三角形,直接写出点P 的坐标.【答案】(1)22y x =-;(2)(2,2);(3)(2,0)或(4,0).【解析】(1)根据题意,得22y x =-;故答案为:22y x =-.(2)由题意得:22132y x y x =-⎧⎪⎨=-+⎪⎩,解得:22x y =⎧⎨=⎩,△点A 的坐标为(2,2); (3)如图所示,△P 是x 轴上一点,且满足△OAP 是等腰直角三角形,当OA =OP 时,P 点坐标为(4,0),当OP =AP 时,P 点坐标为(2,0), 综上,P 点的坐标为:(2,0)或(4,0). 类型五、最值问题 例1.如图,将直线34y x =-向上平移后经过点()4,3A ,分别交x 轴y 轴于点B 、C .(1)求直线BC 的函数表达式;(2)点P 为直线BC 上一动点,连接OP .问:线段OP 的长是否存在最小值?若存在,求出线段OP 的最小值,若不存在,请说明理由. 【答案】(1)364y x =-+;(2)存在,线段OP 的最小值为4.8.【解析】(1)设平移后的直线BC 的解析式为34y x b =-+,代入()4,3A 得3344b =-⨯+,解得6b = △直线BC 的解析式为364y x =-+; (2)存在,理由如下:令x =0,得y =6,△C (0,6),故OC =6令y =0,得x =8,△B (8,0)故OB =8△BC 10= △OP △BC 时,线段OP 最小, △S △ABC =12BO CO ⨯=12BC OP ⨯,△OP = 4.8BO COBC⨯=,即线段OP 的最小值为4.8. 【变式训练1】如图,四边形OABC 是张放在平面直角坐标系中的正方形纸片,点O 与坐标原点重合,点A 在x 轴正半轴上,点C 在y 轴正半轴上,5OC =,点E 在边BC 上.(1)若点N 的坐标为(3,0),过点N 且平行于y 轴的直线MN 与EB 交于点M ,将纸片沿直线OE 折叠,顶点C 恰好落在MN 上,并与MN 上的点G 重合. ①求点G 、点E 的坐标;②若直线:l y mx n =+平行于直线OE ,且与长方形ABMN 有公共点,请直接写出n 的取值范围. (2)若点E 为BC 上的一动点,点C 关于直线OE 的对称点为G ,连接BG ,请求出线段BG 的最小值.【答案】(1)①G (3,4),E (53,5);②-15≤n ≤-4;(2)5【解析】(1)由折叠的性质可知,OG =OC =5,由勾股定理得,GN 4=, △点G 的坐标为(3,4);设CE =x ,则EM =3-x ,由折叠的性质可知:EG =CE =x , △GN =4,△GM =5-4=1,在Rt △EMG 中,222EG EM MG =+,即()22231x x =-+,解得:x =53, △点E 的坐标为(53,5);设OE所在直线的解析式为:y=kx,则53k=5,解得,k=3,△OE所在直线的解析式为:y=3x,△直线l:y=mx+n平行于直线OE,△m=3,即直线l的解析式为y=3x+n,当直线l经过点M(3,5)时,5=3×3+n,解得,n=-4,当直线l经过点A(5,0)时,0=3×5+n,解得,n=-15,△直线l与长方形ABMN有公共点时,-15≤n≤-4;(3)连接OB,OG,△OC=BC=5,△OCB=90°,△BC OC=△点C关于直线OE的对称点为点G,△OC=OG=5,△BG≥OB-OG,△当O、B、G三点共线时,BG取得最小值,△BG的最小值为5.。
巧用坐标求图形的面积课件
目录
CONTENTS
• 引言 • 坐标系基础 • 图形面积的坐标表示 • 直线与坐标轴围成的图形面积 • 曲线与坐标轴围成的图形面积 • 实际应用案例分析 • 课程总结与展望
01
CHAPTER
引言
课程背景
01
坐标法是数学中重要的思想方法 ,通过坐标系可以将几何图形转 化为代数问题,从而简化计算和 推理过程。
通过上述方法得到精确值
06
CHAPTER
实际应用案例分析
案例一:不规则图形面积计算
总结词
不规则图形面积计算是坐标法在实际应用中的重要领域之一 。
详细描述
对于不规则图形,我们通常无法直接使用面积公式进行计算 。但是,通过坐标法,我们可以将不规则图形分解为多个三 角形或矩形,然后分别计算它们的面积,最后将这些面积相 加得到整个图形的面积。
梯形面积公式
S=1/2(x2-x1)\cdot y。
直线与y轴围成的图形面积
总结词
通过计算直线与y轴围成的图形面积,可以得出该直线与x轴之间的距离。
详细描述
设直线与y轴交于点C(0,y1)和点D(0,y2),且y2>y1。在直线上任取一点P(x,y),则点P到y 轴的距离为x,到x轴的距离为y。根据几何学中的面积计算公式,直线与y轴围成的图形面 积等于梯形的面积。
具体步骤
1. 建立坐标系:选择一个合适的坐标系,将城市道路和绿地放置在其中 。
2. 确定绿地的位置和形状:通过坐标系中的点来确定每块绿地的位置和 形状。
案例二:道路绿化面积计算
3. 计算每块绿地的面积
根据绿地的位置和形状,使用坐标法计算其面积。
4. 相加得到总面积
平面直角坐标系中如何求几何图形的面积
图1图2图3平面直角坐标系中如何求几何图形的面积一、 求三角形的面积1、 有一边在坐标轴上或平行于坐标轴例1:如图1,平面直角坐标系中,△ABC 求出三角形ABC 的面积吗2、无边在坐标轴上或平行于坐标轴例2:如图2,平面直角坐标系中,已知点A (-3,-1)、B (1,3)、C (2,-3),你能求出三角形ABC 的面积吗归纳:求三角形面积的关键是确定某条边及这条边上的高,如果在坐标系中,某个三角形中有一条边在坐标轴上或平行于坐标轴,则根据这条边的两个顶点的坐标易求出这边的长,根据这条边的相对的顶点可求出他的高。
二、求四边形的面积例3:如图3,你能求出四边形ABCD 的面积吗分析:四边形ABCD 是不规则的四边形,面积不能直接求出,我们可以利用分割或补形来求。
归纳:会将图形转化为有边与坐标轴平行的图形进行计算。
怎样确定点的坐标一、 象限点解决有关象限点问题的关键是熟记各象限的符号特征,由第一到底四象限点的符号特征分别为(+,+)、 (-,+)、(-,-)、(+,-)。
例1:已知点M (a 3-9,1-a )在第三象限,且它的坐标都是整数,则a =( ) A 、1 B 、2 C 、3 D 、0二、轴上的点解决有关轴上点问题的关键是把握“0”的特征,x 轴上点的纵坐标为0,可记为(x ,0);y 轴上点的横坐标为0,可记为(0,y );原点可记为(0,0)。
例2:点P (m+3,m+1)在直角坐标系的x 轴上,则P 点的坐标为( ) A 、(0,-2) B 、(2,0) C 、(4,0) D 、(0,-4)三、象限角平分线上的点所谓象限角平分线上的点,就是各象限坐标轴夹角平分线上的点。
解决这类问题的关键是掌握“y x =”的特征,一、三象限角平分线上点的横、纵坐标相等,可记为(x ,x );二、四象限角平分线上的点横、纵坐标互为相反数,可记为(x ,-x )。
例3:已知点Q (8,4m 222++++m m m )在第一象限的角平分线上,则m=_________.四、对称点对称点的横、纵坐标之间有很密切的关系,点P (a ,b )关于x 轴对称的点的坐标上(a ,-b );关于y 轴对称的点的坐标是(-a ,b );关于原点对称的点的坐标是(-a ,-b );关于一、三象限角平分线对称的点的坐标是(b ,a );关于二、四象限角平分线对称的点的坐标是(-b,-a ). 例4:点(-1,4)关于原点对称的点的坐标是( )A、(-1,-4)B、(1,-4)C、(1,4)D、(4,-1)五、平行于坐标轴的直线上的点平行于x轴的直线上点的纵坐标相同,平行于y轴的直线上点的横坐标相同。
中考数学复习专题08 面积法专题研究(解析版)
备战2020中考数学解题方法专题研究专题8 面积法专题【方法简介】用面积法解几何问题是一种重要的数学方法,在初中数学中有着广泛的应用,这种方法有时显得特别简捷,有出奇制胜、事半功倍之效。
所谓面积法,就是利用面积相等或者成比例,来证明其他的线段相等或为成比例线段的方法。
有些数学问题,虽然题目中没有直接涉及到面积,借助面积极法不但可证明各种几何图形中的面积等量关系,还可证某些线段相等,角的相等关系以及线段之间的比例式等多种类型的几何题,用面积法证题,关键在于利用题目的特点,分析相应图形面积之间的关系,推出几何题中相应边角关系。
【真题演练】1. 如图1,转动转盘,求转盘停止转动时指针指向阴影部分的概率。
图1【解析】:观察图1,显然有阴影部分的面积占整个圆面积的一半,故P (阴影部分)=12。
2. 如图1,过平行四边形ABCD 的顶点A 引直线,和BC 、DC 或其延长线分别交于E 、F ,求证:ADE ABF S S ∆∆=.BAC图1F ED证明:连结AC ,∵CF //AB , ∴ABCD ABC ABF S S S 平行四边形21==∆∆,又∵CE //AD ,∴ABCD ACD ADE S S S 平行四边形21==∆∆ ∴ADE ABF S S ∆∆=.3. (2019十堰模拟)如图,平行四边形AOBC 中,对角线交于E ,双曲线ky x=(k>0)经过A 、E 两点,若平行四边形AOBC 的面积为18,求k 的值.、【解析】分别过点A 、E 作AM 、EN 垂直于x 轴于M 、N , 则AM ∥EN ,∵A 、E 在双曲线上, ∴三角形AOM 与三角形OEN 的面积相等,∵四边形AOBC 是平行四边形,∴AE=BE ,∵AM ∥EN ,∴MN=NB ,∴EN=12AM , ∴OM=12ON ,根据三角形的中位线,可得MN=BN ,∴OM=MN=BN , 设A (x ,y ),由平行四边形的面积=OB×AM=18, ∴3x×y=18,xy=6,即k=6;故答案为:6.4. 已知:如图,AD 是△ABC 的中线,CF ⊥AD 于F ,BE ⊥AD 交AD 的延长线于E 。
专题28 求几何图形面积及面积法解题的问题(解析版)
专题28 求几何图形面积及面积法解题的问题一、几何图形面积公式1.三角形的面积:设三角形底边长为a ,底边对应的高为h ,则面积S=ah/22.平行四边形的面积:设平行四边形的底边长为a ,高为h ,则面积S=ah3.矩形的面积:设矩形的长为a ,宽为b ,则面积S=ab4.正方形的面积:设正方形边长为a ,对角线长为b ,则面积S=222b a = 5.菱形的面积:设菱形的底边长为a ,高为h ,则面积S=ah若菱形的两条对角线长分别为m 、n ,则面积S=mn/2也就是说菱形的面积等于两条对角线乘积的一半。
6.梯形的面积:设梯形的上底长为a,下底长为b ,高为h ,则面积S=(a+b )h/27.圆的面积:设圆的半径为r,则面积S=πr 28.扇形面积计算公式9.圆柱侧面积和表面积公式(1)圆柱的侧面积公式S 侧=2πrh2360r n s π⋅=lr s 21=或(2)圆柱的表面积公式:S 表=2S 底+S 侧=2πr 2+2πrh10.圆锥侧面积公式从右图中可以看出,圆锥的母线L 即为扇形的半径,而圆锥底面的周长是扇形的弧长2πr ,这样,圆锥侧面积计算公式:S 圆锥侧=S 扇形=πrL注意:有时中考题还经常考查圆的周长、扇形的弧长的公式的应用。
(1)圆的周长计算公式为:C=2πr(2)扇形弧长的计算公式为:(3)其他几何图形周长容易计算,不直接给出。
二、用面积法解题的理论知识1.面积方法:运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。
2.面积法解题的特点:把已知量和未知量用面积公式联系起来,通过运算达到求证的结果。
所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。
三、面积方法问题主要涉及以下两部分内容1.证明面积相等的理论依据(1)三角形的中线把三角形分成两个面积相等的部分。
《平面直角坐标系》核心考点A【教师版】
12.勤学早第7章《平面直角坐标系》核心专题一点通A——核心考点专题核心考点一有序数对1.下列数据不能确定物体位置的是()A.5楼6号B.北偏东30°C.大学路19号D.东经118°,北纬36°答案:B2.剧院里5排2号可以用(5,2)表示.则(9,6)表示.答案:9排6号3.如图是游乐园的一角.(1)如果用(3,2)表示跳跳床的位置,你能用数据对表示其他游乐设施的位置吗?请你写出来.(2)请你在图中标出秋千的位置,秋千在大门以东400m,再往北300m处.(1个单位长度表示100m)答案:(1)跷跷板(2,4),碰碰车(5,1),摩天轮(5,4);(2)略4.如图,用点A(3,1)表示放置3个胡萝卜、1棵青菜,点B(2,3)表示放置2个胡萝卜、3棵青菜.(1)请你写出其他各点C,D,E,F所表示的意义;(2)若一只兔子从A到达B(顺着方格线走),有以下几条路可以选择:①A→C→D→B;A→F→D→B;③A→F→E→B,帮可爱的小白兔选一条路,使它吃到的食物最多.答案:点C(2,1)表示放置2个胡萝卜、1棵青菜,点D(2,2)表示放置2个胡萝卜、2棵青菜,点E (3,3)表示放置3个胡萝卜、3棵青菜,点F(3,2)表示放置2个胡萝卜、1棵青菜;(2)走①有9个胡萝卜、7棵青菜,走②有10个胡萝卜、8棵青菜,走③有11个胡萝卜、9棵青菜,故小白兔走③吃到的食物最多.核心考点二平面直角坐标系5.在平面直角坐标系中,点P(2,x2)在()A.笫一象限B.第四象限C.笫一或者第四象限D.以上说法法都不对答案:D6.若点A(-2,n)在x轴上,则点B(n-2,n+1)在()A.笫一象限B.笫二象限C.笫三象限D.笫四象限答案:B7.在坐标平面内,下列各点中到x轴的距离最近的点是()A.(2,5)B.(-4,1)C.(3.-4)D.(6,2)答案:B8.在平面直角坐标系xoy中.若A点坐标为(-3,3),B点坐标为(2,0),则三角形ABO的面积为()A.15 B.7.5 C.6 D.3答案:D9.一个正方形在平面直角坐标系中三个顶点的坐标为(-2,-3),(-2,1),(2,1),则第四个顶点的坐标为()A.(2,2)B.(3,2)C.(2,-3)D.(2,3)答案:C10.平面直角坐标系内AB∥y轴,AB=5,点A坐标为(-5,3),则点B坐标为()A .(-5,8)B .(0,3)C .(-5,8)或(-5,-2)D .(0,3)或(-10,3) 答案:C11.点P (-3,5)到x 轴的距离是 ,到y 轴的距离是 . 答案:5;312.已知点P 坐标为(2-a ,3a +6),且点P 到两坐标轴的距离相等,则点P 的坐标 . 答案:(3,3)或(6,-6) 13.已知点A (-5,0),点B (3,0),点C 在y 轴上,△ABC 的面积为12,则点C 的坐标为 . 答案:(0,3)或(0,-3)14.在平面直角坐标系中描出点A (-3,3),B (-3,-1),C (2,-1),D (2,3),用线段顺次连接各点,看它是什么样的几何图形?并求出它的面积.答案:长方形,面积为20.15.如图所示,写出其中标有字母的各点的横坐标和纵坐标.答案:A (0,6),B (-4,2),C (-2,2),D (-2,-6),E (2,-6),F (2,2),G (4,2) 核心考点三 用坐标表示地理位置16.从车站向东走400米,再向北走500米到小红家;从车站向北走500米,再向西走200米到小强家,则( )A .小强家在小红家正东B .小强家在小红家正西C .小强家在小红家正南D .小强家在小红家正北 答案:B 17.在平面直角坐标系中有A ,B 两点,若以B 点为原点建立平面直角坐标系,则A 点的坐标为(2,3).若以A 点为原点建立平面直角坐标系(两直角坐标系x 轴,y 轴方向一致),则B 点的坐标为( ) A .(-2,-3) B .(-2,3) C .(2,-3) D .(2,3) 答案:A18.如图,A ,B ,C ,D 是四位同学家所在的位置.若以A 同学的家在的位置为坐标原点建立平面直角坐标系,那么C 同学家的位置为(1,5),则B ,D 两同学家的位置为( ) A .(2,3),(3,2) B .(3,2),(2,3) C .(2,3),(-3,2) D .(3,2),(-2,3) 答案:DCBAD相炮士第18题图 第19题图 第20题图19.如图是某学校的平面示意图,在8×8的正方形网格中(每个小方格都是边长为1的小正方形),如果分别用(3,1),(3,5)表示图中图书馆和教学楼的位置,那么实验楼的位置应表示为 . 答案:(-2,5)20.如图所示的象棋盘上,若“士”的坐标是(-2,-2),“相”的坐标是(3,2),则“炮”的坐标是 . 答案:(-3,0)21.如图规定北偏东30°方向记作30°,沿这个方向行走50米记作50.图中点A 记作(30°,50),北偏西45°方向记作-45°,沿着该方向的反方向行走20米记作-20,图中点B 记作(-45°,-20). (1)(-75°,-15),(10°,-25)分别表示什么意义? (2)在图中标出点(60°,-30),(-30°,40).OB (-45°,-20)A (30°,50)北答案:(1)(-75°,-15)表示南偏东75°,15米处;(10°,-25)表示南偏西10°方向,10米处; (2)略核心考点四 用坐标表示平移22.将点A (2,1)向左平移2个单位长度得到点A ’,则点A ’的坐标为( ) A .(2,3) B .(2.-1) C .(4.1) D .(0,1) 答案:D23.在平面直角坐标系中,点A (1,2)平移后的坐标是A ’(-3,3),按照同样的规律平移其他点,则符合这种要求的变换是( ) A .(3,2)→(4,-2) B .(-1,0)→(-5,-4)C .(2.5,-13)→(-1.5,23) D .(1.5,5)→(-3.2.6)答案:C24.将△ABC 的三个顶点的横坐标都加上-6,纵坐标都减去5,则所得图形与原图形的关系是( ) A .将原图形向x 轴的正方向平移了6个单位,向y 轴的正方向平移了5个单位 B .将原图形向x 轴的负方向平移了6个单位,向y 轴的正方向平移了5个单位 C .将原图形向x 轴的负方向平移了6个单位,向y 轴的负方向平移了5个单位 D .将原图形向x 轴的正方向平移了6个单位,向y 轴的负方向平移了5个单位 答案:C25.将四边形ABCD 先向左平移3个单位,再向上平移2个单位,那么点A 对应的点A ’的坐标是( ) A .(6,1) B .(0,1) C .(0,-3) D .(6,-3)答案:B26.如图,把图①中的圆A 经过平移得到圆O (如图②),如果图①中圆A 上一点P 的坐标为(m ,n ),那么平移后点P 在图②中的对应点P ’的坐标为( ) A .(m +2,n +1) B .(m -2,n -1) C .(m -2,n +1) D .(m +2,n -1)答案:D27.在平面直角坐标系中,已知点O(0,0),A(1,3),将线段OA向右平移3个单位,得到线段O1A1,則O1的坐标是,A1的坐标是.答案:(3,0),(4,3)28.如图所示,在△ABC中,任意—点M(x0,y0)经平移后对应为M1(x0-3,y0-5),将△ABC作同样平移得到△A1B1C1,求△A1B1C1的三个顶点的坐标.答案:A1(-3,0)B1(-4,-3)C1(2,-4)29.如图所示,三角形ABC三点坐标分别为A(-3,4),B(-4,1),C(-1,2).(1)说明三角形ABC平移到三角形A1B1C1的过程,并求出点A1,B1,C1的坐标;(2)由三角形ABC平移到三角形A2B2C2又是怎样平移的?并求出点A2,B2,C2的坐标.答案:(1)△ABC向下平移7个单位得到△A1B1C1;A1(-3,-3)B1(-4,-6)C1(-1,-5)(2)△ABC先向右平移6个单位,再向下平移3个单位得到△A2B2C2;A2(3,1)B2(2,-2)C2(5,-1)30.如图,在平面直角坐标系xoy中.对正方形ABCD及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一实数a.将得到的点先向右平移m个单位,再句上平移n个单位(m>0,n>0),得到正方形A’B’C’D’及内部的点,其中点A,B的对应点分别为A’,B’.已知正方形ABCD内部的一个点F经过上述操作后得到的对应点F’与点F重合.求点F的坐标.答案:易得AB=6,A’B’=3,∴12a=,由1312m⨯+=-(-),得12m=.由1022n⨯+=得n=2,设F(x,y),变换后F’(ax+m,ay+n),因为F与F’重合,∴ax+m=x,ay+n=y,∴x=1,y=4,∴F(1,4)。