1.1正数和负数
1.1正数和负数
1.1正数和负数
产生1,2,3… 产生数0 产生1
2,1
3,…
二、自主探索,获取新知
1.问题背景展示,获取具有相反意义的量常识
在生活、生产、科研中,经常遇到数的表示与运算的问题。
①章前图(引言)
演示课件,展示问题及相应的图片。
问题(1)北京冬季里某天的温度为-3~3
,它的确切含义是什么?这一天北京的温差是
多少?
问题(2)有三个队参加的足球比赛中,红队胜黄队(4:1),黄队胜蓝队(1:0),蓝队胜红队(1:0)三个队的净胜球数分别是2,-2,0,如何确定排名顺序?
问题(3)2006年我国花生产量比上年增长
净胜球是0.
在教师的指导下,学生思考-3
~3、净胜球与排名的顺序、
增长-2.7%的意义以及在解决这些问题时必须要对这些新数进行四则运算等问题。
既不是正数,理解正负数的概念,可以从正负数的描述性定义入手,在教师阐述0的意义的基础上,让学生对0的意义有一个新的认识。
0是正数与负数的一个分界,0
是一个确定的温度,海拔0表示
感谢您的阅读,祝您生活愉快。
1.1正数和负数
(2)这是该存折中记录的支出、存入信息,试着 说说其中“支出或存入”那一栏中数字的含义是 什么?
存折中的正数表示存入,反之,负数表示支出.
练习:教科书第3页 1. 2010年我国全年平均降水量比上年增加108.7 mm,2009年比上年减少81.5 mm,2008年比上年 增加53.5 mm,用正数和负数表示这三年我国全年 平均降水量比上年的增长量. 答:2010年:+108.7 mm;2009年:-81.5 mm; 2008年:+53.5 mm.
(B)0是最小的正数
(C)0是最大的负数
(D)0既不是正数,也不是负数
教科书第4页练习
1.读下列各数,指出其中哪些是正数,哪些是负数.
4 2 1, 2.5, , 0, 3.14, 120, 1.732, . 3 7
2.如果80 m表示向东走80 m,那么-60 m表示 向西走60 m .
.
1 2 011 5 ,0.6, 100, 0, ,368, 2 . 2 2 012 7
2.向东行进-50 m表示的意义是 ( D ).
(A)向东行进50 m (C)向北行进50 m (B)向南行进50 m (D)向西行进50 m
3.下列结论中正确的是
( D).
(A)0既是正数,又是负数
日本
-7.3%
意大利
7.0%
这一年,上述六国中哪些国家的服务出口额增长了? 中、意 哪些国家的服务出口额减少了? 美、德、英、日 意大利增长率最高; 日本增长率最低.
哪国增长率最高?哪国增长率最低?
某五年间下列国家年平均森林面积(单位: m2)的变化情况是: 中国减少866,印度增长72,韩国减少130, 新西兰增长434,泰国减少3 247,孟加拉减少88. (1)写出这些国家在这五年间年平均森林面积的 增长量. (2)哪个国家森林面积减少最多? (3)通过对这些数据的分析,你想到了什么?
1.1正数和负数知识点1.2有理数知识点
1.整数:正整数0、负整数统称为整数,如-3,-2,2,0,1,2,3等。
2.分数:正分数负分数统称为分数,如2 ,0.2,-1.25等。
3.有理数:整数和分数统称为有理数。
任何一个有理数都可以写成 (m,n是整数,m≠0)的形式。
●注意(1)分数都可以化为有限小数或无限循环小数。
即(1)如果a>0,那么|a| =a;
(2)如果a=0,那么|a| =0;
(3)如果a<0,那么|a|= -a。
●注意:(1)在数轴上,表示一个数的点离原点越近,这个数的绝对值越小;离原点越远,这个数的绝对值越大。
(2)绝对值是它本身的数是非负数,即若lal =a,则a≥0;绝对值是其相反数的数是非正数,即若|a| = -a,则a≤0。
二、画数轴的步骤
(1)画直线,取原点:在直线上任取一个适当的点为原点。
(2)标正方向:通常规定直线上从原点向右(或上)为正方向,用箭头表示出来,箭头标在画出部分的最右边(或最上边),则从原点向左(或下)为负方向。
(3)选取单位长度,标数:选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取个点,依次表示1,2,3,…;从原点向左,用类似方法依次表示-1,-2,-3,…。
●注意:思在同一条数轴上,单位长度的大小必须统一根据所表示的数的度,也可以选取更长或更短的长度表示一个单位长度,大小灵活选取单位长度,例如可以选取2cm或0.5cm为一个单位长度。
三、数轴上的点与有理数的关系
任意一个有理数,都可以用数轴上的点来表示;但数轴上的点不都表示有理数。
一般地,设a是一个正数,则数轴上表示数a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。
1.1正负数
可表示为??
(1)具有相反意义是什么? (2)具有数量是什么?
例2 某年,下列国家的商品进出口总额比上年的变 化情况是:美国减少6.4%,德国增长1.3%,法国 减少2.4%,英国减少3.5%,意大利增长0.2%,中国 增加7.5%.写出这些国家这一年商品进出口总额的
增长率. 答:六个国家这一年商品进出口总额的增
2.如果80 m表示向东走80 m,那么-60 m表示 向西走60 m .
3.如果水位升高3 m时水位记作+3 m,那么水位 下降3 m时水位变化记作 不降时水位变化记作 0 -3 m,水位不升 m.
4.月球表面的白天平均温度零上126 º C,记 作 记作 +126 º C,夜间平均温度零下150 º C,
日本
-7.3%
意大利
7.0%
这一年,上述六国中哪些国家的服务出口额增长了? 中、意 哪些国家的服务出口额减少了? 美、德、英、日
哪国增长率最高?哪国增长率最低? 意大利增长率最高; 日本增长率最低.
某五年间下列国家年平均森林面积(单位:m 2)的变化情况是: 中国减少866,印度增长72,韩国减少130, 新西兰增长434,泰国减少3 247,孟加拉减少88. (1)写出这些国家在这五年间年平均森林面积的 增长量. (2)哪个国家森林面积减少最多? (3)通过对这些数据的分析,你想到了什么?
回顾本节课所做的练习,请同学们谈谈引入负
数的好处.
1.教科书习题1.1第1~6题. 2..找三个生活中含有正数、负数的例子,并解释 其中相关数量的含义.
-150
º C.
补充练习 5.规定盈利为正,某公司去年亏损了2.5万元,记作 -2.5 万元,今年盈利了3.2万元,记作+3.2 万元. 6.规定海平面以上的海拔高度为正,新疆乌鲁木齐 市高于海平面918 m,记作海拔+918 m;吐鲁番 -155 m. 盆地最低处低于海平面155 m,记作海拔 7.汽车在一条南北走向的高速公路上行驶,规定向 北行驶的路程为正.汽车向北行驶75 km,记作 +75 km(或 75 km),汽车向南行驶100 km, 记作 -100 km.
人教版七年级数学上册1.1《正数与负数》说课稿
人教版七年级数学上册1.1《正数与负数》说课稿一. 教材分析《正数与负数》是人教版七年级数学上册第一章第一节的内容。
这一节主要介绍了正数和负数的概念,以及它们在数轴上的表示方法。
通过这一节的学习,学生能够理解正数和负数的含义,掌握它们的运算规则,并能够运用到实际问题中。
在教材中,通过生活实例引入正数和负数的概念,使学生能够从实际出发,理解并掌握正数和负数的含义。
接着,通过数轴的引入,使学生能够直观地理解正数和负数在数轴上的位置关系。
然后,通过例题和练习,使学生能够掌握正数和负数的运算规则。
最后,通过实际问题,使学生能够将正数和负数运用到实际问题中。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于数的运算有一定的了解。
但是,对于正数和负数的概念,以及它们在数轴上的表示方法,可能还比较陌生。
因此,在教学过程中,需要通过生活实例和数轴的引入,帮助学生理解正数和负数的含义。
同时,通过例题和练习,让学生能够掌握正数和负数的运算规则。
三. 说教学目标1.知识与技能目标:通过本节课的学习,学生能够理解正数和负数的概念,掌握它们的运算规则,并能够运用到实际问题中。
2.过程与方法目标:通过生活实例和数轴的引入,培养学生从实际出发,理解并掌握正数和负数的含义。
通过例题和练习,培养学生运用正数和负数解决实际问题的能力。
3.情感态度与价值观目标:通过正数和负数的引入,使学生能够理解数学与实际的联系,增强学生对数学的兴趣。
四. 说教学重难点1.教学重点:正数和负数的概念,以及它们的运算规则。
2.教学难点:正数和负数在数轴上的表示方法,以及它们的运算规则。
五. 说教学方法与手段1.教学方法:采用情境教学法、案例教学法和小组合作学习法。
2.教学手段:利用多媒体课件、数轴模型等教学辅助手段,帮助学生直观地理解正数和负数的含义。
六. 说教学过程1.引入新课:通过生活实例引入正数和负数的概念,让学生从实际出发,理解并掌握正数和负数的含义。
1.1,正数与负数,教案
1.1,正数与负数,教案篇一:1.1正数和负数教学设计(第一课时)1.1正数和负数(一)一、教学目的1借助生活中的实例理解相反意义的量。
2能用符号表示生活中具有相反意义的量。
3 培养学生会独立考虑、合作交流的认识。
二、教学设计通过电脑动画出示某班举行知识竞赛的得分情况,让学生从计算竞赛得分的动态情境中,接触负数的概念,引出“不够减——得出负数”,再通过“议一议”进一步体会负数的意义,鼓舞学生本人寻找生活中的例子,并在寻务实例的过程中体会负数引人的必要性.老师选择学生熟悉的场景开展讨论,通过实例的讨论分析使学生认识到用正、负数能够表示具有相反意义的量.三、教学重点与难点1.理解“相反意义的量”是重点。
2.能灵敏运用正负数表示生活中具有相反意义的量是难点。
四、课时安排1课时五、教学方法讨论法、探究法、讲授法、观察法.六、教学思路(一)情景导学、提出征询题:通过电脑动画情节的观看,让学生理解新数.动画内容:评分标准是:答对一题加10分、答错一题扣10分,不答复得0分;每个队的根本分均为0分.四个代表队答题情况如下表:如此,我们就能够用带有“+”号与“-”号的数表示各队的得分情况.(二)自主学习、尝试处理:(1)学生阅读课本2页观察与考虑部分,学生独立完成导学卡的自主学习征询题.现实生活中,像如此的相反意义的量还有特别多.例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的.又如,某仓库昨天运进物资8吨,今天运出物资3 吨,“运进”和“运出”,其意义是相反的.(2)一写出与以下各量具有相反意义的量:1气温为零下11度.2向南走200米。
3甲地低于海平面300米4股票第一天涨0.66元.(三)讨论交流、合作处理:1如何用符号表示具有相反意义的量?2.再议一议.3做—做:用正数和负数表示一些意义相反的量.出例如1:(1)在知识竞赛中,假设用+10分表示加10分,那么扣20分如何样表示?(2)某人转动转盘,假设用+5表示沿逆时针方向转了5回,那么沿顺时针方向转了12圈如何样表示?(3)在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02克记作+0.02克,那么-0.03克表示什么?(四)展示评研、归纳提升:1.先想一想具有相反意义的量,然后老师提出:如何样区别相反意义的量才好呢? (五)稳定达标、扩展延伸:1用符号表示以下意义相反的量.(1)在知识竞赛中,假设用+10分表示加10分,那么扣20分如何样表示?(2)某人转动转盘,假设用+5表示沿逆时针方向转了5回,那么沿顺时针方向转了12圈如何样表示?(3)在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02克记作+0.02克,那么-0.03克表示什么?2课堂作业练习第2小题篇二:1.1《正数和负数》(新版)新人教版单元要点分析教学内容1.本单元结合学生的生活经历,列举了学生熟悉的用正、负数表示的实例,?从扩大运算的角度引入负数,然后再指出能够用正、负数表示现实生活中具有相反意义的量,使学生感遭到负数的引入是来自实际生活的需要,体会数学知识与现实世界的联络.引入正、负数概念之后,接着给出正整数、负整数、正分数、负分数集合及整数、分数和有理数的概念. 2.通过如何样用数简明地表示一条东西走向的马路旁的树、?电线杆与汽车站的相对位置关系引入数轴.数轴是特别重要的数学工具,它能够把所有的有理数用数轴上的点形象地表示出来,使数与形结合为一体,提示了数形之间的内在联络,从而表达出以下4个方面的作用:(1)数轴能反映出数形之间的对应关系.(2)数轴能反映数的性质.(3)数轴能解释数的某些概念,如相反数、绝对值、近似数.(4)数轴可使有理数大小的比拟形象化.3.关于相反数的概念,?从“数轴上表示互为相反数的两点分别在原点的两旁,且离开原点的间隔相等”来说明相反数的几何意义,同时补充“零的相反数是零”作为相反数意义的一部分.4.正确理解绝对值的概念是难点.理解绝对值的两种意义,?一种是几何意义:一个数a 的绝对值确实是数轴上表示数a的点与原点的间隔;另一种是代数意义.绝对值的几何意义是以线段长度来表示一个数的绝对值的;而绝对值的代数意义那么是给出了求绝对值的法 ?a?那么,由绝对值的两种意义可知,有理数a?的绝对值可表示为:│a│=?0??a?(a?0)(a?0) (a?0)按照有理数的绝对值的两种意义,能够归纳出有理数的绝对值有如下性质:(1)任何有理数都有唯一的绝对值.(2)有理数的绝对值是一个非负数,即最小的绝对值是零.(3)两个互为相反数的绝对值相等,即│a│=│-a│.(4)任何有理数都不大于它的绝对值,即│a│≥a,│a│≥-a.(5)假设│a│=│b│,那么a=b,或a=-b或a=b=0.三维目的1.知识与技能(1)理解正数、负数的实际意义,会推断一个数是正数仍然负数.(2)掌握数轴的画法,能将已经明白数在数轴上表示出来,?能说出数轴上已经明白点所表示的解.(3)理解相反数、绝对值的几何意义和代数意义,?会求一个数的相反数和绝对值.(4)会利用数轴和绝对值比拟有理数的大小.2.过程与方法通过探究有理数运算法那么和运算律的过程,体会“类比”、“转化”、“数形结合”等数学方法.3.情感态度与价值观使学生感受数学知识与现实世界的联络,鼓舞学生探究规律,并在合作交流中完善标准语言.重、难点与关键1.重点:正确理解有理数、相反数、绝对值等概念;会用正、?负数表示具有相反意义的量,会求一个数的相反数和绝对值.2.难点:精确理解负数、绝对值等概念.3.关键:正确理解负数的意义和绝对值的意义.课时划分1.1 正数和负数2课时1.2 有理数5课时1.3 有理数的加减法4课时1.4 有理数的乘除法5课时1.5 有理数的乘方4课时数学活动1课时回忆与考虑1课时1.1正数和负数第一课时正数和负数(一)课本第2页至第4页.教学目的1.知识与技能能推断一个数是正数仍然负数,能用正数或负数表示生活中具有相反意义的量.2.过程与方法借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性. 3.情感态度与价值观培养学生积极考虑,合作交流的认识和才能.重、难点与关键1.重点:正确理解负数的意义,掌握推断一个数是正数仍然负数的方法.2.难点:正确理解负数的概念.3.关键:创设情境,充分利用学生四周熟悉的事物,?加深对负数意义的理解.教具预备投影仪.教学过程一、负数的引入我们明白,数是人们在实际生活和生活需要中产生,并不断扩大的.人们由记数、排序、产生数1,2,3,?;为了表示“没有物体”、“空位”引进了数“0”,?测量和分配有时不能得到整数的结果,为此产生了分数和小数.在生活、消费、科研中经常遇到数的表示与数的运算的征询题,例如课本第2?页至第3页中提到的四个征询题,这里出现的新数:-3,-2,-2.7%在前面的实际征询题中它们分别表示:零下3摄氏度,净输2球,减少2.7%.像-3,-2,-2.7%如此的数(即在往常学过的0以外的数前面加上负号“-”的数)叫做负数.而3,2,+2.7%在征询题中分别表示零上3摄氏度,净胜2球,增长2.7%,?它们与负数具有相反的意义,我们把如此的数(即往常学过的0?以外的数)叫做正数,有时在正数前面也加上“+”(正)号,例如,+3,+2,+0.5,+11,?确实是3,2,0.5,,?一个33 数前面的“+”、“-”号叫做它的符号,这种符号叫做性质符号.中国古代用算筹(表示数的工具)进展计算,红色算筹表示正数,黑色算筹表示负数.数0既不是正数,也不是负数,但0是正数与负数的分界数.0能够表示没有,还能够表示一个确定的量,现在天气温是0℃,是指一个确定的温度;海拔0表示海平面的平均高度.三、用正负数表示具有相反意义的量把0以外的数分为正数和负数,起源于表示两种相反意义的量.?正数和负数在许多方面被广泛地应用.在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度.例如:珠穆朗玛峰的海拔高度为8844m,吐鲁番盆地的海拔高度为-155m.记录账目时,通常用正数表示收入款额,负数表示支出款额.请学生解释课本中图1.1-2,图1.1-3中的正数和负数的含义.你能再举一些用正负数表示数量的实际例子吗?例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量.四、稳定练习课本第3页,练习1、2、3、4题.五、课堂小结为了表示现实生活中的具有相反意义的量,我们引进了负数.正数确实是我们过去学过的数(除0外),在正数前放上“-”号,确实是负数,?但不能说:“带正号的数是正数,带负号的数是负数”,在一个数前面添上负号,它表示的是原数意义相反的数.假设原数是一个负数,那么前面放上“-”号后所表示的数反而是正数了,另外应留意“0”既不是正数,也不是负数.六、作业布置1.课本第5页习题1.1复习稳定第1、2、3题.2.选用课时作业.第一课时作业设计一、填空题.1.假设向北走5米记作+5,那么向南走10米记作________.2.假设节约30千瓦·时电记作+30千瓦·时,那么浪费10千瓦·时电记作_____.3.假设-26.80表示亏损26.80元,那么+100元表示________.4.假设体重增加1.5千克记作+1.5千克,那么-0.5千克表示________.二、选择题.5.以下说法正确的选项().A.0是正数B.0是负数C.0是整数D.0不是自然数6.有六个数:-5,0,3 111,-0.3,+,-,?,其中正数的个数是().234A.1B.2C.3D.411,0,-6.3,,-?,以下说法完全正确的选项().2811 A.-7,-?是负整数B.5,0,是正数28 7.有六个数:-7,5C.-7,-6.3,-?是负数D.只有-6.3是负分数三、解答题.8.指出以下各数中哪些是正整数?哪些是负整数?哪些是正分数?哪些是负分数?0,-2,31391,-0.08,-,,-4,3.14,77,-103.27239.石英钟的产品说明书上写着“一昼夜误差小于±0.5秒”,?你对此如何样理解?10.假设把公元1997年记作+1997,那么-97表示什么?:篇三:1.1正数与负数讲义、教案例5 假设规定上升为正,那么水位上升-0.5m的意义是()A.水位上升0.5mB.水位下降0.5mC.水位没有变化D.水位下降-0.5m对点练习1.假设+30m表示向东走30m,那么向西走40m表示为()A.+40mB.-40m C.+30mD.-30m2.假设超出标准质量0.05g记作+0.05g,那么低于标准质量0.03g记作()3.某奶粉每袋标准质量为454g,在质量检测中,假设超过标准质量2g记作+2g,假设质量低于标准质量3g以上,那么这袋奶粉那么视为不合格产品,先抽取10袋样品进展质量检测,结果如下:袋号12345678910记作-203 -4 -3 -5 +4+4 -5 -3⑴这10袋奶粉中,有哪几袋不合格?⑵质量最多的是哪袋?实际质量是多少?⑶质量最小的是哪袋,实际质量是多少?课后练习一、根底训练1.假设气温上升3度记作+3度,下降5度记作-5度,那么以下各量分别表示什么?(1)+5度;(2)-6度;(3)0度.2.向东走-8米的意义是()A.向东走8米B.向西走8米C.向西走-8米D.以上都不对3.以下语句:(1)所有整数都是正数;(2)分数是有理数;(3)所有的正数都是整数;(4)在有理数中,除了负数确实是正数,其中正确的语句个数有()A.1个B.2个C.3个D.4个4.以下说法中,正确的选项()A.正整数、负整数统称整数B.正分数、负分数统称有理数C.零既能够是正整数,也能够是负分数D.所有的分数都是有理数5.以下各数中,哪些属于正数集、负数集、非负数集、整数集、分数集?-1,-3.14156,-6.某水库的平均水位为80米,在此根底上,假设水位变化时,把水位上升记为正数;水库治理员记录了3月~8月水位变化的情况(单位:米):-5,-4,0,+3,+6,+8.试征询这几个月的实际水位是多少米?二、递进演练1.(05年宜昌市·课改卷)假设收入15?元记作+?15?元,?那么支出20?元记作________元.2.(05年吉林省中考·课改卷)某食品包装袋上标有“净含量385±5”,?这包食品的合格净含量范围是______克~______克.3.以下说法正确的选项()A.正数和负数统称有理数B.0是整数但不是正数C.0是最小的数D.0是最小的正数4.以下不是具有相反意义的量是()A.前进5米和后退5米B.节约3吨和消费10吨C.身高增加2厘米和体重减少2千克D.超过5克和缺乏2克5.以下说法正确的选项()A.有理数是指整数、分数、零、正有理数、负有理数这五类B.一个有理数不是正数确实是负数C.一个有理数不是整数确实是分数D.以上说法都正确6.把以下各数:-3,4,-0.5,-1,-5%,-6.3,2006,-0.1,30000,200%,0,-0.01001 315,0.86,0.8,8.7,0,-,-7,分别填在相应的大括号里.36正有理数集合:{ };非负有理数集合:{};整数集合:{ };负分数集合:{ }.7.孔子出生于公元前551年,假设用-551年表示,那么李白出生于公元701年可表示为___________.。
1.1 正数和负数
它们以什么为基准?
0℃
巩固练习 6. 下面是某存折中记录的支出、存入信息,试着说说其 中“支出或存入”那一栏的数字表示什么含义.
存折中的正数表示存入,反 之,负数表示支出.
巩固练习
连接中考
1. 如果把收入100元记作+100元,那么支出80元记作( D )
A.+20元 B.+100元 C.+80元
方法归纳
根据相反意义合理使用正、负数对实际问题 进行表示.一般情况下,把向北(东)、上升、增加、 收入等规定为正,把它们的相反意义规定为负
反馈练习巩固新知
1.(1)如果零上5℃记作+5℃,那么零下3℃记作 -3℃ . (2)东、西为两个相反方向,如果-4米表示一个物体向西
运动4米,那么+2米表示 向东运动2米 .物体原地不动记 为 0米 . (3)某仓库运进面粉7.5吨记作+7.5吨,那么运出3.8吨应 记作 -3.8吨 .
意大利增长率最高;
日本增长率最低.
课堂小结
正数、 0、 负数
概念
正数和负数的定义
0的意义不仅是表示“没有”,还是正 数和负数的分界.
正数和负数表示实际问题中的具有相反意义的量.
在具体的问题情境中,明确正数和负数代表的实际 意义.
像-3,-1,-2,-2.7%这样在正数前面加上符号“-” (负)的数叫做负数.
注意
有时,我们为了明确表达意义,在正数前面也加上“+” (正)号,如+3,+1.8%,+0.5,….不过一般情况下我 们省略“+”不写.
范例研讨运用新知
例1 读出下列各数,并把它们填在相应的圈里:
-11,1 ,+73,-2.7, 3 ,4.8, 7 .
【核心素养目标】人教版数学七年级上册1.1 正数和负数 教案(表格式)
1.1 正数和负数一、创设情境,导入新知观看下面的视频,体会数的产生过程.师生活动:老师点击视频让学生观看,体会数的产生过程.回忆自然数的研究过程,探讨我们该如何研究数.师生活动:老师引导学生根据自然数的研究过程,说出有理数接下来研究的过程.二、小组合作,探究概念和性质知识点一:正数和负数数的产生:点击红包封口查看你所扮演的角色,说说你会遇见什么样的数据.第一个红包:某天天气预报截图:第二个红包:商店销售额统计表:第三个红包:银行存款流水:师生活动:学生上台点击红包,说出红包中所观察的数字.观察同学们提到的部分数,你能找到什么规律吗?师生活动:学生思考,师生共同归纳同,老师给出定义:正数:大于0 的数.负数:在正数前面加上符号“-”(负)的数.例如:7、3、6453、1549、1864.例如:-6、-9、-10、-585.8、-293.师追问:特殊的0 呢?师生活动:学生观察分析得出:数0既不是正数,也不是负数.练一练:1.请将下列各数进行分类.正数:____________________________;负数:____________________________.知识点二:具有相反意义的量合作探究:分组讨论下列数表示的含义,并说说这样表示的意义.典例精析:例1 (1)一个月内,小明体重增加了2 kg,小华体重减少了1 kg,小强体重无变化,写出他们这个月的体重增长值;(2)某年下列国家的商品进出口总额比上年的变化情况是:美国减少 6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增长7.5%.写出这些国家这一年商品进出口总额的增长率.师生活动:让学生尝试解答,并互相交流,教师结合学生的具体活动,加以指导.师说明:在同一个问题中,分别用正数和负数表示的量具有相反的意义写出体重的增长值和进出口的增长率就暗示着用正数来表示增长的量类似的还有水位上升收入等等. 我们要在解决问题时注意体会这些指明方向的量,正确用正负数表示它们.师强调:用正、负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东或向西,收入与支出;二是它们都是数量,而且是同类的量.归纳总结:如果一个问题中出现相反意义的量,我们可以用正数和负数来表示它们.练一练:2. 下列各对关系中,不具有相反意义的量的是( )A. 运进货物3 吨与运出货物2 吨B. 升温3℃ 与降温3℃C. 增加货物100 吨与减少货物2000 吨D. 胜3 局与亏本400 元合作探究:在温度、盈利亏损、存入和支出的数中,0 有什么特殊含义,请分组思考并举例.三、当堂练习,巩固所学1. 下列说法,正确的是( )A. 加正号的数是正数,加负号的数是负数B. 0是最小的正数C. 字母a既可为正数,也可为负数,还可为0D. 任意一个数,不是正数就是负数2.下列关于“0”的说法中,正确的有.(填序号)①0是正数与负数的分界;②0是正数;③0是自然数;④0不是整数.3.某老师要测量全班学生的身高,他以1.60米为基准,将某一小组5名学生的身高(单位:米) 简记为:﹢0.12,-0.05,0,﹢0.07,-0.02.这里的正数、负数分别表示什么意义?这5名学生的实际身高分别为多少?教师与学生一起回顾本节课所学的主要内容,梳理并完善知识思维导图.。
第1章 1.1 正数和负数
李智
甲
乙
张明
丁
丙
A.甲
B.乙
C.丙
D.丁
【解析】因为在张明前第 2 个同学李智记作+2,所以 张明后第一个同学丙记为-1.
4. 数学考试成绩 85 分以上为优秀,以 85 分为标准,
老师将某一小组五名学生的成绩简记为+9,-4,+11,-
7,0,这五名学生实际成绩最高的应是( C )
A.93 分
解:选择的基准不同,表示方法也不同,因此本题答案 不唯一.
如:(1)如果选甲村作为基准,向东为正,向西为负,那 么甲村的位置为 0 km,乙村的位置为-1 km,丙村的位置 为+2 km.
(2)如果选乙村作为基准,向东为正,向西为负,那么乙 村的位置为 0 km,甲村的位置为+1 km,丙村的位置为+ 3 km.
2. (2017·天水)四个数-3,0,1,π 中的负数是( A )
A.-3
B.0
C.1
D.π
3. 在下列各数中:12,-12,20%,-π,-34,2.5,- 0负.4数,的3有,_94-_,_12_属,__于-__正π_,_数_-_的_34_有,___-____012__.,_4___2__0._%_,__2_._5_,__3_,__94___,属于
(3)如果选丙村作为基准,向东为正,向西为负,那么丙 村的位置为 0 km,甲村的位置为-2 km,乙村的位置为- 3 km.
知识点 用正数和负数表示相反意义的量
4. 下列各组量中,具有相反意义的有( B )
①“身高增加 2 cm”和“体重减少 1 kg”;②水库水位
“上升 1.6 米”与“下降 1.8 米”;③“盈利 50 万元”与
“亏损 160 万元”;④-5 与 3.
1.1.正数与负数 课件 2024-2025学年人教版(2024)数学七年级上册
5.如果水位升高3m时水位变化记作+3m,那么水位下降3m时 水位变化记作__-_3__m,水位不升不降时水位记作___0__m.
6.月球表面的白天平均温度零上126°C,记作__1_2_6__°C,夜间平 均温度零下150°C,记作__-_1_5_0_°C.
例题与练习
作业布置: 教材第5-6页 习题1.1 第1-8题. 素养提升: 1.有一列数,按一定的规律排列:-1,2,-3,…,则第2025 个数是___-2_0_2_5___.
-27g表示_比__标__准_质__量__少__(低__于__)_-_2_7_g_.
例题和练习
用正数、0或负数表示数量
例2 (1)一个月内,李明体重增加1.2kg,张华体重减少0.5kg, 刘伟体重无变化,写出他们这个月的体重增长值. (2)四种品牌的手机今年第二季度的销售量与第一季度相比,变 化率如下:A品牌减少2%,B品牌增长4%,C品牌增长1%,D品 牌减少3%.写出今年第二季度这些品牌的手机销售量的增长率.
探究新知
概念导出
“一”是负号,读作“_负___”.
有时,为了明确表达与负数的相反意义,在正数的前
面也加上“+”(读作“_正___”).例如,+1800,+3,
+0.5,+1 ,…就是1800,3,0.5,1 ,….
3
3
一个数前面的“+”,“-”号叫作这个数的 _符__号__. __0__既不是正数,也不是负数.
解:(1)这个月李明体重增长1.2kg, 张华体重增长-0.5kg, 刘伟体重增长0 kg.
1.1 正数和负数
降低12% C.如果+5.2米表示比海平面高5.2米,那么-6米表示比海平面
低-6米 D.如果收入增加10元记作+10元,那么-8表示支出减少8元
课堂小结
另一个为负
用负数表示
规定其中一个为正
具有相反意义的两个量
用正数表示
1 234 5 6
质量
误差 -3 +1 +3 -2 -4 -5
78 0 -1
9 10 +1 +5
随堂训练
2.李先生上星期五买进某公司股票7000股,每股27元,下表表
示本周一至周五内每日该股票的涨跌情况.(涨记作正,跌记
作负)(单位:元)
星期
一二三四五
每股涨跌
+4
+4.5 -1
-2.5 -6
(1)这五天中,哪几天的股票是上涨的?哪几天的股票是下跌的? (2)哪天股票上涨得最多?你能算出这天收盘时每股是多少元吗?
随堂训练
1、有一批食品罐头,标准质量为每听500g,现抽取10听样品进 行检测,结果如下表.(单位:g)
1 2 3 4 5 6 7 8 9 10
质量 497 501 503 498 496 495 500 499 501 505
如果把超标准的质量的克数用正数表示,不足的用负数表示,在下 表中列出10听罐头与标准质量的差值表.(单位:g)
那么在数学上,形如这样的数应该怎么定义呢?
正负数的概念
像3,0.5这样大于0的数叫做正数,而像-0.3和-0.5这种在 正数前面加上符号“-”(负)的数,叫做负数. 正数前面有符号“+”(正),但大多数情况下是省略的.
1.1 正数和负数
第一章有理数1.1 正数和负数一、知识考点知识点1【正数、负数概念】正数:大于0的数叫正数。
例如:+3、11、2.5、¾负数:小于0的数叫负数。
例如:-1、-3.5、-2.8%、-¾0既不是正数,也不是负数;0是表示正与负的分界;0比任何正数小,比任何负数大。
注意:①正数的实质就是大于0的任何数,它可以含“+”号,也可以不含“+”号。
②正数,负数的“+”、“-”的符号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号,负号不是减号。
③表示正负数时,“+”号可以省略,“-”号不能省略④带“-”号的不一定是负数。
例如 -(-3)知识点2【正数、负数的重要意义】在日常生活中,常会遇到这样的一些量:汽车向东行驶3千米或向西行驶2千米温度是零上10℃或零下5℃收入500元或支出237元水位升高1.2米或下降0.7米买进100辆自行车或卖出20辆白行车.......这些都是具有相反意义的量,将一种意义的量规定为正,另一种与它相反意义的量就规定为负。
从而我们便得到了正数和负数,我们用正数和负数表示具有相反意义的量。
例1:小明的体重增加了2kg,记为:+2kg,小红的体重减少1kg,记为:-1kg例2:温度比0℃高3度记为:+3℃,温度比0℃低2度记为:-2℃例3:山峰高于海面300m,海拔高度记为:+300m,盆地低于海面50m记为:-50m。
一、基础检测1、读下列各数,并指出其中哪些数是正数,哪些数是负数.-2,1.5,+3,0,-3.14,100,-1.73%,-1,2.5,,120,1.32%,.正数:_____________________________________负数:_____________________________________2、不用负数,说明下面一些话的意义:(1)向北走-50米,即___________________________;(2)气温下降-5℃,即___________________________;(3)运进大米-200千克,即___________________________;(4)成本增加-5%,即___________________________;3、如果水位升高5m时水位变化记作+5m,那么水位下降3m时水位变化记作______ m,水位不升不降时水位变化记作______ m。
数学:1.1《正数和负数》课件(人教版七年级上)
正数和负数(重点)
例 1:下列各数哪些是正数,哪些是负数? 2 5 0.015,-5,13,-2.06,0,-9,-0.21.
5 解:正数:0.015,13. 2 负数:-5,-2.06,-9,-0.21.
会用正负数解决实际问题 例 2:七年级(1)班六位同学的身高量得如下: 165 cm,171 cm,168 cm,170 cm,146 cm,158 cm. (1)求六位同学的平均身高; (2)将平均身高记为 0 cm,用正负数表示每位学生的身高.
低于等规定为负的.
1.下列结论中错误的是( A ) A.一个数不是正数就是负数 B.正数大于 0 C.0.1 是一个正数 D.自然数一定不是负数 解析:0 既不是正数也不是负数.
2.关于零的说法:①是整数;②是正数;③是最小的数;
④不是偶数.其中正确的有( A )
A.1 个 B.2 个 C.3 个 D.4 个
-0.05 米所表示的高是 0.05 米
4.下列各数中,哪些是正数,哪些是负数? 7 5 3 -2,3.5,+3,0,-3.14,7,-8,17.
7 5 解:3.5,+3,7,17 是正数; 3 -2,-3.14,-8是负数.
5.用正数和负数表示下列具有相反意义的量: (1)收入 500 元和支出 300 元; (2)升高 3 米和下降 2 米; (3)前进 10 米和后退 6 米. 解:(1)收入 500 元记作+500 元,支出 300 元记作-300 元. (2)升高 3 米记作+3 米,下降 2 米记作-2 米.
解:(1)(165+171+168+170+146+158)÷6=163(cm).
(2)身高比平均身高高记为正数,身高比平均身高低记为负 数,六位同学的身高与平均身高的差分别为: (单位:cm) +2,+8,+5,+7,-17,-5. 技巧总结:如零上温度、前进、收入、上升、高出等规定 为正的,而把它相反的量,如;零下温度、后退、支出、下降、
新人教版七年级上册数学1.1正数和负数教案
1.1 正数和负数内容简介1.《正数和负数》是人教版义务教育教科书七年级数学第一章第一节.2.“正数与负数”是“有理数”一章的第一节课,引入负数是实际的需要,也是学好后续内容的需要.本节先回顾数的产生和发展,然后通过引言中温度、产量增长率、收支情况的实例,引出负数,进而给出正数与负数的描述性定义并进一步介绍正负数在实际生活中的应用.学情分析1.学生已经学过了正整数、正分数和零的知识,即正有理数及“0”的知识,还学过用字母表示数的知识,这些都是学习本节内容的基础.2.负数是一个比较抽象的概念,为了让学生能比较容易理解负数,要多采用从学生的生活实际出发,让学生理解由于知识面的不断扩大,引入负数的必要性.教学目标1.借助生活中的实例,感受引入负数的必要性,认识到数的产生和发展离不开生活和生产的需要.2.知道什么是正数和负数,并会用正、负数表示实际问题中的数量.3.理解数“0”表示的量的意义.4.体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法.5.通过本节课的学习,培养观察、想象、归纳与概括的能力.6.通过正负数的学习,渗透对立、统一的辩证思想.教学重点1.知道什么是正数和负数.2.理解数“0”表示的量的意义.教学难点理解负数、数“0”表示的量的意义.教学策略1.通过师生共同活动,创设问题情景,展示一些在实际生活中出现“负数”应用的图片,激发学生对新知识的兴趣,引入“负数”.2.通过学生主动学习和研讨,让学生自己完成对负数概念的引入.3.课前把学生分成几个学习小组,培养学生主动学习与合作学习的能力.教学资源1.教具:电脑、PPT课件(或相应图片)、投影仪.2.学具:地图册等.3.多媒体教室.教学时数2课时.第1课时教学内容1.1 正数和负数.教学目标1.整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念.2.能区分两种相反意义的量,会用符号表示正数和负数.3.体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣.教学重点两种相反意义的量.教学难点正确区分两种相反意义的量.教学过程一、设置情境引入课题上课开始时,教师应通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生活中仅有这些“以前学过的数”够用了吗?下面的例子仅供参考.师:今天我们已经是七年级的学生了,我是你们的数学老师.下面我先向你们做一下自我介绍,我的名字是XXX,身高1.76米,体重74.5千克,今年33岁.我们的班级是七(1)班,有50个同学,其中男同学有27个,占全班总人数的54%……问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?学生活动:思考,交流师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).问题2:在生活中,仅有整数和分数够用了吗?请同学们看教材(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流.(也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有“-”的新数.二、分析问题探究新知问题3:前面带有“-”(负)号的新数我们应怎样命名它呢?为什么要引入负数呢?通常在日常生活中我们用正数和负数分别表示怎样的量呢?建议教师以本章引言中的实例加以说明.这些问题都必须要求学生理解.教师可以用多媒体出示这些问题,然后师生交流.也可以让学生阅读本章引言中的实例,并思考上面的问题.明确:上述问题中,表示温度、产量增长率、收支情况时,既要用到数3,1.8%,3.5 等,还要用到数-3,-2.7%,-4.5,-1.2等,它们的实际意义分别是:零下3摄氏度,减少2.7%,支出4.5元,亏空1.2元.我们知道,像3,1.8%,3.5这样大于0的数叫做正数.像-3,-2.7%,-4.5,-1.2这样在正数前加符号“-”(负)号的数叫做负数.有时,为了明确表达意义,在正数前面也加上“+”(正)号.强调:用正、负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收入与支出;二是它们都是数量,而且是同类的量.三、举一反三思维拓展经过上面的讨论交流,学生对为什么要引入负数,对怎样用正数和负数表示两种相反意义的量有了初步的理解,教师可以要求学生举出实际生活中类似的例子,以加深对正数和负数概念的理解,并开拓思维.问题4:请同学们举出用正数和负数表示的例子.问题5:你是怎样理解“正整数”、“负整数”、“正分数”和“负分数”的呢?请举例说明.四、实例演练深化认识教科书第3页例题.例(1)一个月内,小明体重增加2 kg,小华体重减少1 kg,小强体重无变化,写出他们这个月的体重增长值.(2)某年,下列国家的商品进口总额比上年的变化情况是:美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增长7.5%.解:(1)这个月小明体重增长2 kg. 小华体重增长-1 kg,小强体重增长0 kg.(2)六个国家这一年商品进出口总额的增长率是:美国-6.4%,德国 1.3%,法国-2.4%,英国-3.5%,意大利0.2%,中国7.5%.五、小结围绕下面两点,以师生共同交流的方式进行.1.由于实际问题中存在着相反意义的量,所以要引入负数,这样数的范围就扩大了.2.正数就是以前学过的0以外的数(或在其前面加“+”),负数就是在以前学过的0以外的数前面加“-”.本课作业:教科书第5页习题1.1第1,2,4,5题.本课评析密切联系生活实际,创设学习情境.本课是有理数的第一节课时.引入负数是数的范围的一次重要扩充,学生头脑中关于数的结构要做重大调整(其实是一次知识的顺应过程),而负数相对于以前的数,对学生来说显得更抽象,因此,这个概念并不是一下就能建立的.为了接受这个新的数,就必须对原有的数的结构进行整理.负数的产生主要是因为原有的数不够用了(不能正确简洁地表示数量),书本的例子或图片中出现的负数就是让学生去感受和体验这一点.使学生接受生活生产实际中确实存在着两种相反意义的量是本课的教学难点,所以在教学中可以多举几个这方面的例子,并且所举的例子又应该符合学生的年龄和思维特点.当学生接受了这个事实后,引入负数(为了区分这两种相反意义的量)就是顺理成章的事了.这个教学设计突出了数学与实际生活的紧密联系,使学生体会到数学的应用价值,体现了学生自主学习、合作交流的教学理念,书本中的图片和例子都是生活生产中常见的事实,学生容易接受,所以应该让学生自己看书、学习,并且鼓励学生讨论交流,教师作适当引导就可以了.第2课时教学内容1.1 正数和负数.教学目标1.通过对数“0”的意义的探讨,进一步理解正数和负数的概念.2.利用正负数正确表示相反意义的量(规定了指定方向变化的量).3.进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力,激发学习数学的兴趣.教学重点正确理解和表示向指定方向变化的量.教学难点深化对正负数概念的理解.教学过程一、知识回顾深化理解回顾:上一节课我们知道了在实际生产和生活中存在着两种不同意义的量,为了区分这两种量,我们用正数表示其中一种意义的量,那么另一种意义的量就用负数来表示.这就是说:数的范围扩大了(数有正数和负数之分).那么,有没有一种既不是正数又不是负数的数呢?问题1:有没有一种既不是正数又不是负数的数呢?学生思考并讨论.(数0既不是正数又不是负数,是正数和负数的分界,是基准.这个道理学生并不容易理解,可视学生的讨论情况作些启发和引导,下面的例子供参考.)例如:在温度的表示中,零上温度和零下温度是两种不同意义的量,通常规定零上温度用正数来表示,零下温度用负数来表示.那么某一天某地的最高温度是零上7℃,最低温度是零下5℃时,就应该表示为+7℃和-5℃,这里+7℃和-5℃就分别称为正数和负数.那么当温度是零度时,我们应该怎样表示呢?(表示为0℃),它是正数还是负数呢?由于零度既不是零上温度也不是零下温度,所以,0既不是正数也不是负数。
1.1 正数和负数
1.1 正数和负数知识点一 具有相反意义的量在日常生活和生产中经常会遇到这样一些量:向东50米和向西30米,零上5℃和零下10℃,收入1万元和支出8千元,上升60米和下降120米等,以上提到的每一对量,都叫做具有相反意义的量。
★具有相反意义的量的识别方法:首先确定语句中有无具有相反意义的词,再看有误表示同一类的量。
例1 向北走80米和向西走60米是具有相反意义的量吗?知识点二 正数和负数的概念像7, 4, 24这样的数叫做正数;像-3,-2,-18等在正数前面添上负号“-”的数叫做负数。
数0既不是正数,也不是负数例2 下列各数中,哪些是正数?哪些是负数?+9,-22,50,0,723,-3.14,0.001,-2014知识点三 用正和负表示具有相反意义的量★为了区别具有相反意义的量,我们用正和负表示具有相反意义的量,规定其中的一种量为正(可任意选择),它的相反意义的量为负。
习惯上把“前进、上升、收入、零上”等规定为正,而把“后退、下降、支出、零下”等规定为负例3 如果收入100元记作+100,那么支出100元记作什么? +300元,-150元,0元分别表示什么意思?知识点四 有理数的概念及分类★整数和分数统称为有理数,整数包括正整数、0和负整数,分数包括正分数和负分数★有理数的分类按有理数的概念分类: 按有理数的正负分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数正整数整数有理数0 ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数正分数正整数正有理数有理数0 例4 把下列各有理数填入相应的大括号内:21-,3,5.1,-0.01,432,2015,-15,0,37- 正数:负数:整数:分数:典型例题剖析题型一 有理数的分类例1 下列说法中正确的是( )A. 一个有理数不是正数就是分数B. 一个有理数不是整数就是分数C.有理数是指整数、分数、正有理数、负有理数和0这五类D.非负有理数就是正有理数题1 下列说法正确的是( )A. 一个有理数不是整数就是分数B. 正整数和负整数统称整数C.正整数、负整数、正分数、负分数统称为有理数D. 0不是有理数题型二 用正、负数表示具有相反意义的量例2 在中国地图上,珠穆朗玛峰和吐鲁番盆地处都标有标明高度的数(单位:m ),此问题中的基准是什么?图中的8848和-155表示什么意义?题2 (1)在一次知识竞赛中,如果加10分用+10分表示,那么扣20分表示为 分(2)设前进为正,前进20米记作 米,后退15米记作 米,原地不动记作 米 , 前进-12米表示(3)设逆时针旋转为正,钟表的指针逆时针方向旋转20°记作 ,顺时针方向旋转30°记作例3 文具店、书店和玩具店依次位于一条东西走向的大街上,文具店在书店西边20m 处,玩具店在书店东边100m 处,小明从书店沿街向东走了40m ,接着又向东走了-60m ,此时小明的位置在( )A. 文具店B.玩具店C.文具店西40m 处D.玩具店西60m 处题3 学校、家、书店依次在一条南北走向的大街上,学校在家的南边20m ,书店在家北边100m ,张明同学从家里出发,向北走了50m ,接着又向北走了-70m ,此时张明的位置在( )A.家B.学校C.书店D.不在上述地方题型三 正、负数的实际应用例4 某种零件在图纸上标有数据Φ04.003.035+-mm (Φ表示圆形工件的直径),则加工出的工件直径最大不超过 mm , 最小不小于 mm ,工件才满足设计需要。
1.1 正数和负数
负数存在的意义 我们常常用正数和负数表示一些意义相反的量!
例1 所有的正数组成正数集合,所有负数组成负数集合,把 下列各数中的正数和负数分别填在表示正数集合和负数集合的 圈里: 1 7 3 -11,4.8,+73,-2.7,6 , 12 , 4 ,-8.12.
4.8 +73 1/6 7/12
-11 -2.7
(3)存入现金记为正,支出现金记为负,若存款折上记录的 数字有¥2000 元和¥-1800 元,你知道分别代表什么意义 吗?
6、某年度某国家有外债10亿美元,有内债10亿美元,应用数学 知识来解释说明,下列说法合理的是( ) A.如果记外债为-10亿美元,则内债为+10亿美元 B.这个国家的内债、外债互相抵消 C.这个国家欠债共20亿美元 D.这个国家没有钱 7、观察下列排列的每一列数,研究它的排列有什么规律?并 填出空格上的数. (1)1,-2,1,-2,1,-2, , , ,„
成绩. 解:分别是:95分、71分、65分、91分、0分、83分。
课堂练习
1. (1)如果零上5 ℃记作+5 ℃,那么零下3 ℃记作什么? (2)东、西为两个相反方向,如果- 4米表示一个物体向西运 动4米,那么+2米表示什么?物体原地不动记为什么? (3)某仓库运进面粉7.5吨记作+7.5吨, 作什么? 解:(1)记作-3℃ 那么运出3.8吨应记
解:这5项记录表示的实际水位分别是: 30+1.5=31.5( m), 30+0=30( m), 30+2.8=32.8( m), 30-5=25( m), 30-2.3=27.7( m).
判断题 (l)0是自然数,也是偶数( √); (2)0可以看成是正数,也可以看成是负数( ×) (3)海拔-155米表示比海平面低155米(√ ); (4)如果盈利1000元,记作+1000元,那么亏损200元就可记作- 200元(× ); (5)如果向南走记为正,那么-10米表示向北走-10米( √) (6)温度0℃就是没有温度( ×).
1.1 正数和负数课件(22张PPT)人教版数学七年级上册
A.运进货物3 t与运出货物2 t B.增加100 t与减少200 t C. 升温与降温 D.胜3局与负4局
随堂训练
2.下列说法中,正确的是( C )
A.加正号的数是正数,加负号的数是负数 B.0是最小的正数 C.字母a既可以是正数,也可以是负数,也可以是0 D.任意一个数,不是正数就是负数
(2)如果一个数不是正数就是负数,对吗? 不对.0既不是正数,也不是负数. 0是正数与负数的分界.
知识讲解
2.用正数、负数表示具有相反意义的量
汽车先向东行驶3km, 超市早上购进苹果100kg,
然后又向西行驶1km.
中午售出苹果20kg.
它们都表示相反的意义. 你会用正数、负数来表示它们吗?
知识讲解
正数集合:{ 20,4,0.21,25%,3.141,0.62 …};
负数集合:{ -27, 3 , 3 1 , -3.7% …}.
5
2
随堂训练
7.某银行一天内接待了四笔业务,存款30000元,取款5000元,存 款30万元,取款70万元.若存款为正,请你用正、负数表示这四笔 款项. 解:﹢30 000元,﹣5 000元,﹢30万元,﹣70 万元
1.0是正数与负数的分界; 2.温度中的0℃; 3.海平面的高度; 4.标准水位; 5.表示起点; ……
0可以用来表示基准, 一般地,高于基准的 量用正数表示,低于 基准的量用负数表示
知识讲解
例4:某女排队员的平均身高为187厘米,如果以平均身 高为标准,超过部分记为正数,不足部分记为负数,有5名队 员分别记为+10,-5,0,+7,-2,则她们的实际身高应是 _1_9_7_厘米、_1_8_2_厘__米__、187厘米 、19_4_厘_米__、__1_8_5_厘__米___.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1正数和负数
第一课时
三维目标
一.知识与技能
能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量.
二.过程与方法
借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性.
三.情感态度与价值观
培养学生积极思考,合作交流的意识和能力.
教学重、难点与关键
1.重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法. 2.难点:正确理解负数的概念.
3.关键:创设情境,充分利用学生身边熟悉的事物,•加深对负数意义的理解.
教具准备
投影仪.
教学过程
四、课堂引入
我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的.人们由记数、排序、产生数1,2,3,…;为了表示“没有物体”、“空位”引进了数“0”,•测量和分配有时不能得到整数的结果,为此产生了分数和小数.在生活、生产、科研中经常遇到数的表示与数的运算的问题,例如课本第2•页至第3页中提到的四个问题,这里出现的新数:-3,-2,-2.7%在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,减少2.7%.
五、讲授新课
(1)、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号“-”
的数)叫做负数.而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,•它们与负数具有相反的意义,我们把这样的数(即以前学过的0•以外的数)叫做正数,有时在正数前面也加上“+”(正)号,例如,+3,+2,
+0.5,+,…就是3,2,0.5,,…一个数前面的“+”、“-”号叫做它的符号,这种符号叫做性质符号.
(2)、中国古代用算筹(表示数的工具)进行计算,红色算筹表示正数,黑色算筹表示负数.
(3)、数0既不是正数,也不是负数,但0是正数与负数的分界数.
(4) 、0可以表示没有,还可以表示一个确定的量,如今天气温是0℃,是指一个确定的温度;海拔0表示海平面的平均高度.
用正负数表示具有相反意义的量
(5)、 把0以外的数分为正数和负数,起源于表示两种相反意义的量.•正数和负数在许多方面被广泛地应用.在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度.例如:珠穆朗玛峰的海拔高度为8844m ,吐鲁番盆地的海拔高度为-155m .记录账目时,通常用正数表示收入款额,负数表示支出款额.
(6)、 请学生解释课本中图1.1-2,图1.1-3中的正数和负数的含义.
(7)、 你能再举一些用正负数表示数量的实际例子吗?
(8)、例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量.
六、巩固练习
课本第3页,练习1、2、3、4题.
七、课堂小结
为了表示现实生活中的具有相反意义的量,我们引进了负数.正数就是我们过去学过的数(除0外),在正数前放上“-”号,就是负数,•但不能说:“带正号的数是正数,带负号的数是负数”,在一个数前面添上负号,它表示的是原1313
数意义相反的数.如果原数是一个负数,那么前面放上“-”号后所表示的数反而是正数了,另外应注意“0”既不是正数,也不是负数.
八、作业布置
1.课本第5页习题1.1复习巩固第1、2、3题.
九、板书设计
1.1正数和负数
第一课时
1、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数.而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,•它们与负数具有相反的意义,我们把这样的数(即以前学过的0•以外的数)叫做正数,有时在正数前面也加上“+”(正)号,例如,+3,+2,
+0.5,+,…就是3,2,0.5,,…一个数前面的“+”、“-”号叫做它的符号,这种符号叫做性质符号.
2、随堂练习。
3、小结。
4、课后作业。
十、课后反思
1313。