2021版新高考数学:高考中的立体几何问题含答案
2021年高考数学中“立体几何多选题”的类型分析含答案
2021年高考数学中“立体几何多选题”的类型分析含答案一、立体几何多选题1. 如图,正方体ABCD-ABCD中的正四而体A厂BD G的棱长为2,则下列说法正确的是()A. 异面直线A&与所成的角是彳3B. 丄平而A^DC. 平而Acq截正四而体- BDC,所得截而而积为2D. 正四而体A - BDC{的髙等于正方体ABCD-\B,C X D X体对角线长的;【答案】ABD【分析】选项A,利用正方体的结构特征找到异而直线所成的角;选项B,根据正方体和正四而体的结构特征以及线而垂直的判定泄理容易得证;选项C,由图得平而ACQ截正四而体A - BDC x所得截面而积为A AC冋面积的四分之一:选项D,分别求出正方体的体对角线长和正四而体A - BDC.的高,然后判断数量关系即可得解.【详解】□ ______________ qA:正方体ABCD — AQCQ中,易处ADJIBC、,异面直线£3与所成的角即直线A"与BG所成的角,即ZA/G , LA.B G为等边三角形,ZABC,=-,正确:B:连接Bp, QB丄平面AdG®, AC|U平而AdGD,即人q丄B®又AG 丄Bp, B\BcBQ=B],有AQ 丄平而BDD 且,BQu 平而BDD X B X ,所以BD』A}C{,同理可证:BD』人》, = 所以8卩丄平而AQD ,正确:D t CiS Fic:易知平面心截正四耐本A-所得截而面积为半斗’错误;D:易得正方体ABCD- A且CQ的体对角线长为((血丫 +(近$ +(Qf =应,棱长为22于正方体ABCD-A^B^D.体对角线长的亍,正确.3故选:ABD.【点睛】关键点点睛:利用正方体的性质,找异而直线所成角的平而角求其大小,根拯线而垂直的判定证明39丄平而AGD,由正四而体的性质,结合几何图形确左截而的面积,并求高,即可判断c、D的正误.2. 已知直三棱柱ABC-A^C,中,AB丄BC, AB = BC = BB、, D是AC的中点,0 为£C的中点•点p是BC]上的动点,则下列说法正确的是()A. 当点P运动到中点时,直线AP与平而AEG所成的角的正切值为遁5B. 无论点P在BC]上怎么运动,都有AP丄OB〕C. 当点P运动到BC]中点时,才有与OB】相交于一点,记为0,且—Y =-D. 无论点P在BC\上怎么运动,直线与AB所成角都不可能是30°【答案】ABD【分析】EP构造线而角,由已知线段的等量关系求tan ZPA\E =——的值即可判断力的正误;知C的正误;由直线的平行关系构造线线角为ZB.A.P ,结合动点P分析角度范囤即可知D的正误【详解】直三棱柱ABC-A/G 中,AB 丄BC, AB = BC =选项人中,当点P运动到BC】中点时,有F为坊q的中点,连接A£、EP,如下图示即有护丄而AdGFP・・・直线£P与平而所成的角的正切值:tanZPA^ = —AEEP = \ BB「AE =J A(B[+ B£= » BB{2 2tan ZPAjE = ‘ 故A疋确选项8中,连接B,C,与SC】交于E,并连接A}B,如下图示由题意知,B{BCC}为正方形,即有BQ丄而AB丄BCRABC -为直三棱柱,有丄而B.BCQ , BC; u面B.BCC,AjBj 丄BC、,又A】B] H BQ = B t:.BC}丄而A,BC,OQu而4dC,故SC】丄OB】同理可证:fB丄OB】,又fBcBC严B:.OB,丄而A.BC},又£Pu而ABC】,即有丄OB「故B正确选项C中,点P运动到BC;中点时,即在△ A.BC中A]P、OQ均为中位线选项D 中,由于"JIAB ,直线£P 与AB 所成角即为与Af 所成角:ZB/f结合下图分析知:点P 住B G 上运动时当P 在“或G 上时,ZB.A.P 最大为45°当户在Bq 中点上时,ZB X A,P 最小为arctan 返〉arctan 込= 30。
新高考数学的立体几何多选题含解析
新高考数学的立体几何多选题含解析一、立体几何多选题1.如图,在边长为4的正方形ABCD 中,点E 、F 分别在边AB 、BC 上(不含端点)且BE BF =,将AED ,DCF 分别沿DE ,DF 折起,使A 、C 两点重合于点1A ,则下列结论正确的有( ).A .1A D EF ⊥B .当12BE BF BC ==时,三棱锥1A F DE -6π C .当14BE BF BC ==时,三棱锥1A F DE -217 D .当14BE BF BC ==时,点1A 到平面DEF 的距离为177【答案】ACD 【分析】A 选项:证明1A D ⊥面1A EF ,得1A D EF ⊥;B 选项:当122BE BF BC ===时,三棱锥1A EFD -的三条侧棱111,,A D A E A F 两两相互垂直,利用分隔补形法求三棱锥1A EFD -的外接球体积; C 选项:利用等体积法求三棱锥1A EFD -的体积; D 选项:利用等体积法求出点1A 到平面DEF 的距离. 【详解】 A 选项:正方形ABCD,AD AE DC FC ∴⊥⊥由折叠的性质可知:1111,A D A E A D A F ⊥⊥ 又111A E A F A ⋂=1A D ∴⊥面1A EF又EF ⊂面1A EF ,1A D EF ∴⊥;故A 正确.B 选项:当122BE BF BC ===时,112,22A E A F EF ===在1A EF 中,22211A E A F EF +=,则11A E A F ⊥由A 选项可知,1111,A D A E A D A F ⊥⊥∴三棱锥1A EFD -的三条侧棱111,,A D A E A F 两两相互垂直,把三棱锥1A EFD -=, 三棱锥1A EFD -,体积为334433R ππ==,故B 错误C 选项:当114BE BF BC ===时,113,A E A F EF ===在1A EF中,22222211111338cos 22339A E A F EF EA F A E A F+-+-∠===⋅⨯⨯,1sin 9EA F ∠=则111111sin 332292A EFSA E A F EA F =⋅⋅∠=⨯⨯⨯=111111433A EFD D A EF A EF V V SA D --∴==⋅⋅==故C 正确;D 选项:设点1A 到平面EFD 的距离为h ,则 在EFD △中,2222225524cos 225525DE DF EF EDF DE DF +-+-∠===⋅⨯⨯, 7sin 25EDF ∠=则1177sin 5522252EFDSDE DF EDF =⋅⋅∠=⨯⨯⨯=11173323A EFD DEFV Sh h -∴=⋅⋅=⨯⨯=即7h =故D 正确; 故选:ACD 【点睛】方法点睛:求三棱锥的体积时要注意三棱锥的每个面都可以作为底面,例如三棱锥的三条侧棱两两垂直,我们就选择其中的一个侧面作为底面,另一条侧棱作为高来求体积.2.在棱长为1的正方体1111ABCD A B C D -中,P 为底面ABCD 内(含边界)一点.( ) A.若1A P P 点有且只有一个B .若12A P =,则点P 的轨迹是一段圆弧C .若1//A P 平面11BD C ,则1A P 长的最小值为2D .若12A P =且1//A P 平面11B DC ,则平面11A PC 截正方体外接球所得截面的面积为23π【答案】ABD 【分析】选项A ,B 可利用球的截面小圆的半径来判断;由平面1//A BD 平面11B D C ,知满足1//A P 平面11B D C 的点P 在BD 上,1A P 长的最大值为2;结合以上条件点P 与B 或D 重合,利用12sin 60A P r =︒,求出63r =,进而求出面积. 【详解】对A 选项,如下图:由13A P =,知点P 在以1A 为球心,半径为3的球上,又因为P 在底面ABCD 内(含边界),底面截球可得一个小圆,由1A A ⊥底面ABCD ,知点P 的轨迹是在底面上以A 为圆心的小圆圆弧,半径为22112r A P A A =-=,则只有唯一一点C满足,故A 正确;对B 选项,同理可得点P 在以A 为圆心,半径为22111r A P A A =-=的小圆圆弧上,在底面ABCD 内(含边界)中,可得点P 轨迹为四分之一圆弧BD .故B 正确;对C 选项,移动点P 可得两相交的动直线与平面11B D C 平行,则点P 必在过1A 且与平面11B D C 平行的平面内,由平面1//A BD 平面11B D C ,知满足1//A P 平面11B D C 的点P 在BD上,则1A P 长的最大值为12A B =,则C 不正确; 对选项D ,由以上推理可知,点P 既在以A 为圆心,半径为1的小圆圆弧上,又在线段BD 上,即与B 或D 重合,不妨取点B ,则平面11A PC 截正方体外接球所得截面为11A BC 的外接圆,利用2126622,,sin 603A B r r S r ππ==∴=∴==︒.故D 正确.故选:ABD 【点睛】(1)平面截球所得截面为圆面,且满足222=R r d +(其中R 为球半径,r 为小圆半径,d 为球心到小圆距离);(2)过定点A 的动直线平行一平面α,则这些动直线都在过A 且与α平行的平面内.3.一副三角板由一块有一个内角为60°的直角三角形和一块等腰直角三角形组成,如图所示,090B F ∠=∠=,060,45,A D BC DE ∠=∠==,现将两块三角形板拼接在一起,得三棱锥F CAB -,取BC 中点O 与AC 中点M ,则下列判断中正确的是( )A .BC FM ⊥B .AC 与平面MOF 3C .平面MOF 与平面AFB 所成的二面角的平面角为45°D .设平面ABF 平面MOF l =,则有//l AB【答案】AD 【分析】证明BC ⊥面FOM 可判断A ;根据AC 与平面MOF 所成的角为060CMO ∠=判断B ;利用特殊位置判断C ;先证明//AB 面MOF ,由线面平行的性质定理可判断D ; 【详解】由三角形中位线定理以及等腰三角形的性质可得,,BC OF BC OM OM OF O ⊥⊥=,所以BC ⊥面FOM BC FM ⇒⊥,故A 正确;因为BC ⊥面FOM ,所以AC 与平面MOF 所成的角为060CMO ∠=,所以余弦值为12,故B 错误; 对于C 选项可以考虑特殊位置法,由BC ⊥面FOM 得面ABC ⊥面FOM ,所以点F 在平面ABC 内的射影在直线OM 上,不妨设点F 平面ABC 内的射影为M ,过点M 作//BC MN ,连结NF .易证AB ⊥面MNF ,则l ⊥面MNF ,所以MFN ∠为平面MOF与平面AFB 所成的二面角的平面角,不妨设2AB =,因为060A,所以23BC =,则13,12OF BC OM ===,显然MFN ∠不等于45°,故C 错误. 设面MOF 与平面ABF 的交线为l ,又因为//,AB OM AB ⊄面MOF ,OM ⊂面MOF ,所以//AB 面MOF ,由线面平行的性质定理可得://l AB ,故D 正确; 故选:AD.【点睛】方法点睛:求直线与平面所成的角有两种方法:一是传统法,证明线面垂直找到直线与平面所成的角,利用平面几何知识解答;二是利用空间向量,求出直线的方向向量以及平面的方向向量,利用空间向量夹角余弦公式求解即可.4.正方体1111ABCD A B C D -中,E 是棱1DD 的中点,F 在侧面11CDD C 上运动,且满足1//B F 平面1A BE .以下命题正确的有( )A .侧面11CDD C 上存在点F ,使得11B F CD ⊥B .直线1B F 与直线BC 所成角可能为30︒C .平面1A BE 与平面11CDD C 所成锐二面角的正切值为22D .设正方体棱长为1,则过点E ,F ,A 的平面截正方体所得的截面面积最大为5 【答案】AC 【分析】取11C D 中点M ,1CC 中点N ,连接11,,B M B N MN ,易证得平面1//B MN 平面1A BE ,可得点F 的运动轨迹为线段MN .取MN 的中点F ,根据等腰三角形的性质得1B F MN ⊥,即有11B F CD ⊥,A 正确;当点F 与点M 或点N 重合时,直线1B F 与直线BC 所成角最大,可判断B 错误;根据平面1//B MN 平面1A BE ,11B FC ∠即为平面1B MN 与平面11CDD C 所成的锐二面角,计算可知C 正确;【详解】取11C D 中点M ,1CC 中点N ,连接11,,B M B N MN ,则易证得11//B N A E ,1//MN A B ,从而平面1//B MN 平面1A BE ,所以点F 的运动轨迹为线段MN .取MN 的中点F ,因为1B MN △是等腰三角形,所以1B F MN ⊥,又因为1//MN CD ,所以11B F CD ⊥,故A 正确;设正方体的棱长为a ,当点F 与点M 或点N 重合时,直线1B F 与直线BC 所成角最大,此时11tan C B F ∠=1tan 3023︒<=,所以B 错误; 平面1//B MN 平面1A BE ,取F 为MN 的中点,则1MN C F ⊥,1MN B F ⊥,∴11B FC ∠即为平面1B MN 与平面11CDD C 所成的锐二面角,11111tan B C B FC C F∠==22,所以C 正确;因为当F 为1C E 与MN 的交点时,截面为菱形1AGC E (G 为1BB 的交点),面积为62,故D 错误. 故选:AC.【点睛】本题主要考查线面角,二面角,截面面积的求解,空间几何中的轨迹问题,意在考查学生的直观想象能力和数学运算能力,综合性较强,属于较难题.5.如图,点E 为正方形ABCD 边CD 上异于点C ,D 的动点,将ADE 沿AE 翻折成SAE △,在翻折过程中,下列说法正确的是( )A .存在点E 和某一翻折位置,使得SB SE ⊥ B .存在点E 和某一翻折位置,使得//AE 平面SBCC .存在点E 和某一翻折位置,使得直线SB 与平面ABC 所成的角为45°D .存在点E 和某一翻折位置,使得二面角S AB C --的大小为60° 【答案】ACD 【分析】依次判断每个选项:当SE CE ⊥时,⊥SE SB ,A 正确,//AE 平面SBC ,则//AE CB ,这与已知矛盾,故B 错误,取二面角D AE B --的平面角为α,取4=AD ,计算得到2cos 3α=,C 正确,取二面角D AE B --的平面角为60︒,计算得到5tan θ=,故D 正确,得到答案. 【详解】当SE CE ⊥时,SE AB ⊥,SE SA ⊥,故SE ⊥平面SAB ,故⊥SE SB ,A 正确;若//AE 平面SBC ,因AE ⊂平面ABC ,平面ABC 平面SBC BC =,则//AE CB ,这与已知矛盾,故B 错误;如图所示:DF AE ⊥交BC 于F ,交AE 于G ,S 在平面ABCE 的投影O 在GF 上, 连接BO ,故SBO ∠为直线SB 与平面ABC 所成的角,取二面角D AE B --的平面角为α,取4=AD ,3DE =,故5AE DF ==,1CE BF ==,125DG =,12cos 5OG α=,故只需满足12sin 5SO OB α==, 在OFB △中,根据余弦定理:2221213121312sin 1cos 2cos cos 55555OFB ααα⎛⎫⎛⎫⎛⎫=+---∠ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得2cos 3α=,故C 正确; 过O 作OMAB ⊥交AB 于M ,则SMO ∠为二面角S AB C --的平面角,取二面角D AE B --的平面角为60︒,故只需满足22DG GO OM ==,设OAG OAMθ∠=∠=,84ππθ<<,则22DAGπθ∠=-,tantan22DG OGAGπθθ==⎛⎫-⎪⎝⎭,化简得到2tan tan21θθ=,解得5tan5θ=,验证满足,故D正确;故选:ACD.【点睛】本题考查了线线垂直,线面平行,线面夹角,二面角,意在考查学生的计算能力,推断能力和空间想象能力.6.如图四棱锥P ABCD-,平面PAD⊥平面ABCD,侧面PAD是边长为26的正三角形,底面ABCD为矩形,23CD=,点Q是PD的中点,则下列结论正确的是()A.CQ⊥平面PADB.PC与平面AQC22C.三棱锥B ACQ-的体积为62D.四棱锥Q ABCD-外接球的内接正四面体的表面积为3【答案】BD【分析】取AD 的中点O ,BC 的中点E ,连接,OE OP ,则由已知可得OP ⊥平面 ABCD ,而底面ABCD 为矩形,所以以O 为坐标原点,分别以,,OD OE OP 所在的直线为x 轴,y 轴 ,z 轴,建立空间直角坐标系,利用空间向量依次求解即可. 【详解】解:取AD 的中点O ,BC 的中点E ,连接,OE OP , 因为三角形PAD 为等边三角形,所以OP AD ⊥, 因为平面PAD ⊥平面ABCD ,所以OP ⊥平面 ABCD , 因为AD OE ⊥,所以,,OD OE OP 两两垂直,所以,如下图,以O 为坐标原点,分别以,,OD OE OP 所在的直线为x 轴,y 轴 ,z 轴,建立空间直角坐标系,则(0,0,0),(O D A ,(P C B ,因为点Q 是PD的中点,所以Q , 平面PAD 的一个法向量为(0,1,0)m =,6(QC =,显然 m 与QC 不共线, 所以CQ 与平面PAD 不垂直,所以A 不正确;3632(6,23,32),(,0,),(26,PC AQ AC =-==, 设平面AQC 的法向量为(,,)n x y z =,则36022260n AQ x zn AC⎧⋅=+=⎪⎨⎪⋅=+=⎩, 令=1x ,则y z ==, 所以(1,2,n =-, 设PC 与平面AQC 所成角为θ,则21sin 36n PC n PCθ⋅===, 所以cos 3θ=,所以B 正确; 三棱锥B ACQ -的体积为1132B ACQ Q ABC ABCV V SOP --==⋅1112326326322=⨯⨯⨯⨯⨯=, 所以C 不正确;设四棱锥Q ABCD -外接球的球心为(0,3,)M a ,则MQ MD =,所以()()()2222226323632a a ⎛⎫⎛⎫++-=++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,解得0a =,即(0,3,0)M 为矩形ABCD 对角线的交点, 所以四棱锥Q ABCD -外接球的半径为3,设四棱锥Q ABCD -外接球的内接正四面体的棱长为x , 将四面体拓展成正方体,其中正四面体棱为正方体面的对角线,故正方体的棱长为22x ,所以22236x ⎛⎫= ⎪ ⎪⎝⎭,得224x =, 所以正四面体的表面积为2342434x ⨯=,所以D 正确. 故选:BD【点睛】此题考查线面垂直,线面角,棱锥的体积,棱锥的外接球等知识,综合性强,考查了计算能力,属于较难题.7.在正方体1111ABCD A B C D -中,如图,,M N 分别是正方形ABCD ,11BCC B 的中心.则下列结论正确的是( )A .平面1D MN 与11BC 的交点是11B C 的中点 B .平面1D MN 与BC 的交点是BC 的三点分点 C .平面1D MN 与AD 的交点是AD 的三等分点 D .平面1D MN 将正方体分成两部分的体积比为1∶1 【答案】BC 【分析】取BC 的中点E ,延长DE ,1D N ,并交于点F ,连FM 并延长分别交,BC AD 于,P Q ,连1,D Q PN 并延长交11B C 与H ,平面四边形1D HPQ 为所求的截面,进而求出,,P Q H 在各边的位置,利用割补法求出多面体11QPHD C CD 的体积,即可求出结论.【详解】如图,取BC 的中点E ,延长DE ,1D N ,并交于点F , 连接FM 并延长,设FM BC P ⋂=,FM AD Q ⋂=, 连接PN 并延长交11B C 于点H .连接1D Q ,1D H ,则平面四边形1D HPQ 就是平面1D MN 与正方体的截面,如图所示.111111////,22NE CC DD NE CC DD ==,NE ∴为1DD F ∆的中位线,E ∴为DF 中点,连BF , ,,90DCE FBE BF DC AB FBE DCE ∴∆≅∆==∠=∠=︒, ,,A B F ∴三点共线,取AB 中点S ,连MS ,则12//,,23BP FB MS BP MS BC MS FS =∴==, 22111,33236BP MS BC BC PE BC ∴==⨯=∴=, E 为DF 中点,11//,233PE DQ DQ PE BC AD ∴=== N 分别是正方形11BCC B 的中心,11113C H BP C B ∴==所以点P 是线段BC 靠近点B 的三等分点,点Q 是线段AD 靠近点D 的三等分点, 点H 是线段11B C 靠近点1C 的三等分点. 做出线段BC 的另一个三等分点P ', 做出线段11A D 靠近1D 的三等分点G ,连接QP ',HP ',QG ,GH ,1H QPP Q GHD V V '--=, 所以111113QPHD C CD QPHQ DCC D V V V -==多面体长方体正方体 从而平面1D MN 将正方体分成两部分体积比为2∶1. 故选:BC.【点睛】本题考查直线与平面的交点及多面体的体积,确定出平面与正方体的交线是解题的关键,考查直观想象、逻辑推理能力,属于较难题.8.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,点P 在线段B 1C 上运动,则( )A .直线BD 1⊥平面A 1C 1DB .三棱锥P ﹣A 1C 1D 的体积为定值C .异面直线AP 与A 1D 所成角的取值范用是[45°,90°] D .直线C 1P 与平面A 1C 1D 所成角的正弦值的最大值为63【答案】ABD 【分析】在A 中,推导出A 1C 1⊥BD 1,DC 1⊥BD 1,从而直线BD 1⊥平面A 1C 1D ;在B 中,由B 1C ∥平面 A 1C 1D ,得到P 到平面A 1C 1D 的距离为定值,再由△A 1C 1D 的面积是定值,从而三棱锥P﹣A1C1D的体积为定值;在C中,异面直线AP与A1D所成角的取值范用是[60°,90°];在D 中,以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出直线C1P与平面A1C1D 所成角的正弦值的最大值为63.【详解】解:在A中,∵A1C1⊥B1D1,A1C1⊥BB1,B1D1∩BB1=B1,∴A1C1⊥平面BB1D1,∴A1C1⊥BD1,同理,DC1⊥BD1,∵A1C1∩DC1=C1,∴直线BD1⊥平面A1C1D,故A正确;在B中,∵A1D∥B1C,A1D⊂平面A1C1D,B1C⊄平面A1C1D,∴B1C∥平面A1C1D,∵点P在线段B1C上运动,∴P到平面A1C1D的距离为定值,又△A1C1D的面积是定值,∴三棱锥P﹣A1C1D的体积为定值,故B正确;在C中,异面直线AP与A1D所成角的取值范用是[60°,90°],故C错误;在D中,以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCD﹣A1B1C1D1中棱长为1,P(a,1,a),则D(0,0,0),A1(1,0,1),C1(0,1,1),1DA=(1,0,1),1DC=(0,1,1),1C P=(a,0,a﹣1),设平面A1C1D的法向量(),,n x y z=,则11n DA x zn DC y z⎧⋅=+=⎪⎨⋅=+=⎪⎩,取x=1,得1,1,1n,∴直线C1P与平面A1C1D所成角的正弦值为:11||||||C P nC P n⋅⋅=22(1)3a a+-⋅=21132()22a⋅-+,∴当a=12时,直线C1P与平面A1C1D所成角的正弦值的最大值为6,故D正确.故选:ABD.【点睛】求直线与平面所成的角的一般步骤:(1)、①找直线与平面所成的角,即通过找直线在平面上的射影来完成;②计算,要把直线与平面所成的角转化到一个三角形中求解; (2)、用空间向量坐标公式求解.9.如图所示,在棱长为1的正方体1111ABCD A B C D -中,过对角线1BD 的一个平面交棱1AA 于点E ,交棱1CC 于点F ,得四边形1BFD E ,在以下结论中,正确的是( )A .四边形1BFD E 有可能是梯形B .四边形1BFD E 在底面ABCD 内的投影一定是正方形C .四边形1BFDE 有可能垂直于平面11BB D D D .四边形1BFD E 面积的最小值为62【答案】BCD 【分析】四边形1BFD E 有两组对边分别平行知是一个平行四边形四边形;1BFD E 在底面ABCD 内的投影是四边形ABCD ;当与两条棱上的交点是中点时,四边形1BFD E 垂直于面11BB D D ;当E ,F 分别是两条棱的中点时,四边形1BFD E 6【详解】过1BD 作平面与正方体1111ABCD A B C D -的截面为四边形1BFD E , 如图所示,因为平面11//ABB A 平面11DCC D ,且平面1BFD E 平面11ABB A BE =.平面1BFD E平面1111,//DCC D D F BE D F =,因此,同理1//D E BF ,故四边形1BFD E 为平行四边形,因此A 错误;对于选项B ,四边形1BFD E 在底面ABCD 内的投影一定是正方形ABCD ,因此B 正确; 对于选项C ,当点E F 、分别为11,AA CC 的中点时,EF ⊥平面11BB D D ,又EF ⊂平面1BFD E ,则平面1BFD E ⊥平面11BB D D ,因此C 正确;对于选项D ,当F 点到线段1BD 的距离最小时,此时平行四边形1BFD E 的面积最小,此时点E F 、分别为11,AA CC 的中点,此时最小值为162322⨯⨯=,因此D 正确. 故选:BCD【点睛】关键点睛:解题的关键是理解想象出要画的平面是怎么样的平面,有哪些特殊的性质,考虑全面即可正确解题.10.半正多面体(semiregularsolid )亦称“阿基米德多面体”,是由边数不全相同的正多边形围成的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形构成(如图所示),若它的所有棱长都为2,则( )A .BF ⊥平面EABB .该二十四等边体的体积为203C .该二十四等边体外接球的表面积为8πD .PN 与平面EBFN 2 【答案】BCD 【分析】A 用反证法判断;B 先补齐八个角成正方体,再计算体积判断;C 先找到球心与半径,再计算表面积判断;D 先找到直线与平面所成角,再求正弦值判断.【详解】解:对于A ,假设A 对,即BF ⊥平面EAB ,于是BF AB ⊥,90ABF ∠=︒,但六边形ABFPQH 为正六边形,120ABF ∠=︒,矛盾, 所以A 错;对于B ,补齐八个角构成棱长为2的正方体,则该二十四等边体的体积为3112028111323-⋅⋅⋅⋅⋅=,所以B 对;对于C ,取正方形ACPM 对角线交点O , 即为该二十四等边体外接球的球心, 其半径为2R =,其表面积为248R ππ=,所以C 对;对于D ,因为PN 在平面EBFN 内射影为NS , 所以PN 与平面EBFN 所成角即为PNS ∠, 其正弦值为22PS PN ==,所以D 对. 故选:BCD .【点睛】本题考查了正方体的性质,考查了直线与平面所成角问题,考查了球的体积与表面积计算问题.。
2021年高考数学高考数学压轴题 立体几何多选题分类精编附答案
2021年高考数学高考数学压轴题 立体几何多选题分类精编附答案一、立体几何多选题1.已知正方体1111ABCD A B C D -的棱长为2,点E ,F 在平面1111D C B A 内,若||5AE =,AC DF ⊥,则( )A .点E 的轨迹是一个圆B .点F 的轨迹是一个圆C .EF 21-D .AE 与平面1A BD 所成角的正弦值的最大值为153015【答案】ACD 【分析】对于A 、B 、C 、D 四个选项,需要对各个选项一一验证. 选项A :由2211||5AE AA A E =+=1||1A E =,分析得E 的轨迹为圆;选项B :由AC DBF ⊥,而点F 在11B D 上,即F 的轨迹为线段11B D ,; 选项C :由E 的轨迹为圆,F 的轨迹为线段11B D ,可分析得min ||EF d r =-; 选项D :建立空间直角坐标系,用向量法求最值. 【详解】 对于A:2211||5AE AA A E =+=221|25A E +=1||1A E =,即点E 为在面1111D C B A 内,以1A 为圆心、半径为1 的圆上;故A 正确;对于B: 正方体1111ABCD A B C D -中,AC ⊥BD ,又AC DF ⊥,且BD ∩DF=D ,所以AC DBF ⊥,所以点F 在11B D 上,即F 的轨迹为线段11B D ,故B 错误;对于C:在平面1111D C B A 内,1A 到直线11B D 的距离为2,d=当点E ,F 落在11A C 上时,min ||21EF =-;故C 正确; 对于D:建立如图示的坐标系,则()()()()10,0,0,2,0,0,0,0,2,0,2,0A B A D因为点E 为在面1111D C B A 内,以1A 为圆心、半径为1 的圆上,可设()cos ,sin ,2E θθ 所以()()()1cos ,sin ,2,2,0,2,2,2,0,AE A B BD θθ==-=-设平面1A BD 的法向量(),,n x y z =,则有1·220·220n BD x y n A B x z ⎧=-+=⎪⎨=-=⎪⎩不妨令x =1,则()1,1,1n =, 设AE 与平面1A BD 所成角为α,则:22|||sin |cos ,|||||5315n AE n AE n AE πθα⎛⎫++ ⎪⎝⎭====⨯⨯当且仅当4πθ=时,sin α2215301515=, 故D 正确故选:CD 【点睛】多项选择题是2020年高考新题型,需要要对选项一一验证.2.如图,直三棱柱11,ABC A B C -,ABC 为等腰直角三角形,AB BC ⊥,且12AC AA ==,E ,F 分别是AC ,11A C 的中点,D ,M 分别是1AA ,1BB 上的两个动点,则( )A .FM 与BD 一定是异面直线B .三棱锥D MEF -的体积为定值14C .直线11B C 与BD 所成角为2π D .若D 为1AA 中点,则四棱锥1D BB FE -55【答案】CD 【分析】A 当特殊情况M 与B 重合有FM 与BD 相交且共面;B 根据线面垂直、面面垂直判定可证面1BEFB ⊥面11ACC A ,可知EMFS、D 到面1BEFB 的距离,可求D EMF V -;C 根据线面垂直的判定及性质即可确定11B C 与BD 所成角;D 由面面垂直、勾股、矩形性质等确定外接球半径,进而求体积,即可判断各项的正误. 【详解】A :当M 与B 重合时,FM 与BD 相交且共面,错误; B :由题意知:BE AC ⊥,AC EF ⊥且BEEF E =,则AC ⊥面1BEFB ,又AC ⊂面11ACC A ,面1BEFB ⋂面11ACC A EF =,所以面1BEFB ⊥面11ACC A ,又1121122EMFSEF BE =⋅⋅=⨯⨯=,D 到面1BEFB 的距离为1h =,所以1133D EMF EMFV h S-=⋅⋅=,错误; C :由AB BC ⊥,1BC B B ⊥,1B BAB B =,所以BC ⊥面11ABB A ,又11//BC B C ,即11B C ⊥面11ABB A ,而BD ⊂面11ABB A ,则11BD B C ⊥,正确;D :由B 中,面1BEFB ⊥面11ACC A ,即面DEF ⊥面1BEFB ,则D 到面1BEFB 的距离为1h =,又D 为1AA 中点,若1,BF EB 交点为O ,G 为EF 中点,连接,,OG GD OD ,则OG GD ⊥,故225OD OG GD =+=,由矩形的性质知:152OB OE OF OB ====,令四棱锥1D BB FE -的外接球半径为R ,则5R =,所以四棱锥1D BB FE -的外接球体积为354356V R π==,正确. 故选:CD. 【点睛】关键点点睛:利用线面、面面关系确定几何体的高,结合棱锥体积公式求体积,根据线面垂直、勾股定理及矩形性质确定外接球半径,结合球体体积公式求体积.3.已知正方体1111ABCD A B C D -的棱长为2,点O 为11A D 的中点,若以O 6为半径的球面与正方体1111ABCD A B C D -的棱有四个交点E ,F ,G ,H ,则下列结论正确的是( )A .11//A D 平面EFGHB .1AC ⊥平面EFGHC .11A B 与平面EFGH 所成的角的大小为45°D .平面EFGH 将正方体1111ABCD A B C D -分成两部分的体积的比为1:7 【答案】ACD 【分析】如图,计算可得,,,E F G H 分别为所在棱的中点,利用空间中点线面的位置关系的判断方法可判断A 、B 的正确与否,计算出直线AB 与平面EFGH 所成的角为45︒后可得C 正确,而几何体BHE CGF -为三棱柱,利用公式可求其体积,从而可判断D 正确与否.【详解】如图,连接OA ,则2115OA AA =+=,故棱1111,,,A A A D D D AD 与球面没有交点.同理,棱111111,,A B B C C D 与球面没有交点. 因为棱11A D 与棱BC 之间的距离为26>BC 与球面没有交点.因为正方体的棱长为2,而26<球面与正方体1111ABCD A B C D -的棱有四个交点E ,F ,G ,H , 所以棱11,,,AB CD C C B B 与球面各有一个交点, 如图各记为,,,E F G H .因为OAE △为直角三角形,故22651AE OE OA -=-=,故E 为棱AB 的中点. 同理,,F G H 分别为棱11,,CD C C B B 的中点.由正方形ABCD 、,E F 为所在棱的中点可得//EF BC , 同理//GH BC ,故//EF GH ,故,,,E F G H 共面. 由正方体1111ABCD A B C D -可得11//A D BC ,故11//A D EF因为11A D ⊄平面EFGH ,EF ⊂平面EFGH ,故11//A D 平面EFGH ,故A 正确. 因为在直角三角1BA C 中,122A B =2BC = ,190A BC ∠=︒, 1A C 与BC 不垂直,故1A C 与GH 不垂直,故1A C ⊥平面EFGH 不成立,故B 错误.由正方体1111ABCD A B C D -可得BC ⊥平面11AA B B ,而1A B ⊂平面11AA B B , 所以1BC A B ⊥,所以1EF A B ⊥在正方形11AA B B 中,因为,E H 分别为1,AB BB 的中点,故1EH A B ⊥, 因为EFEH E =,故1A B ⊥平面EFGH ,所以BEH ∠为直线AB 与平面EFGH 所成的角,而45BEH ∠=︒, 故直线AB 与平面EFGH 所成的角为45︒,因为11//AB A B ,故11A B 与平面EFGH 所成的角的大小为45°.故C 正确. 因为,,,E F G H 分别为所在棱的中点,故几何体BHE CGF -为三棱柱,其体积为111212⨯⨯⨯=,而正方体的体积为8, 故平面EFGH 将正方体1111ABCD A B C D -分成两部分的体积的比为1:7,故D 正确. 故选:ACD. 【点睛】本题考查空间中线面位置的判断、空间角的计算和体积的计算,注意根据球的半径确定哪些棱与球面有交点,本题属于中档题.4.在长方体1111ABCD A B C D -中,AB =12AD AA ==,,,P Q R 分别是11,,AB BB AC 上的动点,下列结论正确的是( ) A .对于任意给定的点P ,存在点Q 使得1D P CQ ⊥ B .对于任意给定的点Q ,存在点R 使得1D R CQ ⊥ C .当1AR A C ⊥时,1AR D R ⊥D .当113AC A R =时,1//D R 平面1BDC 【答案】ABD 【分析】如图所示建立空间直角坐标系,计算142D P CQ b ⋅=-,()12222D R CQ b λλ⋅=--,134AR D R ⋅=-,10D R n ⋅=,得到答案.【详解】如图所示,建立空间直角坐标系,设()2,,0P a ,a ⎡∈⎣,()Q b ,[]0,2b ∈,设11A R AC λ=,得到()22,22R λλ--,[]0,1λ∈. ()12,,2P a D -=,()2,0,CQ b =,142D P CQ b ⋅=-,当2b =时,1D P CQ ⊥,A 正确;()122,2D R λλ=--,()12222D R CQ b λλ⋅=--,取22bλ=+时,1D R CQ ⊥,B 正确; 1AR A C ⊥,则()()12,222212440AR AC λλλλλ⋅=--⋅--=-+-+=,14λ=,此时113313022224AR D R ⎛⎫⎛⎫⋅=-⋅-=-≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,C 错误;113AC A R =,则4234,,33R ⎛⎫ ⎪ ⎪⎝⎭,14232,,33D R ⎛⎫=- ⎪ ⎪⎝⎭,设平面1BDC 的法向量为(),,n x y z =,则10n BD n DC ⎧⋅=⎪⎨⋅=⎪⎩,解得()3,1,3n =-,故10D R n ⋅=,故1//D R 平面1BDC ,D 正确. 故选:ABD .【点睛】本题考查了空间中的线线垂直,线面平行,意在考查学生的计算能力和空间想象能力,推断能力.5.在边长为2的等边三角形ABC 中,点,D E 分别是边,AC AB 上的点,满足//DE BC 且AD ACλ=,(()01λ∈,),将ADE 沿直线DE 折到A DE '△的位置.在翻折过程中,下列结论不成立的是( )A .在边A E '上存在点F ,使得在翻折过程中,满足//BF 平面A CD 'B .存在102λ∈⎛⎫⎪⎝⎭,,使得在翻折过程中的某个位置,满足平面A BC '⊥平面BCDEC .若12λ=,当二面角A DE B '--为直二面角时,||10A B '= D .在翻折过程中,四棱锥A BCDE '-体积的最大值记为()f λ,()f λ23【答案】ABC 【分析】对于A.在边A E '上点F ,在A D '上取一点N ,使得//FN ED ,在ED 上取一点H ,使得//NH EF ,作//HG BE 交BC 于点G ,即可判断出结论.对于B ,102λ∈⎛⎫⎪⎝⎭,,在翻折过程中,点A '在底面BCDE 的射影不可能在交线BC 上,即可判断出结论. 对于C ,12λ=,当二面角A DE B '--为直二面角时,取ED 的中点M ,可得AM ⊥平面BCDE .可得22A B AM BM '=+,结合余弦定理即可得出.对于D.在翻折过程中,取平面AED ⊥平面BCDE ,四棱锥A BCDE '-体积()3133BCDE f S λλλλ=⋅⋅=-,()01λ∈,,利用导数研究函数的单调性即可得出.【详解】对于A.在边A E '上点F ,在A D '上取一点N ,使得//FN ED ,在ED 上取一点H ,使得//NH EF ,作//HG BE 交BC 于点G ,如图所示,则可得FN 平行且等于BG ,即四边形BGNF 为平行四边形, ∴//NG BE ,而GN 始终与平面ACD 相交,因此在边A E '上不存在点F ,使得在翻折过程中,满足//BF 平面A CD ',A 不正确.对于B ,102λ∈⎛⎫⎪⎝⎭,,在翻折过程中,点A '在底面BCDE 的射影不可能在交线BC 上,因此不满足平面A BC '⊥平面BCDE ,因此B 不正确. 对于C.12λ=,当二面角A DE B '--为直二面角时,取ED 的中点M ,如图所示:可得AM ⊥平面BCDE ,则A B '===≠,因此C 不正确;对于D.在翻折过程中,取平面AED ⊥平面BCDE ,四棱锥A BCDE '-体积()313BCDE f S λλλ=⋅=-,()01λ∈,,()213f λλ'=-,可得3λ=时,函数()f λ取得最大值()113f λ⎫=-=⎪⎝⎭,因此D 正确. 综上所述,不成立的为ABC. 故选:ABC. 【点睛】本题考查了利用运动的观点理解空间线面面面位置关系、四棱锥的体积计算公式、余弦定理、利用导数研究函数的单调性极值与最值,考查了推理能力空间想象能力与计算能力,属于难题.6.如果一个棱锥的底面是正方形,且顶点在底面内的射影是底面的中心,那么这样的棱锥叫正四棱锥.若一正四棱锥的体积为18,则该正四棱锥的侧面积最小时,以下结论正确的是( ).A .棱的高与底边长的比为2B .侧棱与底面所成的角为4πC D .侧棱与底面所成的角为3π 【答案】AB 【分析】设四棱锥S ABCD -的高为h ,底面边长为a ,由21183V a h ==得254h a=,然后可得侧a =时侧面积取得最小值,此时3h =,然后求出棱锥的高与底面边长的比和SAO ∠即可选出答案. 【详解】设四棱锥S ABCD -的高为h ,底面边长为a 可得21183V a h ==,即254h a= 所以其侧面积为2222244215410842244a a a h a a a⋅⋅+=+=+令()242108f a a a =+,则()23321084f a a a⨯'=- 令()233210840f a a a⨯'=-=得32a = 当(0,32a ∈时()0f a '<,()f a 单调递减当()32,a ∈+∞时()0f a '>,()f a 单调递增所以当32a =时()f a 取得最小值,即四棱锥的侧面积最小 此时3h =所以棱锥的高与底面边长的比为22,故A 正确,C 错误 侧棱与底面所成的角为SAO ∠,由3h =,32a =可得3AO = 所以4SAO π∠=,故B 正确,D 错误故选:AB 【点睛】本题考查的知识点有空间几何体的体积和表面积、线面角及利用导数求最值,属于综合题.7.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,点P 在线段B 1C 上运动,则( )A .直线BD 1⊥平面A 1C 1DB .三棱锥P ﹣A 1C 1D 的体积为定值C .异面直线AP 与A 1D 所成角的取值范用是[45°,90°]D .直线C 1P 与平面A 1C 1D 6 【答案】ABD【分析】在A 中,推导出A 1C 1⊥BD 1,DC 1⊥BD 1,从而直线BD 1⊥平面A 1C 1D ;在B 中,由B 1C ∥平面 A 1C 1D ,得到P 到平面A 1C 1D 的距离为定值,再由△A 1C 1D 的面积是定值,从而三棱锥P ﹣A 1C 1D 的体积为定值;在C 中,异面直线AP 与A 1D 所成角的取值范用是[60°,90°];在D 中,以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,利用向量法能求出直线C 1P 与平面A 1C 1D 6. 【详解】解:在A 中,∵A 1C 1⊥B 1D 1,A 1C 1⊥BB 1,B 1D 1∩BB 1=B 1,∴A 1C 1⊥平面BB 1D 1,∴A 1C 1⊥BD 1,同理,DC 1⊥BD 1,∵A 1C 1∩DC 1=C 1,∴直线BD 1⊥平面A 1C 1D ,故A 正确;在B 中,∵A 1D ∥B 1C ,A 1D ⊂平面A 1C 1D ,B 1C ⊄平面A 1C 1D ,∴B 1C ∥平面 A 1C 1D ,∵点P 在线段B 1C 上运动,∴P 到平面A 1C 1D 的距离为定值,又△A 1C 1D 的面积是定值,∴三棱锥P ﹣A 1C 1D 的体积为定值,故B 正确;在C 中,异面直线AP 与A 1D 所成角的取值范用是[60°,90°],故C 错误;在D 中,以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系, 设正方体ABCD ﹣A 1B 1C 1D 1中棱长为1,P (a ,1,a ),则D (0,0,0),A 1(1,0,1),C 1(0,1,1),1DA =(1,0,1),1DC =(0,1,1),1C P =(a ,0,a ﹣1),设平面A 1C 1D 的法向量(),,n x y z =,则1100n DA x z n DC y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取x =1,得1,1,1n ,∴直线C 1P 与平面A 1C 1D 所成角的正弦值为: 11||||||C P n C P n ⋅⋅=22(1)3a a +-⋅=21132()22a ⋅-+, ∴当a =12时,直线C 1P 与平面A 1C 1D 所成角的正弦值的最大值为63,故D 正确. 故选:ABD .【点睛】求直线与平面所成的角的一般步骤:(1)、①找直线与平面所成的角,即通过找直线在平面上的射影来完成;②计算,要把直线与平面所成的角转化到一个三角形中求解;(2)、用空间向量坐标公式求解.8.如图所示,正方体ABCD A B C D ''''-的棱长为1,E ,F 分别是棱AA ',CC '的中点,过直线EF 的平面分别与棱BB ',DD '交于点M ,N ,以下四个命题中正确的是( )A .0MN EF ⋅=B .ME NE =C .四边形MENF 的面积最小值与最大值之比为2:3D .四棱锥A MENF -与多面体ABCD EMFN -体积之比为1:3【答案】ABD【分析】证明EF ⊥平面BDD B '',进而得EF MN ⊥,即可得A 选项正确;证明四边形MENF 为菱形即可得B 选项正确;由菱形性质得四边形MENF 的面积12S MN EF =⋅,再分别讨论MN 的最大值与最小值即可;根据割补法求解体积即可.【详解】对于A 选项,如图,连接BD ,B D '',MN .由题易得EF BD ⊥,EF BB '⊥,BD BB B '⋂=,所以EF ⊥平面BDD B '',又MN ⊂平面BDD B '',所以EF MN ⊥,因此0MN EF ⋅=,故A 正确.对于B 选项,由正方体性质得:平面''//BCC B 平面''ADD A ,平面''BCC B 平面EMFN MF =,平面''ADD A 平面EMFN EN =, 所以//MF EN ,同理得//ME NF ,又EF MN ⊥,所以四边形MENF 为菱形, 因此ME NE =,故B 正确.对于C 选项,由B 易得四边形MENF 的面积12S MN EF =⋅, 所以当点M ,N 分别为BB ',DD '的中点时,四边形MENF 的面积S 最小,此时MN EF ==,即面积S 的最小值为1; 当点M ,N 分别与点B (或点B '),D (或D )重合时,四边形MENF 的面积S 最大,此时MN =,即面积S 的最大值为2所以四边形MENF 的面积最小值与最大值之比为2C 不正确.对于D 选项,四棱锥A MENF -的体积11113346M AEF N AEF AEF V V V DB S --=+=⋅==△; 因为E ,F 分别是AA ',CC '的中点,所以BM D N '=,DN B M '=,于是被截面MENF 平分的两个多面体是完全相同的,则它们的体积也是相同的,因此多面体ABCD EMFN -的体积21122ABCD A B C D V V ''''-==正方体, 所以四棱锥A MENF -与多面体ABCD EMFN -体积之比为1:3,故D 正确. 故选:ABD .【点睛】本题考查立体几何与向量的综合、截面面积的最值、几何体的体积,考查空间思维能力与运算求解能力,是中档题.本题解题的关键在于证明四边形MENF 为菱形,利用割补法将四棱锥A MENF -的体积转化为三棱锥M AEF - 和N AEF -的体积之和,将多面体ABCD EMFN -的体积转化为正方体的体积的一半求解.9.如图所示,在棱长为1的正方体1111ABCD A B C D -中,过对角线1BD 的一个平面交棱1AA 于点E ,交棱1CC 于点F ,得四边形1BFD E ,在以下结论中,正确的是( )A .四边形1BFD E 有可能是梯形B .四边形1BFD E 在底面ABCD 内的投影一定是正方形C .四边形1BFDE 有可能垂直于平面11BB D DD .四边形1BFDE 面积的最小值为62【答案】BCD【分析】四边形1BFD E 有两组对边分别平行知是一个平行四边形四边形;1BFD E 在底面ABCD 内的投影是四边形ABCD ;当与两条棱上的交点是中点时,四边形1BFD E 垂直于面11BB D D ;当E ,F 分别是两条棱的中点时,四边形1BFD E 的面积最小为62. 【详解】过1BD 作平面与正方体1111ABCD A B C D -的截面为四边形1BFD E , 如图所示,因为平面11//ABB A 平面11DCC D ,且平面1BFD E平面11ABB A BE =. 平面1BFD E 平面1111,//DCC D D F BE D F =,因此,同理1//D E BF ,故四边形1BFD E 为平行四边形,因此A 错误;对于选项B ,四边形1BFD E 在底面ABCD 内的投影一定是正方形ABCD ,因此B 正确; 对于选项C ,当点E F 、分别为11,AA CC 的中点时,EF ⊥平面11BB D D ,又EF ⊂平面1BFD E ,则平面1BFD E ⊥平面11BB D D ,因此C 正确;对于选项D ,当F 点到线段1BD 的距离最小时,此时平行四边形1BFD E 的面积最小,此时点E F 、分别为11,AA CC 的中点,此时最小值为16232⨯⨯=,因此D 正确. 故选:BCD【点睛】关键点睛:解题的关键是理解想象出要画的平面是怎么样的平面,有哪些特殊的性质,考虑全面即可正确解题.10.半正多面体(semiregularsolid )亦称“阿基米德多面体”,是由边数不全相同的正多边形围成的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形构成(如图所示),若它的所有棱长都为2 )A .BF ⊥平面EABB .该二十四等边体的体积为203C .该二十四等边体外接球的表面积为8πD .PN 与平面EBFN 2 【答案】BCD【分析】 A 用反证法判断;B 先补齐八个角成正方体,再计算体积判断;C 先找到球心与半径,再计算表面积判断;D 先找到直线与平面所成角,再求正弦值判断.【详解】解:对于A ,假设A 对,即BF ⊥平面EAB ,于是BF AB ⊥,90ABF ∠=︒,但六边形ABFPQH 为正六边形,120ABF ∠=︒,矛盾,所以A 错;对于B ,补齐八个角构成棱长为2的正方体, 则该二十四等边体的体积为3112028111323-⋅⋅⋅⋅⋅=, 所以B 对;对于C ,取正方形ACPM 对角线交点O ,即为该二十四等边体外接球的球心, 其半径为2R =248R ππ=,所以C 对;对于D ,因为PN 在平面EBFN 内射影为NS ,所以PN 与平面EBFN 所成角即为PNS ∠, 其正弦值为22PS PN =,所以D 对. 故选:BCD .【点睛】本题考查了正方体的性质,考查了直线与平面所成角问题,考查了球的体积与表面积计算问题.。
2021年高考数学经典例题专题七立体几何与空间向量含解析
专题七 立体几何与空间向量一、单项选择题1.假如棱长为A .12πB .24πC .36πD .144π【答案】C【解析】求出正方体的体对角线的一半,即为球的半径,利用球的外表积公式,即可得解.【详解】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,即3R ==,所以,这个球的外表积为2244336S R πππ==⨯=.应当选:C.【点睛】此题考查正方体的外接球的外表积的求法,求出外接球的半径是此题的解题关键,属于根底题.求多面体的外接球的面积和体积问题,常用方法有:〔1〕三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;〔2〕直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;〔3〕如果设计几何体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点为几何体的球心.2.某三棱柱的底面为正三角形,其三视图如下列图,该三棱柱的外表积为〔〕.A .63+B .623+C .123+D .1223+【答案】D【解析】首先确定几何体的结构特征,然后求解其外表积即可.【详解】由题意可得,三棱柱的上下底面为边长为2的等边三角形,侧面为三个边长为2的正方形,如此其外表积为:()1322222sin 60122S ⎛⎫=⨯⨯+⨯⨯⨯⨯︒=+ ⎪⎝⎭应当选:D.3.某几何体的三视图〔单位:cm 〕如下列图,如此该几何体的体积〔单位:cm 3〕是〔〕A .73B .143C .3D .6 【答案】A【解析】根据三视图复原原图,然后根据柱体和锥体体积计算公式,计算出几何体的体积.【详解】由三视图可知,该几何体是上半局部是三棱锥,下半局部是三棱柱,且三棱锥的一个侧面垂直于底面,且棱锥的高为1,棱柱的底面为等腰直角三角形,棱柱的高为2,所以几何体的体积为:11117211212232233⎛⎫⎛⎫⨯⨯⨯⨯+⨯⨯⨯=+= ⎪ ⎪⎝⎭⎝⎭. 应当选:A4.,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,假如⊙1O 的面积为4π,1AB BC AC OO ===,如此球O 的外表积为〔〕A .64πB .48πC .36πD .32π【答案】A【解析】由可得等边ABC 的外接圆半径,进而求出其边长,得出1OO 的值,根据球的截面性质,求出球的半径,即可得出结论.【详解】设圆1O 半径为r ,球的半径为R ,依题意,得24,2r r ππ=∴=,ABC 为等边三角形,由正弦定理可得2sin60AB r =︒=1OO AB ∴==1OO ⊥平面ABC ,11,4OO O A R OA ∴⊥====,∴球O 的外表积2464S R ππ==.应当选:A5.如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,如此该端点在侧视图中对应的点为〔〕A .EB .FC .GD .H【答案】A【解析】根据三视图,画出多面体立体图形,即可求得M 点在侧视图中对应的点.【详解】根据三视图,画出多面体立体图形,14D D 上的点在正视图中都对应点M ,直线34B C 上的点在俯视图中对应的点为N,∴在正视图中对应M ,在俯视图中对应N 的点是4D ,线段34D D ,上的所有点在侧试图中都对应E ,∴点4D 在侧视图中对应的点为E .应当选:A6.四面体ABCD 的顶点A ,B ,C ,D 在同个球面上,AD ⊥平面ABC ,3AD =,2AB =,3AC =,60CAB ∠=︒,如此该四面体的外接球的外表积为〔〕A .6πB .143πC .12πD .163π 【答案】C【解析】过ABC 外接圆1O ,作直线l ⊥平面ABC ,可得1123OO AD ==,在ABC 中,利用余弦定理求出BC =ABC 外接圆半径,利用勾股定理求出外接球半径,根据球的外表积公式即可求解.【详解】如下列图,作ABC 外接圆1O ,过1O 作直线l ⊥平面ABC ,又DA ⊥平面ABC ,//DA l ∴,连接1AO ,并延长交球O 于H ,连接DH ,与l 的交点为球心O ,OH OD R ==,如此112OO AD ==, 在ABC 中,由余弦定理得2222cos60BC AB AC AB AC =+-⋅⋅︒14922372=+-⨯⨯⨯=,BC ∴=,又由正弦定理得12sin 60BC O H =︒(1O H 为外接圆半径),13O H ∴= 222211621399R OH OO O H ∴==+=+=, 2412S R ππ∴==.应当选:C.7.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OAA处放置一个日晷,假如晷面与赤道所在平面平行,点A处的纬度为北纬40°,如此晷针与点A处的水平面所成角为〔〕A.20°B.40°C.50°D.90°【答案】B【解析】画出过球心和晷针所确定的平面截地球和晷面的截面图,根据面面平行的性质定理和线面垂直的定义判定有关截线的关系,根据点A 处的纬度,计算出晷针与点A 处的水平面所成角.【详解】画出截面图如如下图所示,其中CD 是赤道所在平面的截线;l 是点A 处的水平面的截线,依题意可知OA l ⊥;AB 是晷针所在直线.m 是晷面的截线,依题意依题意,晷面和赤道平面平行,晷针与晷面垂直, 根据平面平行的性质定理可得可知//m CD 、根据线面垂直的定义可得AB m ⊥..由于40,//AOC m CD ∠=︒,所以40OAG AOC ∠=∠=︒,由于90OAG GAE BAE GAE ∠+∠=∠+∠=︒,所以40BAE OAG ∠=∠=︒,也即晷针与点A 处的水平面所成角为40BAE ∠=︒.应当选:B8.△ABC 的等边三角形,且其顶点都在球OO 的外表积为16π,如此O 到平面ABC 的距离为〔〕A .32C .1D .2【答案】C【解析】根据球O 的外表积和ABC 的面积可求得球O 的半径R 和ABC 外接圆半径r ,由球的性质可知所求距离d =【详解】设球O 的半径为R ,如此2416R ππ=,解得:2R =.设ABC 外接圆半径为r ,边长为a ,ABC 的等边三角形,212a ∴=,解得:3a =,2233r ∴===∴球心O 到平面ABC 的距离1d ===.应当选:C.9.在三棱锥P ABC -中,BC ⊥平面PAB ,AP AB ⊥,D 是BC 的中点.假如45APB ∠=︒,60APC ∠=︒,如此直线PD 与平面ABC 所成角的正弦值为〔〕A .3B .2C D 【答案】C【解析】根据线面角的定义找到直线PD 与平面ABC 所成角的平面角,法一:应用几何法,根据线面垂直的性质、勾股定理求对应边,在直角三角形中求线面角的正弦值;法二:应用向量法,构建空间直角坐标系,并确定线面角两边所在直线的方向向量坐标,进而求其余弦值,由同角三角函数关系求正弦值.【详解】在三棱锥P ABC -中,BC ⊥平面PAB ,AP ⊂面PAB ,∴BC AP ⊥,又AP AB ⊥,AB BC B ⋂=,∴PA ⊥平面ABC ,即PDA ∠即直线PD 与平面ABC 所成角.法一:设PA a =,由45APB ∠=︒,60APC ∠=︒,得AB PA a ==,∴AC =,BC =.又D 是BC 的中点,如此2BD =,∴在Rt ABD △中,2AD a ==.又易知PA AD ⊥,在Rt PAD 中,PD ==,∴sin 5AP PDA PD ∠==.法二:过点A 在平面ABC 内作//Ax BC .易知直线AP ,AB ,Ax 两两垂直,可建立如下列图的空间直角坐标系A xyz -.不妨设1PA =,如此1AB =,ACBC =2BD =,有()0,0,0A ,()0,0,1P,2D ⎛⎫ ⎪ ⎪⎝⎭,∴1,0DA ⎛⎫=--⎪ ⎪⎝⎭,1,1DP ⎛⎫=-- ⎪ ⎪⎝⎭,如此3cos ,3DA DP DA DP DA DP ⋅===,∴10sin ,5DA DP =.应当选:C.,,,是同一个半径为4的球的球面上四点,ABC为等边三角形且其面积为,如10.设A B C D体积的最大值为〔〕此三棱锥D ABCA...D.【答案】B【解析】如下列图,点M 为三角形ABC 的中心,E 为AC 中点,当DM ⊥平面ABC 时,三棱锥D ABC -体积最大此时,OD OB R 4===2ABC S AB == AB 6∴=,点M 为三角形ABC 的中心2BM 3BE ∴==Rt OMB ∴中,有OM 2==DM OD OM 426∴=+=+=()max 163D ABC V -∴=⨯=应当选B.二、多项选择题11.矩形ABCD 中,4AB =,3BC =,将ABD △沿BD 折起,使A 到A '的位置,A '在平面BCD 的射影E 恰落在CD 上,如此〔〕A .三棱锥A BCD '-的外接球直径为5B .平面A BD '⊥平面A BC 'C .平面A BD '⊥平面ACD 'D .A D '与BC 所成角为60【答案】AB【解析】根据面面垂直的判定定理以与面面垂直的性质定理结合对选项BCD 逐一进展分析,对A 选项注意确定球心位置,然后利用勾股定理求解外接球的直径.【详解】由题意,A E '⊥平面BCD BC A E '⇒⊥,又BC CD ⊥,A E CD E '=,∴BC ⊥平面A CD BC A D ''⇒⊥.故D 错误;又A B A D ''⊥,A BBC B '=,可得A D '⊥平面A BC ',又A D '⊂平面A BD '⇒平面A BD '⊥平面A BC '.故B 正确; 对C ,假如平面A BD '⊥平面ACD ',如此由A B A D A B '''⊥⇒⊥平面90A CD BA C ''⇒∠=︒与90A CB '∠=︒矛盾,故C 错误;取BD 中点为O .如此OA OB OC OD '===,故O 为三棱锥A BCD '-的外接球球心,所以直径5d BD ===,故A 正确.应当选:AB三、填空题12.正方体ABCD -A 1B 1C 1D 1的棱长为2,M 、N 分别为BB 1、AB 的中点,如此三棱锥A -NMD 1的体积为____________ 【答案】13【解析】利用11A NMD D AMN V V --=计算即可.【详解】因为正方体ABCD -A 1B 1C 1D 1的棱长为2,M 、N 分别为BB 1、AB 的中点 所以11111112323A NMD D AMN V V --==⨯⨯⨯⨯= 故答案为:1313.如图,将正方体沿交于同一顶点的三条棱的中点截去一个三棱锥,如此共可截去八个三棱锥,得到一个有十四个面的半正多面体,它们的棱长都相等,其中八个为正三角形,六个为正方形,称这样的半正多面体为二十四等边体.假如用一小桶油漆刚好可以涂该二十四等边体的外表一遍,如此用该小桶油漆去涂与该二十四等边体棱长相等的正四面体魔方外表(也是涂一遍),那么至少可以涂___________个这样的正四面体魔方.(结果取整数)【答案】5【解析】设二十四等边体的棱长为1,计算其外表积,再计算正四面体魔方的外表积,即可解得.【详解】设该二十四等边体的棱长为1,如此正四面体魔方的棱长也为1,如此该二十四等边体的外表积为2218161622⨯⨯⨯+⨯=,正四面体的外表积为214122⨯⨯⨯=2 5.46=+≈,所以至少可以涂5个这样正四面体魔方. 故答案为:5.14.三棱锥P ABC -中,AP 、AB 、AC 三条棱两两垂直,且长度均为P 为球心,4为半径作一个球,如此该球面被三棱锥四个外表截得的所有弧长之和为______.【答案】3π【解析】采用数形结合,然后利用弧长公式计算即可.【详解】由题可知:AP 、AB 、AC 三条棱两两垂直,且长度均为如图:所以PC PB BC ====2AM AF ===,所以tan tanAPF APM ∠=∠==6APF APM π∠=∠= 所以12EPF CPM π∠=∠=,如此4123EF MN ππ==⨯=44,2332NE MF ππππ=⨯==⨯= 所以球面被三棱锥四个外表截得的所有弧长之和为42333ππππ⨯++= 故答案为:3π 15.直四棱柱ABCD –A1B 1C 1D 1的棱长均为2,∠BAD =60°.以1D BCC 1B 1的交线长为________.. 【解析】根据条件易得1D E =1D E ⊥侧面11BC CB ,可得侧面11BC CB 与球面的交线上的点到E 可得侧面11BC CB 与球面的交线是扇形EFG 的弧FG ,再根据弧长公式可求得结果.【详解】如图:取11B C 的中点为E ,1BB 的中点为F ,1CC 的中点为G ,因为BAD ∠=60°,直四棱柱1111ABCD A BC D -的棱长均为2,所以△111D B C 为等边三角形,所以1D E=111D E B C ⊥,又四棱柱1111ABCD A BC D -为直四棱柱,所以1BB ⊥平面1111D C B A ,所以111BB B C ⊥, 因为1111BB B C B =,所以1D E ⊥侧面11BC CB ,设P 为侧面11BC CB 与球面的交线上的点,如此1DE EP ⊥,1D E =||EP === 所以侧面11BC CB 与球面的交线上的点到E因为||||EF EG =11BC CB 与球面的交线是扇形EFG 的弧FG ,因为114B EF C EG π∠=∠=,所以2FEG π∠=,所以根据弧长公式可得22FG π==.. 16.圆锥的底面半径为1,母线长为3,如此该圆锥内半径最大的球的体积为_________.【解析】将原问题转化为求解圆锥内切球的问题,然后结合截面确定其半径即可确定体积的值.【详解】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如下列图,其中2,3BC AB AC ===,且点M 为BC 边上的中点,设内切圆的圆心为O ,由于AM =122S =⨯⨯△ABC设内切圆半径为r ,如此:ABC AOB BOC AOC S S S S =++△△△△111222AB r BC r AC r =⨯⨯+⨯⨯+⨯⨯ ()13322r =⨯++⨯=解得:22r ,其体积:3433V r π==.. 【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出适宜的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.17.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体〞〔图1〕.半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体表现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的外表上,且此正方体的棱长为1.如此该半正多面体共有________个面,其棱长为_________.【答案】共26个面.1.【解析】由图可知第一层与第三层各有9个面,计18个面,第二层共有8个面,所以该半正多面体共有18826+=个面.如图,设该半正多面体的棱长为x ,如此AB BE x ==,延长BC 与FE 交于点G ,延长BC 交正方体棱于H ,由半正多面体对称性可知,BGE ∆为等腰直角三角形,,21)1BG GE CH x GH x x x ∴===∴=+==,1x ∴==1.18.四面体ABCD 的顶点A 、B 、C 、D 在同个球面上,AD ⊥平面ABC ,3AD =,2AB =,3AC =,60CAB ∠=,如此该四面体的外接球的外表积为___________.【答案】12π【解析】利用余弦定理计算出AB ,利用正弦定理计算出ABC 的外接圆半径r ,利用公式R =可计算出四面体ABCD 的外接球半径R ,利用球体面积可求得结果. 【详解】如如下图所示:圆柱12O O 的底面圆直径为2r ,母线长为h ,如此12O O 的中点 O 到圆柱底面圆上每点的距离都相等,如此O 为圆柱12O O 的外接球球心.可将三棱锥D ABC -放在圆柱12O O 内 ,使得圆2O 为ABC 的外接圆,点D 在圆1O 上,由余弦定理可得2222cos 7BC AB AC AB AC BAC =+-⋅∠=,如此BC =所以,ABC 的外接圆直径为2sin 3BC r BAC ==∠,r ∴=,AD ∴⊥平面ABC ,所以,四面体ABCD 的外接球半径为R ==因此,四面体ABCD 的外接球的外表积为2412R ππ=.故答案为:12π.【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以复原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径;③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,如此球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.四、解答题19.如图,四棱锥P ABCD 的底面为正方形,PD ⊥底面ABCD .设平面PAD 与平面PBC 的交线为l .〔1〕证明:l⊥平面PDC;〔2〕PD AD1,Q为l上的点,QB2PB与平面QCD所成角的正弦值.【答案】〔1〕证明见解析;〔26【解析】AD l,利用线面垂直的判定定理证得AD⊥平面PDC,〔1〕利用线面平行的判定定理以与性质定理,证得//从而得到l⊥平面PDC;Q m,之后求得平面QCD 〔2〕根据题意,建立相应的空间直角坐标系,得到相应点的坐标,设出点(,0,1)<>,即可得到直线PB与平面QCD所成角的正弦值.的法向量以与向量PB的坐标,求得cos,n PB【详解】〔1〕证明:AD BC,在正方形ABCD中,//因为AD⊄平面PBC,BC⊂平面PBC,AD平面PBC,所以//又因为AD ⊂平面PAD ,平面PAD平面PBC l =,所以//AD l , 因为在四棱锥P ABCD -中,底面ABCD 是正方形,所以,,AD DC l DC ⊥∴⊥且PD ⊥平面ABCD ,所以,,AD PD l PD ⊥∴⊥因为CD PD D =所以l ⊥平面PDC ;〔2〕如图建立空间直角坐标系D xyz -,因为1PD AD ==,如此有(0,0,0),(0,1,0),(1,0,0),(0,0,1),(1,1,0)D C A P B ,设(,0,1)Q m ,如此有(0,1,0),(,0,1),(1,1,1)DC DQ m PB ===-,因为QB 1m ==设平面QCD 的法向量为(,,)n x y z =,如此00DC n DQ n ⎧⋅=⎨⋅=⎩,即00y x z =⎧⎨+=⎩,令1x =,如此1z =-,所以平面QCD 的一个法向量为(1,0,1)n =-,如此2cos ,1n PBn PB n PB ⋅<>==== 根据直线的方向向量与平面法向量所成角的余弦值的绝对值即为直线与平面所成角的正弦值,所以直线与平面所成角的正弦值等于6|cos ,|3n PB <>=所以直线PB 与平面QCD 20.如图,在四棱锥P ABCD -中,底面ABCD 为正方形.且PA ⊥平面ABCD ,M ,N 分别为,PB PD 的中点.〔1〕求证://MN 平面ABCD ;〔2〕假如2PA AB ==,求CN 与平面PBD 所成角的正弦值.【答案】〔1〕详见解析;〔2【解析】〔1〕要证明线面平行,需证明线线平行,即转化为证明//MN BD ;〔2〕首先建立空间直角坐标系,求平面PBD 的法向量,利用线面角的向量公式求解.【详解】〔1〕连结BD ,,M N 分别是,PB PD 的中点,//MN BD ∴,MN ⊄平面ABCD ,BD ⊂平面ABCD ,//MN ∴平面ABCD ;〔2〕如图,以点A 为原点,,,AB AD AP 为,,x y z 轴的正方向建立空间直角坐标系, ()002P ,,,()2,0,0B ,()0,2,0D ()2,2,0C ,()0,1,1N ,()2,0,2PB =-,()2,2,0PD =-,()2,1,1CN =--,设平面PBD 的法向量(),,n x y z =,如此00PB n PD n ⎧⋅=⎨⋅=⎩,即220220x z x y -=⎧⎨-+=⎩,令1x =,如此1,1y z ==, ∴平面PBD 的法向量()1,1,1n =,如此21sin cos ,3CN nCN n CN n θ⋅-⨯-=<>===, 所以CN 与平面PBD 21.如图,在三棱柱111ABC A B C -中,1CC ⊥平面,,2ABC AC BC AC BC ⊥==,13CC =,点,D E 分别在棱1AA 和棱1CC 上,且12,AD CE M ==为棱11AB 的中点.〔Ⅰ〕求证:11C M B D ⊥;〔Ⅱ〕求二面角1B B E D --的正弦值; 〔Ⅲ〕求直线AB 与平面1DB E 所成角的正弦值.【答案】〔Ⅰ〕证明见解析;【解析】以C 为原点,分别以1,,CA CB CC 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系.〔Ⅰ〕计算出向量1C M 和1B D 的坐标,得出110C M B D ⋅=,即可证明出11C M B D ⊥; 〔Ⅱ〕可知平面1BB E 的一个法向量为CA ,计算出平面1B ED 的一个法向量为n ,利用空间向量法计算出二面角1B B E D --的余弦值,利用同角三角函数的根本关系可求解结果; 〔Ⅲ〕利用空间向量法可求得直线AB 与平面1DB E 所成角的正弦值.【详解】依题意,以C 为原点,分别以CA 、CB 、1CC 的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系〔如图〕,可得()0,0,0C 、()2,0,0A 、()0,2,0B 、()10,0,3C 、 ()12,0,3A 、()10,2,3B 、()2,0,1D 、()0,0,2E 、()1,1,3M . 〔Ⅰ〕依题意,()11,1,0C M =,()12,2,2B D =--, 从而112200C M B D ⋅=-+=,所以11C M B D ⊥; 〔Ⅱ〕依题意,()2,0,0CA =是平面1BB E 的一个法向量,()10,2,1EB =,()2,0,1ED =-.设(),,n x y z =为平面1DB E 的法向量,如此100n EB n ED ⎧⋅=⎪⎨⋅=⎪⎩,即2020y z x z +=⎧⎨-=⎩, 不妨设1x =,可得()1,1,2n =-.2cos ,2C CA nA C n A n ⋅<>===⋅⨯, 230sin ,1cos ,6CA n CA n ∴<>=-<>=. 所以,二面角1B B E D --的正弦值为6 〔Ⅲ〕依题意,()2,2,0AB =-. 由〔Ⅱ〕知()1,1,2n =-为平面1DB E 的一个法向量,于是cos ,322AB nAB n ABn ⋅<>===-⋅. 所以,直线AB 与平面1DB E 22.如图,在正方体1111ABCD A BC D -中,E 为1BB 的中点.〔Ⅰ〕求证:1//BC 平面1AD E ;〔Ⅱ〕求直线1AA 与平面1AD E 所成角的正弦值.【答案】〔Ⅰ〕证明见解析;〔Ⅱ〕23. 【解析】〔Ⅰ〕证明出四边形11ABC D 为平行四边形,可得出11//BC AD ,然后利用线面平行的判定定理可证得结论; 〔Ⅱ〕以点A 为坐标原点,AD 、AB 、1AA 所在直线分别为x 、y 、z 轴建立空间直角坐标系A xyz ,利用空间向量法可计算出直线1AA 与平面1AD E 所成角的正弦值.【详解】〔Ⅰ〕如如下图所示:在正方体1111ABCD A BC D -中,11//AB A B 且11AB AB =,1111//A BCD 且1111A B C D =, 11//AB C D ∴且11AB C D =,所以,四边形11ABC D 为平行四边形,如此11//BC AD ,1BC ⊄平面1AD E ,1AD ⊂平面1AD E ,1//BC ∴平面1AD E ;〔Ⅱ〕以点A 为坐标原点,AD 、AB 、1AA 所在直线分别为x 、y 、z 轴建立如如下图所示的空间直角坐标系A xyz -,设正方体1111ABCD A BC D -的棱长为2,如此()0,0,0A 、()10,0,2A 、()12,0,2D 、()0,2,1E ,()12,0,2AD =,()0,2,1AE =,设平面1AD E 的法向量为(),,n x y z =,由100n AD n AE ⎧⋅=⎨⋅=⎩,得22020x z y z +=⎧⎨+=⎩, 令2z =-,如此2x =,1y =,如此()2,1,2n =-. 11142cos ,323n AA n AA n AA ⋅<>==-=-⨯⋅. 因此,直线1AA 与平面1AD E 所成角的正弦值为23. 23.如图,三棱台ABC —DEF 中,平面ACFD ⊥平面ABC ,∠ACB =∠ACD =45°,DC =2BC .〔I 〕证明:EF ⊥DB ;〔II 〕求DF 与面DBC 所成角的正弦值.【答案】〔I 〕证明见解析;〔II 【解析】〔I 〕作DH AC ⊥交AC 于H ,连接BH ,由题意可知DH ⊥平面ABC ,即有DH BC ⊥,根据勾股定理可证得BC BH ⊥,又//EF BC ,可得DH EF ⊥,BH EF ⊥,即得EF ⊥平面BHD ,即证得EF DB ⊥;〔II 〕由//DF CH ,所以DF 与平面DBC 所成角即为CH 与平面DBC 所成角,作HG BD ⊥于G ,连接CG ,即可知HCG ∠即为所求角,再解三角形即可求出DF 与平面DBC 所成角的正弦值.【详解】〔Ⅰ〕作DH AC ⊥交AC 于H ,连接BH .∵平面ADFC ⊥平面ABC ,而平面ADFC 平面ABC AC =,DH ⊂平面ADFC ,∴DH ⊥平面ABC ,而BC ⊂平面ABC ,即有DH BC ⊥.∵45ACB ACD ∠=∠=︒, ∴2CD BC CH =⇒=.在CBH 中,22222cos45BH CH BC CH BC BC =+-⋅︒=,即有222BH BC CH +=,∴BH BC ⊥. 由棱台的定义可知,//EF BC ,所以DH EF ⊥,BH EF ⊥,而BH DH H =,∴EF ⊥平面BHD ,而BD ⊂平面BHD ,∴EF DB ⊥.〔Ⅱ〕因为//DF CH ,所以DF 与平面DBC 所成角即为与CH 平面DBC 所成角.作HG BD ⊥于G ,连接CG ,由〔1〕可知,BC ⊥平面BHD ,因为所以平面BCD ⊥平面BHD ,而平面BCD 平面BHD BD =,HG ⊂平面BHD ,∴HG ⊥平面BCD .即CH 在平面DBC 内的射影为CG ,HCG ∠即为所求角.在Rt HGC △中,设BC a =,如此CH =,BH DH HG a BD ⋅===,∴sin3HG HCG CH ∠===..故DF与平面DBC所成角的正弦值为324.如图,四棱锥P-ABCD的底面为正方形,PD⊥底面ABCD.设平面PAD与平面PBC的交线为l.〔1〕证明:l⊥平面PDC;〔2〕PD=AD=1,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.【答案】〔1〕证明见解析;〔2【解析】AD l,〔1〕利用线面垂直的判定定理证得AD⊥平面PDC,利用线面平行的判定定理以与性质定理,证得//从而得到l⊥平面PDC;Q m,之后求得平面QCD 〔2〕根据题意,建立相应的空间直角坐标系,得到相应点的坐标,设出点(,0,1)<>的最大值,即为直线PB与平面QCD所成角的正弦值的的法向量以与向量PB的坐标,求得cos,n PB最大值.【详解】〔1〕证明:在正方形ABCD 中,//AD BC ,因为AD ⊄平面PBC ,BC ⊂平面PBC ,所以//AD 平面PBC ,又因为AD ⊂平面PAD ,平面PAD平面PBC l =, 所以//AD l ,因为在四棱锥P ABCD -中,底面ABCD 是正方形,所以,,AD DC l DC ⊥∴⊥且PD ⊥平面ABCD ,所以,,AD PD l PD ⊥∴⊥因为CD PD D =所以l ⊥平面PDC ;〔2〕如图建立空间直角坐标系D xyz -,因为1PD AD ==,如此有(0,0,0),(0,1,0),(1,0,0),(0,0,1),(1,1,0)D C A P B ,设(,0,1)Q m ,如此有(0,1,0),(,0,1),(1,1,1)DC DQ m PB ===-,设平面QCD 的法向量为(,,)n x y z =,如此00DC n DQ n ⎧⋅=⎨⋅=⎩,即00y mx z =⎧⎨+=⎩, 令1x =,如此z m =-,所以平面QCD 的一个法向量为(1,0,)n m =-,如此1cos ,3n PBn PB n PB ⋅+<>==根据直线的方向向量与平面法向量所成角的余弦值的绝对值即为直线与平面所成角的正弦值,所以直线与平面所成角的正弦值等于|cos ,|n PB <>===≤≤=1m =时取等号,所以直线PB 与平面QCD25.在三棱锥A —BCD 中,CB =CD BD =2,O 为BD 的中点,AO ⊥平面BCD ,AO =2,E 为AC 的中点.〔1〕求直线AB 与DE 所成角的余弦值;〔2〕假如点F 在BC 上,满足BF =14BC ,设二面角F —DE —C 的大小为θ,求sin θ的值.【答案】〔12 【解析】〔1〕建立空间直角坐标系,利用向量数量积求直线向量夹角,即得结果;〔2〕先求两个平面法向量,根据向量数量积求法向量夹角,最后根据二面角与向量夹角关系得结果.【详解】〔1〕连,CO BC CD BO OD CO BD ==∴⊥以,,OB OC OA 为,,x y z 轴建立空间直角坐标系,如此(0,0,2),(1,0,0),(0,2,0),(1,0,0)(0,1,1)A B C D E -∴(1,0,2),(1,1,1)cos ,AB DE AB DE ∴=-=∴<>==从而直线AB 与DE〔2〕设平面DEC 一个法向量为1(,,),n x y z =11200(1,2,0),00x y n DC DC x y z n DE ⎧+=⋅=⎧⎪=∴⎨⎨++=⋅=⎪⎩⎩ 令112,1(2,1,1)y x z n =∴=-=∴=- 设平面DEF 一个法向量为2111(,,),n x y z =11221117100171(,,0),4244200x y n DF DF DB BF DB BC n DE x y z ⎧⎧+=⋅=⎪⎪=+=+=∴⎨⎨⋅=⎪⎩⎪++=⎩ 令111272,5(2,7,5)yx z n =-∴==∴=- 12cos ,n n ∴<>==因此sin 13θ== 26.如图,在长方体1111ABCD A BC D -中,点,E F分别在棱11,DD BB 上,且12DE ED =,12BF FB =.〔1〕证明:点1C 在平面AEF 内; 〔2〕假如2AB =,1AD =,13AA =,求二面角1A EF A--的正弦值.【答案】〔1〕证明见解析;〔2〕7. 【解析】〔1〕连接1C E 、1C F ,证明出四边形1AEC F 为平行四边形,进而可证得点1C 在平面AEF 内; 〔2〕以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立空间直角坐标系1C xyz -,利用空间向量法可计算出二面角1A EF A --的余弦值,进而可求得二面角1A EF A --的正弦值.【详解】〔1〕在棱1CC 上取点G ,使得112C G CG =,连接DG 、FG 、1C E 、1C F ,在长方体1111ABCD A BC D -中,//AD BC 且AD BC =,11//BB CC 且11BB CC =,112C G CG =,12BF FB =,112233CG CC BB BF ∴===且CG BF =, 所以,四边形BCGF 为平行四边形,如此//AF DG 且AF DG =,同理可证四边形1DEC G 为平行四边形,1//C E DG ∴且1C E DG =,1//C E AF ∴且1C E AF =,如此四边形1AEC F 为平行四边形,因此,点1C 在平面AEF 内;〔2〕以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立如如下图所示的空间直角坐标系1C xyz -,如此()2,1,3A 、()12,1,0A 、()2,0,2E 、()0,1,1F , ()0,1,1AE =--,()2,0,2AF =--,()10,1,2A E =-,()12,0,1A F =-,设平面AEF 的法向量为()111,,m x y z =,由00m AE m AF ⎧⋅=⎪⎨⋅=⎪⎩,得11110220y z x z --=⎧⎨--=⎩取11z =-,得111x y ==,如此()1,1,1m =-, 设平面1A EF 的法向量为()222,,n x y z =,由1100n A E n A F ⎧⋅=⎪⎨⋅=⎪⎩,得22222020y z x z -+=⎧⎨-+=⎩,取22z =,得21x =,24y =,如此()1,4,2n =,3cos ,3m nm n m n ⋅<>===⨯⋅设二面角1A EF A --的平面角为θ,如此cos θ=,sin 7θ∴==.因此,二面角1A EF A --. 27.如图,在长方体1111ABCD A BC D -中,点E ,F 分别在棱1DD ,1BB 上,且12DE ED =,12BF FB =.证明:〔1〕当AB BC =时,EF AC ⊥;〔2〕点1C 在平面AEF 内.【答案】〔1〕证明见解析;〔2〕证明见解析.【解析】〔1〕根据正方形性质得AC BD ⊥,根据长方体性质得1AC BB ⊥,进而可证AC ⊥平面11BB D D ,即得结果; 〔2〕只需证明1//EC AF 即可,在1CC 上取点M 使得12CM MC =,再通过平行四边形性质进展证明即可.【详解】〔1〕因为长方体1111ABCD A BC D -,所以1BB ⊥平面ABCD ∴1AC BB ⊥,因为长方体1111,ABCD A B C D AB BC -=,所以四边形ABCD 为正方形AC BD ∴⊥因为11,BB BD B BB BD =⊂、平面11BB D D ,因此AC ⊥平面11BB D D ,因为EF ⊂平面11BB D D ,所以AC EF ⊥;〔2〕在1CC 上取点M 使得12CM MC =,连,DM MF ,因为111112,//,=D E ED DD CC DD CC =,所以11,//,ED MC ED MC =所以四边形1DMC E 为平行四边形,1//DM EC ∴因为//,=,MF DA MF DA 所以M F A D 、、、四点共面,所以四边形MFAD 为平行四边形,1//,//DM AF EC AF ∴∴,所以1E C A F 、、、四点共面,因此1C 在平面AEF 内28.如图,D 为圆锥的顶点,O 是圆锥底面的圆心,ABC 是底面的内接正三角形,P 为DO 上一点,∠APC =90°.〔1〕证明:平面PAB ⊥平面PAC ;〔2〕设DO,求三棱锥P −ABC 的体积.【答案】〔1〕证明见解析;〔2【解析】〔1〕根据可得PA PB PC ==,进而有PAC △≌PBC ,可得90APC BPC ∠=∠=,即PB PC ⊥,从而证得PC ⊥平面PAB ,即可证得结论;〔2〕将条件转化为母线l 和底面半径r 的关系,进而求出底面半径,由正弦定理,求出正三角形ABC 边长,在等腰直角三角形APC 中求出AP ,在Rt APO 中,求出PO ,即可求出结论.【详解】〔1〕连接,,OA OB OC ,D 为圆锥顶点,O 为底面圆心,OD ∴⊥平面ABC , P 在DO 上,,OA OB OC PA PB PC ==∴==, ABC 是圆内接正三角形,AC BC ∴=,PAC △≌PBC ,90APC BPC ∴∠=∠=︒,即,PB PC PA PC ⊥⊥,,PA PB P PC =∴⊥平面,PAB PC ⊂平面PAC ,∴平面PAB ⊥平面PAC ;〔2〕设圆锥的母线为l ,底面半径为r ,圆锥的侧面积为,rl rl π==2222OD l r =-=,解得1,r l ==2sin 603AC r ==在等腰直角三角形APC 中,2AP AC ==在Rt PAO 中,2PO ===,∴三棱锥P ABC -的体积为11333P ABC ABC V PO S -=⋅==△.29.如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC 是底面的内接正三角形,P 为DO 上一点,PO =.〔1〕证明:PA ⊥平面PBC ;〔2〕求二面角B PC E --的余弦值.【答案】〔1〕证明见解析;〔2. 【解析】〔1〕要证明PA ⊥平面PBC ,只需证明PA PB ⊥,PA PC ⊥即可;〔2〕以O 为坐标原点,OA 为x 轴,ON 为y 轴建立如下列图的空间直角坐标系,分别算出平面PCB 的法向量为n ,平面PCE 的法向量为m ,利用公式cos ,||||n m m n n m ⋅<>=计算即可得到答案. 【详解】〔1〕由题设,知DAE △为等边三角形,设1AE =,如此2DO =,1122CO BO AE ===,所以64PO DO ==,PC PB ====又ABC 为等边三角形,如此2sin 60BA OA =,所以2BA =, 22234PA PB AB +==,如此90APB ∠=,所以PA PB ⊥, 同理PA PC ⊥,又PC PB P =,所以PA ⊥平面PBC ;〔2〕过O 作ON ∥BC 交AB 于点N ,因为PO ⊥平面ABC ,以O 为坐标原点,OA 为x 轴,ON 为y 轴建立如下列图的空间直角坐标系,如此111(,0,0),(,(,244444E P B C ----,1(,4PC =-,1(4PB =-,1(,0,2PE =-, 设平面PCB 的一个法向量为111(,,)n x y z =,由00n PC n PB ⎧⋅=⎨⋅=⎩,得11111100x x ⎧-=⎪⎨-+=⎪⎩,令1x =111,0z y =-=, 所以(2,0,1)n =-,设平面PCE 的一个法向量为222(,,)m x y z =由00m PC m PE ⎧⋅=⎨⋅=⎩,得22222020x x ⎧--=⎪⎨-=⎪⎩,令21x =,得223z y ==,所以3(1,3m =故2cos ,||||3n m mn n m ⋅<>===⋅⨯ 设二面角B PC E --的大小为θ,如此cos θ=30.四棱锥P ABCD -中,//AB CD ,90PDA BAD ∠=∠=︒,12PD DA AB CD ===,S 为PC 中点,BS CD ⊥.〔1〕证明:PD ⊥平面ABCD ;〔2〕平面SAD 交PB 于Q ,求CQ 与平面PCD 所成角的正弦值.【答案】〔1〕证明见解析;〔2. 【解析】〔1〕取CD 中点为M ,得到BM CD ⊥,由BS CD ⊥,证得CD ⊥平面BSM ,得到CD SM ⊥,再根据CD PD ⊥,结合线面垂直的判定定理,证得PD ⊥平面ABCD ;〔2〕以,,DA DC DP 方向为,,x y z 轴的正方向,建立空间直角坐标系O xyz -,设1AB =,根据2PQ QB =,求得CQ 坐标,再求得平面PCD 的法向量,结合向量的夹角公式,即可求解.【详解】〔1〕取CD 中点为M ,如此DM AB =且//DM AB ,所以四边形ABMD 为平行四边形,可得//BM AD ,所以BM CD ⊥,又由BS CD ⊥,BM BS B ⋂=,所以CD ⊥平面BSM ,又因为SM ⊂平面BSM ,所以CD SM ⊥,又由//SM PD ,所以CD PD ⊥,AD PD ⊥,CD AD D =,所以PD ⊥平面ABCD .〔2〕延长CB ,DA 交于N ,连SN 与PB 交点即为Q ,因为B 为CN 中点,S 为PC 中点,故Q 为PNC △的重心,故2PQ QB =,以D 为原点,,,DA DC DP 方向为,,x y z 轴的正方向,建立空间直角坐标系O xyz -,不妨设1AB =,如此()1,1,0B ,()0,0.1P ,。
2021年高考数学解答题专项练习《立体几何》五(含答案)
2021年高考数学解答题专项练习《立体几何》五1.如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是底面边长的2倍,P为侧棱SD上的点.(1)求证:AC⊥SD;(2)若SD⊥平面PAC,求二面角P-AC-D的大小;(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC?若存在,求SE∶EC的值;若不存在,试说明理由.2.已知一个三棱台的上、下底面分别是边长为20 cm和30 cm的正三角形,各侧面是全等的等腰梯形,且各侧面的面积之和等于两底面面积之和,求棱台的体积.3.如图所示,平面四边形ADEF所在的平面与梯形ABCD所在的平面垂直,AD⊥CD,AD⊥ED,AF∥DE,AB∥CD,CD=2AB=2AD=2ED=xAF.(1)若四点F,B,C,E共面,AB=a,求x的值;(2)求证:平面CBE⊥平面EDB.4.如图,已知ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH.求证:AP//GH.5.如图,三棱柱ABC-A1B1C1的各棱长均相等,AA1⊥底面ABC,E,F分别为棱AA1,BC的中点.(1)过FA1作平面α,使得直线BE//平面α,若平面α与直线BB1交于点H,指出点H所在的位置,并说明理由;(2)求二面角B-FH-A1的余弦值.6.如图,一简单几何体ABCDE的一个面ABC内接于圆O,G,H分别是AE,BC的中点,AB是圆O的直径,四边形DCBE为平行四边形,且DC⊥平面ABC.(1)证明:GH∥平面ACD;(2)若AC=BC=BE=2,求二面角O-CE-B的余弦值.7.已知正方体ABCD-A1B1C1D1中,E,F分别为D1C1,C1B1的中点,AC∩BD=P,A1C1∩EF=Q.求证:(1)D,B,F,E四点共面;(2)若A1C交平面DBFE于R点,则P,Q,R三点共线.8.如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,△PAD是等边三角形,四边形ABCD是平行四边形,∠ADC=120°,AB=2AD.(1)求证:平面PAD⊥平面PBD;(2)求二面角A﹣PB﹣C的余弦值.9.如图,已知正四棱锥V﹣ABCD中,AC与BD交于点M,VM是棱锥的高,若AC=6cm,VC=5cm.(1)求正四棱锥V﹣ABCD的体积;(2)求直线VD与底面ABCD所成角的正弦值.10.如图,在四棱锥P-ABCD中,AD=CD=AB,AB∥DC,AD⊥CD,PC⊥平面ABCD.(1)求证:BC⊥平面PAC;(2)若M为线段PA的中点,且过C,D,M三点的平面与PB交于点N,求PN:PB的值.11.如图,四棱柱ABCD-A1B1C1D1的底面ABCD为菱形,且∠A1AB=∠A1AD.(1)证明:四边形BB1D1D为矩形;(2)若AB=A1A,∠BAD=60°,A1A与平面ABCD所成的角为30°,求二面角A1-BB1-D的余弦值.12.如图所示,在四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.(1)证明:BD⊥平面PAC;(2)若PA=1,AD=2,求二面角B﹣PC﹣A的正切值.13.四棱台被过点A1,C1,D的平面截去一部分后得到如图所示的几何体,其下底面四边形ABCD是边长为2的菱形,BAD=60°,BB1⊥平面ABCD,BB1=2.(1)求证:平面AB1C⊥平面BB1D;(2)若AA1与底面ABCD所成角的正切值为2,求二面角A1-BD-C1的余弦值.14.如图,三棱柱ABC﹣AB1C1中,侧面BB1C1C为菱形,AC=AB1.1(1)证明:AB⊥B1C;(2)若∠CAB1=90°,∠CBB1=60°,AB=BC=2,求三棱锥B1﹣ACB的体积.15.如图,菱形ABCD的对角线AC与BD交于点O,点E、F分别在AD,CD上,AE=CF,EF交BD于点H,将沿EF折到的位置.(I)证明:;(II)若,求五棱锥体积.答案解析16.答案:(1)证明:连接BD ,设AC 交BD 于O ,连接SO.由题意知SO ⊥AC.在正方形ABCD 中,AC ⊥BD ,所以AC ⊥平面SBD ,得AC ⊥SD. (2)解:设正方形边长为a ,则SD=22a ,又OD=22a ,所以∠SDO=60°.连接OP ,由(1)知AC ⊥平面SBD ,所以AC ⊥OP ,且AC ⊥OD ,所以∠POD 是二面角P -AC -D 的平面角.由SD ⊥平面PAC ,知SD ⊥OP ,所以∠POD=30°,即二面角P -AC -D 的大小为30°.(3)解:在棱SC 上存在一点E ,使BE ∥平面PAC.由(2)可得PD=24a ,故可在SP 上取一点N ,使PN=PD.过N 作PC 的平行线与SC 的交点即为E.连接B N ,在△BDN 中,知BN ∥PO.又由于NE ∥PC ,故平面BEN ∥平面PAC ,可得BE ∥平面PAC.由于SN ∶NP=2∶1,故SE ∶EC=2∶1.17.解:如图所示,在三棱台ABC -A′B′C′中,O′,O 分别为上、下底面的中心,D ,D′ 分别是BC ,B′C′的中点,则DD′是等腰梯形BCC′B′的高,又C′B′=20 cm ,CB=30 cm ,所以S 侧=3×12×(20+30)×DD′=75DD′. S 上+S 下=34×(202+302)=3253(cm 2). 由S 侧=S 上+S 下,得75DD′=3253,所以DD′=1333(cm), 又因为O′D′=36×20=1033(cm),OD=36×30=53(cm), 所以棱台的高h=O′O =D′D 2-(OD -O′D′)2=⎝ ⎛⎭⎪⎫13332-⎝⎛⎭⎪⎫53-10332=43(cm), 由棱台的体积公式,可得棱台的体积为V=h 3(S 上+S 下+S 上S 下)=433×⎝ ⎛⎭⎪⎫3253+34×20×30=1900(cm 3). 故棱台的体积为1900 cm 3.18.解:(1)∵AF ∥DE ,AB ∥DC ,AF∩AB=A,DE∩DC=D,∴平面ABF ∥平面DCE .∵四点F ,B ,C ,E 共面,∴FB ∥CE ,∴△ABF 与△DCE 相似.∵AB=a ,∴ED=a ,CD=2a ,AF=2a x , 由相似比得AF ED =AB CD ,即2ax a =a 2a,所以x=4. (2)证明:不妨设AB=1,则AD=AB=1,CD=2,在Rt △BAD 中,BD=2,取CD 中点为M ,则MD 与AB 平行且相等, 连接BM ,可得△BMD 为等腰直角三角形,因此BC=2,因为BD 2+BC 2=CD 2,所以BC ⊥BD ,又因为平面四边形ADEF 所在的平面与梯形ABCD 所在的平面垂直, 平面ADEF∩平面ABCD=AD ,ED ⊥AD ,所以ED ⊥平面ABCD ,所以BC ⊥DE ,又因为BD∩DE=D,所以BC ⊥平面EDB ,因为BC ⊂平面CBE ,所以平面CBE ⊥平面EDB .19.20.解:21.解:22.答案:证明:如图.23.24.25.26.27.28.29.30.。
2021年高考数学真题分类汇编专题11:立体几何
2021年高考数学真题分类汇编专题11:立体几何一、单选题1. ( 2分) (2021·全国甲卷)在一个正方体中,过顶点A的三条棱的中点分别为E,F,G.该正方体截去三棱锥A-EFG后,所得多面体的三视图中,正试图如右图所示,则相应的侧视图是()A. B. C. D.2. ( 2分) (2021·全国甲卷)已知A,B,C是半径为1的求O的球面上的三个点,且AC⊥BC,AC=BC=1,则三棱锥O-ABC的体积为()A. B. C. D.3. ( 2分) (2021·全国乙卷)在正方体ABCD-A1B1C1D1中,P为B1D1的中点,则直线PB与AD1所成的角为()A. B. C. D.4. ( 2分) (2021·新高考Ⅰ)已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为()A. 2B. 2C. 4D. 45. ( 2分) (2021·新高考Ⅱ卷)正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为()A. B. C. D.6. ( 2分) (2021·新高考Ⅱ卷)北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为(轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O,半径r为的球,其上点A的纬度是指与赤道平面所成角的度数.地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为,记卫星信号覆盖地球表面的表面积为(单位:),则S占地球表面积的百分比约为()A. 26%B. 34%C. 42%D. 50%7. ( 2分) (2021·北京)定义:24小时内降水在平地上积水厚度()来判断降雨程度.其中小雨(),中雨(),大雨(),暴雨(),小明用一个圆锥形容器接了24小时的雨水,如图,则这天降雨属于哪个等级()A. 小雨B. 中雨C. 大雨D. 暴雨8. ( 2分) (2021·北京)某四面体的三视图如图所示,该四面体的表面积为()A. B. 4 C. D. 29. ( 2分) (2021·浙江)某几何体的三视图如图所示,则该几何体的体积是()A. B. 3 C. D.10. ( 2分) (2021·浙江)如图已知正方体,M,N分别是,的中点,则()A. 直线与直线垂直,直线平面B. 直线与直线平行,直线平面C. 直线与直线相交,直线平面D. 直线与直线异面,直线平面11. ( 2分) (2021·天津)两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为,两个圆锥的高之比为,则这两个圆锥的体积之和为()A. B. C. D.二、多选题12. ( 3分) (2021·新高考Ⅰ)在正三棱柱ABC- 中,AB=AA1=1,点P满足,其中λ∈[0,1],∈[0,1],则()A. 当λ=1时,△P的周长为定值B. 当=1时,三棱锥P-A1BC的体积为定值C. 当λ= 时,有且仅有一个点P,使得D. 当= 时,有且仅有一个点P,使得B⊥平面A P13. ( 3分) (2021·新高考Ⅱ卷)如图,在正方体中,O为底面的中心,P为所在棱的中点,M,N为正方体的顶点.则满足的是()A. B.C. D.三、填空题14. ( 1分) (2021·全国甲卷)己知一个圆锥的底面半径为6,其体积为30π,则该圆锥的侧面积为________.15. ( 1分) (2021·全国乙卷)以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为________(写出符合要求的一组答案即可).四、解答题16. ( 10分) (2021·全国甲卷)已知直三棱柱中,侧面为正方形.分别为和的中点,.(1)求三棱锥F-EBC的体积;(2)已知为棱上的点,证明:.17. ( 10分) (2021·全国甲卷)已知直三棱柱ABC-A1B1C1.中,侧面AA1B1B为正方形,AB= BC = 2,E,F分别为AC和CC1的中点,D为棱A1B1上的点,BF丄A1B1.(1)证明:BF⊥DE;(2)当为B1D何值时,面BB1C1C与面DFE所成的二面角的正弦值最小?18. ( 10分) (2021·全国乙卷)如图,四棱锥P-ABCD的底面是矩形,PD⊥底面ABCD,PD=DC=1,M为BC 的中点,且PB⊥AM,(1)求BC;(2)求二面角A-PM-B的正弦值。
立体几何高考试题及答案
立体几何高考试题及答案立体几何在高考数学中占据着重要的位置,难度也相对较大。
下面,我们将针对高考中常见的立体几何试题进行解析和答案展示。
首先,我们来看一个常见的高考立体几何题目:已知在长方体ABCD-A1B1C1D1中,AB=12cm,AD=8cm,AE=6cm,P为AE的中点,连接PE与BD交于点F。
(1)求线段EF的长。
解析:根据题目中的条件,我们可以利用长方体的性质进行推导。
首先,我们可以得出AE与BD平行,因此,三角形AEP与三角形FDP是相似的。
根据相似三角形的性质,我们可以得出:AD/AE=FP/EP8/6=FP/3解得FP=4,EP=3。
由于E是AE的中点,所以PE=AE/2=6/2=3。
又因为三角形PFB与三角形DEB相似,我们可以得出:PB/BD=FP/DE。
PB/12=4/8解得PB=6。
由于三角形PFB是直角三角形,根据勾股定理,我们可以得出:EF²=EP²+FP²EF²=3²+4²EF²=25解得EF=5。
因此,线段EF的长为5cm。
接下来,我们来看一个稍微复杂一点的立体几何试题:如图,正方体ABCD-A1B1C1D1被截去了一小角,截去部分是一个正方形,设$AE=1$cm,求正方体的表面积。
解析:根据题目中的条件,我们可以看出四面体AED-C是一个直角四边形。
我们可以利用勾股定理来进行求解。
根据直角三角形的性质,我们可以得出:$AD^2=AE^2+DE^2$$AD^2=1^2+AC^2$由于正方体的特性,我们知道AD=AC=AB=BC=CD。
所以$AC^2=1^2+1^2=2$因此,正方体的表面积为:$6AC^2=6×2=12$。
综上所述,立体几何在高考数学中是一个重要的考点,要求掌握空间几何图形的性质和相关定理,通过分析题目,灵活运用所学知识来解决问题。
只有深入理解和掌握几何图形的性质,才能在高考中得心应手,取得满意的成绩。
2021年新高考数学立体几何真题(1)
21.(本题满分12分)多面体欧拉定理是指对于多面体(表面经过连续变形可变为球面的多面体),其各维对象数总满足一定的定量的数学关系.在三维空间中,简单凸多面体欧拉定理可以表示为:V -E +F =2,其中V 为顶点数,E 为棱长数,F 为表面数.(1)阿基米德多面体一般指半正多面体,是指由边数不全相同的正多边形为面的简单多面体.被称为“世界第一运动”的现代足球所使用的的足球也是阿基米德多面体的一种.如图所示,足球是由正五边形的黑皮与正六边形的白皮组成的,求制作一个足球需要的黑皮数量和白皮数量.(2)柏拉图多面体一般指正多面体,是指各个面都是全等的正多边形的简单凸多面体.求正多面体的种数.【解析】(1)设正五边形的黑皮需要x 块,正六边形的白皮需要y 块由题意可知解得即制作一个足球需要黑皮12块,白皮20块(2)设正多面体每个顶点有m 条棱,每个面都是正n 边形,多面体的顶点数是V ,面数是F ,棱数是E 因为两个相邻面有一公共棱,所以因为两个相邻顶点有一公共棱,所以又因简单多面体的欧拉定理,得V -E +F =2,从上面三式可得要使得上面的式子成立,必须满足2m +2n -mn >0,因为m ≥3,所以,于是有n <6当n =3时,m <6,所以m 能取的值是3、4、5当n =4时,m <4,所以m 能取的值是3当n =5时,m <10/3,所以m 能取的值是3综上所述,正多面体只有5种535625632x y x y F x y E x y V V E F =⎧⎪+=⎪⎪+=⎨⎪+=⎪-+=⎪⎩1220x y =⎧⎨=⎩2021年6月普通高等学国统一考试高等学校招生全国统一考试年6月普通高等学校招生全国统一考试普通高等学校招生全国统一考试高等学校招生全国统一考试校招生全国统一考试生全国统一考试国统一考试考试2021年6月普通高等学校招生2021年6月普通高等学校招生全国2021年6月普通高等学校招生全国统一考2021年6月普通高等学校招生全国统一考试2021年6月普通高等学校招生全国统一考试2021年6月普通高等学校招生全国统一考试2021年6月普通高等学校招生全国统一考试2021年6月普通高等学校招生全国统一考试2021年6月普通高等学校招生全国统一考试2021年6月普通高等学校招生全国统一考2021年6月普通高等学校。
新高考数学备考专题空间向量与立体几何 真题训练(解析版)
新高考 空间向量与立体几何 专题训练一、单选题1.(2021·山东济宁·二模)“直线m 垂直平面α内的无数条直线”是“m α⊥”的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必安条件 【答案】B【分析】根据线面垂直的定义和性质,结合充分性、必要性的定义进行判断即可.【详解】因为当直线m 垂直平面α内的所有直线时,才能得到m α⊥,所以由直线m 垂直平面α内的无数条直线不一定能推出m α⊥,但是由m α⊥一定能推出直线m 垂直平面α内的无数条直线,所以直线m 垂直平面α内的无数条直线是m α⊥的必要不充分条件,故选:B2.(2021·天津和平·三模)在圆柱12O O 内有一个球O ,球O 分别与圆柱12O O 的上、下底面及母线均有且只有一个公共点.若122O O =,则圆柱12O O 的表面积为( ). A .4πB .5πC .6πD .7π 【答案】C【分析】依题意可求得圆柱的底面半径和高,进而可得圆柱的表面积.【详解】依题意可得圆柱的底面半径1r =,高2h =,所以圆柱的表面积222426S r h r πππππ=⋅+=+=.故选:C.3.(2021·广西来宾·模拟预测(文))已知在高为2的正四棱锥P ABCD -中,2AB =,则正四棱锥P ABCD -外接球的体积为( )A .4πB .92πC .274πD .83π 【答案】B【分析】根据正四棱锥的性质,结合球的体积公式进行求解即可.【详解】设正方形ABCD 的中心为О,正四棱锥P ABCD -外接球的半径为R ,有OA =()2222R R =-+,解得32R =, 则正四棱锥P ABCD -外接球的体积为3439232ππ⎛⎫⨯ =⎪⎝⎭. 故选:B4.(2021年全国高考乙卷数学(文)试题)在正方体1111ABCD A B C D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角为( )A .π2B .π3C .π4D .π6【答案】D【分析】 平移直线1AD 至1BC ,将直线PB 与1AD 所成的角转化为PB 与1BC 所成的角,解三角形即可.【详解】如图,连接11,,BC PC PB ,因为1AD ∥1BC ,所以1PBC ∠或其补角为直线PB 与1AD 所成的角,因为1BB ⊥平面1111D C B A ,所以11BB PC ⊥,又111PC B D ⊥,1111BB B D B ⋂=,所以1PC ⊥平面1PBB ,所以1PC PB ⊥,设正方体棱长为2,则111112BC PC D B === 1111sin 2PC PBC BC ∠==,所以16PBC π∠=. 故选:D5.(2021年全国高考甲卷数学(理)试题)2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:m ),三角高程测量法是珠峰高程测量方法之一.如图是三角高程测量法的一个示意图,现有A ,B ,C 三点,且A ,B ,C 在同一水平面上的投影,,A B C '''满足45ACB ∠'''=︒,60A BC ''∠'=︒.由C 点测得B 点的仰角为15︒,BB '与CC '的差为100;由B 点测得A 点的仰角为45︒,则A ,C 两点到水平面A B C '''的高度差AA CC ''-1.732≈)( )A .346B .373C .446D .473【答案】B【分析】 通过做辅助线,将已知所求量转化到一个三角形中,借助正弦定理,求得''A B ,进而得到答案.【详解】过C 作'CH BB ⊥,过B 作'BD AA ⊥,故()''''''100100AA CC AA BB BH AA BB AD -=--=-+=+,由题,易知ADB △为等腰直角三角形,所以AD DB =.所以''100''100AA CC DB A B -=+=+.因为15BCH ∠=︒,所以100''tan15CH C B ==︒在'''A B C 中,由正弦定理得:''''100100sin 45sin 75tan15cos15sin15A B C B ===︒︒︒︒︒,而sin15sin(4530)sin 45cos30cos 45sin 30︒=︒-︒=︒︒-︒︒=所以1004''1)273A B ⨯==≈, 所以''''100373AA CC A B -=+≈.故选:B .【点睛】本题关键点在于如何正确将''AA CC -的长度通过作辅助线的方式转化为''100A B +.6.(2021年浙江省高考数学试题)如图已知正方体1111ABCD A B C D -,M ,N 分别是1A D ,1D B 的中点,则( )A .直线1A D 与直线1DB 垂直,直线//MN 平面ABCD B .直线1A D 与直线1D B 平行,直线MN ⊥平面11BDD BC .直线1AD 与直线1D B 相交,直线//MN 平面ABCD D .直线1A D 与直线1D B 异面,直线MN ⊥平面11BDD B【答案】A【分析】由正方体间的垂直、平行关系,可证1//,MN AB A D ⊥平面1ABD ,即可得出结论.【详解】连1AD ,在正方体1111ABCD A B C D -中, M 是1A D 的中点,所以M 为1AD 中点, 又N 是1D B 的中点,所以//MN AB , MN ⊄平面,ABCD AB ⊂平面ABCD , 所以//MN 平面ABCD .因为AB 不垂直BD ,所以MN 不垂直BD 则MN 不垂直平面11BDD B ,所以选项B,D 不正确;。
2021-高考-立体几何的向量方法-综合应用-含答案word
2021-高考-立体几何的向量方法-综合应用-含答案word一、解答题1. 如图,在直三棱柱ABC―A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.(Ⅰ)求证AC⊥BC1;(Ⅱ)求证AC1//平面CDB1;(Ⅲ)求异面直线AC1与B1C所成角的余弦值.2. 如图,在四棱锥(Ⅰ) 求证:当(Ⅱ) 当中,底面时,平面时,求二面角面为矩形,;的大小。
面,。
3. 如图,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,AB= PA=1,AD=3,F是PB中点,E为BC上一点.(1)求证:AF⊥平面PBC;(2)当BE为何值时,二面角C-PE-D为45.o4. 已知等腰直角三角形ABC中,?BAC?90?,D为AC的中点,正方形BCC1B1与ABC所在的平面垂直,AB?2.1(1)求证AB1平行平面DBC1;(2)求DC1与平面ABC1夹角的正弦值.5. 如图, 四边形ABCD为正方形, PD⊥平面ABCD, PD∥QA, QA=AB=PD. (Ⅰ) 证明:平面PQC⊥平面DCQ; (Ⅱ) 求二面角Q-BP-C的余弦值.6. 如图所示,四面体ABCD中,AB⊥BD、AC⊥CD且AD =3.BD=CD=2.(1)求证:AD⊥BC;(2)求二面角B―AC―D的余弦值.7. 如图,在四棱柱P―ABCD中,底面ABCD为直角梯形,?BAD?90?,AD//BC,AB=BC=a,AD=2a,PA?平面ABCD,PD与平面ABCD成30?角. (1)若AE?PD,E为垂足,求证:BE?PD; (2)求平面PAB与平面PCD所成锐二面角的余弦值.28. 如图:四棱锥P-ABCD中,底面ABCD是平行四边形,∠ACB=90°,平面PAD⊥平面ABCD,PA=BC=1,PD=AB=,E、F分别为线段PD和BC的中点.(I) 求证:CE//平面PAF;(II) 在线段BC上是否存在一点G,使得平面PAG和平面PGC所成二面角的大小为60°?若存在,试确定G的位置;若不存在,请说明理由.9. 如图,三棱锥P?ABC中,PB?底面ABC,?BCA?90?,PB?BC?CA?2,E为PC的中点,点F在PA上,且2PF?FA. (1)求证:平面PAC?平面BEF;(2)求平面ABC与平面BEF所成的二面角的平面角(锐角)的余弦值.10. 如图所示的几何体中,四边形PDCE为矩形,ABCD 为直角梯形,且?BAD = ?ADC= 90°,平面PDCE?平面ABCD,AB?AD?12,PD?2(1)若M为PA的中点,求证:AC?平面MDE;3(2)求平面PAD与平面PBC所成锐二面角的大小.11. 如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中点. (Ⅰ)证明:CD⊥平面PAE;(Ⅱ)若直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等,求四棱锥P-ABCD 的体积.12. 已知某几何体的直观图和三视图如下如所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形.(I)证明:BN⊥平面C1B1N;(II)设直线C1N与CNB1所成的角为?,求cos?的值.13. 在正方体ABCD?A1B1C1D1中,如图E、F分别是BB1,CD的中点,(1)求证:D1F?平面ADE;(2)cosEF,CB1.zD1A1B1EFBCyC1DAx?14. 如图,在四棱锥P?ABCD中,底面为直角梯形,AD//BC,?BAD?90,PA?底面ABCD,PA?AD?AB?2BC,M,N分别为PC,PB的中点.4(Ⅰ)求证:PB?DM;(Ⅱ)求CD与平面ADMN所成的角的正弦值.15. 如图所示,正四棱锥P-ABCD中,异面直线PD与AE夹角的余弦值为65,点E是PB的中点. 13(1)求二面角P-AC-E的大小;(2)在侧面PAD上是否存在一点F,使EF?侧面PBC.若存在,试确定F点的位置,并加以证明;若不存在,试说明理由.16. 如图,正方形AA1D1D与矩形ABCD所在平面互相垂直,AB=2AD=2.(1)若点E为AB的中点,求证:BD1∥平面A1DE;(2)在线段AB上是否存在点E,使二面角D1?EC?D的大小为在,请说明理由. 17. 如图甲,是边长为6的等边三角形,,点G为BC边的中点,线段AG??若存在,求出AE的长;若不存6交线段ED于点F.将ΔAED沿ED翻折,使平面AED�A平面BCDE,连结AB、AC、AG形成如图乙的几何体.(I)求证:BC�A平面ATG;(II)求二面角B―AE―D的大小.5感谢您的阅读,祝您生活愉快。
2021年高考立体几何大题-含答案
2021年高考立体几何大题一.解答题(共8小题)1.如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD ∆是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.2.如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,1PD DC ==,M 为BC 中点,且PB AM ⊥.(1)求BC ;(2)求二面角A PM B --的正弦值.3.如图,在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别为棱BC ,CD 的中点.(1)求证:1//D F 平面11A EC ;(2)求直线1AC 与平面11A EC 所成角的正弦值;(3)求二面角11A A C E --的正弦值.4.在四棱锥Q ABCD -中,底面ABCD 是正方形,若2AD =,QD QA ==3QC =.(Ⅰ)求证:平面QAD ⊥平面ABCD ;(Ⅱ)求二面角B QD A --的平面角的余弦值.5.如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,120ABC ∠=︒,1AB =,4BC =,PA =M ,N 分别为BC ,PC 的中点,PD DC ⊥,PM MD ⊥.(Ⅰ)证明:AB PM ⊥;(Ⅱ)求直线AN 与平面PDM所成角的正弦值.6.如图,在正方体1111ABCD A B C D -,E 为11A D 的中点,11B C 交平面CDE 交于点F .(Ⅰ)求证:F 为11B C 的中点;(Ⅱ)若点M 是棱11A B 上一点,且二面角M CF E --,求111A M A B 的值.7.四棱锥P ABCD -,底面为正方形ABCD ,边长为4,E 为AB 中点,PE ⊥平面ABCD .(1)若PAB ∆为等边三角形,求四棱锥P ABCD -的体积;(2)若CD 的中点为F ,PF 与平面ABCD 所成角为45︒,求PC 与AD 所成角的大小.8.如图,在长方体1111ABCD A B C D -中,已知2AB BC ==,13AA =.(1)若P 是棱11A D 上的动点,求三棱锥C PAD -的体积;(2)求直线1AB 与平面11ACC A 的夹角大小.2021年高考立体几何大题参考答案与试题解析一.解答题(共8小题)1.如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD ∆是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.【解答】解:(1)证明:因为AB AD =,O 为BD 的中点,所以AO BD ⊥,又平面ABD ⊥平面BCD ,平面ABD ⋂平面BCD BD =,AO ⊂平面ABD ,所以AO ⊥平面BCD ,又CD ⊂平面BCD ,所以AO CD ⊥;(2)方法一:取OD 的中点F ,因为OCD ∆为正三角形,所以CF OD ⊥,过O 作//OM CF 与BC 交于点M ,则OM OD ⊥,所以OM ,OD ,OA 两两垂直,以点O 为坐标原点,分别以OM ,OD ,OA 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系如图所示,则(0B ,1-,0),1(,0)22C ,(0D ,1,0),设(0A ,0,)t ,则12(0,,)33tE ,因为OA ⊥平面BCD ,故平面BCD 的一个法向量为(0,0,)OA t = ,设平面BCE 的法向量为(,,)n x y z = ,又3342(,0),(0,,)2233t BC BE == ,所以由00n BC n BE ⎧⋅=⎪⎨⋅=⎪⎩,得30242033y t y z +=⎨⎪+=⎪⎩,令x =,则1y =-,2z t =,故21,)n t=- ,因为二面角E BC D --的大小为45︒,所以||2|cos ,|2||||n OA n OA n OA ⋅<>=== ,解得1t =,所以1OA =,又13311224OCD S ∆=⨯⨯⨯=,所以32BCD S ∆=,故1113326A BCD BCD V S OA -∆=⋅=⨯=.方法二:过E 作EF BD ⊥,交BD 于点F ,过F 作FG BC ⊥于点G ,连结EG ,由题意可知,//EF AO ,又AO ⊥平面BCD所以EF ⊥平面BCD ,又BC ⊂平面BCD ,所以EF BC ⊥,又BC FG ⊥,FG EF F= 所以BC ⊥平面EFG ,又EG ⊂平面EFG ,所以BC EG ⊥,则EGF ∠为二面角E BC D --的平面角,即45EGF ∠=︒,又1CD DO OB OC ====,所以120BOC ∠=︒,则30OCB OBC ∠=∠=︒,故90BCD ∠=︒,所以//FG CD ,因为23DE DF EF AD OD AO ===,则312,,233AO EF OF DF ===,所以BF GF BD CD=,则112323GF +==,所以23EF GF ==,则312AO EF ==,所以1113113326A BCD BCD V S AO -∆=⋅=⨯⨯⨯=.2.如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,1PD DC ==,M 为BC 中点,且PB AM ⊥.(1)求BC ;(2)求二面角A PM B --的正弦值.【解答】解:(1)连结BD ,因为PD ⊥底面ABCD ,且AM ⊂平面ABCD ,则AM PD ⊥,又AM PB ⊥,PB PD P = ,PB ,PD ⊂平面PBD ,所以AM ⊥平面PBD ,又BD ⊂平面PBD ,则AM BD ⊥,所以90ABD ADB ∠+∠=︒,又90ABD MAB ∠+∠=︒,则有ADB MAB ∠=∠,所以Rt DAB Rt ABM ∆∆∽,。
2021届高考数学第专题四 高考中的立体几何问题文档强练 文
专题四 高考中的立体几何问题1.(2021·广东)某四棱台的三视图如下图,那么该四棱台的体积是( ) A.4 B.143C.163D.6 答案 B 解析 由三视图知四棱台的直观图为由棱台的体积公式得:V =13(2×2+ 1×1+2×2×1×1)×2=143. 2.(2021·课标全国Ⅱ)已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l满 足l ⊥m ,l ⊥n ,l ⊄α,l ⊄β,那么( )A.α∥β且l ∥αB.α⊥β且l ⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l答案 D 解析 假设α∥β,由m ⊥平面α,n ⊥平面β,那么m ∥n ,这与已知m ,n 为异面直线矛盾,那么α与β相交,设交线为l 1,那么l 1⊥m ,l 1⊥n ,在直线m 上任取一点作n 1平行于n ,那么l 1和l 都垂直于直线m 与n 1所确信的平面,因此l 1∥l .3.如图,点O 为正方体ABCD —A ′B ′C ′D ′的中心,点E 为面B ′BCC ′的中心,点F 为B ′C ′的中点,那么空间四边形D ′OEF在该正方体的各个面上的投影不可能是( ) 答案 D解析 空间四边形D ′OEF 在正方体的面DCC ′D ′上的投影是A ;在面BCC ′B ′上的投影是B ;在面ABCD 上的投影是C ,应选D.4.在如下图的四个正方体中,能得出AB ⊥CD 的是( ) 答案 A解析 A 中,∵CD ⊥平面AMB ,∴CD ⊥AB ;B 中,AB 与CD 成60°角,C 中,AB 与CD 成45°角;D 中,AB 与CD 夹角的正切值为 2.5.如图,四棱锥P -ABCD 的底面是一直角梯形,AB ∥CD ,BA ⊥AD ,CD =2AB ,PA ⊥底面ABCD ,E 为PC 的中点,那么BE 与平面PAD的 位置关系为________.答案 平行解析 取PD 的中点F ,连接EF ,在△PCD 中,EF 綊12CD . 又∵AB ∥CD 且CD =2AB ,∴EF 綊AB ,∴四边形ABEF 是平行四边形,∴EB ∥AF .又∵EB ⊄平面PAD ,AF ⊂平面PAD ,∴BE ∥平面PAD .题型一 空间点、线、面的位置关系例1 (2021·山东)如图,四棱锥P -ABCD 中,AB ⊥AC ,AB ⊥PA ,AB ∥CD ,AB =2CD ,E , F ,G ,M ,N 别离为PB ,AB ,BC ,PD ,PC 的中点.(2)求证:平面EFG ⊥平面EMN .思维启发 (1)在平面PAD 内作直线CE 的平行线或利用平面CEF ∥平面PAD 证明;(2)MN 是平面EFG 的垂线.证明 (1)方式一 取PA 的中点H ,连接EH ,DH .又E 为PB 的中点,因此EH 綊12AB .又CD 綊12AB ,因此EH 綊CD .因此四边形DCEH 是平行四边形,因此CE ∥DH .又DH ⊂平面PAD ,CE ⊄平面PAD .因此CE ∥平面PAD .方式二 连接CF .因为F 为AB 的中点,因此AF =12AB .又CD =12AB ,因此AF =CD .又AF ∥CD ,因此四边形AFCD 为平行四边形.因此CF ∥AD ,又CF ⊄平面PAD ,因此CF ∥平面PAD .因为E ,F 别离为PB ,AB 的中点,因此EF ∥PA .又EF ⊄平面PAD ,因此EF ∥平面PAD .因为CF ∩EF =F ,故平面CEF ∥平面PAD .又CE ⊂平面CEF ,因此CE ∥平面PAD .(2)因为E 、F 别离为PB 、AB 的中点,因此EF ∥PA .又因为AB ⊥PA ,因此EF ⊥AB ,同理可证AB ⊥FG .因此AB⊥平面EFG.又因为M,N别离为PD,PC的中点,因此MN∥CD,又AB∥CD,因此MN∥AB,因此MN⊥平面EFG.又因为MN⊂平面EMN,因此平面EFG⊥平面EMN.思维升华高考对该部份的考查重点是空间的平行关系和垂直关系的证明,一样以解答题的形式显现,试题难度中等,但对空间想象能力和逻辑推理能力有必然的要求,在试卷中也可能以选择题或填空题的方式考查空间位置关系的大体定理在判定线面位置关系中的应用.如下图,直三棱柱ABC-A1B1C1中,∠ACB=90°,M,N别离为A1B,B1C1的中点.求证:(1)BC∥平面MNB1;(2)平面A1CB⊥平面ACC1A.证明(1)因为BC∥B1C1,且B1C1⊂平面MNB1,BC⊄平面MNB1,故BC∥平面MNB1.(2)因为BC⊥AC,且ABC-A1B1C1为直三棱柱,故BC⊥平面ACC1A1.因为BC⊂平面A1CB,故平面A1CB⊥平面ACC1A1.题型二平面图形的翻折问题例2如图1所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD为∠ACB的平分线,点E在线段AC 上,CE=4.如图2所示,将△BCD沿CD折起,使得平面BCD⊥平面ACD,连接AB,BE,设点F是AB的中点.(1)求证:DE⊥平面BCD;(2)假设EF∥平面BDG,其中G为直线AC与平面BDG的交点,求三棱锥B-DEG的体积.思维启发(1)翻折前后,△ACD内各元素的位置关系没有转变,易知DE⊥DC,再依照平面BCD⊥平面ACD(2)注意从条件EF ∥平面BDG 得线线平行,为求高作基础.(1)证明 ∵AC =6,BC =3,∠ABC =90°,∴∠ACB =60°.∵CD 为∠ACB 的平分线,∴∠BCD =∠ACD =30°.∴CD =2 3. ∵CE =4,∠DCE =30°, ∴DE 2=CE 2+CD 2-2CE ·CD ·cos 30°=4,∴DE =2,那么CD 2+DE 2=EC 2.∴∠CDE =90°,DE ⊥DC .又∵平面BCD ⊥平面ACD ,平面BCD ∩平面ACD =CD ,DE ⊂平面ACD ,∴DE ⊥平面BCD .(2)解 ∵EF ∥平面BDG ,EF ⊂平面ABC ,平面ABC ∩平面BDG =BG ,∴EF ∥BG .∵点E 在线段AC 上,CE =4,点F 是AB 的中点,∴AE =EG =CG =2.如图,作BH ⊥CD 于H .∵平面BCD ⊥平面ACD ,∴BH ⊥平面ACD .由条件得BH =32, S △DEG =13S △ACD =13×12AC ·CD ·sin 30°=3, ∴三棱锥B -DEG 的体积V =13S △DEG ·BH =13×3×32=32. 思维升华 平面图形的翻折问题,关键是弄清翻折前后图形中线面位置关系和气宇关系的转变情形.一样地翻折后还在同一个平面上的性质不发生转变,不在同一个平面上的性质发生转变.(2021·北京)如图(1),在Rt△ABC 中,∠C =90°,D ,E 别离为AC ,AB 的中点,点F 为线段CD 上的一点,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1F ⊥CD ,如图(2).(2)求证:A1F⊥BE.(3)线段A1B上是不是存在点Q,使A1C⊥平面DEQ?说明理由.(1)证明因为D,E别离为AC,AB的中点,因此DE∥BC.又因为DE⊄平面A1CB,因此DE∥平面A1CB.(2)证明由已知得AC⊥BC且DE∥BC,因此DE⊥AC.因此DE⊥A1D,DE⊥CD.又A1D∩CD=D,因此DE⊥平面A1DC.而A1F⊂平面A1DC,因此DE⊥A1F.又因为A1F⊥CD,因此A1F⊥平面BCDE,又因为BE⊂平面BCDE,因此A1F⊥BE.(3)解线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如图,别离取A1C,A1B的中点P,Q,那么PQ∥BC.又因为DE∥BC,因此DE∥PQ.因此平面DEQ即为平面DEP.由(2)知,DE⊥平面A1DC,因此DE⊥A1C.又因为P是等腰三角形DA1C底边A1C的中点,因此A1C⊥DP.因此A1C⊥平面DEP.从而A1C⊥平面DEQ.题型三 线面位置关系中的存在性问题例3 如图,在矩形ABCD 中,AB =2BC ,P 、Q 别离是线段AB 、CD的 中点,EP ⊥平面ABCD .(1)求证:DP ⊥平面EPC ;(2)问在EP 上是不是存在点F ,使平面AFD ⊥平面BFC ?假设存在,求出FP AP的值;假设不存在,说明理由.思维启发 先假设EP 上存在点F 使平面AFD ⊥平面BFC ,然后推证点F 的位置.(1)证明 ∵EP ⊥平面ABCD ,∴EP ⊥DP .又ABCD 为矩形,AB =2BC ,P 、Q 别离为AB 、CD 的中点,连接PQ ,则PQ ⊥DC 且PQ =12DC . ∴DP ⊥PC .∵EP ∩PC =P ,∴DP ⊥平面EPC .(2)解 假设存在F 使平面AFD ⊥平面BFC ,∵AD ∥BC ,BC ⊂平面BFC ,AD ⊄平面BFC ,∴AD ∥平面BFC .∴AD 平行于平面AFD 与平面BFC 的交线l .∵EP ⊥平面ABCD ,∴EP ⊥AD ,而AD ⊥AB , AB ∩EP =P ,∴AD ⊥平面EAB ,∴l ⊥平面FAB .∴∠AFB 为平面AFD 与平面BFC 所成二面角的平面角.∵P 是AB 的中点,且FP ⊥AB ,∴当∠AFB =90°时,FP =AP .∴当FP =AP ,即FP AP =1时,平面AFD ⊥平面BFC .思维升华 关于线面关系中的存在性问题,第一假设存在,然后在那个假设下利用线面关系的性质进行推理论证,寻求假设知足的条件.假设条件知足那么确信假设,假设取得矛盾那么否定假设.如图,在直四棱柱ABCD-A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC.(1)求证:D1C⊥AC1;(2)问在棱CD上是不是存在点E,使D1E∥平面A1BD.假设存在,确信点E位置;假设不存在,说明理由.(1)证明在直四棱柱ABCD-A1B1C1D1中,连接C1D,∵DC=DD1,∴四边形DCC1D1是正方形,∴DC1⊥D1C.又AD⊥DC,AD⊥DD1,DC∩DD1=D,∴AD⊥平面DCC1D1,又D1C⊂平面DCC1D1,∴AD⊥D1C.∵AD⊂平面ADC1,DC1⊂平面ADC1,且AD∩DC1=D,∴D1C⊥平面ADC1,又AC1⊂平面ADC1,∴D1C⊥AC1.(2)解假设存在点E,使D1E∥平面A1BD.连接AD1,AE,D1E,设AD1∩A1D=M,BD∩AE=N,连接MN,∵平面AD1E∩平面A1BD=MN,要使D1E∥平面A1BD,可使MN∥D1E,又M是AD1的中点,则N是AE的中点.又易知△ABN≌△EDN,∴AB=DE.综上所述,当E 是DC 的中点时,可使D 1E ∥平面A 1BD .(时刻:80分钟)1.如下图,在边长为5+2的正方形ABCD 中,以A 为圆心画一个扇形,以O 为圆心画一个圆,M ,N ,K 为切点,以扇形为圆锥的侧面,以圆O 为圆锥底面,围成一个圆锥,求圆锥的全面积与体积.解 设圆锥的母线长为l ,底面半径为r ,高为h ,由已知条件得⎩⎪⎨⎪⎧ l +r +2r =5+2×22πrl =π2,解得r =2,l =42,S =πrl +πr 2=10π,h =l 2-r 2=30,V =13πr 2h =230π3.2.如图,在四棱台ABCD -A 1B 1C 1D 1中,D 1D ⊥平面ABCD ,底面ABCD是平行四边形,AB =2AD ,AD =A 1B 1,∠BAD =60°.(1)证明:AA 1⊥BD ;(2)证明:CC 1∥平面A 1BD .证明 (1)方式一 因为D 1D ⊥平面ABCD ,且BD ⊂平面ABCD ,因此D 1D ⊥BD .又因为AB =2AD ,∠BAD =60°,在△ABD 中,由余弦定理得BD 2=AD 2+AB 2-2AD ·AB cos 60°=3AD 2,因此AD 2+BD 2=AB 2,因此AD ⊥BD .又AD ∩D 1D =D ,因此BD ⊥平面ADD 1A 1.故AA 1⊥BD .方式二 因为D 1D ⊥平面ABCD ,且BD ⊂平面ABCD ,因此BD ⊥D 1D .如图,取AB 的中点G ,连接DG ,在△ABD 中,由AB =2AD 得AG =AD .又∠BAD =60°,因此△ADG 为等边三角形,因此GD =GB ,故∠DBG =∠GDB .又∠AGD =60°,因此∠GDB =30°,故∠ADB =∠ADG +∠GDB =60°+30°=90°,因此BD ⊥AD .又AD ∩D 1D =D ,因此BD ⊥平面ADD 1A .又AA 1⊂平面ADD 1A ,故AA 1⊥BD .(2)如图,连接AC ,A 1C 1,设AC ∩BD =E ,连接EA 1,因为四边形ABCD 为平行四边形,因此EC =12AC . 由棱台概念及AB =2AD =2A 1B 1知A 1C 1∥EC 且A 1C 1=EC ,因此四边形A 1ECC 1为平行四边形,因此CC 1∥EA .又EA 1⊂平面A 1BD ,CC 1⊄平面A 1BD ,因此CC 1∥平面A 1BD .3.如图,四棱锥P —ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,点E 在线段 AD 上,且CE ∥AB .(1)求证:CE ⊥平面PAD ;(2)假设PA =AB =1,AD =3,CD =2,∠CDA =45°,求四棱锥P —ABCD 的体积.因此PA ⊥CE .因为AB ⊥AD ,CE ∥AB ,因此CE ⊥AD .又PA ∩AD =A ,因此CE ⊥平面PAD .(2)解 由(1)可知CE ⊥AD .在Rt△ECD 中,DE =CD ·cos 45°=1,CE =CD ·sin 45°=1.又因为AB =CE =1,AB ∥CE ,因此四边形ABCE 为矩形.因此S 四边形ABCD =S 矩形ABCE +S △ECD =AB ·AE +12CE ·DE=1×2+12×1×1=52.又PA ⊥平面ABCD ,PA =1,因此V 四棱锥P —ABCD =13S 四边形ABCD ·PA =13×52×1=56.4.如图,在正方体ABCD —A 1B 1C 1D 1中,E 、F 别离是CD 、A 1D 1的中点.(1)求证:AB 1⊥BF ;(2)求证:AE ⊥BF ;(3)棱CC 1上是不是存在点P ,使BF ⊥平面AEP ?假设存在,确信点P 的位置,假设不存在,说明理由.(1)证明 连接A 1B ,那么AB 1⊥A 1B ,又∵AB 1⊥A 1F ,且A 1B ∩A 1F =A 1,∴AB 1⊥平面A 1BF .又BF ⊂平面A 1BF ,∴AB 1⊥BF .(2)证明 取AD 中点G ,连接FG ,BG ,那么FG ⊥AE ,又∵△BAG ≌△ADE ,∴∠ABG =∠DAE .∴AE ⊥BG .又∵BG ∩FG =G ,∴AE ⊥平面BFG .又BF ⊂平面BFG ,∴AE ⊥BF .(3)解 存在.取CC 1中点P ,即为所求.连接EP ,AP ,C 1D ,∵EP∥C1D,C1D∥AB1,∴EP∥AB1.由(1)知AB1⊥BF,∴BF⊥EP.又由(2)知AE⊥BF,且AE∩EP=E,∴BF⊥平面AEP.5.(2021·安徽)如图,在长方体ABCD-A1B1C1D1中,底面A1B1C1D1是正方形,O是BD的中点,E是棱AA1上任意一点.(1)证明:BD⊥EC1;(2)若是AB=2,AE=2,OE⊥EC1,求AA1的长.(1)证明连接AC,A1C1.由底面是正方形知,BD⊥AC.因为AA1⊥平面ABCD,BD⊂平面ABCD,因此AA1⊥BD.又AA1∩AC=A,因此BD⊥平面AA1C1C.因为EC1⊂平面AA1C1C知,BD⊥EC1.(2)解方式一设AA1的长为h,连接OC1.在Rt△OAE中,AE=2,AO=2,故OE2=(2)2+(2)2=4.在Rt△EA1C1中,A1E=h-2,A1C1=22,故EC21=(h-2)2+(22)2.在Rt△OCC1中,OC=2,CC1=h,OC21=h2+(2)2.因为OE⊥EC1,因此OE2+EC21=OC21,即4+(h-2)2+(22)2=h2+(2)2,解得h=32,因此AA1的长为3 2.方式二∵OE⊥EC1,∴∠AEO+∠A1EC1=90°.又∵∠A1C1E+∠A1EC1=90°,∴∠AEO=∠A1C1E.又∵∠OAE=∠C1A1E=90°,∴△OAE∽EA1C1,∴AEA1C1=AOA1E,即222=2A1E,∴A1E=22,∴AA1=AE+A1E=3 2.6.(2021·辽宁)如图,AB是圆O的直径,PA垂直圆O所在的平面,C是圆O上的点.(1)求证:BC⊥平面PAC;(2)设Q为PA的中点,G为△AOC的重心,求证:QG∥平面PBC.证明(1)由AB是圆O的直径,得AC⊥BC,由PA⊥平面ABC,BC⊂平面ABC,得PA⊥BC.又PA∩AC=A,PA⊂平面PAC,AC⊂平面PAC,因此BC⊥平面PAC.(2)连接OG并延长交AC于M,连接QM,QO,由G为△AOC的重心,得M为AC中点.由Q为PA中点,得QM∥PC,又O为AB中点,得OM∥BC.因为QM∩MO=M,QM⊂平面QMO,MO⊂平面QMO,BC∩PC=C,BC⊂平面PBC,PC⊂平面PBC.因此平面QMO∥平面PBC.因为QG⊂平面QMO,因此QG∥平面PBC.。
2021年高考立体几何大题及答案(理)
1.如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD ,2AD =,2DC SD ==,点M 在侧棱SC上,∠ABM=60。
欧阳光明(2021.03.07)(I )证明:M 是侧棱SC 的中点;()II 求二面角S AM B --的大小。
2.如图,直三棱柱ABC-A1B1C1中,AB ⊥AC,D 、E 分别为AA1、B1C 的中点,DE ⊥平面BCC1(Ⅰ)证明:AB=AC (Ⅱ)设二面角A-BD-C 为60°,求B1C 与平面BCD 所成的角的大小3.如图,DC ⊥平面ABC ,//EB DC ,22AC BC EB DC ====,120ACB ∠=,,P Q 分别为,AE AB 的中点.(I )证明://PQ 平面ACD ;(II )求AD 与平面ABE 所成角的正弦值.4.如图,四棱锥P ABCD -的底面是正方形,PD ABCD ⊥底面,点E 在棱PB 上.(Ⅰ)A CB A 1 B 1C 1D E求证:平面AEC PDB ⊥平面;(Ⅱ)当2PD AB =且E 为PB 的中点时,求AE 与平面PDB 所成的角的大小.5.如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABCD ,4PA AD ==,2AB =.以BD 的中点O 为球心、BD 为直径的球面交PD 于点M .(1)求证:平面ABM ⊥平面PCD ; (2)求直线PC 与平面ABM 所成的角;(3)求点O 到平面ABM 的距离. 6.如图,正方形ABCD 所在平面与平面四边形ABEF 所在平面互相垂直,△ABE 是等腰直角三角形,,,45AB AE FA FE AEF ︒==∠=(I )求证:EF BCE ⊥平面; (II )设线段CD 、AE 的中点分别为P 、M ,求证:PM ∥BCE 平面(III )求二面角F BD A --的大小。
7.如图,四棱锥S-ABCD 的底面是正方形,SD ⊥平面ABCD,SD =AD =a,点E 是SD 上的点,且DE =λa(0<λ≦1). (Ⅰ)求证:对任意的λ∈(0、1),都有AC ⊥BE:OA PB M(Ⅱ)若二面角C-AE-D 的大小为600C ,求λ的值。
备考2021年高考数学选择题(立体几何初步)-解析版
点 E 为 A1B1 的中点,若三棱锥 C − EC1D1 的所有顶点都在球 O 的球面上,则球 O 的表面积为( )
A. 22π
B. 26π
C. 24π
D. 28π
【答案】D
【分析】
易证 D1C1E 是正三角形,设 D1C1E 的中心为 O1 ,易得 O1C1 ,过 O1 作直线 l 垂直于平面 D1C1E ,则球心 O
则 x = 2 3 − x ,解得 x = 3 ,
所以 R = 7 , 所以其外接球的表面积是 S = 4 R2 = 28 ,
故选:D 【点睛】
关键点点睛:本题关键证得 D1C1E 是正三角形,然后由球心 O 必在过 O1 的直线 l 上,利用勾股定理求解. 10.(2021·内蒙古呼和浩特市·高三一模(理))四面体 ABCD 的四个顶点都在球 O 上且
∴ h = 3 ,∴V = 1 r2h = 3 ,
3
3
故选:B.
4.(2019·天津高三其他模拟)如图,圆柱内有一内切球(圆柱各面与球面均相切),若圆柱的侧面积为 4 ,
则球的体积为( )
A. 32 3
【答案】B
B. 4 3
C. 4
D.16
【分析】
设圆柱底面半径为 r,则内切球的半径也是 r,圆柱的高为 2r,利用圆柱的侧面积为可得到 r=1,从而求出
AB = AC = BC = BD = CD = 4, AD = 2 6 ,则球 O 的表面积为( )
A. 70π 3
【答案】B
B. 80π 3
C. 30π
D. 40π
【分析】
作出图形,根据题中的数据证明平面 ABC ⊥ 平面 BCD ,并找出球心的位置,列出等式求出外接球的半径,
高考数学(理)三年真题专题演练—立体几何(解答题)
高考数学三年真题专题演练—立体几何(解答题)1.【2021·全国高考真题】如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.【答案】(1)详见解析(2)36【分析】(1)根据面面垂直性质定理得AO ⊥平面BCD ,即可证得结果; (2)先作出二面角平面角,再求得高,最后根据体积公式得结果. 【解析】(1)因为AB=AD,O 为BD 中点,所以AO ⊥BD因为平面ABD 平面BCD =BD ,平面ABD ⊥平面BCD ,AO ⊂平面ABD , 因此AO ⊥平面BCD ,因为CD ⊂平面BCD ,所以AO ⊥CD (2)作EF ⊥BD 于F,作FM ⊥BC 于M,连FM 因为AO ⊥平面BCD ,所以AO ⊥BD,AO ⊥CD所以EF ⊥BD,EF ⊥CD,BD CD D ⋂=,因此EF ⊥平面BCD ,即EF ⊥BC 因为FM ⊥BC ,FMEF F =,所以BC ⊥平面EFM ,即BC ⊥ME则EMF ∠为二面角E-BC-D 的平面角,4EMF π∠=因为BO OD =,OCD 为正三角形,所以BCD 为直角三角形因为2DE EA =,1112(1)2233FM BF ∴==+= 从而EF=FM=213AO ∴=AO ⊥平面BCD,所以11131133326BCD V AO S ∆=⋅=⨯⨯⨯⨯=【点睛】二面角的求法:一是定义法,二是三垂线定理法,三是垂面法,四是投影法. 2.【2021·浙江高考真题】如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,120,1,4,15ABC AB BC PA ∠=︒===,M ,N 分别为,BC PC 的中点,,PD DC PM MD ⊥⊥.(1)证明:AB PM ⊥;(2)求直线AN 与平面PDM 所成角的正弦值. 【答案】(1)证明见解析;(215【分析】(1)要证AB PM ⊥,可证DC PM ⊥,由题意可得,PD DC ⊥,易证DM DC ⊥,从而DC ⊥平面PDM ,即有DC PM ⊥,从而得证;(2)取AD 中点E ,根据题意可知,,,ME DM PM 两两垂直,所以以点M 为坐标原点,建立空间直角坐标系,再分别求出向量AN 和平面PDM 的一个法向量,即可根据线面角的向量公式求出.【解析】(1)在DCM △中,1DC =,2CM =,60DCM ∠=,由余弦定理可得3DM =,所以222DM DC CM +=,∴DM DC ⊥.由题意DC PD ⊥且PD DM D ⋂=,DC ∴⊥平面PDM ,而PM ⊂平面PDM ,所以DC PM ⊥,又//AB DC ,所以AB PM ⊥. (2)由PM MD ⊥,AB PM ⊥,而AB 与DM 相交,所以PM ⊥平面ABCD ,因为7AM =,所以22PM =,取AD 中点E ,连接ME ,则,,ME DM PM 两两垂直,以点M 为坐标原点,如图所示,建立空间直角坐标系,则(3,2,0),(0,0,22),(3,0,0)A P D -,(0,0,0),(3,1,0)M C -又N 为PC 中点,所以31335,,2,,,22222N AN ⎛⎫⎛⎫-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 由(1)得CD ⊥平面PDM ,所以平面PDM 的一个法向量(0,1,0)n =从而直线AN 与平面PDM 所成角的正弦值为5||152sin 6||2725244AN n AN n θ⋅===++‖.【点睛】本题第一问主要考查线面垂直的相互转化,要证明AB PM ⊥,可以考虑DC PM ⊥,题中与DC 有垂直关系的直线较多,易证DC ⊥平面PDM ,从而使问题得以解决;第二问思路直接,由第一问的垂直关系可以建立空间直角坐标系,根据线面角的向量公式即可计算得出.3.【2021·全国高考真题(理)】已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小? 【答案】(1)见解析;(2)112B D =【分析】通过已知条件,确定三条互相垂直的直线,建立合适的空间直角坐标系,借助空间向量证明线线垂直和求出二面角的平面角的余弦值最大,进而可以确定出答案. 【解析】因为三棱柱111ABC A B C -是直三棱柱,所以1BB ⊥底面ABC ,所以1BB AB ⊥ 因为11//A B AB ,11BF A B ⊥,所以BF AB ⊥, 又1BB BF B ⋂=,所以AB ⊥平面11BCC B . 所以1,,BA BC BB 两两垂直.以B 为坐标原点,分别以1,,BA BC BB 所在直线为,,x y z 轴建立空间直角坐标系,如图.所以()()()()()()1110,0,0,2,0,0,0,2,0,0,0,2,2,0,2,0,2,2B A C B A C ,()()1,1,0,0,2,1E F .由题设(),0,2D a (02a ≤≤).(1)因为()()0,2,1,1,1,2BF DE a ==--,所以()()0121120BF DE a ⋅=⨯-+⨯+⨯-=,所以BF DE ⊥. (2)设平面DFE 的法向量为(),,m x y z =, 因为()()1,1,1,1,1,2EF DE a =-=--,所以00m EF m DE ⎧⋅=⎨⋅=⎩,即()0120x y z a x y z -++=⎧⎨-+-=⎩.令2z a =-,则()3,1,2m a a =+-因为平面11BCC B 的法向量为()2,0,0BA =, 设平面11BCC B 与平面DEF 的二面角的平面角为θ,则cos 2m BA m BAθ⋅===⋅⨯当12a =时,2224a a -+取最小值为272, 此时cos θ=.所以()minsin θ== 此时112B D =. 【点睛】本题考查空间向量的相关计算,能够根据题意设出(),0,2D a (02a ≤≤),在第二问中通过余弦值最大,找到正弦值最小是关键一步.4.【2021·全国高考真题(理)】如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,1PD DC ==,M 为BC 的中点,且PB AM ⊥.(1)求BC ;(2)求二面角A PM B --的正弦值. 【答案】(1)2;(2)7014【分析】(1)以点D 为坐标原点,DA 、DC 、DP 所在直线分别为x 、y 、z 轴建立空间直角坐标系,设2BC a =,由已知条件得出0PB AM ⋅=,求出a 的值,即可得出BC 的长;(2)求出平面PAM 、PBM 的法向量,利用空间向量法结合同角三角函数的基本关系可求得结果.【解析】(1)PD ⊥平面ABCD ,四边形ABCD 为矩形,不妨以点D 为坐标原点,DA 、DC 、DP 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系D xyz -,设2BC a =,则()0,0,0D 、()0,0,1P 、()2,1,0B a 、(),1,0M a 、()2,0,0A a , 则()2,1,1PB a =-,(),1,0AM a =-,PB AM ⊥,则2210PB AM a ⋅=-+=,解得2a =,故2BC a ==; (2)设平面PAM 的法向量为()111,,m x y z =,则AM ⎛⎫= ⎪ ⎪⎝⎭,()AP =-,由11110220m AM x y m APz ⎧⋅=-+=⎪⎨⎪⋅=-+=⎩,取1x =,可得()2,1,2m =,设平面PBM 的法向量为()222,,n x y z =,,0,02BM ⎛⎫=- ⎪ ⎪⎝⎭,()1,1BP =--,由222220220n BM x n BP y z ⎧⋅=-=⎪⎨⎪⋅=--+=⎩,取21y =,可得()0,1,1n =,3cos ,147m n m n m n⋅<>===⨯⋅,所以,270sin ,1cos,14m n m n <>=-<>=, 因此,二面角A PM B --【点睛】思路点睛:利用空间向量法求解二面角的步骤如下:(1)建立合适的空间直角坐标系,写出二面角对应的两个半平面中对应的点的坐标; (2)设出法向量,根据法向量垂直于平面内两条直线的方向向量,求解出平面的法向量(注:若半平面为坐标平面,直接取法向量即可);(3)计算(2)中两个法向量的余弦值,结合立体图形中二面角的实际情况,判断二面角是锐角还是钝角,从而得到二面角的余弦值.5.【2021·北京高考真题】已知正方体1111ABCD A B C D -,点E 为11A D 中点,直线11B C 交平面CDE 于点F .(1)证明:点F 为11B C 的中点;(2)若点M 为棱11A B 上一点,且二面角M CF E --5111A M A B 的值.【答案】(1)证明见解析;(2)11112A M AB =. 【分析】(1)首先将平面CDE 进行扩展,然后结合所得的平面与直线11BC 的交点即可证得题中的结论;(2)建立空间直角坐标系,利用空间直角坐标系求得相应平面的法向量,然后解方程即可求得实数λ的值.【解析】(1)如图所示,取11B C 的中点'F ,连结,','DE EF F C , 由于1111ABCD A B C D -为正方体,,'E F 为中点,故'EF CD , 从而,',,E F C D 四点共面,即平面CDE 即平面'CDEF , 据此可得:直线11B C 交平面CDE 于点'F ,当直线与平面相交时只有唯一的交点,故点F 与点'F 重合, 即点F 为11B C 中点.(2)以点D 为坐标原点,1,,DA DC DD 方向分别为x 轴,y 轴,z 轴正方形,建立空间直角坐标系D xyz -,不妨设正方体的棱长为2,设()11101A MA B λλ=≤≤, 则:()()()()2,2,2,0,2,0,1,2,2,1,0,2M C F E λ,从而:()()()2,22,2,1,0,2,0,2,0MC CF FE λ=---==-, 设平面MCF 的法向量为:()111,,m x y z =,则:()111112222020m MC x y z m CF x z λ⎧⋅=-+--=⎪⎨⋅=+=⎪⎩, 令11z =-可得:12,,11m λ⎛⎫=- ⎪-⎝⎭,设平面CFE 的法向量为:()222,,n x y z =,则:2222020n FE y n CF x z ⎧⋅=-=⎪⎨⋅=+=⎪⎩,令11z =-可得:()2,0,1n =-,从而:215,5,51m n m n λ⎛⎫⋅==+= ⎪-⎝⎭, 则:2,155155cos 3m n m n m nλ⋅⎛⎫+⨯ ⎪-⎝⎭===⨯,整理可得:()2114λ-=,故12λ=(32λ=舍去).【点睛】本题考查了立体几何中的线面关系和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力,对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.6.【2020年高考全国Ⅰ卷理数】如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC △是底面的内接正三角形,P 为DO 上一点,66PO DO =.(1)证明:PA ⊥平面PBC ; (2)求二面角B PC E --的余弦值. 【解析】(1)设DO a =,由题设可得63,,PO AO AB a ===, 2PA PB PC ===. 因此222PA PB AB +=,从而PA PB ⊥. 又222PA PC AC +=,故PA PC ⊥. 所以PA ⊥平面PBC .(2)以O 为坐标原点,OE 的方向为y 轴正方向,||OE 为单位长,建立如图所示的空间直角坐标系O xyz -.由题设可得312(0,1,0),(0,1,0),(,0),(0,0,)222E A C P --. 所以312(,,0),(0,1,)222EC EP =--=-. 设(,,)x y z =m 是平面PCE 的法向量,则00EP EC ⎧⋅=⎪⎨⋅=⎪⎩m m ,即20231022y z x y ⎧-+=⎪⎪⎨⎪--=⎪⎩,可取3(2)=m . 由(1)知2AP =是平面PCB 的一个法向量,记AP =n , 则25cos ,|||5⋅==n m n m n m |. 所以二面角B PC E --的余弦值为255. 【点晴】本题主要考查线面垂直的证明以及利用向量求二面角的大小,考查学生空间想象能力,数学运算能力,是一道容易题.7.【2020年高考全国Ⅱ卷理数】如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.【解析】(1)因为M ,N 分别为BC ,B 1C 1的中点,所以1MN CC ∥.又由已知得AA 1∥CC 1,故AA 1∥MN .因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N .又B 1C 1⊥MN ,故B 1C 1⊥平面A 1AMN . 所以平面A 1AMN ⊥平面11EB C F .(2)由已知得AM ⊥BC .以M 为坐标原点,MA 的方向为x 轴正方向, MB 为单位长,建立如图所示的空间直角坐标系M -xyz ,则AB =2,AM 3 连接NP ,则四边形AONP 为平行四边形,故23231(,0)3PM E =.由(1)知平面A 1AMN ⊥平面ABC ,作NQ ⊥AM ,垂足为Q ,则NQ ⊥平面ABC . 设(,0,0)Q a ,则22123234(),(4())33NQ a B a a =----, 故21123223210(,,4()),||3333B E a a B E =-----=. 又(0,1,0)=-n 是平面A 1AMN 的法向量,故1111π10sin(,)cos ,210||B E B E B E B E ⋅-===⋅n n n |n |.所以直线B 1E 与平面A 1AMN 10.8.【2020年高考全国Ⅱ卷理数】如图,在长方体1111ABCD A B C D -中,点,E F 分别在棱11,DD BB 上,且12DE ED =,12BF FB =.(1)证明:点1C 在平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A --的正弦值.【解析】设AB a =,AD b =,1AA c =,如图,以1C 为坐标原点,11C D 的方向为x 轴正方向,建立空间直角坐标系1C xyz -.(1)连结1C F ,则1(0,0,0)C ,(,,)A a b c ,2(,0,)3E a c ,1(0,,)3F b c ,1(0,,)3EA b c =,11(0,,)3C F b c =,得1EA C F =.因此1EA C F ∥,即1,,,A E F C 四点共面,所以点1C 在平面AEF 内. (2)由已知得(2,1,3)A ,(2,0,2)E ,(0,1,1)F ,1(2,1,0)A ,(0,1,1)AE =--,(2,0,2)AF =--,1(0,1,2)A E =-,1(2,0,1)A F =-.设1(,,)x y z =n 为平面AEF 的法向量,则 110,0,AE AF ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,220,y z x z --=⎧⎨--=⎩可取1(1,1,1)=--n . 设2n 为平面1A EF 的法向量,则 22110,0,A E A F ⎧⋅=⎪⎨⋅=⎪⎩n n 同理可取21(,2,1)2=n . 因为1212127cos ,||||7⋅〈〉==-⋅n n n n n n ,所以二面角1A EF A --的正弦值为427.9.【2020年高考江苏】在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证:EF ∥平面AB 1C 1; (2)求证:平面AB 1C ⊥平面ABB 1.【解析】因为,E F 分别是1,AC B C 的中点,所以1EF AB ∥. 又/EF ⊂平面11AB C ,1AB ⊂平面11AB C , 所以EF ∥平面11AB C .(2)因为1B C ⊥平面ABC ,AB ⊂平面ABC , 所以1B C AB ⊥.又AB AC ⊥,1B C ⊂平面11AB C ,AC ⊂平面1AB C ,1,B C AC C =所以AB ⊥平面1AB C .又因为AB ⊂平面1ABB ,所以平面1AB C ⊥平面1ABB .【点睛】本小题主要考查线面平行的证明,考查面面垂直的证明,属于中档题. 10.【2020年高考浙江】如图,在三棱台ABC —DEF 中,平面ACFD ⊥平面ABC ,∠ACB =∠ACD =45°,DC =2BC .(Ⅰ)证明:EF ⊥DB ;(Ⅱ)求直线DF 与平面DBC 所成角的正弦值.【解析】(Ⅰ)如图,过点D 作DO AC ⊥,交直线AC 于点O ,连结OB .由45ACD ∠=︒,DO AC ⊥得2CD CO =,由平面ACFD ⊥平面ABC 得DO ⊥平面ABC ,所以DO BC ⊥.由45ACB ∠=︒,1222BC CD CO ==得BO BC ⊥.所以BC ⊥平面BDO ,故BC ⊥DB .由三棱台ABC DEF -得BC EF ∥,所以EF DB ⊥. (Ⅱ)方法一:过点O 作OH BD ⊥,交直线BD 于点H ,连结CH .由三棱台ABC DEF -得DF CO ∥,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角.由BC ⊥平面BDO 得OH BC ⊥,故OH ⊥平面BCD ,所以OCH ∠为直线CO 与平面DBC 所成角. 设22CD =.由2,2DO OC BO BC ====,得26,33BD OH ==, 所以3sin 3OH OCH OC ∠==, 因此,直线DF 与平面DBC 所成角的正弦值为33. 方法二:由三棱台ABC DEF -得DF CO ∥,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角,记为θ.如图,以O 为原点,分别以射线OC ,OD 为y ,z 轴的正半轴,建立空间直角坐标系O xyz -.设22CD =.由题意知各点坐标如下:(0,0,0),(1,1,0),(0,2,0),(0,0,2)O B C D .因此(0,2,0),(1,1,0),(0,2,2)OC BC CD ==-=-.设平面BCD 的法向量(,,z)x y =n .由0,0,BC CD ⎧⋅=⎪⎨⋅=⎪⎩n n 即0220x y y z -+=⎧⎨-+=⎩,可取(1,1,1)=n .所以|3sin |cos ,|3|||OC OC OC θ⋅===⋅n |n n |.因此,直线DF 与平面DBC 所成角的正弦值为33. 【点睛】本题主要考查空间点、线、面位置关系,线面垂直的判定定理的应用,直线与平面所成的角的求法,意在考查学生的直观想象能力和数学运算能力,属于基础题. 11.【2020年高考天津】如图,在三棱柱111ABC A B C -中,1CC ⊥平面,,2ABC AC BC AC BC ⊥==,13CC =,点,D E 分别在棱1AA 和棱1CC 上,且2,1,AD CE M ==为棱11A B 的中点.(Ⅰ)求证:11C M B D ⊥;(Ⅱ)求二面角1B B E D --的正弦值;(Ⅲ)求直线AB 与平面1DB E 所成角的正弦值.【解析】依题意,以C 为原点,分别以1,,CA CB CC 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图),可得1(0,0,0),(2,0,0),(0,2,0),(0,0,3)C A B C ,11(2,0,3),(0,2,3),(2,0,1),(0,0,2)A B D E ,(1,1,3)M .(Ⅰ)证明:依题意,1(1,1,0)C M =,1(2,2,2)B D =--,从而112200C M B D ⋅=-+=,所以11C M B D ⊥.(Ⅱ)解:依题意,(2,0,0)CA =是平面1BB E 的一个法向量,1(0,2,1)EB =,(2,0,1)ED =-.设(,,)x y z =n 为平面1DB E 的法向量,则10,0,EB ED ⎧⋅=⎪⎨⋅=⎪⎩n n 即20,20.y z x z +=⎧⎨-=⎩不妨设1x =,可得(1,1,2)=-n . 因此有|||6cos ,|A CA C CA ⋅〈〉==n n n 30sin ,CA 〈〉=n .所以,二面角1B B E D --30(Ⅲ)解:依题意,(2,2,0)AB =-.由(Ⅱ)知(1,1,2)=-n 为平面1DB E 的一个法向量,于是3cos ,3||||AB AB AB ⋅==-n n n .所以,直线AB 与平面1DB E 所成角的正弦值为33. 12.【2019年高考全国Ⅰ卷理数】如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN∥平面C1DE;(2)求二面角A−MA1−N的正弦值.【答案】(1)见解析;(210【解析】(1)连结B1C,ME.因为M,E分别为BB1,BC的中点,所以ME∥B1C,且ME=12B1C.又因为N为A1D的中点,所以ND=12A1D.由题设知A1B1=DC,可得B1C=A1D,故ME=ND,因此四边形MNDE为平行四边形,MN∥ED.又MN⊄平面EDC1,所以MN∥平面C1DE.(2)由已知可得DE⊥DA.以D为坐标原点,DA的方向为x轴正方向,建立如图所示的空间直角坐标系D−xyz,则(2,0,0)A ,A 1(2,0,4),3,2)M ,(1,0,2)N ,1(0,0,4)A A =-,1(13,2)A M =--,1(1,0,2)A N =--,(0,3,0)MN =.设(,,)x y z =m 为平面A 1MA 的法向量,则1100A M A A ⎧⋅=⎪⎨⋅=⎪⎩m m ,所以32040x y z z ⎧-+-=⎪⎨-=⎪⎩,.可取3,1,0)=m .设(,,)p q r =n 为平面A 1MN 的法向量,则100MN A N ⎧⋅=⎪⎨⋅=⎪⎩,.n n 所以3020q p r ⎧=⎪⎨--=⎪⎩,.可取(2,0,1)=-n .于是2315cos ,||525⋅〈〉===⨯‖m n m n m n , 所以二面角1A MA N --10【名师点睛】本题考查线面平行关系的证明、空间向量法求解二面角的问题.求解二面角的关键是能够利用垂直关系建立空间直角坐标系,从而通过求解法向量夹角的余弦值来得到二面角的正弦值,属于常规题型.13.【2019年高考全国Ⅱ卷理数】如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,求二面角B –EC –C 1的正弦值. 【答案】(1)证明见解析;(2)32. 【解析】(1)由已知得,11B C ⊥平面11ABB A ,BE ⊂平面11ABB A , 故11B C ⊥BE .又1BE EC ⊥,所以BE ⊥平面11EB C .(2)由(1)知190BEB ∠=︒.由题设知Rt ABE △≌11Rt A B E △,所以45AEB ∠=︒, 故AE AB =,12AA AB =.以D 为坐标原点,DA 的方向为x 轴正方向,||DA 为单位长,建立如图所示的空间直角坐标系D –xyz ,则C (0,1,0),B (1,1,0),1C (0,1,2),E (1,0,1),(1,0,0)CB =,(1,1,1)CE =-,1(0,0,2)CC =.设平面EBC 的法向量为n =(x ,y ,x ),则0,0,CB CE ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,0,x x y z =⎧⎨-+=⎩所以可取n =(0,1,1)--.设平面1ECC 的法向量为m =(x ,y ,z ),则10,0,CC CE ⎧⋅=⎪⎨⋅=⎪⎩m m 即20,0.z x y z =⎧⎨-+=⎩ 所以可取m =(1,1,0). 于是1cos ,||||2⋅<>==-n m n m n m .所以,二面角1B EC C --的正弦值为32. 【名师点睛】本题考查了利用线面垂直的性质定理证明线线垂直以及线面垂直的判定,考查了利用空间向量求二角角的余弦值,以及同角的三角函数关系,考查了数学运算能力.14.【2019年高考全国Ⅲ卷理数】图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°,将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的二面角B −CG −A 的大小.【答案】(1)见解析;(2)30.【解析】(1)由已知得AD BE ,CG BE ,所以AD CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB ⊥BE ,AB ⊥BC ,故AB ⊥平面BCGE . 又因为AB ⊂平面ABC ,所以平面ABC ⊥平面BCGE . (2)作EH ⊥BC ,垂足为H .因为EH ⊂平面BCGE ,平面BCGE ⊥平面ABC ,所以EH ⊥平面ABC . 由已知,菱形BCGE 的边长为2,∠EBC =60°,可求得BH =1,EH =3.以H 为坐标原点,HC 的方向为x 轴的正方向,建立如图所示的空间直角坐标系H –xyz ,则A (–1,1,0),C (1,0,0),G (2,03CG =(1,03),AC =(2,–1,0).设平面ACGD 的法向量为n =(x ,y ,z ),则0,0,CG AC ⎧⋅=⎪⎨⋅=⎪⎩n n 即30,20.x z x y ⎧+=⎪⎨-=⎪⎩ 所以可取n =(3,6,3又平面BCGE 的法向量可取为m =(0,1,0), 所以3cos ,||||2⋅〈〉==n m n m n m . 因此二面角B –CG –A 的大小为30°.【名师点睛】本题是很新颖的立体几何考题,首先是多面体折叠问题,考查考生在折叠过程中哪些量是不变的,再者折叠后的多面体不是直棱柱,最后通过建系的向量解法将求二面角转化为求二面角的平面角问题,突出考查考生的空间想象能力.15.【2019年高考北京卷理数】如图,在四棱锥P –ABCD 中,PA ⊥平面ABCD ,AD ⊥CD ,AD ∥BC ,PA =AD =CD =2,BC =3.E 为PD 的中点,点F 在PC 上,且13PF PC =. (1)求证:CD ⊥平面PAD ; (2)求二面角F –AE –P 的余弦值; (3)设点G 在PB 上,且23PG PB =.判断直线AG 是否在平面AEF 内,说明理由.【答案】(1)见解析;(23;(3)见解析. 【解析】(1)因为PA ⊥平面ABCD ,所以PA ⊥CD . 又因为AD ⊥CD ,所以CD ⊥平面PAD . (2)过A 作AD 的垂线交BC 于点M .因为PA ⊥平面ABCD ,所以PA ⊥AM ,PA ⊥AD .如图建立空间直角坐标系A −xyz ,则A (0,0,0),B (2,-1,0),C (2,2,0),D (0,2,0),P (0,0,2). 因为E 为PD 的中点,所以E (0,1,1). 所以(0,1,1),(2,2,2),(0,0,2)AE PC AP ==-=.所以1222224,,,,,3333333PF PC AF AP PF ⎛⎫⎛⎫==-=+= ⎪ ⎪⎝⎭⎝⎭.设平面AEF 的法向量为n =(x ,y ,z ),则0,0,AE AF ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,2240.333y z x y z +=⎧⎪⎨++=⎪⎩ 令z =1,则1,1y x =-=-.于是=(1,1,1)--n .又因为平面PAD 的法向量为p =(1,0,0),所以3cos ,||3⋅〈〉==-‖n p n p n p . 由题知,二面角F −AE −P 为锐角,所以其余弦值为33.(3)直线AG 在平面AEF 内. 因为点G 在PB 上,且2,(2,1,2)3PG PB PB ==--, 所以2424422,,,,,3333333PG PB AG AP PG ⎛⎫⎛⎫==--=+=- ⎪ ⎪⎝⎭⎝⎭. 由(2)知,平面AEF 的法向量=(1,1,1)--n . 所以4220333AG ⋅=-++=n . 所以直线AG 在平面AEF 内.【名师点睛】(1)由题意利用线面垂直的判定定理即可证得题中的结论;(2)建立空间直角坐标系,结合两个半平面的法向量即可求得二面角F −AE −P 的余弦值;(3)首先求得点G 的坐标,然后结合平面AEF 的法向量和直线AG 的方向向量即可判断直线是否在平面内.16.【2019年高考天津卷理数】如图,AE ⊥平面ABCD ,,CF AE AD BC ∥∥,,AD AB ⊥1,2AB AD AE BC ====.(1)求证:BF ∥平面ADE ;(2)求直线CE 与平面BDE 所成角的正弦值; (3)若二面角E BD F --的余弦值为13,求线段CF 的长.【答案】(1)见解析;(2)49;(3)87. 【解析】依题意,可以建立以A 为原点,分别以AB AD AE ,,的方向为x 轴,y 轴,z轴正方向的空间直角坐标系(如图),可得(0,0,0),(1,0,0),(1,2,0),(0,1,0)A B C D ,(0,0,2)E .设(0)CF h h =>,则()1,2,F h .(1)依题意,(1,0,0)AB =是平面ADE 的法向量,又(0,2,)BF h =,可得0BF AB ⋅=,又因为直线BF ⊄平面ADE ,所以BF ∥平面ADE .(2)依题意,(1,1,0),(1,0,2),(1,2,2)BD BE CE =-=-=--.设(,,)x y z =n 为平面BDE 的法向量,则0,0,BD BE ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,20,x y x z -+=⎧⎨-+=⎩不妨令1z =,可得(2,2,1)=n .因此有4cos ,9||||CE CE CE ⋅==-n n n .所以,直线CE 与平面BDE 所成角的正弦值为49. (3)设(,,)x y z =m 为平面BDF 的法向量,则0,0,BD BF ⎧⋅=⎪⎨⋅=⎪⎩m m 即0,20,x y y hz -+=⎧⎨+=⎩不妨令1y =,可得21,1,h ⎛⎫=-⎪⎝⎭m . 由题意,有224||1cos ,||||3432h h -⋅〈〉===+m n m n m n ,解得87h =.经检验,符合题意.所以,线段CF的长为87.【名师点睛】本小题主要考查直线与平面平行、二面角、直线与平面所成的角等基础知识.考查用空间向量解决立体几何问题的方法.考查空间想象能力、运算求解能力和推理论证能力.17.【2019年高考江苏卷】如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.【答案】(1)见解析;(2)见解析.【解析】(1)因为D,E分别为BC,AC的中点,所以ED∥AB.在直三棱柱ABC−A1B1C1中,AB∥A1B1,所以A1B1∥ED.又因为ED⊂平面DEC1,A1B1 平面DEC1,所以A1B1∥平面DEC1.(2)因为AB =BC ,E 为AC 的中点,所以BE ⊥AC . 因为三棱柱ABC −A 1B 1C 1是直棱柱,所以CC 1⊥平面ABC . 又因为BE ⊂平面ABC ,所以CC 1⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C , 所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .【名师点睛】本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.18.【2019年高考浙江卷】如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是AC ,A 1B 1的中点. (1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.【答案】(1)见解析;(2)35. 【解析】方法一:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC , 所以,A 1E ⊥平面ABC ,则A 1E ⊥BC . 又因为A 1F ∥AB ,∠ABC =90°,故BC ⊥A 1F . 所以BC ⊥平面A 1EF . 因此EF ⊥BC .(2)取BC 中点G ,连接EG ,GF ,则EGFA 1是平行四边形. 由于A 1E ⊥平面ABC ,故A 1E ⊥EG ,所以平行四边形EGFA 1为矩形. 由(1)得BC ⊥平面EGFA 1,则平面A 1BC ⊥平面EGFA 1, 所以EF 在平面A 1BC 上的射影在直线A 1G 上.连接A 1G 交EF 于O ,则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角). 不妨设AC =4,则在Rt △A 1EG 中,A 1E =23,EG =3. 由于O 为A 1G 的中点,故11522A G EO OG ===, 所以2223cos 25EO OG EG EOG EO OG +-∠==⋅.因此,直线EF 与平面A 1BC 所成角的余弦值是35. 方法二:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E –xyz .不妨设AC =4,则A 1(0,0,B1,0),1B,3,2F ,C (0,2,0).因此,33(,22EF =,(BC =-. 由0EF BC ⋅=得EF BC ⊥. (2)设直线EF 与平面A 1BC 所成角为θ.由(1)可得1=(310)=(02BC A C --,,,,,. 设平面A 1BC 的法向量为n ()x y z =,,, 由100BC A C ⎧⋅=⎪⎨⋅=⎪⎩n n ,得00y y ⎧+=⎪⎨=⎪⎩, 取n (11)=,故||4sin |cos |=5|||EF EF EF θ⋅==⋅,n n n |,因此,直线EF 与平面A 1BC 所成的角的余弦值为35. 【名师点睛】本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.。
高考数学的立体几何多选题附答案
高考数学的立体几何多选题附答案一、立体几何多选题1.如图①,矩形ABCD 的边2BC =,设AB x =,0x >,三角形BCM 为等边三角形,沿BC 将三角形BCM 折起,构成四棱锥M ABCD -如图②,则下列说法正确的有( )A .若T 为BC 中点,则在线段MC 上存在点P ,使得//PD 平面MATB .当)3,2x ∈时,则在翻折过程中,不存在某个位置满足平面MAD ⊥平面ABCDC .若使点M 在平面ABCD 内的射影落在线段AD 上,则此时该四棱锥的体积最大值为1 D .若1x =,且当点M 在平面ABCD 内的射影点H 落在线段AD 上时,三棱锥M HAB -6322++【答案】BCD 【分析】对于A ,延长AT 与DC 的延长线交于点N ,此时,DP 与MN 必有交点; 对于B ,取AD 的中点H ,表示出2223MH MT HT x --,验证当)3,2x ∈时,无解即可; 对于C ,利用体积公式21233V x x =⨯⨯-,借助基本不等式求最值即可; 对于D ,要求外接球半径与内切球半径,找外接圆的圆心,又内接圆半径为2323r =++【详解】对于A ,如图,延长AT 与DC 的延长线交于点N ,则面ATM ⋂面()MDC N MN =.此时,DP 与MN 必有交点,则DP 与面ATM 相交,故A 错误; 对于B ,取AD 的中点H ,连接MH ,则MH AD ⊥.若面MAD ⊥面ABCD ,则有2223MH MT HT x =-=- 当)3,2x ∈时,无解,所以在翻折过程中,不存在某个位置满足平面MAD ⊥平面ABCD故B 正确;对于C ,由题可知,此时面MAD ⊥面ABCD ,由B 可知,(3x ∈,所以()22222221223232331333232x x V x x x x ⎛⎫+-⎛⎫=⨯⨯-=-≤== ⎪ ⎪⎝⎭⎝⎭当且仅当223x x =-,即6x =时等号成立.故C 正确; 对于D ,由题可知,此时面MAD ⊥面ABCD ,且2MH =因为AHB ,MHB 都是直角三角形,所以M ABH -底面外接圆的圆心是中点,所以1R =,由等体积法,可求得内接圆半径为2323r =++,故61322R r ++=,故D 正确.故选:BCD . 【点睛】本题从多个角度深度考查了立体几何的相关内容,注意辅助线的作法,以及求内接圆半径的公式、基本不等式、构造函数等核心思想.2.已知图1中,A 、B 、C 、D 是正方形EFGH 各边的中点,分别沿着AB 、BC 、CD 、DA 把ABF 、BCG 、CDH △、DAE △向上折起,使得每个三角形所在的平面都与平面ABCD 垂直,再顺次连接EFGH ,得到一个如图2所示的多面体,则( )A .AEF 是正三角形B .平面AEF ⊥平面CGHC .直线CG 与平面AEF 2D .当2AB =时,多面体ABCD EFGH -的体积为83【答案】AC【分析】取CD 、AB 的中点O 、M ,连接OH 、OM ,证明出OH ⊥平面ABCD ,然后以点O 为坐标原点,OM 、OC 、OH 所在直线分别为x 、y 、z 轴建立空间直角坐标系,求出EF ,可判断A 选项的正误,利用空间向量法可判断BC 选项的正误,利用几何体的体积公式可判断D 选项的正误. 【详解】取CD 、AB 的中点O 、M ,连接OH 、OM , 在图1中,A 、B 、C 、D 是正方形EFGH 各边的中点,则1122CH GH EH DH ===,O 为CD 的中点,OH CD ∴⊥,平面CDH ⊥平面ABCD ,平面CDH 平面ABCD CD =,OH ⊂平面CDH ,OH ∴⊥平面ABCD ,在图1中,设正方形EFGH的边长为()0a >,可得四边形ABCD 的边长为2a , 在图1中,ADE 和ABF 均为等腰直角三角形,可得45BAF DAE ∠=∠=, 90BAD ∴∠=,∴四边形ABCD 是边长为2a 的正方形,O 、M 分别为CD 、AB 的中点,则//OC BM 且OC BM =,且90OCB ∠=,所以,四边形OCBM 为矩形,所以,OM CD ⊥,以点O 为坐标原点,OM 、OC 、OH 所在直线分别为x 、y 、z 轴建立空间直角坐标系,则()2,,0A a a -、()2,,0B a a 、()0,,0C a 、()0,,0D a -、(),,E a a a -、()2,0,F a a 、(),,G a a a 、()0,0,H a .对于A选项,由空间中两点间的距离公式可得AE AF EF ===,所以,AEF 是正三角形,A 选项正确;对于B 选项,设平面AEF 的法向量为()111,,m x y z =,(),0,AE a a =-,()0,,AF a a =,由111100m AE ax az m AF ay az ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,取11z =,则11x =,11y =-,则()1,1,1m =-, 设平面CGH 的法向量为()222,,n x y z =,(),0,CG a a =,()0,,CH a a =-, 由222200n CG ax az n CH ay az ⎧⋅=+=⎪⎨⋅=-+=⎪⎩,取21z =-,可得21x =,21y =-,则()1,1,1n =--,()22111110m n ⋅=+--⨯=≠,所以,平面AEF 与平面CGH 不垂直,B 选项错误;对于C 选项,6cos ,323CG m CG m a CG m⋅<>===⨯⋅, 设直线CG 与平面AEF 所成角为θ,则sin 63θ=,23cos 1sin θθ=-=,所以,sin tan 2cos θθθ==,C 选项正确; 对于D 选项,以ABCD 为底面,以OH 为高将几何体ABCD EFGH -补成长方体1111ABCD A B C D -,则E 、F 、G 、H 分别为11A D 、11A B 、11B C 、11C D 的中点,因为2AB =,即1a =,则1OH =,长方体1111ABCD A B C D -的体积为2214V =⨯=,11211111113326A A EF A EF V S AA -=⋅=⨯⨯⨯=△,因此,多面体ABCD EFGH -的体积为111044463ABCD EFGH A A EF V V V --=-=-⨯=, D 选项错误. 故选:AC. 【点睛】方法点睛:计算线面角,一般有如下几种方法:(1)利用面面垂直的性质定理,得到线面垂直,进而确定线面角的垂足,明确斜线在平面内的射影,即可确定线面角;(2)在构成线面角的直角三角形中,可利用等体积法求解垂线段的长度h ,从而不必作出线面角,则线面角θ满足sin hlθ=(l 为斜线段长),进而可求得线面角; (3)建立空间直角坐标系,利用向量法求解,设a 为直线l 的方向向量,n 为平面的法向量,则线面角θ的正弦值为sin cos ,a n θ=<>.3.一副三角板由一块有一个内角为60°的直角三角形和一块等腰直角三角形组成,如图所示,090B F ∠=∠=,060,45,A D BC DE ∠=∠==,现将两块三角形板拼接在一起,得三棱锥F CAB -,取BC 中点O 与AC 中点M ,则下列判断中正确的是( )A .BC FM ⊥B .AC 与平面MOF 所成的角的余弦值为32C .平面MOF 与平面AFB 所成的二面角的平面角为45°D .设平面ABF 平面MOF l =,则有//l AB【答案】AD 【分析】证明BC ⊥面FOM 可判断A ;根据AC 与平面MOF 所成的角为060CMO ∠=判断B ;利用特殊位置判断C ;先证明//AB 面MOF ,由线面平行的性质定理可判断D ; 【详解】由三角形中位线定理以及等腰三角形的性质可得,,BC OF BC OM OM OF O ⊥⊥=,所以BC ⊥面FOM BC FM ⇒⊥,故A 正确;因为BC ⊥面FOM ,所以AC 与平面MOF 所成的角为060CMO ∠=,所以余弦值为12,故B 错误; 对于C 选项可以考虑特殊位置法,由BC ⊥面FOM 得面ABC ⊥面FOM ,所以点F 在平面ABC 内的射影在直线OM 上,不妨设点F 平面ABC 内的射影为M ,过点M 作//BC MN ,连结NF .易证AB ⊥面MNF ,则l ⊥面MNF ,所以MFN ∠为平面MOF与平面AFB 所成的二面角的平面角,不妨设2AB =,因为060A,所以23BC =,则13,12OF BC OM ===,显然MFN ∠不等于45°,故C 错误. 设面MOF 与平面ABF 的交线为l ,又因为//,AB OM AB ⊄面MOF ,OM ⊂面MOF ,所以//AB 面MOF ,由线面平行的性质定理可得://l AB ,故D 正确; 故选:AD.【点睛】方法点睛:求直线与平面所成的角有两种方法:一是传统法,证明线面垂直找到直线与平面所成的角,利用平面几何知识解答;二是利用空间向量,求出直线的方向向量以及平面的方向向量,利用空间向量夹角余弦公式求解即可.4.如图,在棱长为2的正方体1111ABCD A B C D -,中,E 为棱1CC 上的中点,F 为棱1AA 上的点,且满足1:1:2A F FA =,点F ,B ,E ,G ,H 为过三点B ,E ,F 的平面BMN 与正方体1111ABCD A B C D -的棱的交点,则下列说法正确的是( )A .//HF BEB .三棱锥的体积14B BMN V -=C .直线MN 与平面11A B BA 所成的角为45︒D .11:1:3D G GC = 【答案】ABD 【分析】面面平行性质定理可得出A 正确;等体积法求得B 正确;直线MN 与平面11A B BA 所成的角为1B MN ∠,求其正切值不等于1即可得出C 错误;利用面面平行性质定理和中位线求出11,D G GC 长度即可得出D 正确. 【详解】解:对于A.在正方体1111ABCD A B C D -中平面11//ADA D 平面11BCB C , 又平面11ADA D 平面BMN HF =,平面11BCB C ⋂平面BMN BE =,有平面与平面平行的性质定理可得//HF BE ,故正确; 对于B.因为1:1:2A F FA =,所以111332B M A B ==,又E 为棱1CC 上的中点,所以14B N =,所以1111234432B BMN N B BMV V --⎛⎫==⨯⨯⨯⨯= ⎪⎝⎭,故正确; 对于C.由题意及图形可判定直线MN 与平面11A B BA 所成的角为1B MN ∠, 结合B 选项可得1114tan 13B N B MN B M ∠==≠,故错误; 对于D.同A 选项证明方法一样可证的11//GC B M ,因为E 为棱1CC 上的中点,1C 为棱1B N 上的中点,所以1113=22GC B M = 所以11G=2D ,所以11:1:3D G GC =,故正确. 故选:ABD 【点睛】求体积的常用方法:(1)直接法:对于规则的几何体,利用相关公式直接计算;(2)等体积法:选择合适的底面来求几何体体积,常用于求三棱锥的体积,即利用三棱锥的任一个面可作为三棱锥的底面进行等体积变换;(3)割补法:首先把不规则的几何体分割成规则的几何体,然后进行体积计算;或者把不规则的几何体补成规则的几何体,不熟悉的几何体补成熟悉的几何体,便于计算.5.已知四面体ABCD 的所有棱长均为2,则下列结论正确的是( ) A .异面直线AC 与BD 所成角为60︒ B .点A 到平面BCD的距离为3C .四面体ABCDD .动点P 在平面BCD 上,且AP 与AC 所成角为60︒,则点P 的轨迹是椭圆 【答案】BC 【分析】在正四面体中通过线面垂直可证得AC ⊥BD ,通过计算可验证BC,通过轨迹法可求得P 的轨迹为双曲线方程即可得D 错误. 【详解】取BD 中点E ,连接,AE CE ,可得BD ⊥面ACE ,则AC ⊥BD ,故A 错误;在四面体ABCD 中,过点A 作AF ⊥面BCD 于点F ,则F 为为底面正三角形BCD 的重心,因为所有棱长均为2,AF ==即点A 到平面BCD的距离为3,故B 正确;设O 为正四面体的中心则OF 为内切球的半径,OA 我外接球的半径,因为11433A BCD BCD BCD V S AF S OF -=⋅=⨯⋅△△,所以4AF OF =,即62=66OF AO =,, 所以四面体ABCD 的外接球体积3344633V R OA πππ===,故C 正确; 建系如图:26230,0,,0,,0A C ⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,设(,,0)P x y ,则262326,,0,,333AP x y AC →→⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,因为cos 60AP AC AP AC →→→→⋅=,所以22232481224193972y x y +=++⨯+⨯, 即222388=33y x y +++,平方化简可得:2232340039y x y ----,可知点P 的轨迹为双曲线,故D 错误. 故选:BC .【点睛】方法点睛:立体几何中动点轨迹的求解问题,解决此类问题可采用空间向量法,利用空间向量法表示出已知的角度或距离的等量关系,从而得到轨迹方程.6.如图,点E 为正方形ABCD 边CD 上异于点C ,D 的动点,将ADE 沿AE 翻折成SAE △,在翻折过程中,下列说法正确的是( )A .存在点E 和某一翻折位置,使得SB SE ⊥ B .存在点E 和某一翻折位置,使得//AE 平面SBCC .存在点E 和某一翻折位置,使得直线SB 与平面ABC 所成的角为45°D .存在点E 和某一翻折位置,使得二面角S AB C --的大小为60° 【答案】ACD 【分析】依次判断每个选项:当SE CE ⊥时,⊥SE SB ,A 正确,//AE 平面SBC ,则//AE CB ,这与已知矛盾,故B 错误,取二面角D AE B --的平面角为α,取4=AD ,计算得到2cos 3α=,C 正确,取二面角D AE B --的平面角为60︒,计算得到5tan θ=,故D 正确,得到答案. 【详解】当SE CE ⊥时,SE AB ⊥,SE SA ⊥,故SE ⊥平面SAB ,故⊥SE SB ,A 正确; 若//AE 平面SBC ,因AE ⊂平面ABC ,平面ABC 平面SBC BC =,则//AE CB ,这与已知矛盾,故B 错误;如图所示:DF AE ⊥交BC 于F ,交AE 于G ,S 在平面ABCE 的投影O 在GF 上, 连接BO ,故SBO ∠为直线SB 与平面ABC 所成的角,取二面角D AE B --的平面角为α,取4=AD ,3DE =,故5AE DF ==,1CE BF ==,125DG =,12cos 5OG α=,故只需满足12sin 5SO OB α==, 在OFB △中,根据余弦定理:2221213121312sin 1cos 2cos cos 55555OFB ααα⎛⎫⎛⎫⎛⎫=+---∠ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得2cos 3α=,故C 正确; 过O 作OMAB ⊥交AB 于M ,则SMO ∠为二面角S AB C --的平面角,取二面角D AE B --的平面角为60︒,故只需满足22DG GO OM ==,设OAG OAM θ∠=∠=,84ππθ<<,则22DAG πθ∠=-,tan tan 22DG OGAG πθθ==⎛⎫- ⎪⎝⎭,化简得到2tan tan 21θθ=,解得5tan 5θ=,验证满足,故D 正确;故选:ACD .【点睛】本题考查了线线垂直,线面平行,线面夹角,二面角,意在考查学生的计算能力,推断能力和空间想象能力.7.(多选题)在四面体P ABC -中,以上说法正确的有( )A .若1233AD AC AB =+,则可知3BC BD = B .若Q 为△ABC 的重心,则111333PQ PA PB PC =++C .若0PA BC =,0PC AB =,则0PB AC =D .若四面体P ABC -各棱长都为2,M N ,分别为,PA BC 的中点,则1MN = 【答案】ABC 【分析】作出四面体P ABC -直观图,在每个三角形中利用向量的线性运算可得. 【详解】对于A ,1233AD AC AB =+,32AD AC AB ∴=+,22AD AB AC AD ∴-=- , 2BD DC ∴=,3BD BD DC BC ∴=+=即3BD BC ∴=,故A 正确;对于B ,Q 为△ABC 的重心,则0QA QB QC ++=,33PQ QA QB QC PQ ∴+++=()()()3PQ QA PQ QB PQ QC PQ ∴+++++=,3PA PB PC PQ ∴++=即111333PQ PA PB PC ∴=++,故B 正确; 对于C ,若0PA BC =,0PC AB =,则0PA BC PC AB +=,()0PA BC PC AC CB ∴++=,0PA BC PC AC PC CB ∴++=0PA BC PC AC PC BC ∴+-=,()0PA PC BC PC AC ∴-+= 0CA BC PC AC ∴+=,0AC CB PC AC ∴+=()0AC PC CB ∴+=,0AC PB ∴=,故C 正确;对于D ,111()()222MN PN PM PB PC PA PB PC PA ∴=-=+-=+- 1122MN PB PC PA PA PB PC ∴=+-=-- 222222PA PB PC PA PB PC PA PB PA PC PC PB --=++--+22211122222222222222222=++-⨯⨯⨯-⨯⨯⨯+⨯⨯⨯=2MN ∴=,故D 错误.故选:ABC 【点睛】用已知向量表示某一向量的三个关键点(1)用已知向量来表示某一向量,一定要结合图形,以图形为指导是解题的关键. (2)要正确理解向量加法、减法与数乘运算的几何意义,如首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量. (3)在立体几何中三角形法则、平行四边形法则仍然成立.8.如图,点O 是正四面体P ABC -底面ABC 的中心,过点O 的直线交AC ,BC 于点M ,N ,S 是棱PC 上的点,平面SMN 与棱PA 的延长线相交于点Q ,与棱PB 的延长线相交于点R ,则( )A .若//MN 平面PAB ,则//AB RQ B .存在点S 与直线MN ,使PC ⊥平面SRQC .存在点S 与直线MN ,使()0PS PQ PR ⋅+= D .111PQPRPS++是常数【答案】ABD 【分析】对于选项A ,根据线面平行的性质定理,进行推理判断即可;对于选项B ,当直线MN 平行于直线AB , 13SC PC =时,通过线面垂直的判定定理,证明此时PC ⊥平面SRQ ,即可证明,存在点S 与直线MN ,使PC ⊥平面SRQ ;对于选项C ,假设存在点S 与直线MN ,使()0PS PQ PR ⋅+=,利用线面垂直的判定定理可证得PC ⊥平面PAB ,此时通过反证法说明矛盾性,即可判断; 对于选项D ,利用S PQR O PSR O PSQ O PQR V V V V ----=++,即可求得111PQPRPS++是常数.【详解】 对于选项A , 若//MN 平面PAB ,平面SMN 与棱PA 的延长线相交于点Q ,与棱PB 的延长线相交于点R ,∴平面SMN 平面PAB =RQ ,又MN ⊂平面SMN ,//MN 平面PAB ,∴//MN RQ ,点O 在面ABC 上,过点O 的直线交AC ,BC 于点M ,N ,∴MN ⊂平面ABC ,又//MN 平面PAB ,平面ABC平面PAB AB =,∴//MN AB , ∴//AB RQ ,故A 正确; 对于选项B ,当直线MN 平行于直线AB ,S 为线段PC 上靠近C 的三等分点,即13SC PC =, 此时PC ⊥平面SRQ ,以下给出证明: 在正四面体P ABC -中,设各棱长为a ,∴ABC ,PBC ,PAC △,PAB △均为正三角形,点O 为ABC 的中心,//MN AB ,∴由正三角形中的性质,易得23CN CM a ==, 在CNS 中,23CN a =,13SC a =,3SCN π∠=,∴由余弦定理得,3SN a ==, ∴222249SC SN a CN +==,则SN PC ⊥, 同理,SM PC ⊥,又SM SN S =,SM ⊂平面SRQ ,SN ⊂平面SRQ ,∴PC ⊥平面SRQ ,∴存在点S 与直线MN ,使PC ⊥平面SRQ ,故B 正确; 对于选项C ,假设存在点S 与直线MN ,使()0PS PQ PR ⋅+=, 设QR 中点为K ,则2PQ PR PK +=,∴PS PK ⊥,即PC PK ⊥,()cos cos 0PC AB PC PB PA PC PB CPB PC PA CPA ⋅=⋅-=⋅∠-⋅∠=,∴PC AB ⊥,又易知AB 与PK 为相交直线,AB 与PK 均在平面PQR 上,∴PC ⊥平面PQR ,即PC ⊥平面PAB ,与正四面体P ABC -相矛盾,所以假设不成立, 故C 错误; 对于选项D ,易知点O 到面PBC ,面PAC ,面PAB 的距离相等,记为d , 记PC 与平面PAB 所处角的平面角为α,α为常数,则sin α也为常数, 则点S 到PQR 的距离为sin PS α, 又13sin 234PQRSPQ PR PQ PR π=⋅=⋅ ∴()()1133sin sin sin33S PQR PQRV PS S PS PQ PR PQ PR PS ααα-=⋅=⋅⋅=⋅⋅, 又13sin23PSRSPS PR PS PR π=⋅=⋅, 13sin 234PSQS PS PQ PS PQ π=⋅=⋅, 13sin23PQRSPQ PR PQ PR π=⋅=⋅,()12S PQR O PSR O PSQ O PQR V V V V d PS PR PS PQ PQ PR ----=++=⋅+⋅+⋅,∴()3sin PQ PR PS d PS PR PS PQ PQ PR α⋅⋅=⋅+⋅+⋅, ∴111sin d PQPRPSα++=为常数,故D 正确. 故选:ABD. 【点睛】本题考查了线面平行的性质定理、线面垂直的判定定理,考查了三棱锥体积的计算,考查了向量的运算,考查了转化能力与探究能力,属于较难题.9.如图所示,在长方体1111ABCD A B C D -中,11,2,AB BC AA P ===是1A B 上的一动点,则下列选项正确的是( )A .DP 35B .DP 5C .1AP PC +6D .1AP PC +的最小值为1705【答案】AD 【分析】DP 的最小值,即求1DA B △底边1A B 上的高即可;旋转11A BC 所在平面到平面11ABB A ,1AP PC +的最小值转化为求AC '即可.【详解】求DP 的最小值,即求1DA B △底边1A B 上的高,易知115,2A B A D BD ===,所以1A B 边上的高为355h =111,AC BC ,得11A BC ,以1A B 所在直线为轴,将11A BC 所在平面旋转到平面11ABB A ,设点1C 的新位置为C ',连接AC ',则AC '即为所求的最小值,易知11122,2,cos 10AA AC AAC ''==∠=-, 所以217042222()105AC '=+-⨯⨯⨯-=. 故选:AD. 【点睛】本题考查利用旋转求解线段最小值问题.求解翻折、旋转问题的关键是弄清原有的性质变化与否, (1)点的变化,点与点的重合及点的位置变化;(2)线的变化,翻折、旋转前后应注意其位置关系的变化;(3)长度、角度等几何度量的变化.10.如果一个棱锥的底面是正方形,且顶点在底面内的射影是底面的中心,那么这样的棱锥叫正四棱锥.若一正四棱锥的体积为18,则该正四棱锥的侧面积最小时,以下结论正确的是( ).A .棱的高与底边长的比为22B .侧棱与底面所成的角为4π C 2 D .侧棱与底面所成的角为3π 【答案】AB设四棱锥S ABCD -的高为h ,底面边长为a ,由21183V a h ==得254h a=,然后可得侧面积为242108a a+,运用导数可求出当32a =时侧面积取得最小值,此时3h =,然后求出棱锥的高与底面边长的比和SAO ∠即可选出答案. 【详解】设四棱锥S ABCD -的高为h ,底面边长为a 可得21183V a h ==,即254h a= 所以其侧面积为2222244215410842244a a a h a a a⋅⋅+=+=+令()242108f a a a =+,则()23321084f a a a ⨯'=-令()233210840f a a a⨯'=-=得32a = 当(0,32a ∈时()0f a '<,()f a 单调递减当()32,a ∈+∞时()0f a '>,()f a 单调递增所以当32a =时()f a 取得最小值,即四棱锥的侧面积最小 此时3h =所以棱锥的高与底面边长的比为22,故A 正确,C 错误 侧棱与底面所成的角为SAO ∠,由3h =,32a =可得3AO = 所以4SAO π∠=,故B 正确,D 错误故选:AB本题考查的知识点有空间几何体的体积和表面积、线面角及利用导数求最值,属于综合题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n·B→S=-x2+y2+ 2z2=0, 令 z2=1,得 n=( 2,0,1).
∴cos 〈m,n〉=|mm|··n|n|=
2 2×
= 3
3 3.
∴二面角
C-SB-E
的余弦值为
3 3.
6/6
4/6
起,使点 A 运动到点 S 处,且有 SC=SD.
(1)证明:SH⊥平面 BCDE. (2)求二面角 CSB-E 的余弦值. [解] (1)证明:取 CD 的中点 M,连接 HM,SM, 由已知得 AE=AB=2,∴SE=SB=2, 又点 H 是 BE 的中点,∴SH⊥BE. ∵SC=SD,点 M 是线段 CD 的中点,∴SM⊥CD. 又∵HM∥BC,BC⊥CD, ∴HM⊥CD, ∵SM∩HM=M, 从而 CD⊥平面 SHM,得 CD⊥SH, 又 CD,BE 不平行,∴SH⊥平面 BCDE. (2)法一:取 BS 的中点 N,BC 上的点 P,使 BP=2PC,连接 HN,PN, PH, 可知 HN⊥BS,HP⊥BE. 由(1)得 SH⊥HP,∴HP⊥平面 BSE,则 HP⊥SB, 又 HN⊥BS,HN∩HP=H,∴BS⊥平面 PHN, ∴二面角 C-SB-E 的平面角为∠PNH.
3.················································································6 分
以 H 为坐标原点,H→C的方向为 x 轴的正方向,建立如 图所示的空间直角坐标系 H-xyz,
则 A(-1,1,0),C(1,0,0),G(2,0, 3),
则有 B(1,1,0),C(-1,-1,0),D(-1,-1,
2),F(-1,1,2),
故B→D=(-2,-2,2),B→C=(-2,-2,0),B→F=(-2,0,2).
设平面
BCF
的法向量为
n=(x,y,z),由B→C⊥n,B→F⊥n
-2x-2y=0, 得-2x+2z=0,
取 x=1 得 y=-1,z=1,故平面 BCF 的一个法向量为 n=(1,-1,1).
ABC-DEF,四边形 BCDE 为矩形,△ADE 与△BCF 为边长
为 2 2的等边三角形,AB=AC=CD=DF=EF=2.
(1)证明:平面 ADE∥平面 BCF;
(2)求 BD 与平面 BCF 所成角的正弦值.
[解] (1)取 BC,DE 中点分别为 O,O1,连接 OA,O1A,OF,O1F.
所以可取 n=(3,6,- 3).··········································10 分
又平面 BCGE 的法向量可取为 m=(0,1,0),
所以
cos
〈n,m〉=|nn|·|mm|=
3 2 .····································11
5/6
∴B→C=(0,3,0),B→E=(-2,2,0),B→S=(-1,1, 2).
设平面 SBE 的法向量为 m=(x1,y1,z1), m·B→E=-2x1+2y1=0,
由 m·B→S=-x1+y1+ 2z1=0,
令 y1=1, 得 m=(1,1,0). 设平面 SBC 的法向量为 n=(x2,y2,z2),
[通性通法] 合理建模、建系巧解立体几何问题 (1)建模——将问题转化为平行模型、垂直模型、平面化模型或角度、距离等 的计算模型;
(2)建系——依托于题中的垂直条件,建立空间直角坐标系,利用空间向量求 解.
3/6
[ 规 范 特 训 ] 1.(20xx·江 南 十 校 二 模 ) 已 知 多 面 体
C→G=(1,0, 3),A→C=(2,-1,0). ······························8 分 设平面 ACGD 的法向量为 n=(x,y,z),则
C→G·n=0, x+ 3z=0,
A→C·n=0,
即2x-y=0.
·······································9 分
又计算得 NH=1,PH= 2,PN= 3,
∴cos
∠PNH=
1= 3
3 3.
法二:由(1)知,过 H 点作 CD 的平行线 GH 交 BC 于点 G,以点 H 为坐标原
点,HG,HM,HS 所在直线分别为 x 轴、y 轴、z 轴建立如图所示的空间直角坐
标系 H-xyz,则点 B(1,-1,0),C(1,2,0),E(-1,1,0),S(0,0, 2),
分
因此,二面角 B-CG-A 的大小为 30°. ····························12 分
[易错防范]
易错点
防范措施
不能恰当的建立 由(1)的结论入手,结合面面垂直的性质及侧面菱形的边 直角坐标系 角关系建立空间直角坐标系
建系后写不出 G 点的坐标
结合折叠后棱柱的侧棱关系:C→G=B→E可求出C→G,或者 借助折叠前后直角三角形的边角关系,直接求出点 G 的 坐标
又因为 AB⊂平面 ABC,
所以平面 ABC⊥平面 BCGE. ··········································4 分
2/6
(2)作 EH⊥BC,垂足为 H. 因为 EH⊂平面 BCGE,平面 BCGE⊥平面 ABC, 所以 EH⊥平面 ABC. ···················································5 分 由已知,菱形 BCGE 的边长为 2,∠EBC=60°,可求得 BH=1,EH=
由 AB=AC=CD=DF=EF=2,BC=DE=CF=AE=AD=BF=2 2,
可知△ABC,△DEF 为等腰直角三角形,故 OA⊥BC,O1F⊥DE,CD⊥ DE,CD⊥DF,又 DE∩DF=D,故 CD⊥平面 DEF,平面 BCDE⊥平面 DEF,
因为平面 BCDE∩平面 DEF=DE,O1F⊥DE,所以 O1F⊥平面 BCDE. 同理 OA⊥平面 BCDE;所以 O1F∥OA,而 O1F=OA,故四边形 AOFO1 为平
教学资料范本
2021版新高考数学:高考中的立体几何问题含答案
编 辑:__________________ 时 间:__________________
1/6
(对应学生用书第 138 页) [命题解读] 立体几何是高考的重要内容,从近五年全国卷高考试题来看, 立体几何每年必考一道解答题,难度中等,主要采用“论证与计算”相结合的模 式,即首先利用定义、定理、公理等证明空间的线线、线面、面面平行或垂直, 再利用空间向量进行空间角的计算,考查的热点是平行与垂直的证明、二面角的 计算,平面图形的翻折,探索存在性问题,突出三大能力:空间想象能力、运算 能力、逻辑推理能力与两大数学思想:转化化归思想、数形结合思想的考查. [典例示范] (本题满分 12 分)(20xx·全国卷Ⅲ)图 1 是由矩形 ADEB、Rt△ABC 和菱形 BFGC 组成的一个平面图形,其中 AB=1,BE=BF=2,∠FBC=60°, 将其沿 AB,BC 折起使得 BE 与 BF 重合,连接 DG,如图 2.
图1
图2
(1)证明:图 2 中的 A,C,G,D 四点共面①,且平面 ABC⊥平面 BCGE②;
(2)求图 2 中的二面角 B-CG-A 的大小③.
[信息提取] 看到①想到四边形 ACGD 共面的条件,想到折叠前后图形中的
平行关系;看到②想到面面垂直的判定定理;看到③想到利用坐标法求两平面法
向量的夹角余弦值,想到建立空间直角坐标系.
[规范解答] (1)由已知得 AD∥BE,CG∥BE,所以 AD∥CG,故 AD,CG 确
定一个平面,从而 A,C,G,D源自四点共面.·························2 分
由已知得 AB⊥BE,AB⊥BC,且 BE∩BC=B,
故 AB⊥平面 BCGE. ·····················································3 分
行四边形,所以 AO1∥OF,AO1⊄平面 BCF,OF⊂平面 BCF,所以 AO1∥平面 BCF,又 BC∥DE,故 DE∥平面 BCF,而 AO1∩DE=O1,所以平面 ADE∥平面
BCF. (2)以 O 为坐标原点,以过 O 且平行于 AC 的直线作
为 x 轴,平行于 AB 的直线作为 y 轴,OO1 为 z 轴建立空间 直角坐标系如图.
设 BD 与平面 BCF 所成角为 θ,则 sin θ=|cos 〈B→D,n〉|= -2×1-2×3(×2-31)+2×1=13.
故 BD 与平面 BCF 所成角的正弦值为13.
2.(20xx·河南、河北考前模拟)如图,在矩形 ABCD 中,AB=2,BC=3,点
E 是边 AD 上的一点,且 AE=2ED,点 H 是 BE 的中点,将△ABE 沿着 BE 折