钢制压力容器热处理通用工艺规程
压力容器制造中的热处理
压力容器制造中的热处理1.概述1)热处理对钢材性能的影响热处理是通过加热和冷却固态金属来改变其内部组织结构并获得所需性能的一种工艺。
对于碳素钢、低合金钢以及合金结构钢,常用的热处理工艺有退火、正火、淬火、回火以及它们的组合,如正火加回火、淬火加回火。
对于奥氏体不锈钢,常用的热处理工艺是固溶处理和稳定化热处理(见本节第5条)。
①退火退火是将钢件加热到适当温度,保温一定时间后缓慢冷却(例如随炉冷却)的热处理工艺。
根据钢材成分和热处理目的不同,退火又分为完全退火、不完全退火、等温退火、球化退火、去应力退火和再结晶退火等。
下面简要介绍完全退火、去应力退火和再结晶退火对钢材组织和性能的影响。
a)完全退火完全退火是把钢件加热到Ac3以上30~50"C,保温一定时间后在炉内缓慢冷却的热处理工艺,主要用于亚共析成分的碳钢和合金钢。
由于加热温度略高于Ac3,珠光体和铁素体全部转变为奥氏体,且奥氏体晶粒比较细小。
随炉冷却至Ar3以下时,奥氏体中首先析出铁素体,继续冷却至Ar1,以下时,剩余的奥氏体全部转变为珠光体。
经过这样的加热和冷却过程的相变,可细化晶粒并获得接近平衡状态的组织,以降低硬度,改善加工性能,消除钢件中的内应力。
b)去应力退火去应力退火是将钢件加热到Ac1以下100~200'C,保温一段时间(在压力容器制造中通常按1h/25mm计算)后,缓慢冷却的工艺方法,其目的是去除或降低冷成形、焊接等所产牛的砖全应力.稳宁结构尺寸。
去应力退火时,钢材并不发生相变,但可以消除焊接接头中的淬硬组织(马氏体),从而改善韧性。
钢件或焊接结构中残余应力的降低主要是在加热、保温及缓慢冷却过程中通过塑性变形所产生的应力松弛来实现的。
c)再结晶退火钢件的冷塑性变形(如封头的冷成形等)会导致冷加工硬化,使材料的强度、硬度提高,塑性、韧性降低,并产生较大的内应力。
再结晶退火是将钢件加热到不超过Ac1的温度,经适当保温后随炉缓慢冷却的工艺操作。
不锈钢容器通用工艺规程
不锈钢容器制造通用工艺规程OT/ZBSC1-ZY05 1. 总则1.1 本守则根据GB150《压力容器》、HG/T2806-2009奥氏体《不锈钢压力容器制造管理细则》、《固定式压力容器安全技术监察规程》并结合本厂的设备能力和特点,编制的一般通用性守则。
1.2 不锈钢压力容器制造除应遵循碳钢容器制造的有关规定外,还必须遵守本守则的规定及符合图样要求。
1.3 本守则与产品图样技术条件有出入时,应服从产品图样技术条件的规定。
2. 材料2.1 材料的验收2.1.1 按照材料管理制度验收入库。
2.2.1 原材料按品种、钢号、规格、炉号、热处理状态等分类放置,并作明确标志。
边角余料也明确标志,以防混杂。
2.2.2 原材料应放在室内,如存放在室外应在下面垫一些枕木,或在水泥柱上垫一些软物如橡胶等。
2.2.3 原材料的搁置要稳妥,堆放要整齐,要防止损伤(划痕、撞伤、压痕)和弯曲。
严禁与碳钢直接接触。
2.2.4 焊接材料的存放要注意干燥、湿度≤60%,一般应放在离池、离墙约300~500mm以上的架子上。
2.2.5 焊接材料必须分类标志,专人管理,要严格执行焊接材料烘焙制度和管理发放制度。
2.2.6 钢板吊运时,要防止钢板变表,钢丝绳要加护套,以防止损伤材料表面质量。
2.2.7 材质标记号应按不含氯及硫的颜色或电刻笔书写,在不锈钢表面上禁止敲打钢印。
3. 成型加工3.1 场地3.1.1 生产场地和在制品堆放场地经常保持清洁、干燥,减少灰尘,并应铺设木板或橡胶地板。
3.1.2 禁止直接踩踏不锈钢表面,如进入产品内工作,则应穿软底胶鞋。
3.2 划线3.2.1 批量生产必须按样板划线,样板可用镀锌铁皮制成。
3.2.2 划线应在清洁的木板或光洁的平台上进行,不允许用钢针划辅助线以及在以后工序中不能消除的部分打样冲眼。
3.3 下料3.3.1 剪床保持清洁,刃口保持锐利,为防止板材表面划伤,压脚上应包橡胶等软质的材料。
刀口间隙可按表选用。
钢制压力容器焊接通用规程
HJ350-H08MnMoA
HJ431-H08MnMoA
低碳钢与耐热型低合金钢相焊
Fe-1-1与Fe-4、Fe-5A、Fe-5B-1相焊
E4315
J427
F4A0-H08A
HJ431-H08A
HJ350-H08A
HJ101-H08A
强度型低合金钢与耐热型低合金钢相焊
Fe-1-2与Fe-4
12Cr2Mo
12Cr2Mo1
12Cr2MoG
12Cr2Mo1R
E6015-B3
R407
1Cr5Mo
E5MoV-15
R507
06Cr19Ni10
F308-H08Cr21Ni10
SJ601-H08Cr21Ni10
HJ260-H08Cr21Ni10
H08Cr21Ni10
06Cr18Ni11Ti
F347-H08Cr20
J507RH
15MnNiDR
E5015-G
W607
Q370R
E5016-G
E5015-G
J556RH
J557
20MnMo
E5015
E5015-G
J507
J557
20MnMoD
E5016-G
E5015-G
E5516-G
J506RH
J507RH
J556RH
13MnNiMoR
18MnMoNbR
20MnMoNb
HJ260-H08Cr19Ni14Mo3
H08Cr19Ni14Mo3
022Cr19Ni10
E308L-16
A002
F308L-H03Cr21
Ni10
SJ601-H03Cr21Ni10
不锈钢压力容器去油、酸洗、钝化处理工艺规程
不锈钢压力容器去油、酸洗、钝化处理工艺规程1.01.1本规程依据GB150-98《钢制压力容器》、GB151《钢制管壳式热器》及《压力容器安全技术监察规程》制定。
1.2本规程规定了不锈钢压力容器的去油、酸洗、钝化各工序的内容和方法,它适应于我公司不锈钢容器的制造。
1.3不锈钢容器制作完并经检验员检验合格后进行酸洗、钝化处理。
1.4不锈钢容器的酸洗、钝化应在压力容器试验后进行。
1.5不锈钢容器的酸洗、钝化前应去油处理,因为不锈钢表面往往有一层含油脂的润滑剂或在热处理后表面将形成一层油腻的氧化物(或油脂)。
假如钢材表面有油污,则酸洗液浸湿容器表面,造成欠酸洗,如果重新去油酸洗则表面又可能产生过酸洗使钝化表面质量不佳。
因此,必须重视去油这一工序。
2.0酸洗目的去除氧化皮(热加工的封头或焊缝的热影响区均有一层影响耐腐性能的氧化皮)3.0钝化的目的使不锈钢表面生成一层无色致密的氧化薄膜起耐腐蚀的作用。
4.0不锈钢复合钢板制造的复层和不锈钢衬里设备的复层面同样需要进行酸洗、钝化处理。
5.0酸洗钝化液的配置5.1配置时应注意事项:5.1.1戴好口罩、眼镜、防酸手套,穿好防酸鞋等防护用品。
5.1.2配置溶液时,先加清水后加酸,先加盐酸后加硝酸。
5.2 去油溶液a、氢氧化钠40~60克/千克b、硝酸钠60~80克/千克c、磷酸三钠60~80克/千克d、温度80~90?e、时间:视具体情况定5.3 酸洗溶液常用的酸洗方法有两种:酸洗液、酸洗膏酸洗液:浸洗——硝酸比重(比重1:42)20%+氢氟酸5%+水75%(室温时间:25~45分钟)涮洗——盐酸50%+水50%酸洗膏:盐酸(比重1.19)20毫升+硝酸(比重1.42)30毫升+水100毫升+膨润土150克5.4 钝化溶液硝酸(比重1.42)5%+重鉻酸钾2%+水93%(温度:室温) 6.0 去油、酸洗、钝化处理工艺过程:6.1去油酸洗可采用浸洗法(适用于小的设备或部件),然后用水冲洗。
钢制压力容器热处理通用工艺规程(5篇)
钢制压力容器热处理通用工艺规程1、范围本规程规定了碳钢、低合金钢焊接构件的焊后热处理工艺。
本规程适用于锅炉、压力容器的碳钢、低合金钢产品,以改善接头性能,降低焊接残余应力为主要目的而实施的焊后热处理。
其他产品的焊后热处理亦可参照执行。
2、引用标准下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。
在标准出版时,所示版本均为有效。
所有标准都会被修改,使用本标准的各方应探讨使用下列标准最新版本的可能性。
GB9452-1988热处理炉有效区测定方法。
3、要求____人员及职责3.1.1热处理操作人员应经培训、考核合格,取得上岗证,方可进行焊后热处理操作。
3.1.2焊后热处理工艺由热处理工艺员编制,热处理责任工程师审核。
3.1.3热处理工应严格按焊后热处理工艺进行操作,并认真填写原始操作记录。
3.1.4热处理责任工程师负责审查焊后热处理原始操作记录(含时间—温度自动记录曲线),核实是否符合焊后热处理工艺要求,确认后签字盖章。
3.2设备3.2.1各种焊后热处理及装置应符合以下要求:a)能满足焊后热处理工艺要求;b)在焊后热处理过程中,对被加热件无有害的影响;c)能保证被加热件加热部分均匀热透;d)能够准确地测量和控制温度;e)被加热件经焊后热处理之后,其变形能满足设计及使用要求。
3.2.2焊后热处理设备可以是以下几种之一:a)电加热炉;b)罩式煤气炉;c)红外线高温陶瓷电加热器;d)能满足焊后热处理工艺要求的其他加热装置3.3焊后热处理方法3.3.1炉内热处理a)焊后热处理应优先采用在炉内加热的方法,其热处理炉应满足GB9452的有关规定。
在积累了炉温与被加热件的对应关系值的情况下,炉内热处理时,一般允许利用炉温推算被加热件的温度,但对特殊或重要的焊接产品,温度测量应以安置在被加热件上的热电偶为准。
b)被加热件应整齐地安置于炉内的有效加热区内,并保证炉内热量均匀、流通。
在火焰炉内热处理时应避免火焰直接喷射到工件上。
钢制压力容器热处理通用工艺规程范文(二篇)
钢制压力容器热处理通用工艺规程范文一、前言本文旨在制定钢制压力容器热处理通用工艺规程,以确保热处理过程中的操作规范性和产品质量稳定性。
本规程适用于钢制压力容器的热处理工艺。
二、材料准备1. 选用符合设计要求和制造标准的钢材作为原料。
2. 对材料进行化学成分分析,确保其满足标准要求。
3. 对材料进行外观检查,确保无裂纹、沟槽等表面缺陷。
三、热处理工艺1. 普通碳钢材料的热处理工艺:(1) 预热:将材料置于加热炉中,以100℃/h的升温速度升温至预定温度(取决于材料种类和规格)。
保持预热温度30分钟。
(2) 淬火:将预热至所需温度的材料迅速放入冷却介质(如水、油等)中进行淬火处理。
(3) 回火:在600-700℃温度范围内对淬火后的材料进行回火处理,保持时间根据材料规格和硬度要求而定。
保持温度时间应符合设计要求。
(4) 退火:对需要软化处理的材料,可进行退火处理。
退火温度和时间根据材料种类和要求进行调整。
2. 合金钢材料的热处理工艺:(1) 固溶处理:将材料放入加热炉中,以100℃/h的升温速度升温至固溶温度。
保持温度1小时。
(2) 淬火:将固溶处理后的材料迅速放入冷却介质(如水、油等)中进行淬火处理。
(3) 回火:在450-600℃温度范围内对淬火后的材料进行回火处理,保持时间根据材料规格和硬度要求而定。
保持温度时间应符合设计要求。
四、操作注意事项1. 操作人员应经过相关培训,熟悉工艺要求和操作规程,严格按照规程进行操作。
2. 加热炉和冷却介质的温度应定期校准,确保温度准确性。
3. 热处理过程中,应定期检查冷却介质的质量,如有杂质应及时更换。
4. 淬火工艺中,应控制冷却介质的冷却速率,以避免材料出现裂纹等缺陷。
5. 温度控制器和计时器的准确性需要定期检查和校准。
五、质量控制1. 热处理后的材料应进行硬度测试和金相组织检查,确保满足标准要求。
2. 对热处理过程进行记录,包括材料种类、规格、加热炉温度、保温时间等重要参数。
压力容器热处理工艺【详情】
压力容器热处理工艺内容来源网络,由深圳机械展收集整理!压力容器制造中的热处理1.概述1)热处理对钢材性能的影响热处理是通过加热和冷却固态金属来改变其内部组织结构并获得所需性能的一种工艺。
对于碳素钢、低合金钢以及合金结构钢,常用的热处理工艺有退火、正火、淬火、回火以及它们的组合,如正火加回火、淬火加回火。
对于奥氏体不锈钢,常用的热处理工艺是固溶处理和稳定化热处理(见本节第5条)。
①退火退火是将钢件加热到适当温度,保温一定时间后缓慢冷却(例如随炉冷却)的热处理工艺。
根据钢材成分和热处理目的不同,退火又分为完全退火、不完全退火、等温退火、球化退火、去应力退火和再结晶退火等。
下面简要介绍完全退火、去应力退火和再结晶退火对钢材组织和性能的影响。
a)完全退火完全退火是把钢件加热到Ac3以上30~50"C,保温一定时间后在炉内缓慢冷却的热处理工艺,主要用于亚共析成分的碳钢和合金钢。
由于加热温度略高于Ac3,珠光体和铁素体全部转变为奥氏体,且奥氏体晶粒比较细小。
随炉冷却至Ar3以下时,奥氏体中首先析出铁素体,继续冷却至Ar1,以下时,剩余的奥氏体全部转变为珠光体。
经过这样的加热和冷却过程的相变,可细化晶粒并获得接近平衡状态的组织,以降低硬度,改善加工性能,消除钢件中的内应力。
b)去应力退火去应力退火是将钢件加热到Ac1以下100~200'C,保温一段时间(在压力容器制造中通常按1h/25mm计算)后,缓慢冷却的工艺方法,其目的是去除或降低冷成形、焊接等所产牛的砖全应力.稳宁结构尺寸。
去应力退火时,钢材并不发生相变,但可以消除焊接接头中的淬硬组织(马氏体),从而改善韧性。
钢件或焊接结构中残余应力的降低主要是在加热、保温及缓慢冷却过程中通过塑性变形所产生的应力松弛来实现的。
c)再结晶退火钢件的冷塑性变形(如封头的冷成形等)会导致冷加工硬化,使材料的强度、硬度提高,塑性、韧性降低,并产生较大的内应力。
钢制压力容器焊接与热处理
钢制压力容器的焊接和热处理钢制压力容器制造中,焊接技术是极为关键的一项技术,文章综合理论与实际两大方面,对钢制压力容器(尤其是不锈钢复合钢板制压力容器)详细讨论了设计中的焊接工艺和热处理工艺,强调了焊接质量的重要性,对钢制压力容器的设计与制造,都有一定的指导意义。
<b> 焊接,是涉及、生产及安装压力容器中非常重要的一项技术,设计中焊接接头的正确选择和制造中焊接质量的优缺点,都会对压力容器的工作及使用寿命产生决定性影响,甚至还可能会危及人类的生命、财产安全。
从这点来看,压力容器的焊接质量,既是个安全性问题,同时也是个经济性问题。
1.不锈钢复合板的焊接工艺通过翻阅与焊接相关的资料,以及开展焊接性试验,根据NB/T 47015-2011《压力容器焊接规程》,SH/T 3527-2009《石油化工不锈复合钢板焊接规程》,GB/T 13148-2008《不锈钢复合钢板焊接技术要求》等标准来对焊接工艺进行评定,接焊缝焊后RT探伤、晶间腐蚀试验及力学性能试验等项目都应严格符合标准及需求。
焊接工艺的最终评估结果将作为制定产品焊接工艺的重要依据。
1.1.焊接方法不锈钢复合钢板有许多成熟的焊接方法,大体可分为焊条电弧焊、钨极氩弧焊、埋弧焊等。
有些换热器的管箱与浮头盖都是复合材料,没有很大的焊接空间,直焊缝不长,可进行双面焊,对于这类换热器产品,采用焊条电弧焊方法更为合适,这样不仅能提升焊接质量,同时还可压缩成本,其操作较为灵活,几乎不受工件形状与焊接位置的影响。
1.2.焊接材料的选择焊材的选择,应根据基层强度相等和保证复合层耐腐蚀性的原则进行。
1.3.焊接设备和环境通常可选择直流焊机,基层、复层及过渡层这3种焊缝均可选择焊条电弧焊。
所采用的钢丝刷、扁铲等工具都,都应是不锈钢材料。
焊接应在0 ℃以上的环境下进行,同时,现场应采取必要的防风措施。
1.4.焊接沟槽和接头装配1.4.1.沟槽选用沟槽形式时,应充分考虑焊接渡层的特点,焊接顺序应依次为焊基层、渡层到复层,,要尽可能不对复层进行焊接或进行少量焊接,同时还应避免复层焊缝被多次受热,从而逐步增强复层焊缝的耐腐蚀性能,该沟槽形式还能有效降低设备内部的铲磨工作量。
钢制压力容器热处理通用工艺规程
钢制压力容器热处理通用工艺规程1. 前言钢制压力容器常用于石油化工、能源、船舶等重要领域,为确保其安全使用,热处理是不可或缺的步骤。
本文主要介绍钢制压力容器的热处理通用工艺规程,以提高热处理效果,确保生产安全。
2. 热处理前准备工作在进行钢制压力容器的热处理前,需要进行以下准备工作:•对容器进行外部清洗,确保表面不带杂质、油脂等;•对容器进行内部水冲洗及脱蜡处理,并将脱蜡液、水分彻底清除;•对容器进行预热,以避免在升温过程中产生应力,造成变形和破裂;•对容器进行标记,以便追溯生产过程。
以上准备工作是热处理成功的重要保障,要做到认真细致,确保安全生产。
3. 热处理工艺钢制压力容器的热处理包括退火、正火和淬火,下面分别介绍。
3.1 退火退火是一种热处理方法,通过升温使材料达到一定温度,然后在空气中冷却,使其组织和性能得到改善。
在钢制压力容器热处理中,退火主要是为了回火处理,提高材料强度和韧性。
退火的具体工艺如下:•升温:在电炉中以每小时约50℃的速度升温,升至退火温度(通常为600℃至700℃);•保温:在退火温度下保温一定时间,以保证材料达到一定的晶界稳定性;•冷却:将容器从电炉中取出,并在空气中自然冷却至室温。
3.2 正火正火是将钢制压力容器加热至一定温度,然后经过一定时间的保温,使结构组织发生变化,达到改进强度和韧性的一种热处理方法。
正火的具体工艺如下:•升温:在电炉中以每小时约50℃的速度升温,升至正火温度(通常为860℃至920℃);•保温:在正火温度下保温一定时间,以保证材料达到一定的晶界稳定性;•冷却:在正火的保温时间内,将容器放置于电炉中,然后关毛细气门和灭火开关,打开强制冷却装置,等待温度下降到指定温度时进行电炉冷却。
3.3 淬火淬火是通过将钢制压力容器加热至临界温度,然后迅速冷却,使其具有优良的强度和硬度。
淬火的具体工艺如下:•升温:在电炉中以每小时约50℃的速度升温,升至淬火温度(与材料种类及厚度有关);•保温:在淬火温度下保温一定时间,以保证材料达到一定的晶界稳定性;•淬火:将容器在淬火液中迅速冷却。
压力容器焊后热处理工艺规程.doc
压力容器焊后热处理工艺规程前言本标准代替《压力容器焊后热处理工艺规程》。
本标准与相比主要变化如下:——将常用钢原材料牌号变更为按GB713-2008标准的相应牌号自本标准实施之日起,原标准压力容器焊后热处理工艺规程》停止使用。
标准起草人:标准化审查:审核:批准:压力容器焊后热处理工艺规程1 范围本标准规定了压力容器焊后热处理工艺、设备、测量、检验等技术要求。
本标准适用于我公司制造的、有焊后热处理要求的压力容器及其零部件热处理。
2 热处理工艺2.1 整体热处理工艺2.1.1 装炉容器或零部件必须放置在有效加热区内。
装炉量、装炉方式及堆放形式均应确保加热、冷却均匀一致,且不致造成畸变及其它缺陷。
2.1.2 容器或零部件的装、出炉温度不大于400℃。
2.1.3 容器或零部件在炉内升温至400℃后,再继续升温,升温速度限制在55℃/h—220℃/h之间,一般升温速度按V升=5500/δS℃/h(δS为焊后热处理厚度,mm)控制;升温过程中要求加热均匀,被加热容器或零部件任意5米距离内温差不大于120℃。
2.1.4 炉温达到退火温度后进行保温,保温时间按(δS/25)小时计算;但不得少于0.5小时;保温期间被加热容器或零部件的全部受热段,最大温差不超过65℃。
2.1.5 保温阶段完成后炉冷至400℃以下出炉在空气中冷却;炉冷速度控制在55℃/h—280℃/h之间,一般炉冷速度按V降=7000/δS℃/h控制,炉冷过程温差要求与加热升温过程相同。
2.1.6 焊后热处理允许在炉内分段进行,分段热处理时,其重复热处理长度应不小于1500mm,炉外部分应采取保温措施,使温度梯度不致影响材料的组织和性能。
其它与整体热处理要求相同。
2.1.7 我公司常用钢材的压力容器焊后退火温度按表1执行,其它钢种按专用热处理工艺卡执行。
表12.1.8 焊后热处理通用工艺曲线图1注1:50℃/h≤V升=5000/δS ℃/h≤200℃/h50℃/h≤V降=6500/δS ℃/h≤260℃/h注2:同炉处理两种以上容器或零部件时,δS应选取最大厚度者。
最新钢制容器制造通用工艺规程[宣贯文档]
钢制容器制造通用工艺规程1.下料1.1核对坯料材质、规格,应与图纸、工艺相符;进行外观检查,发现钢板有明显的划痕、夹杂、气泡等缺陷,在未经检验部门处理前不得下料用于生产 1.2划线1.2.1筒体 坯料划线尺寸:筒体展开长度×筒节高度(展开长度按中径计算,中径=内径+壁厚)对角线误差:对角线>1500,误差≤3mm 。
对角线≤1500,误差≤2mm 。
1.2.2大小头 按展开尺寸(扇形)划线 ,扇形弧长按筒体中径计算,如下图示。
1.3标记移植1.3.1坯料上必须有材料标记钢印,材料标记应与材质书相符(对不锈钢,应用无氯无硫记号笔书写,严禁打钢印和用油漆等有污染的物料书写)。
1.3.2筒体板材标记移植位置1.3.3封头板板材标记移植位置在距中心线1/4Di 处 1.3.4筒体产品试板标记移植位置1.4坡口加工1.4.1筒体纵、环缝坡口内坡口(一般当Di ≥600时打内坡口)时,坡口制在标记反面,如下左图; 外坡口时,坡口制在标记面,如下右图。
坡口尺寸按图纸要求,图样无规定时按附录一。
1.4.2坡口清理除锈焊缝二侧用砂轮打磨除锈,范围应>20mm ;打磨除锈后,应在当天施焊,否则须重新清理。
2.成形2.1筒体成形、点固2.2钢板放入卷板机后,应使钢板边缘与卷辊轴线平行,避免偏斜。
2.3分几次调节上辊筒卷制,用R 卡板随时测量,防止过卷。
组对间隙按图纸2.4纵缝对口错边量b 应符合规定:当δS ≤12:时,b ≤1/4δS ;当δS >12:时b ≤3,对复合钢板,错边量应不大于钢板复层厚度的50%。
且不大于2㎜。
3.纵缝施焊3.1筒节上接产品试板和引熄弧板(对非标设备无产品试板,筒体接引熄弧板),不得在筒节其他部位随意引弧。
3.2产品试板坡口应与筒节纵缝坡口相同,并与筒节保持一致,焊接材料牌号也相同。
3.3施焊完毕,清除焊渣飞溅。
焊工应在规定部位打焊工钢印,钢印深度不得大于0.5mm (对标准中规定不能打钢印设备用无氯无硫记号笔做焊工标记),并填写施焊记录及过程控制卡签名。
金属热处理通用工艺规程
金属热处理通用工艺规程1 主题内容与适应范围本规程规定了钢制零部件在加热炉中透烧后在水油、空气中淬火及在炉中加热的正火、退火与回火热处理工艺方法和要求。
但不包括感应加热、火焰加热、电解加热等热处理方法。
本规程适用于本公司钢制压力容器和零部件的淬火、正火、退火、回火热处理。
2 总则金属的热处理除符合本规程的规定外,还应遵守国家颁布的有关法令、法规、标准、本公司其它相应规程和图样及专用工艺文件的要求。
3 正火和退火热处理设备3.1.1 正火与退火所使用的加热设备必须满足下列要求:3.1.1.1 在加热设备正常装炉量情况下,有效加热区内的温度偏差应按表3-1所列的精度进行调节和控制。
表3-13.1.1.2 工件加热后在随炉冷却过程中应尽量保证各部位的冷却速度均匀一致。
3.1.2 温度测定及温度控制设备3.1.2.1正火与退火所使用的各种加热设备都应配有温度测定及温度控制装置。
加热设备中的每个加热区,都应配有跟踪处理温度与时间关系的记录装置。
3.1.2.2 热电温度测定设备的指示器经校正之后,其指示器上温度读数的误差不得超过表3-2的规定。
表3-2正火、退火件的装炉正火、退火件装炉时,必须放置在预先确定的有效加热区内,装炉量、装炉方式及堆放形式应保证工件加热和冷却均匀一致,且不得造成工件有较大变形和缺陷。
大件、形状复杂则采用低温装炉,加热到500℃左右保温一段时间后,再加热到正火、退火的温度。
不同温度或成批生产的有效厚度相差一半以上的零部件,正火时不应一起装炉。
对单件有效厚度相差可适当放宽,但必须严格控制加热时间。
装炉时工件堆放应有条理,不可杂乱堆放,钢板正火应垛装,支点距离小于1米,层距~0.15米。
与校圆结合的正火筒节应卧放,下垫半圆形支座。
直接正火的筒节应竖放,下垫高度0.2米的平支座,筒节之间应保持0.2米以上的距离。
工艺规范的选择加热温度正火与退火加热温度主要根据钢的临界点、热处理目的等因素来确定,其一般规律如下:正火:Ac3(或Acm)+(50~70)℃完全退火:Ac3+(30~50)℃不完全退火:Ac1+(30~50)℃等温退火:Ac3+(30~50)℃ (亚共析钢)Ac1+(20~40)℃ (过共析钢和共析钢)球化退火:Ac1+(10~20)℃,Ac1-(20~30)℃去应力退火:Ac1-(100~200)℃扩散退火:Ac3+(150~200)℃再结晶退火:Ac1-(50~150)℃常用钢材的正火加热温度见表3-3、表3-4、表3-5。
JB4708、09、44-2000钢制压力容器焊接工艺评定及规程.doc
中华人民共和国行业标准JB 4708—2000JB/T 4709—2000JB 4744—2000钢制压力容器焊接工艺评定钢制压力容器焊接规程钢制压力容不得器产品焊接试板的力学性能检验Welding procedure qualification for steel pressure vesselsWelding specification for steel pressure vesselsMechanical property tests of product welded test coupons for steel pressure vessels2000—08—15发布 2000—10—01实施国家机械工业局国家石油和化学工业局发布关于发布《钢制压力容器焊接工艺评定》等四项行业标准的通知国机管[2000]401令有关单位:根据国家质量技术监督局规定的压力容器行业标准审批程序,现发布《钢压力容器焊接工艺评定》等四项行业标准,编号与名称如下:强制性标准:JB 4708—2000钢制压力容器焊接工艺评定(代替JB 4708—1992)JB 4710—2000钢制塔式容器(代替JB 4710—1992)JB 4744—2000钢制压力容器产品焊接试板的力学性能检验(代替GBl50—1998附录 E)推荐性标准:JB/T4709—2000钢制压力容器焊接规程(代替JB/T4709—1992)以上标准于 2000年10月1日起实施,其出版发行工作责成全国压力容标准化技术委员会按期组织完成。
国家机械工业局国家石油和化学工业局2000年 8月15日目次JB 4708—2000 钢制压力容器焊接工艺评定 (1)前言 (5)1范围 (7)2引用标准 (7)3术语 (8)4总则 (8)5对接焊缝、角焊体焊接工艺评定规则 (9)6耐蚀堆焊工艺评定规则 (21)7试验要求和结果评价 (22)附录 A(标准的附录)不锈钢复合钢焊接工艺评定 (32)附录 B(提示的附录)焊接工艺指导书和焊接工艺评定报告表格推荐格式 (33)JB/T 4709—2000 钢制压力容器焊接规程 (39)前言 (40)1范围 (41)2引用标准 (41)2焊接材料 (41)4焊接工艺评定和焊工 (41)5焊前准备 (42)6焊接 (55)7后热 (56)8焊后热处理 (56)9焊缝返修 (58)10焊接检验 (59)财录 A(标准的附录)不诱钢夏合钢焊接规程 (60)附录 B(提示的附录)焊接工艺规程推荐表格 (64)JB 4744—2000钢制压力容器产品焊接试板的力学性能检验 (69)前言 (70)1范围 (71)2引用标准 (71)3符号 (71)4产品焊接试板制备的要求 (72)5产品焊接试板试样的制备 (72)5拉伸试验 (73)7弯曲试验 (74)8冲击试验 (75)9复验 (76)JB 4708-2000钢制压力容器焊接工艺评定前言本标准对JB 4708—1992进行修订。
钢制压力容器热处理通用工艺规程模版
钢制压力容器热处理通用工艺规程模版1. 引言钢制压力容器是各种工业领域中常见的重要设备,其热处理工艺的正确应用对于保证容器的性能和安全运行至关重要。
本文旨在提供钢制压力容器热处理通用工艺规程模版,以指导相关工程技术人员实施热处理工艺。
2. 材料准备2.1 确保钢制压力容器的材料质量符合设计要求和相关标准;2.2 检查材料的标识、成分、性能等信息,确保其准确、完整。
3. 设备准备3.1 检查热处理设备的运行状况,确保其安全可靠;3.2 清理热处理设备及附件,确保其无杂质、油污等有害物质;3.3 校准设备的温度、压力、时钟等参数显示和控制装置。
4. 工艺步骤4.1 预热4.1.1 将钢制压力容器放置在预热炉中,以提高整体温度;4.1.2 控制预热速度,一般按照设计要求和材料规范进行;4.1.3 预热温度根据不同材料和要求确定,但通常不低于材料的下临界温度。
4.2 保温4.2.1 将预热后的钢制压力容器转移到保温炉中;4.2.2 控制保温炉内的温度,确保达到设计要求;4.2.3 根据材料和要求确定保温时间,一般不少于规定的最低保温时间。
4.3 冷却4.3.1 将保温后的钢制压力容器转移到冷却装置中;4.3.2 控制冷却速率,一般根据材料和要求进行调整;4.3.3 冷却时避免剧烈的温度变化和冷却介质中存在的有害物质。
4.4 退火处理(可选)4.4.1 对特殊要求的钢制压力容器,可以进行退火处理;4.4.2 控制退火温度、时间和冷却速率,根据材料和要求进行调整。
5. 检验与评估5.1 对热处理后的钢制压力容器进行必要的检验,如金相分析、硬度测试等;5.2 检查热处理后的钢制压力容器的外观和尺寸,确保没有变形、开裂等缺陷;5.3 根据检验结果进行评估,判断热处理的效果是否符合要求。
6. 记录与报告6.1 对热处理过程中的温度、时间、压力等参数进行记录;6.2 记录热处理前后钢制压力容器的尺寸、外观等信息;6.3 编写热处理报告,包括工艺参数、检验结果和评估等内容。
钢制压力容器热处理通用工艺规程
钢制压力容器热处理通用工艺规程钢制压力容器在工业领域中得到了广泛的应用。
钢制压力容器通常具有高强度、高韧性、易加工、高精度等优点。
然而,由于其制造过程中存在着焊接等加工工艺,使得钢制压力容器内部的应力分布不均匀。
在使用过程中,这些应力简单导致钢制压力容器的变形、裂纹、分裂等事故的发生,给生产和安全带来了严重的隐患。
为了解决这些问题,钢制压力容器的制造过程中会进行热处理,以除去内部应力,加添硬度,改善钢的性能,提高钢制压力容器的使用寿命。
本文将介绍钢制压力容器的热处理通用工艺规程。
一、材料的选择钢制压力容器的材料应具有良好的机械性能和热处理性能,通常选择碳素钢、合金钢、不锈钢等。
在材料的选择方面,应注意材料的化学成分、机械性能、热处理性能等指标,确保所选择的材料符合容器设计要求,并能够充足使用寿命的要求。
二、预处理在进行热处理之前,应对钢制压力容器的表面进行清洗、除油、除锈等预处理,以保证钢制压力容器的表面干净度和清洁度。
三、加热1. 加热方式钢制压力容器的加热通常采纳电加热、气体加热、燃气加热等方式。
不同的加热方式对钢制压力容器的性能有不同的影响,因此应依据实际情况选用合适的加热方式。
2. 加热温度在热处理过程中,加热温度是特别紧要的。
加热温度过高或过低都会影响钢制压力容器的性能。
通常采纳在材料的热稳定区内进行热处理,即加热温度应当高于材料的临界点,但又不能超过材料的固溶温度,通常在850℃-950℃之间。
3. 加热时间加热时间也是一个关键参数,加热时间过短或过长都会对钢制压力容器的性能产生不良影响。
每种材料的加热时间有所不同,需要针对不同的材料进行合理的掌控。
四、降温1. 冷却方式在加热完成后,需要进行降温,以稳定钢的组织结构并除去应力。
通常采纳气冷、水冷、油冷等方式进行冷却。
不同的冷却方式对钢制压力容器的性能有不同的影响,应依据实际情况选用合适的冷却方式。
2. 降温速率降温速度也是一个关键参数,过快的降温会导致钢的脆性加添,而过慢的降温则会影响钢的机械性能。
压力容器焊接通用工艺规程
1目的本标准为公司对钢制压力容器的焊接通用技术规定。
2适用范围本标准适用于公司压力容器的制造,若设计图纸和专用工艺文件有特殊要求时按设计图纸和专用工艺文件执行。
压力管道元件焊接参照执行。
3焊接材料3.1凡用于压力容器的焊接材料,必须NB/T47015《承压设备用焊接材料订货技术条件》进行采购并有焊接材料的质量证明书(原件)。
在使用过程中对焊接材料产生疑义或焊接材料用于重要设备时,由焊接试验室对焊接材料的工艺性能、熔敷金属的化学成分、力学性能、弯曲性能等进行复验。
具体复验按相应的标准执行。
3.2焊接材料的代用,必须按材料代用手续经焊接责任人员批准。
母材代料可能导致焊接材料的变更,其代料单必须经由焊接责任人员会签并依照材料代用规定另行补充下达焊接材料变更手续及相应焊接工艺变更手续。
3.3焊接材料的选择3.3.1相同钢号母材的相焊1)碳素钢、低合金钢的焊缝金属应保证力学性能,且其抗拉强度不应超过母材标准规定的上限值加30Mpa。
耐热型低合金钢的焊缝金属还应保证化学成分。
2)高合金钢的焊缝金属应保证力学性能和耐腐蚀性能。
3)不锈钢复合板基层的焊缝金属应保证力学性能,且其抗拉强度不应超过母材标准规定的上限值加30Mpa;复层的焊缝金属应保证耐腐蚀性能,当有力学性能要求时还应保证力学性能;复层焊缝与基层焊缝以及复层焊缝与基层钢板的交界处宜采用过渡焊缝。
3.3.2不相同钢号母材的相焊不同强度钢号的碳素钢、低合金钢之间的焊缝金属应保证力学性能,且其抗拉强度不应超过强度较高母材标准规定的上限值。
奥氏体高合金钢与碳素钢或低合金钢之间的焊缝金属应保证力学性能和抗裂性能。
宜采用铬镍含量较奥氏体高合金钢母材高的焊接材料。
3.3.3用于焊接压力容器受压元件及与受压元件相焊的焊条、焊剂应尽量选用碱性或低氢型的4焊前准备4.1焊缝坡口型式应符合图纸或焊接工艺规程的要求。
碳素钢和标准抗拉强度下限值不大于540Mpa的强度型低合金钢可采用冷加工方法,也可采用热加工方法制备坡口。
压力容器焊接工艺、热处理工艺
一、压力容器焊接工艺1 目的、范围为保证压力容器的焊接质量,特制定本工艺。
本工艺适用于钢制压力容器的气焊、焊条电弧焊、埋弧焊、钨极气体保护焊、熔化极气体保护焊焊接工作。
压力容器的焊接除应遵守本工艺外,还应符合设计文件的技术要求。
2 引用标准NB/T 47014-2011 承压设备焊接工艺评定NB/T 47015-2011 压力容器焊接规程TGS Z6002-2010 特种设备焊接操作人员考核细则NB/T 47018.1-2017 承压设备用焊接材料订货技术条件第1部分:采购通则NB/T 47018.2-2017 承压设备用焊接材料订货技术条件第2部分:钢焊条NB/T 47018.3-2017 承压设备用焊接材料订货技术条件第3部分:气体保护电弧焊丝和填充丝NB/T 47018.4-2017 承压设备用焊接材料订货技术条件第4部分:埋弧焊钢焊丝和焊剂JB/T 3223-2017 焊接材料质量管理规程DL/T 869-2012 火力发电厂焊接技术规程DL/T 752-2010 火力发电厂异种钢焊接技术规程GB/T 30583-2014 承压设备焊后热处理规程DL/T 819-2010 火力发电厂焊接热处理技术规程NB/T 47013.1-2015 承压设备无损检测第1部分:通用要求NB/T 47013.2-2015 承压设备无损检测第2部分:射线检测NB/T 47013.3-2015 承压设备无损检测第3部分:超声检测NB/T 47013.4-2015 承压设备无损检测第4部分:磁粉检测NB/T 47013.5-2015 承压设备无损检测第5部分:渗透检测3 焊接工艺评定施焊下列各类焊缝的焊接工艺应按NB/T 47014评定合格:a) 受压元件焊缝;b) 与受压元件相焊的焊缝;c) 上述焊缝的定位焊缝;d) 受压元件母材表面堆焊、补焊。
4 焊工施焊下列各类焊缝的焊工应按TGS Z6002规定考核合格:a) 受压元件焊缝;b) 与受压元件相焊的焊缝;c) 熔入上述永久焊缝内的定位焊缝;d) 受压元件母材表面堆焊、补焊。
钢制压力容器热处理通用工艺规程(4篇)
钢制压力容器热处理通用工艺规程钢制压力容器是一种常用的工业设备,广泛应用于石化、化工、机械制造等行业。
为了确保钢制压力容器的性能和安全,需要对其进行热处理。
下面是钢制压力容器热处理通用工艺规程,主要包括预热、退火、正火和淬火等过程。
一、预热阶段预热是指在进行淬火或正火之前,将工件加热到一定温度以减少冷裂风险。
预热时应注意以下几点:1. 预热温度和保温时间应按照材料、工件尺寸和工艺要求确定,一般应在材料转变温度的50~100℃范围内。
2. 预热应逐渐升温,避免出现温度梯度过大的情况。
3. 预热结束后,应将工件快速转移到热处理设备中,避免温度降低。
二、退火阶段退火是指将工件加热到一定温度并保温一段时间,然后缓慢冷却到室温。
退火有以下几种类型:1. 归纳退火:将工件加热到材料的再结晶温度以上,然后经过一定时间的保温,最后缓慢冷却。
2. 简化退火:将工件加热到材料的过共晶区,然后保温一定时间,最后缓慢冷却。
3. 正火退火:将工件加热到材料的纤维体区,然后保温一段时间,最后缓慢冷却。
在退火过程中,应注意以下几点:1. 退火温度和保温时间应按照材料和工件尺寸确定,一般应在材料的转变温度以上,且保温时间要足够。
2. 退火过程中,要保证工件表面的气氛和真空氛围,避免氧化和表面质量受损。
3. 退火后,要对工件进行良好的冷却,以避免形成大晶粒或负的组织。
三、正火阶段正火是指将工件加热到相对较高的温度并保温一段时间,然后迅速冷却。
正火的目的是增加材料的硬度和强度。
正火过程中,应注意以下几点:1. 正火温度和保温时间应根据材料类型和工件要求确定,一般在比转变温度高50~100℃的范围内进行。
2. 正火过程中,要保证工件的均匀加热,避免产生温度梯度过大的情况。
3. 正火后,应采用迅速冷却的方式,如水淬或油淬,以保证工件的硬度和强度。
四、淬火阶段淬火是指将工件加热到材料的临界转变温度以上并保温一段时间,然后迅速冷却到室温。
钢制压力容器热处理通用工艺规程
钢制压力容器热处理通用工艺规程1. 引言钢制压力容器广泛应用于各个工程领域,为了提高其力学性能和耐腐蚀性能,通常需要进行热处理。
本文档旨在制定钢制压力容器热处理通用工艺规程,以确保所处理的钢制压力容器具有稳定的性能和优良的耐用性。
2. 热处理的目的钢制压力容器经过热处理可改变其组织结构和物理性能,从而提高强度、硬度和耐腐蚀性。
热处理的主要目的包括以下几点: - 消除应力:通过加热和冷却的方式,消除制造和加工过程中产生的应力,提高容器的稳定性和可靠性; - 改变组织结构:通过控制加热温度和时间,使钢材中的碳和合金元素重新分布,形成均匀细小的晶粒,提高材料的强度和韧性;- 提高耐蚀性:通过特定的热处理工艺,使钢材表面形成致密的氧化层,以增强耐腐蚀性能。
3. 热处理工艺流程钢制压力容器的热处理工艺包括加热、保温和冷却三个主要步骤。
下面将详细介绍每个步骤的操作方法:3.1 加热加热是热处理的关键步骤,目的是将钢制压力容器加热到特定的温度区间,使其达到所需的组织结构变化。
加热过程需要注意以下几点: - 加热速度:应根据钢材的厚度和形状选择适当的加热速度,一般为15~60°C/小时; - 加热温度:根据钢材的成分和热处理要求,确定合适的加热温度,通常在600~1100℃之间; - 加热时间:根据钢材的厚度和组织结构变化的要求,确定加热时间,通常在1~2小时。
3.2 保温保温是保持钢材在一定温度下保持一段时间,以使其组织结构充分转变和稳定的步骤。
在保温过程中需要注意以下几点:- 保温时间:根据钢材的组织结构变化的要求,通常在1~4小时; - 保温方式:可以采用箱式炉、气氛炉或盐浴炉等设备进行保温,具体选择根据钢材材质和工艺要求确定。
3.3 冷却冷却是使钢材快速降温到室温的步骤,目的是固定钢材的组织结构,防止晶粒长大和产生过渡相。
冷却过程需要注意以下几点: - 冷却介质:可以采用水、油或空气等作为冷却介质,具体选择根据钢材的成分和工艺要求确定; - 冷却速度:根据钢材的组织结构变化要求,确定合适的冷却速度,一般为15~60°C/小时。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、范围
本标准规定了碳钢、低合金钢焊接构件的焊后热处理工艺。
本标准适用于锅炉、压力容器的碳钢、低合金钢产品,以改善接头性能,降低焊接残余应力为主要目的而实施的焊后热处理。
其他产品的焊后热处理亦可参照执行。
2、引用标准
下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。
在标准出版时,所示版本均为有效。
所有标准都会被修改,使用本标准的各方应探讨使用下列标准最新版本的可能性。
GB9452-1988 热处理炉有效区测定方法。
3、要求
3.1 人员及职责
3.1.1 热处理操作人员应经培训、考核合格,取得上岗证,方可进行焊后热处理操作。
3.1.2 焊后热处理工艺由热处理工艺员编制,热处理责任工程师审核。
3.1.3 热处理工应严格按焊后热处理工艺进行操作,并认真填写原始操作记录。
3.1.4 热处理责任工程师负责审查焊后热处理原始操作记录(含时间—温度自动记录曲线),核实是否符合焊后热处理工艺要求,确认后签字盖章。
3.2 设备
3.2.1 各种焊后热处理及装置应符合以下要求:
a)能满足焊后热处理工艺要求;
b)在焊后热处理过程中,对被加热件无有害的影响;
c)能保证被加热件加热部分均匀热透;
d)能够准确地测量和控制温度;
e)被加热件经焊后热处理之后,其变形能满足设计及使用要求。
3.2.2 焊后热处理设备可以是以下几种之一:
a)电加热炉;
b)罩式煤气炉;
c)红外线高温陶瓷电加热器;
d)能满足焊后热处理工艺要求的其他加热装置
3.3 焊后热处理方法
3.3.1 炉内热处理
a) 焊后热处理应优先采用在炉内加热的方法,其热处理炉应满足GB9452的有关规定。
在积累了炉温与被加热件的对应关系值的情况下,炉内热处理时,一般允许利用炉温推算被加热件的温度,但对特殊或重要的焊接产品,温度测量应以安置在被加热件上的热电偶为准。
b) 被加热件应整齐地安置于炉内的有效加热区内,并保证炉内热量均匀、流通。
在火焰炉内热处理时应避免火焰直接喷射到工件上。
c) 为了防止拘束应力及变形的产生,应合理安置被加热件的支座,对大型薄壁件和结构、几何尺寸变化悬殊者应附加必要的支撑等工装以增加刚性和平衡稳定性。
3.3.2 分段热处理
焊后热处理允许在炉内分段进行。
被加热件分段进行热处理时,其重复加热长度不小于1500mm。
被加热件的炉外部分,应采取合适的保温措施,使温度梯度不致影响材料的组织和性能。
3.3.3 整体炉外热处理
进行整体炉外热处理时,在满足3.2.1的基础上,还应注意:
a)考虑气候变化,以及停电等因素对热处理带来的不利影响及应急措施;
b)应采取必要的措施,保证被加热件温度的均匀稳定,避免被加热件、支撑结构、底座等因热胀冷缩而产生拘束应力及变形
3.3.4 局部热处理
B、C、D类焊接接头,球形封头与圆筒相连的A类焊接接头以及缺陷焊补部位,允许采用局部热处理方法。
局部热处理时,焊缝每侧加热宽度不小于钢材厚度δs的2倍(δs为焊接接头处钢材厚度);接管与壳体相焊时加热宽度不
得小于钢材厚度δs的6倍。
靠近加热区的部位应采取保温措施,使温度梯度不致影响材料的组织和性能。
3.4 焊后热处理工艺参数
3.4.1 被加热件入炉或出炉时的温度不得超过400℃,但对厚度差较大、结构复杂、尺寸稳定性要求较高、残余应力值要求较低的被加热件,其入炉或出炉时的炉内温度一般不宜超过300℃。
3.4.2 焊件升温至400℃后,加热区升温速度不得超过(5000/δs)℃/h,且不得超过200℃/h,最小可为50℃/h。
3.4.3 升温时,加热区内任意5000mm长度内的温差不得大于120℃。
3.4.4 保温时,加热区内最高与最低温度之差不宜超过65℃。
3.4.5 升温保温期间,应控制加热区气氛,防止焊件表面过度氧化。
3.4.6 炉温高于400℃时,加热区降温速度不得超过(6500/δs)℃/h,且不得超过260℃/h,最小可为50℃/h。
3.4.7 焊件按3.4.1的出炉温度出炉后应在静止空气中继续冷却。
3.4.8 常用钢号推荐的焊后热处理保温温度和保温时间见表1
需焊后热处理的厚度δs,mm 钢号
焊前不预热焊前预热100℃焊后热处
理温度℃
焊后热处理保温时
间,h
Q235-A.F、
Q235-A、
10、20、20R、
25
>32 >38 600〜640 09MnD ————580〜620 16Mn、16MnR
16MnD、16MnDR >30 >34 600〜640
1)当厚度
δs≤50mm时,
为(δs/25)h,但最
短时间不低于1/4h。
2)当厚度
δs>50mm时,
为[2+1/4×(δs-50)
/25]h
12CrMo ——任意厚度640〜680 15CrMo、15CrMoR ——任意厚度640〜6801)当厚度δs≤125mm 时,为(δs/25)h,
1Cr5Mo ——任意厚度720〜760但最短时间不低于1/4h。
2)当厚度δs>125mm 时,为[5+0.25×(δs-125)÷25]h
注:
1、对于钢材厚度不同的焊接接头,厚度δs按较薄件者。
2、对于异种钢材相焊的焊接接头,按热处理严者确定。
3、对于调质钢进行焊后热处理时,保温温度一般应低于钢材回火的温度。
但对保温温度高于回火温度,钢材的性能仍能满足产品使用要求的焊后热处理可不受限制。
4、热处理厚度δs系指:
a)壳体与封头对接时较薄件的厚度;
b)与法兰、管板或其他类似结构焊接的壳体厚度;
c)与接管焊接的壳体或封头厚度;
d)非受压件与受压件相焊时连接处焊缝的厚度;
e)修补焊缝的深度。
5 、保温时间可以累计加算。
3.5 焊后热处理对试板的要求
有热处理要求的容器,试板应随容器一起进行焊后热处理。
3.6 焊后热处理记录保管期的要求
焊后热处理时间与温度曲线记录保存期限不得少于7年。