六年级数学上册分数应用题之行程问题

合集下载

(完整)六年级行程问题专题

(完整)六年级行程问题专题

六年级行程问题复习题【例题7】上午8点零8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他,然后爸爸立即回家,到家后又立即回头去追小明,再追上小明的时候,离家恰好是8千米。

问这时是几时几分?解法(一).从爸爸第一次追上小明到第二次追上这一段时间内,小明走的路程是8-4=4(千米),而爸爸行了4+8=12(千米),因此,摩托车与自行车的速度比是12∶4=3∶1.小明全程骑车行8千米,爸爸来回总共行4+12=16(千米),还因晚出发而少用8分钟,从上面算出的速度比得知,小明骑车行8千米,爸爸如同时出发应该骑24千米.现在少用8分钟,少骑24-16=8(千米),因此推算出摩托车的速度是每分钟1千米.爸爸总共骑了16千米追上小明,需16分钟,此时小明走了8+16=24(分钟),所以此时是8点32分.解法(二) 这从爸爸第一次追上小明到第二追上小明,小明走了4千米,爸爸走了三个4千米,所以小明的速度是时是爸爸速度的倍。

爸爸从家到第一次追上小明,比小明多走了4×(1-)=千米,共用了8分钟,所以小明的速度是÷8=米,从爸爸从家出发到第二次追上小明,小明共走了8千米,所用时间为8÷=24 分所以现在是8点32分解法(三)同上,先得出小明的速度是时是爸爸速度的倍. 爸爸从家到第一次追上小明,小明走了4千米,若爸爸与小明同时出发,则爸爸应走出12千米,但是由于爸爸晚出发8分钟,所以只走了4千米,所以爸爸8分钟应走8千米. 由于爸爸从出发到第二次追上小明共走了16千米, 所以爸爸用了16分钟,此时离小明出发共用了8+16=24分钟, 所以爸爸第二次追上小明时是8点32分题型二、航船问题航船问题中顺水时:速度=船速+水速逆水时:速度=船速-水速【例题1】甲、乙两港相距360千米,一艘轮船从甲港到乙港,顺水航行15小时到达,从乙港返回甲港,逆水航行20小时到达。

六年级数学行程问题四种类型专讲完整版讲解

六年级数学行程问题四种类型专讲完整版讲解

六年级行程问题专讲第一部分:相遇问题知识概述:行程问题是研究相向运动中的速度、时间和路程三者之间关系的问题,(涉及两个或两个以上物体运动的问题)指两个运动的物体同时由两地出发相向而行,在途中相遇,这类应用题叫做相遇问题。

数量关系:总路程=(甲速+乙速)×相遇时间相遇时间=总路程÷(甲速+乙速)另一个速度=甲乙速度和-已知的一个速度注:(1)在处理相遇问题时,一定要注意公式的使用时二者开始运动那一刻所处的状态;(2)在行程问题里所用的时间都是时间段,而不是时间点(非常重要);(3)无论是在哪类行程问题里,只要是相遇,就与速度和有关。

解题秘诀:(1)必须弄清物体运动的具体情况,运动方向(相向),出发地点(两地),出发时间(同时、先后),运动路径(封闭、不封闭),运动结果(相遇)等。

(2)要充分运用图示、列表等方法,正确反映出数量之间的关系,帮助我们理解题意,迅速的找到解题思路。

典型例题:例1.东西两地相距60千米,甲骑自行车,乙步行,同时从两地出发,相对而行,3小时后相遇。

已知甲每小时的速度比乙快10千米,二人每小时的速度各是多少千米?习题:一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,相向而行,汽车每小时行50千米,摩托车每小时行40千米,8小时两车相距多少千米?例2.甲港和乙港相距662千米,上午9点一艘“名士”号快艇从甲港开往乙港,中午12点另一艘“日立”号快艇从乙港开往甲港,到16点两艇相遇,“名士”号每小时行54千米,“日立”号的速度比“名士”号快多少千米?习题:甲乙两地的路程是600千米,上午8点客车以平均每小时60千米的速度从甲地开往乙地。

货车以平均每小时50千米的速度从乙地开往甲地。

要使两车在全程的中点相遇,货车必须在上午几点出发?例3.甲骑摩托车,乙骑自行车,同时从相距126千米的A 、B 两城出发相向而行。

3小时后,在离两城中点处24千米的地方,甲、乙二人相遇。

六年级数学上册分数应用题之行程问题

六年级数学上册分数应用题之行程问题

相遇问题
小红家
小红家距小明家390米,两人同时从家里出发,相 向而行。小红每分走60米,小明每分走70米,几分
钟后两人相遇。
甲走的路程+乙走的路程=二者相距的路程
60x+70x=390
甲、乙的速度和X时间=二者相距的路程
(60+70)x=390
小红从家走到小明家要4分钟,小明从家走到小
红家要6分钟,小红和小明两人同时从家里出发,




变式练习3 快 来 试一试!
两列火车从两个车站同时相向开出。甲车每
小两时列行火4车4从千米两,个乙车车站每同小时时相行5向2开千出米。,甲经过 2车小每时小后时两行车相4距41千5米米。,两乙个车车站每之小间时的行铁5路长 多2少千千米米,?经过2小时后两车相遇。两个
车站之间的铁路长多少千米?
相向而行,几分钟后相遇?
速度和×时间=路程

ቤተ መጻሕፍቲ ባይዱ

小红走的路程+小明走的路程=总路程
变式练习1
甲乙两人同时从学校出发,相背而行。甲每分 钟走52米,乙每分钟走48米。两人走了10分钟 时相距多少米
变式练习2.
甲乙两人从甲乙两地相向而行,甲先出发2小时后,乙 再出发,又经过2小时,两人相遇。甲每小时行3千米, 乙每小时行4千米。两地相距多少千米
甲走的路程
等量关系式: 简称:路程差=速度差×时间
1.甲走的路程=甲乙两地间的距离+乙走的路程
2.甲乙两地间的距离=甲走的路程-乙走的路程 3.甲乙两地间的距离=甲的速度×追及时间-乙的速度×追及时间
4.甲、乙二者的路程差=甲、乙二者速度差×追及时间
例题: A、B两地相距30千米。甲、乙两辆汽车分别从A、B两地

6年级上册数学行程问题

6年级上册数学行程问题

6年级上册数学行程问题一、基础行程问题(速度×时间 = 路程类型)1. 一辆汽车每小时行驶60千米,从甲地到乙地共行驶了3小时,甲乙两地相距多少千米?解析:根据路程 = 速度×时间,这里速度是每小时60千米,时间是3小时,所以甲乙两地的距离为60×3 = 180千米。

2. 小明骑自行车的速度是150米/分钟,他骑了20分钟,他骑行的路程是多少米?解析:已知速度为150米/分钟,时间为20分钟,根据路程 = 速度×时间,可得路程为150×20=3000米。

3. 一架飞机的速度是800千米/小时,飞行5小时的路程是多少千米?解析:由路程 = 速度×时间,速度为800千米/小时,时间为5小时,所以路程为800×5 = 4000千米。

二、相遇问题(速度和×相遇时间 = 路程和类型)4. 甲、乙两人分别从A、B两地同时出发相向而行,甲的速度是5千米/小时,乙的速度是4千米/小时,经过3小时两人相遇。

A、B两地相距多少千米?解析:甲、乙两人的速度和为5 + 4=9千米/小时,相遇时间是3小时,根据路程和 = 速度和×相遇时间,A、B两地相距9×3 = 27千米。

5. 客车和货车分别从相距480千米的两地同时出发相向而行,客车速度为60千米/小时,货车速度为40千米/小时,几小时后两车相遇?解析:两车的速度和为60+40 = 100千米/小时,路程和为480千米。

根据相遇时间 = 路程和÷速度和,可得相遇时间为480÷100 = 4.8小时。

6. 小明和小红分别从家出发相向而行,小明的速度是70米/分钟,小红的速度是60米/分钟,两家相距1560米,他们经过多少分钟相遇?解析:两人速度和为70 + 60=130米/分钟,路程和为1560米。

根据相遇时间= 路程和÷速度和,相遇时间为1560÷130 = 12分钟。

行程问题

行程问题

年级六年级学科奥数版本通用版课程标题行程问题(一)编稿老师宋玲玲一校林卉二校黄楠审核高旭东行程问题是小学奥数中变化最多的一个专题,不论在奥数竞赛中还是在“小升初”的升学考试中,都占有非常重要的地位。

行程问题包括:相遇问题、追及问题、流水问题、火车过桥、环形行程、复杂行程等。

每一类问题都有自己的特点,解决方法也各有不同,但是,行程问题无论怎么变化,都离不开“三个量、三个关系”:三个量是:路程(s)、速度(v)、时间(t)三个关系:1. 简单行程:路程=速度×时间2. 相遇问题:路程和=速度和×时间3. 追及问题:路程差=速度差×时间牢牢把握住这三个量以及它们之间的这三种关系,就会发现解决行程问题还是有很多方法可循的。

要正确的解答有关“行程问题”的应用题,必须弄清物体运动的具体情况。

如运动的方向(相向,相背,同向),出发的时间(同时,不同时),出发的地点(同地,不同地),运动的路线(封闭,不封闭),运动的结果(相遇、相距多少、交错而过、追及)。

两个物体运动时,运动的方向与运动的速度有着很大关系,当两个物体“相向运动”或“相背运动”时,它们的运动速度都是“两个物体运动速度的和”(简称速度和),当两个物体“同向运动”时,它们的追及速度就变为“两个物体运动速度的差”(简称速度差)。

例如:甲从A地到B地,乙从B地到A地,然后两人在途中相遇,实质上是甲和乙一起走了A,B之间这段路程,如果两人同时出发,那么AB之间的路程=甲走的路程+乙走的路程=甲的速度×相遇时间+乙的速度×相遇时间=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间“相遇问题”的核心是速度和问题。

例1 小陈和小许二人分别从两地同时骑车相向而行。

小陈每小时行16千米,小许每小时行13千米,两人相遇时距中点3千米。

求全程长多少千米?分析与解:要求全程长多少千米,必须知道“速度和”与“相遇时间”。

分数应用题之行程问题

分数应用题之行程问题

• 甲、乙两辆车同时分别从两个城市 相对开出,经过3小时,两车距离 中点18千米处相遇,这时甲车与乙 车所行的路程之比是2:3.求甲乙 两车的速度各是多少?
• 两艘轮船同时从A、B两港相对开
出,客船每小时行64千米,货船的
速度是客船速度的
7 ,两艘轮船在 8
离A、B两港中点12千米处相遇,A、
B两港间的距离是多少
• 两地相距196千米,甲、乙两辆汽
7 车同时从两地相对开出, 3
小时相
遇,甲、乙的速度比是4:3,甲、
乙两车每小时各行多少千米?
• 甲、乙两地相距475千米,客车和 货车同时从两地相对开出,已知货 车每小时行45千米,货车与客车的 速度比是9:10,经过几小时两车 才能相遇?
• 一辆车从甲地到乙地,第一小时行 全程的20%,第二小时比第一小时 多行30千米,离乙地还有150千米, 甲乙两地相距多少千米?
• 甲、乙两车分别同时从A、B两成 相对开出,甲车从A城开往B城,每小 时行全程的10%,乙车从B城开往A 城,每小时行8千米,当甲车距A城 260千米时,乙车距B地320千米。 A、B两成之间的路程有多少千米?
• 甲车从A地开往B地,乙车同时从B 地开往A地,当甲车行到全程的 时, 乙车已行路程和剩下路程的比是3: 2,这时两车相距120千米。A、B 两地相距多少千米?
• 甲、乙两车同时从两地相对开出, 经过3小时相遇,相遇时甲车行了 4 全程的 ,甲车每小时比乙车少行 9 10千米。两地相距多少千米?
• 客车和货车同时从甲乙两地相对而
行,6小时后客车距乙地的路程是
1 全程的 8 ,货车超过中点54千米,
已知货车每小时比客车慢15千米。
求甲乙两地之间的距离。

六年级分数与行程问题

六年级分数与行程问题

分数与行程问题例题精选例1.客车从A 站开往B 站,3小时行了全程的41;货车从B 站开往A 站,212小时行了全程的61。

现客车与货车同时从A 、B 两站相向而行,多少小时能相遇?解题思路:客车1小时行了全程的⎪⎭⎫ ⎝⎛÷341;货车1小时行了全程的⎪⎭⎫ ⎝⎛÷21261,两车1小时行了全程的⎪⎭⎫ ⎝⎛÷+÷21261341;它们相遇的时间是: 解:÷1⎪⎭⎫ ⎝⎛÷+÷212613413261511211=⎪⎭⎫ ⎝⎛+÷=(小时) 答:…例2.甲、乙两车同时从A 、B 两地相向而行,8.4小时后相遇。

已知甲车从A 地开往B 地需要12小时,乙车从B 地开往A 地需要多少小时?解题思路:甲、乙两车1小时行了全程的8.41,甲车1小时行了全程的121,乙车1小时行了全程的⎪⎭⎫ ⎝⎛-1218.41。

乙车从B 地开往A 地需要的时间为: 解:81218.411=⎪⎭⎫ ⎝⎛-÷(小时) 答:…例3.快车从甲地开往乙地需要20小时,慢车从乙地开往甲地需要30小时,两车同时从甲、乙两地相向而行。

相遇时,快车比慢车多行180千米。

快车和慢车行了多少千米?解题思路:因为甲、乙两地的距离没有具体的数量,可以把它看作单位“1"。

根据题意,可得,快车1小时行了全程的201,慢车1小时行了全程的301,两车1小时行了全程的⎪⎭⎫ ⎝⎛+301201,相遇时间为:⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+÷3012011(小时).相遇时快车行了全程⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+÷⨯3012011201; 慢车行了全程的⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+÷⨯3012011301 快车比慢车多行:⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+÷⨯3012011201-⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+÷⨯3012011301 解:甲、乙两地相距÷180⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+÷⨯3012011201—⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+÷⨯3012011301=900(米) 快车行了⨯900201⨯⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+÷3012011=540(千米) 慢车行了⨯900301⨯⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+÷3012011=360(千米) 或:360540900=-(千米)又或360180540=-(千米)例4.一辆摩托车从甲地开往乙地,321小时行了全程的31.又知道该摩托车312小时行了224千米。

六年级数学行程问题

六年级数学行程问题

六年级数学行程问题一、行程问题题目1. 甲、乙两地相距450千米,快车和慢车分别从甲、乙两地同时出发相向而行,快车每小时行60千米,慢车每小时行30千米。

问几小时后两车相遇?解析:两车相向而行,它们的相对速度就是两车速度之和,即公式千米/小时。

根据时间 = 路程÷速度,总路程是450千米,所以相遇时间为公式小时。

2. 一辆汽车从甲地开往乙地,速度是85千米/小时,用了6小时,返回时只用了5小时,返回时的速度是多少?解析:根据路程 = 速度×时间,从甲地到乙地的路程为公式千米。

返回时路程不变,时间为5小时,所以返回速度为公式千米/小时。

3. 小明和小红在周长为400米的环形跑道上跑步,小明的速度是6米/秒,小红的速度是4米/秒。

如果他们同时同地同向起跑,多少秒后小明第一次追上小红?解析:同向起跑时,小明第一次追上小红时,小明比小红多跑了一圈,即400米。

小明每秒比小红多跑公式米,所以追及时间为公式秒。

4. 两列火车同时从相距720千米的两地相对开出,一列火车每小时行50千米,另一列火车每小时行70千米。

经过几小时两车相遇?解析:两车相对开出,相对速度为公式千米/小时。

根据时间 = 路程÷速度,路程为720千米,所以相遇时间为公式小时。

5. 一辆客车和一辆货车分别从A、B两地同时出发,相向而行,客车的速度是每小时75千米,货车的速度是每小时65千米,经过3小时两车相遇。

A、B两地相距多少千米?解析:两车相向而行,它们的速度和为公式千米/小时,经过3小时相遇。

根据路程 = 速度×时间,所以A、B两地相距公式千米。

6. 甲、乙两人分别从相距24千米的两地同时出发相向而行,甲每小时走4千米,乙每小时走2千米,几小时后两人相遇?解析:两人相向而行,速度和为公式千米/小时。

根据路程÷速度= 时间,总路程24千米,所以相遇时间为公式小时。

7. 一辆汽车以每小时60千米的速度从甲地开往乙地,3小时后到达乙地,然后又以每小时45千米的速度返回甲地,求汽车往返的平均速度。

六年级分数与行程问题

六年级分数与行程问题

分数与行程问题例题精选例1.客车从A 站开往B 站,3小时行了全程的41;货车从B 站开往A 站,212小时行了全程的61。

现客车与货车同时从A 、B 两站相向而行,多少小时能相遇?解题思路:客车1小时行了全程的⎪⎭⎫ ⎝⎛÷341;货车1小时行了全程的⎪⎭⎫ ⎝⎛÷21261,两车1小时行了全程的⎪⎭⎫ ⎝⎛÷+÷21261341;它们相遇的时间是: 解:÷1⎪⎭⎫ ⎝⎛÷+÷212613413261511211=⎪⎭⎫ ⎝⎛+÷=(小时) 答:…例2.甲、乙两车同时从A 、B 两地相向而行,8.4小时后相遇。

已知甲车从A 地开往B 地需要12小时,乙车从B 地开往A 地需要多少小时?解题思路:甲、乙两车1小时行了全程的8.41,甲车1小时行了全程的121,乙车1小时行了全程的⎪⎭⎫ ⎝⎛-1218.41。

乙车从B 地开往A 地需要的时间为: 解:81218.411=⎪⎭⎫ ⎝⎛-÷(小时) 答:…例3.快车从甲地开往乙地需要20小时,慢车从乙地开往甲地需要30小时,两车同时从甲、乙两地相向而行。

相遇时,快车比慢车多行180千米。

快车和慢车行了多少千米?解题思路:因为甲、乙两地的距离没有具体的数量,可以把它看作单位“1”。

根据题意,可得,快车1小时行了全程的201,慢车1小时行了全程的301,两车1小时行了全程的⎪⎭⎫ ⎝⎛+301201,相遇时间为:⎥⎤⎢⎡⎪⎫ ⎛+÷3012011(小时)。

相遇时快车行了全程⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+÷⨯3012011201; 慢车行了全程的⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+÷⨯3012011301 快车比慢车多行:⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+÷⨯3012011201-⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+÷⨯3012011301 解:甲、乙两地相距÷180⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+÷⨯3012011201-⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+÷⨯3012011301=900(米) 快车行了⨯900201⨯⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+÷3012011=540(千米) 慢车行了⨯900301⨯⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+÷3012011=360(千米) 或:360540900=-(千米)又或360180540=-(千米)例4.一辆摩托车从甲地开往乙地,321小时行了全程的31。

(完整版)六年级行程问题专题

(完整版)六年级行程问题专题

六年级行程问题复习题【例题7】上午8点零8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他,然后爸爸立即回家,到家后又立即回头去追小明,再追上小明的时候,离家恰好是8千米。

问这时是几时几分?解法(一).从爸爸第一次追上小明到第二次追上这一段时间内,小明走的路程是8-4=4(千米),而爸爸行了4+8=12(千米),因此,摩托车与自行车的速度比是12∶4=3∶1.小明全程骑车行8千米,爸爸来回总共行4+12=16(千米),还因晚出发而少用8分钟,从上面算出的速度比得知,小明骑车行8千米,爸爸如同时出发应该骑24千米.现在少用8分钟,少骑24-16=8(千米),因此推算出摩托车的速度是每分钟1千米.爸爸总共骑了16千米追上小明,需16分钟,此时小明走了8+16=24(分钟),所以此时是8点32分.解法(二) 这从爸爸第一次追上小明到第二追上小明,小明走了4千米,爸爸走了三个4千米,所以小明的速度是时是爸爸速度的倍。

爸爸从家到第一次追上小明,比小明多走了4×(1-)=千米,共用了8分钟,所以小明的速度是÷8=米,从爸爸从家出发到第二次追上小明,小明共走了8千米,所用时间为8÷=24 分所以现在是8点32分解法(三)同上,先得出小明的速度是时是爸爸速度的倍. 爸爸从家到第一次追上小明,小明走了4千米,若爸爸与小明同时出发,则爸爸应走出12千米,但是由于爸爸晚出发8分钟,所以只走了4千米,所以爸爸8分钟应走8千米. 由于爸爸从出发到第二次追上小明共走了16千米, 所以爸爸用了16分钟,此时离小明出发共用了8+16=24分钟, 所以爸爸第二次追上小明时是8点32分题型二、航船问题航船问题中顺水时:速度=船速+水速逆水时:速度=船速-水速【例题1】甲、乙两港相距360千米,一艘轮船从甲港到乙港,顺水航行15小时到达,从乙港返回甲港,逆水航行20小时到达。

小学六年级数学思维提升培优拓展题讲解之《4分数行程应用题》

小学六年级数学思维提升培优拓展题讲解之《4分数行程应用题》

X=144
或: 28÷( 4 - 1 )=144(千米)
4+5 4
答:甲、乙两地相距144千米。
9.一辆汽车以每小时45千米的速度行了全程的
1 5
后,离中点还有90千米,照
这样的速度,行完全程要多少小时?
汽车
全程?小时
中 点
1 5
中点处即是全程的 一半,可以求出90千 米对应的全程的分数。
90千米
小红跑的路程:400+
1760 3
=
2960 3
(米)
小红跑的速度:29360 ÷
16 3
=185(米/分)
答:小红跑步的速度 是185米/分。
7.一辆客车和一辆货车分别从甲、乙两地同时出发,相向而行,货车的速度
是客车的
2 3
,两车在距离中点30千米处相遇。甲、乙两地相距( 300 )千米。
思考:
1
( 4 - 5 )÷ 5 =25%
2.一列火车
3 5
小时行了45千米,照这样计算,从甲城到乙城用了
甲、乙两城之间的铁路长( 100 )千米。
4 小时, 3
先算出1小时行驶的千米数,再用速度乘时间就是路程。
45÷
3 5
×
4 3
=100(千米)
3.客车和货车从甲乙两地同时相对开出,经过3小时客车行了全程的
12.小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家
里了,随即骑车去给小明送书,追上时,小明还有
3 10
的路程未走完,小明随即上
了爸爸的车,由爸爸送往学校,这样小明比独自步行提前5分钟到校。小明从家到
小学六年级数学思维提升培优拓展题讲解 行程问题

(完整)小学六年级数学行程问题

(完整)小学六年级数学行程问题

行程问题一、基本知识点1、常见题型:一般行程问题,相遇问题,追及问题,流水问题,火车过桥问题。

2、行程问题特点:已知速度、时间、和路程中的两个量,求第三个量。

3、基本数量关系:速度x时间=路程速度和x时间(相遇时间)=路程和(相遇路程)速度差x时间(追及时间)=路程差(追击路程)二、学法提示1.火车过桥:火车过桥路程=桥长+车长过桥时间=路程÷车速过桥过程可以通过动手演示来帮助理解。

2.水流问题:顺水速度=静水速度+水流速度逆水速度=静水速度-水流速度顺水速度-逆水速度=2x水流速度3.追及问题:追击路程÷速度差=追及时间追击距离÷追及时间=速度差4.相遇问题:相遇路程÷相遇时间=速度和相遇路程÷速度和=相遇时间三、解决行程问题的关键画线段图,标出已知和未知。

能够从线段图中分析出数量关系,找到解决问题的突破口。

四、练习题(一)火车过桥1.一列火车长150米,每秒行20米,全车要通过一座长450米的大桥,需要多长时间?2.一列客车通过860米的大桥要45秒,用同样的速度穿过620米的隧道要35秒,求客车行驶的速度和车身的长度。

3.一列车长140米的火车,以每秒10米的速度通过一座大桥,共用30秒,求大桥的长度。

4.一人在铁路便道上行走,一列客车从身后开来,在她身旁通过的时间为7秒,已知客车长105米。

每小时行72千米,这个人每秒行多少米?5.在有上下行的轨道上,两列火车相对开出,甲车长235米,每秒行25米,乙车长215米,每秒行20米,求两车从车头相遇到车尾离开要多长时间。

6.一人沿铁路边的便道行走,一列火车从身后开来,在身旁通过的时间为15秒,车长105米,每小时行28.8千米,求步行速度。

7.公路两旁的电线杆间隔都是30米,一位乘客坐在运行的汽车中,他从看到第一根电杆到看到第26根电线杆正好是3分钟。

这辆汽车每小时行多少米?8.一列火车长700米。

(8)分数应用题之行程问题

(8)分数应用题之行程问题

八、分数应用题之行程问题题型一(1)甲乙两地之间的公路长216千米。

一辆汽车从甲地开往乙地,行了全程的38,离乙地还有多少千米?画线段图:(2)一辆汽车从甲地开往乙地,行了全程的38,正好行了81千米。

两地之间的公路长多少千米?画线段图:(3)一辆汽车从甲地开往乙地,行了全程的38,离乙地还有135千米。

两地之间的公路长多少千米?画线段图:(4)一辆汽车从甲地开往乙地,第一小时行了全程的14,第二小时行了全程的518,两小时行了114千米。

两地之间的公路长多少千米?画线段图:例1,客车从A 站开往B 站,3小时行了全程的41;货车从B 站开往A 站,212小时行了全程的61,现客车与货车同时从A 、B 两站相向相行,多少小时能相遇?例2,甲、乙两车同时从A 、B 两地相向而行,4.8小时后相遇,已知甲车从A 地开往B 地需要12小时,乙车从B 地开往A 地需要多少小时?1、快车和慢车分别从A 、B 两地相向而行。

已知快车行完全全程需要8小时,慢车行完全程需要12小时,多少小时后两车能相遇?2、甲车从A 地开往B 地需要15小时,乙车从B 开往A 地比甲车少用3小时。

两车同时从两地相向而行,多少小时能相遇?3、甲车从A 地开往B 地需要9小时,乙车所用时间是甲车的32。

两车同时从A 、B 两地相向而行,多少小时能相遇?4、货车从甲地开往乙地,211小时行了全程的81,客车的速度是货车的311倍,两车从甲、乙两地相向而行,多少小时能相遇?题型二例1,快车从甲地开往乙地需要20小时,慢车从乙地开往甲地需要30小时,两车同时从甲、乙两地相向而行。

相遇时,快车比慢车多行180千米,快车和慢车各行了多少千米?1、甲、乙两车同时从A 、B 两地相向而行,733小时后相遇。

已知甲车从A 地开往B 地需要6小时,乙在从B 地开往A 地需要多少小时?2、快车从甲地开往乙地,212小时行了全程的41,与此同时,慢车从乙地开往甲地,6小时后两车相遇。

小学六年级数学行程问题完整版

小学六年级数学行程问题完整版

小学六年级数学行程问题HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】行程问题例1 甲乙两辆汽车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。

辆车在距中点32千米处相遇。

东西两地相距多少千米?例2 快车和慢车同时从甲乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米。

慢车每小时行多少千米?例3 快车从甲站到达乙站需要8小时,慢车从乙站到达甲站需要12小时,如果快、慢两车同时从甲、乙两站相对开出,相遇是快车比慢车多行180千米,甲、乙两站相遇多少千米?例4 甲、乙两列火车同时从A、B两城相对开出,行了小时后,两列还相距全程的5/8, 两车还需要几小时才能相遇?例5 客车从甲地,货车从乙地同时相对开出。

一段时间后,客车行了全程的7/8,货车行的超过中点54千米,已知客车比货车多行了90千米,甲、乙两地相距多少千米?例6 甲、乙两车分别从A、B两地同时出发,当甲车行到全程的7/11时与乙车相遇,乙车继续以每小时40千米的速度前进,又行驶了154千米到达A地。

甲车出发到相遇用了多少小时?例7 客车从甲地到乙地要10小时,货车从乙地到甲地要15小时,两车同时从两地相对开出,相遇时客车比货车多行了90千米,甲、乙两地之间的距离是多少千米?相遇时客车和货车各行了多少千米?例8 客车和货车同时从甲、乙两地相向而行,在距离中点6千米处相遇,已知货车速度是客车速度的4/5,甲、乙两地相遇多少千米?例9 甲、乙两车同时从A、B两地相对开出,经过8小时相遇,相遇后两车继续前进,甲车又用了6小时到达B 地,乙车要用多少小时才能从B地到达A地。

例10 一辆汽车以每小时100千米的速度从甲地开往乙地,又以每小时60千米的速度从乙地开到甲地,这辆汽车的平均速度N 是多少千米?例11 小明上山每分钟行50米,16分钟到达山顶,再按每分钟80米的速度按原路下山,那么,上、下山每分钟平均行多少米?例12 甲、乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。

六年级行程问题经典例题40题

六年级行程问题经典例题40题

六年级行程问题经典例题40题一、相遇问题1. 甲、乙两人分别从A、B两地同时出发,相向而行。

甲的速度是每小时5千米,乙的速度是每小时4千米,经过3小时后两人相遇。

求A、B两地的距离。

解析:根据相遇问题的公式,路程 = 速度和×相遇时间。

甲、乙的速度和为5 + 4 = 9(千米/小时),相遇时间是3小时,所以A、B两地的距离为9×3 = 27(千米)。

2. 两地相距600千米,上午8时,客车以每小时60千米的速度从甲地开往乙地,货车以每小时50千米的速度从乙地开往甲地。

要使两车在中点相遇,货车必须在上午几时出发?解析:两地中点距离为600÷2 = 300千米。

客车到达中点需要的时间为300÷60 = 5小时,货车到达中点需要的时间为300÷50 = 6小时。

客车上午8时出发,5小时后即13时到达中点,货车要6小时到达中点,所以货车必须提前1小时出发,也就是上午7时出发。

3. 甲、乙两车分别从A、B两地同时出发,相向而行,甲车每小时行70千米,乙车每小时行80千米,3小时后两车还相距50千米。

A、B两地相距多远?解析:甲、乙两车3小时行驶的路程之和为(70 + 80)×3=450千米,此时还相距50千米,所以A、B两地相距450+ 50 = 500千米。

二、追及问题4. 甲、乙两人在相距12千米的A、B两地同时出发,同向而行。

甲步行每小时行4千米,乙骑车在后面,每小时速度是甲的3倍。

几小时后乙能追上甲?解析:乙的速度是4×3 = 12千米/小时,乙与甲的速度差是12 4 = 8千米/小时。

追及路程是12千米,根据追及时间 = 追及路程÷速度差,可得追及时间为12÷8 = 1.5小时。

5. 一辆汽车从甲地开往乙地,每小时行40千米,开出5小时后,一列火车以每小时90千米的速度也从甲地开往乙地。

在甲乙两地的中点处火车追上汽车,甲乙两地相距多少千米?解析:汽车先开出5小时行驶的路程为40×5 = 200千米。

六年级行程问题以及工程问题应用题答案解析

六年级行程问题以及工程问题应用题答案解析

六年级行程问题以及工程问题应用题答案解析1.甲乙两人从北京和天津出发,甲每小时行48千米,乙每小时行44千米,他们几小时能相遇?解析:根据题意,甲和乙的相对速度为48+44=92千米/小时,所以他们能相遇的时间为138/92=1.5小时。

2.一辆汽车从甲地到乙地,如果每小时行45千米,就要晚0.5小时到达,如果每小时行50千米,就可提前0.5小时到达。

问甲、乙两地相距多少千米?解析:设甲乙两地相距x千米,根据题意,可以列出方程:0.5=(x/45)-(x/50),解得x=450千米。

3.从甲地到乙地,小轿车每小时行驶90千米,大客车每小时行驶55千米,乘小轿车要用4.4小时,乘大客车要用几小时?解析:设乘大客车需要的时间为x小时,根据题意,可以列出方程:55x=90*4.4,解得x=7.2小时。

4.甲、乙两列火车同时从A、B两城相向开出,4小时相遇。

相遇时,两车所行路程的比是3:4,已知乙车每小时行60千米,求A、B两城相距多少千米?解析:设A、B两城相距x千米,根据题意,可以列出方程:4(60+3x)=4(60+4x),解得x=420千米。

5.XXX开车从甲地到乙地,3小时行驶330千米,照这样计算,还需5小时就可以到达乙地,甲乙两地相距多少千米?解析:设甲乙两地相距x千米,根据题意,可以列出方程:3(110)+5(110)=x,解得x=880千米。

6.两辆汽车同时从北京和上海出发,相向而行,每小时分别行115千米和95千米,京沪高速公路长1260千米,大约经过几小时两车相遇?解析:根据题意,两车的相对速度为115+95=210千米/小时,所以它们相遇的时间为1260/210=6小时。

7.一辆汽车从甲地开往乙地,第一小时行了全程的1/4,第二小时比第一小时多行16千米,这时距离乙地还有94千米,甲乙两地间的公路长多少千米?解析:设甲乙两地间的公路长为x千米,根据题意,可以列出方程:x=(1/4)x+(1/4)x+16+94,解得x=220千米。

六年级行程问题经典题型

六年级行程问题经典题型

六年级 行程问题经典题型1. 甲车的速度与乙车的速度比是3:4,两车从A 、B 两地同时相向而行,在距离中点5千米处相遇,问A 、B 两地之间的路程是多少2. 一个人沿直街走,每2分钟迎面开来一辆公共汽车,每8分钟身后开来一辆公共汽车,公共汽车的速度相同,则公共汽车站每隔多少分钟发一辆公共汽车3. 刘明骑自行车从家到学校,每小时行18千米,回来时是逆风,每小时行12千米,他往返这段路平均每小时行多少千米4. 一架名航班机在两城之间往返一次3.8小时,飞去的速度为每小时500千米,飞回的速度为每小时450千米,两城相距多少千米(请利用所学的知识,选择至少三种方法解答)5. 从A 城到B 城,甲车要10小时,乙车要8小时,甲车速度比乙车( )A 、快25%B 、慢20%C 、慢80%6. 一列火车从北京开往上海,3小时行了全程的73,这时距中点还有40千米,这列火车平均每小时行多少千米7、甲、乙两车分别从A 、B,两地同时相向而行,甲每小时行80千米,乙每小时行全程的10%,当乙行到全程的85时,甲车再行全程的61,可到达B 地,求A 、B 两地相距多少千米 8.甲、乙、丙三个小运动员参加100米赛跑,当甲到达终点时,乙离终点还有5米,当乙到达终点时,丙离终点还有5米,那么,当甲到达终点时,丙离终点还有( )米A 、10米B 、9.75米C 、9.25米D 、10.25米9.一列快车从甲地开往乙地,需要6小时,慢车从乙地开往甲地需要9小时。

两车分别从两地同时开出,相向(相对)而行,在离中点18千米处相遇,甲、乙两地相距多少千米10.甲、乙两人分别从周长为1600米的正方形水池ABCD 相对的两个定点A 、C ,同时从出发地绕池边沿的方向行走,甲每分走50米,乙每分走34米,则甲第一次追上乙在( )边上。

11.客车和货车分别从甲、乙两站同时相向而开,5小时后相遇,相遇后,两车仍按原速度前进,当它们相距196千米时,客车行了全程的53,货车行了全程的80%。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小红家
小红家距小明家390米,两人同时从家里出发, 相向而行。小红每分走60米,小明每分走70米, 几分钟后两人相遇。
甲走的路程+乙走的路程=二者相距的路程
60x+70x=390
甲、乙的速度和X时间=二者相距的路程
(60+70)x=390
小红从家走到小明家要4分钟,小明从家走 到小红家要6分钟,小红和小明两人同时从 家里出发,相向而行,几分钟后相遇?
变式2:A、B两地相距150千米,甲、乙两辆汽车都从A地
出发去B地,乙车出发2小时候,甲车才出发。甲车每小时行 60千米,乙车每小时行45千米,经过几小时后两车再相遇?
一个环形跑道,小明和爸爸去散步。小明走一圈需12
分钟,爸爸走一圈需8分钟。
1.如果两人同时同地出发,背向而行,多少分钟后再次 相遇?
六年级数学上册
之行程问题
ห้องสมุดไป่ตู้
口答: 小兰每分钟走10米,5分钟走了多少米?
10 × 5 = 50(米)
行程问题的基本计算关系:
速度 × 时间 = 路程 路程 ÷ 速度 = 时间 路程 ÷ 时间 = 速度
探究 甲乙两个人行走在同一条路线上
1、甲乙两个人从不同的地方出发,他们的 行走方向可能有哪些情况?
变式练习4
A、B两个车站之间的铁路长420 千米 ,甲乙两列火车 分别从A、B两个车站同时相向开出。经过4小时后两车相遇, 相遇后,甲车再过3小时到达B地,乙车再过几小时到达A地?
追及问题:特征:不同起点,朝同一个方向行
走,后者追上了前者。 即同向而行
甲V
乙V
甲乙两地间的距离
乙走的路程
甲地
乙地
追及地




变式练习3 快 来 试一试!
两列火车从两个车站同时相向开出。甲
车两每列小火时车行从4两4个千米车,站乙同车时每相小向时开行出52。千 米甲,车经每过小2时小行时4后两4车千相米距,15乙米车。每两小个车时站 之行间5的2铁千路米长,多经少千过米2?小时后两车相遇。
两个车站之间的铁路长多少千米?
乙走的路程
相遇问题的基本等量关系式: 甲走的路程+乙走的路程=总路程
即:甲的速度×时间+乙的速度×时间=总路程 甲、乙的速度和×时间=总路程
即(甲的速度+乙的速度)×时间=总路程
小红家距小明家390米,两人同时从家里出发, 相向而行。小红每分走60米,小明每分走70米, 几分钟后两人相遇。
小明家
相遇问题
速度和×时间=路程


小红走的路程+小明走的路程=总路程
变式练习1
甲乙两人同时从学校出发,相背而行。甲 每分钟走52米,乙每分钟走48米。两人走 了10分钟时相距多少米?
变式练习2.
甲乙两人从甲乙两地相向而行,甲先出发2小时后, 乙再出发,又经过2小时,两人相遇。甲每小时行 3千米,乙每小时行4千米。两地相距多少千米?
B两地同时出发,都往A到B的方向行驶。甲车每小时行60千 米,乙车每小时行45千米,经过几小时后两车相遇?
甲V
乙V
AB两地间的距离
乙走的路程
A地
B地
甲走的路程
追及地
解:设经过x小时后相遇。 (60-45)x=30
变式1:甲、乙两辆汽车都从A地出发去B地,乙车出发2
小时候,甲车才出发。甲车每小时行60千米,乙车每小时行 45千米,经过几小时后两车再相遇?
(相向、相背、同向)
甲V
乙V
追及问题
同向而行
甲V
乙V
相遇问题
甲V
乙V
相向而行 相背而行
探究 甲乙两个人行走在同一条路线上
2、甲乙两人从同一地点出发的方向,可能有哪些情况?
(相背、同向)
甲V 乙V
相背而行
甲V 同向而行
乙V
相遇问题:特征:两端往中间走,然后相遇了
即相向而行
甲V
总路程
乙V
甲走的路程 相 遇 点
甲走的路程 等量关系式:简称:路程差=速度差×时间
1.甲走的路程=甲乙两地间的距离+乙走的路程
2.甲乙两地间的距离=甲走的路程-乙走的路程
3.甲乙两地间的距离=甲的速度×追及时间-乙的速度×追及时间
4.甲、乙二者的路程差=甲、乙二者速度差×追及时间
例题: A、B两地相距30千米。甲、乙两辆汽车分别从A、
2.如果两人同时同地出发,同向而行,多少分钟后再次 相遇?
相关文档
最新文档