7-脂代谢
第7章脂代谢
第7章脂类代谢1.脂肪动员的限速酶是2.合成酮体的原料是3.脂肪酸生物合成的限速酶是4.脂肪酸合成的原料乙酰CoA从线粒体运至胞液的途径是通过穿梭。
5.胆固醇合成的限速酶是6.胆固醇在体内的主要代谢去路是转变为7.分子结构中含甘油的磷脂是8.血脂的存在与运输形式是9.VLDL的生理功能是转运10.被认为有抗动脉粥样硬化作用的脂蛋白是11.酮体是指,和12.脂肪酸β-氧化是在中进行的,氧化时第一次脱氢的受氢体是,第二次脱氢的受氢体是13.脂肪酸在线粒体内降解的第一步反应是脱氢,该反应的载氢体是14.软脂酸完全氧化净生成个ATP。
15.1个碳原子数为16的脂肪酸分子需经次β-氧化作用循环才能彻底降解,共成分子乙酰CoA。
16.在饱和、偶数碳、长碳链的脂肪酸β-氧化作用中,先在线粒体外激活,然后由肉毒碱携带进入内。
17.酮体合成的酶系在,氧化利用的酶系存在于18.由乙酰CoA可以合成、和单选1.脂肪酸的β-氧化不直接产生:A.乙酰CoAB.H2O+CO2C.脂肪酰CoAD.NADH+H+E.FADH22.β-氧化的四个步骤分别应是:A.脱水、加氢、再脱水、硫解B.脱氢、加水、再脱水、硫解C.脱氢、加水、加氢、硫解D.加氢、脱水、脱氢、硫解E.脱水、加氢、再脱水、裂解3.关于脂肪酸β-氧化,正确的是:A.主要反应是脱水,加氢等反应B.产物是乙酰CoA和还原性辅酶C.产物是H2O和CO2D.直接生成ATPE.脂肪酸活化时要消耗CTP4.列哪种不是脂肪酸β-氧化所需的物质:A.CoASHB.肉碱C.FADD.NAD+E.生物素5.脂肪动员大大加强时,肝内生成的乙酰CoA还可以转变成:A.葡萄糖B.酮体C.胆固醇D.蛋白质E.脂肪酸6.对1分子软脂酸(16碳的饱和脂肪)彻底氧化的叙述,正确的是:A.可进行8次β氧化B.可产生8分子乙酰CoAC.净生成131分子ATPD.可生成8分子NADH+H+E.可生成8分子FADH27.脂肪酸合成的原料乙酰CoA从线粒体运至胞液的途径是:A.三羧酸循环B.磷酸甘油穿梭C.苹果酸穿梭D.柠檬酸-丙酮酸穿梭E.葡萄糖-丙酮酸穿梭8.乙酰CoA不是以下哪种化合物合成的原料:A.柠檬酸B.酮体C.胆固醇D.核酸E.脂肪酸9.对酮体的叙述,错误的是:A.包括乙酰乙酸、β-羟丁酸及丙酮B.可引起酮症,因此是机体产生的异常中间产物C.是脑组织的重要能源D.是肝组织特有的代谢途径E.是肝输出能量的一种形式10.酮体生成和胆固醇合成过程中共同的中间产物是:A.丙二酸单酰CoAB.乙酰CoAC.鲨烯D.HMGCoAE.乙酰二酸11.关于酮体的叙述,下列哪项是错误的?A.呈酸性B.只在肝外利用C.合成的原料是乙酰CoAD.肝脏生成酮体,也可利用酮体E.合成部位是肝细胞线粒体12.关于脂肪酸生物合成,下列错误的是:A.需要生物素参与B. 供氢体是NADPHC.ATP供能D.先合成丙二酸CoAE.仅能合成少于十碳的脂肪酸13.对胆固醇代谢的叙述,正确的是:A.所有组织器官都能合成胆固醇B.合成原料为乙酰CoAC.供氢体是NADHD.可彻底分解产生CO和H2O E.限速酶为HMGCoA合成酶214.胆固醇合成的限速酶是:A.甲羟基戊酸合成B.HMG-CoA还原酶C. HMG-CoA裂解D. HMG-CoA合成E.鲨烯合酶15.胆固醇在体内的主要代谢去路是:A.转变成胆固醇酯B.转变成维生素D3C.转变成类固醇激素D.转变成胆汁酸E.转变成粪固醇排出16.磷脂合成中,乙醇胺、胆碱等中间物的活化形式是:A.ADP-乙醇胺、ADP-胆碱B.UDP-乙醇胺、UDP-胆碱C.GDP-乙醇胺、GDP-胆碱D.CDP-乙醇胺,CDP-胆碱E.TDP-乙醇胺、TDP-胆碱17.内源性甘油三酯主要由哪种血浆脂蛋白运输:A.HDLB.LDLC.CMD.VLDLE.IDL18.空腹12小时血浆中不含:A.CMB.VLDLC.LDLD.HDL1E.HDL219.下面哪一项代谢是在细胞质内进行是:A.脂肪酸的β-氧化B.氧化磷酸化C.三羧酸循环D.脂肪酸合成20.在脂肪酸的合成中,每次碳链的延长都需要什么直接参加?A.乙酰CoAB.草酰乙酸C.丙二酸单酰CoAD.甲硫氨酸21.在脂肪酸合成中,将乙酰CoA从线粒体内转移到细胞质中的化合物是:A.乙酰CoAB.草酰乙酸C.柠檬酸D.琥珀酸22.β-氧化的酶促反应顺序为:A.脱氢、再脱氢、加水、硫解B.脱氢、加水、再脱氢、硫解C.脱氢、脱水、再脱氢、硫解D.加水、脱氢、硫解、再脱氢23.脂肪酸合成过程中的还原反应中,需要哪种辅助因子:A.NADP+B.FADC.FADH2D.NADPH+H+E.NADH+H+24.脂肪大量动员肝内生成的乙酰CoA主要转变为:A.葡萄糖B.酮体C.胆固醇D.草酰乙酸25.生物体内ATP最主要的来源是A.糖酵解B.TCA循环C.磷酸戊糖途径D.氧化磷酸化作用26.下列化合物不属于酮体的有:A.乙酰乙酸B.乙酰乙酸CoAC.β-羟基丁酸D.丙酮27.脂肪酸合成A.不需要乙酰CoAB.丙二酰CoA参加脂肪酸合成的起始和延伸C.在线粒体内进行D.最终产物为十碳以下脂酸28.脂肪酸合成时,原料乙酰CoA的来源是:A.线粒体生成后直接转运到胞液B.线粒体生成后由肉碱携带转运到携带到胞液C.线粒体生成后转化为柠檬酸而转运到胞液D.胞液直接提供29.为了使长链脂酰基从胞浆转运到线粒体内进行脂肪酸的β-氧化,所需要的载体为:A.柠檬酸B.肉碱C.酰基载体蛋白D.CoA30.下列脂肪酸,哪一种是人体营养所必需的?A.棕榈酸B.硬脂酸C.油酸D.亚麻油酸31.下列哪种说法最准确地描述了肉毒碱的功能?A.转运中链脂肪酸进入肠上皮细胞B.转运中链脂肪酸越过线粒体内膜C.参加转移酶催化的酰基反应D.是脂肪酸合成代谢中需要的一种辅酶32.一分子乙酰CoA经三羧酸循环彻底氧化后产物是:A.草酰乙酸B.草酰乙酸和CO2 C.CO2+H2O D.CO2,NADH和FADH233.下列关于脂肪酸从头合成的叙述错误的一项是:A.利用乙酰CoA作为起始复合物B.仅生成短于或等于16碳原子的脂肪酸C.需要中间产物丙二酸单酰CoAD.主要在线粒体内进行34.脂酰-CoA的β-氧化过程顺序是:A.脱氢,加水,再脱氢,加水B.脱氢,脱水,再脱氢,硫解C.脱氢,加水,再脱氢,硫解D.水合,脱氢,再加水,硫解35.()可以产生乳酸。
第七章 脂类代谢
第七章脂类代谢习题一、选择题(一)A型题1. 血浆中脂类物质的运输形式是。
A、脂蛋白B、球蛋白C、糖蛋白D、核蛋白E、血红蛋白2. 可转化成胆汁酸的物质是。
A、胆红素B、胆固醇C、类固醇激素D、维生素DE、磷脂3. 不能氧化酮体的组织是。
A、心B、脑C、肾D、肝脏E、肌肉4. 脂肪酸β-氧化中第一次脱氢反应的受氢体是。
A、NAD+B、FADC、NADP+D、FMNE、C O Q5. 正常人空腹血浆中含量最多的脂蛋白是。
A、CMB、VLDLC、LDLD、HDLE、清蛋白-脂肪酸复合物6. 脂蛋白密度由低到高的正确顺序是。
A、LDL、HDL、VLDL、CMB、CM、VLDL、LDL、HDLC、VLVL、HDL、LDL、CMD、CM、VLDL、HDL、LDLE、HDL、VLDL、LDL、CM7. 脂肪大量动员时,血中运输脂肪酸的载体是。
A、CMB、VLDLC、LDLD、HDLE、清蛋白8. 长期饥饿时尿中含量增高的物质是。
A、葡萄糖B、丙酮酸C、胆红素D、酮体E、脂肪9. 下列哪种物质是脂肪酸氧化中不需要的。
A、HSCoAB、NADP+C、肉毒碱D、NAD+E、FAD10. 主要在线粒体内进行的反应是。
A、胆固醇合成B、脂肪酸合成C、脂肪酸β-氧化C、甘油三酯的合成E、磷脂的合成11. 脂肪酸合成中的供氢体是。
A、FADH2B、NADH+H+C、NADPH+H+D、FMNH2E、二氢硫辛酸12. 一分子软脂酸(16碳)彻底氧化成CO2和H2O时可净生成多少ATP。
A、38分子B、30分子C、20分子D、131分子E、129分子13. 类脂的主要功能是。
A、构成生物膜及神经组织的成分B、体液的主要成分C、储存能量D、提供能量E、遗传物质14. 线粒体外α-磷酸甘油脱氢酶的辅酶是。
A、NAD+B、NADP+C、FMND、FADE、生物素15. 下列哪种物质不属于类脂。
A、甘油三酯B、磷脂C、糖脂D、胆固醇E、胆固醇酯16. 脂酰CoA的β-氧化过程反应顺序是。
脂代谢复习题-
第七章脂代谢一、填空题:1 .是动物和许多植物主要的能源贮存形式,是由与3 分子酯化而成的。
2 .在线粒体外膜脂酰CoA 合成酶催化下,游离脂肪酸与和反应,生成脂肪酸的活化形式,再经线粒体内膜进入线粒体基质。
3 .一个碳原子数为n (n 为偶数)的脂肪酸在β -氧化中需经次β-氧化循环,生成个乙酰CoA ,个FADH 2 和个NADH+H + 。
4 .脂肪酸从头合成的C 2 供体是,活化的C 2 供体是,还原剂是。
5 .乙酰CoA 羧化酶是脂肪酸从头合成的限速酶,该酶以为辅基,消耗,催化与生成。
6 .脂肪酸从头合成中,缩合、两次还原和脱水反应时酰基都连接在上,它有一个与一样的长臂。
7. 脂肪酸β-氧化包括、、和四步连续反应。
8 .脂肪酸合成酶复合物一般只合成,动物中脂肪酸碳链延长由或酶系统催化;植物的脂肪酸碳链延长酶系定位于。
9.肉毒碱的功能是10 .三酰甘油是由和在磷酸甘油转酰酶的作用下先形成,再由磷酸酶转变成,最后在催化下生成三酰甘油。
11 .磷脂合成中活化的胆碱供体为,在功能上类似于糖原合成中的或淀粉合成中的_______________。
12.膜脂一般包括________________、________________、和________________,其中以________________为主。
膜蛋白按其与脂双层相互作用的不同可分为________________与________________两类。
13. 磷脂酰胆碱(卵磷脂)是由________________、________________、________________和________________组成。
(二)选择题1.下列哪项叙述符合脂肪酸的β氧化:A.仅在线粒体中进行B.产生的NADPH 用于合成脂肪酸C.被胞浆酶催化D.产生的NADPH 用于葡萄糖转变成丙酮酸E.需要酰基载体蛋白参与2.脂肪酸在细胞中氧化降解A.从酰基CoA 开始B.产生的能量不能为细胞所利用C.被肉毒碱抑制D.主要在细胞核中进行E.在降解过程中反复脱下三碳单位使脂肪酸链变短3.下列哪些辅因子参与脂肪酸的β氧化:A.ACP B.FMN C.生物素D.NAD+4. 甘油脂完全被氧化成CO2和H2O不需要经过A.β-氧化B.TCA循环C.EMP D.糖异生5.脂肪酸从头合成的酰基载体是:A.ACP B.CoA C.生物素D.TPP6.下列有关甘油三酯的叙述,哪一个不正确?A.甘油三酯是由一分子甘油与三分子脂酸所组成的酯B.任何一个甘油三酯分子总是包含三个相同的脂酰基C.在室温下,甘油三酯可以是固体,也可以是液体D.甘油三酯可以制造肥皂E.甘油三酯在氯仿中是可溶的7.下列哪些是人类膳食的必需脂肪酸(多选)?A.油酸B.亚油酸C.亚麻酸D.花生四烯酸8.下述关于从乙酰CoA 合成软脂酸的说法,哪些是正确的(多选)?A.所有的氧化还原反应都以NADPH 做辅助因子;B.在合成途径中涉及许多物质,其中辅酶A 是唯一含有泛酰巯基乙胺的物质;C.丙二酰单酰CoA 是一种“被活化的“中间物;D.反应在线粒体内进行。
生物化学第七章 脂代谢
(一)、酮体的生成
▪部位:肝线粒体 ▪原料:乙酰CoA,主要来自脂肪酸的-氧化 ▪关键酶:HMG CoA合成酶
HSCoA
2CH3COSCoA 乙酰CoA
硫解酶
CH3COCH2COSCoA 乙酰乙酰CoA
HMG-CoA合酶 CH3COSCoA
HSCoA
OH
乙酰CoA
HOOCCH2-C-CH2COSCoA 裂解酶CH3 HMG-CoA
脂解激素
受体
AC
G蛋白
ATP cAMP
脂周蛋白 P
P P P P
HSL
PKA P HSL HSL
储脂颗粒
FFA
甘油 脂肪细胞
血液
脂酸转运体
氧化分解 ATP
CO2 清蛋白
肌细胞
一、甘油(Glycerol)的分解
CH2 OH ATP ADP
CH2 OH
NAD+
NADH+H +
磷酸二
HO C H
脱氢 加水 再脱氢 硫解
O
=
RCH2CH2C~SCoA
脂酰CoA
FAD
脱氢酶 β αO
FADH2
=
RCH=CHC~SCoA
⊿2--烯脂酰CoA 水化酶
H2O
β
αO
=
RCHOHCH2C~SCoA
L(+)-β羟脂酰
NAD+
CoA脱氢酶
NADH+H+
βα O
=
RCOCH2C~SCoA
β酮脂酰CoA
硫解酶
CH3COCH2COOH 乙酰乙酸
NADH+H+
β-羟
NAD+
医学生物化学(第七章)脂类代谢
族 ω -7(n-7) ω -9(n-9) ω -6(n-6) ω -3(n-3)
母体脂酸 软油酸(16:1,ω -7)
油酸(18:1,ω -9) 亚油酸(18:2,ω -6,9) α -亚麻酸(18:3,ω -3,6,9)
10
表7-2 常见的不饱和脂酸
习惯名
软油酸 油酸 亚油酸 -亚麻酸 -亚麻酸 花生四烯酸
6656 9791
×
100% = 68% (能量利用效率)
41
表7-3 软脂酸与葡萄糖在体内氧化产生ATP的比较
以1mol计 以100g计 能量利用效率
软脂酸 129 ATP 50.4 ATP
68%
葡萄糖 38 ATP 21.1 ATP
68%
42
3. 脂肪酸的其它氧化方式 * 不饱和脂肪酸的氧化
脂肪 (以CM形式吸收入血)
24
С ³¦ £º Ö¬ ·¾ ×é Ö¯ £º ¸Î Ôà £º
ʳ Îï ¸Ê ÓÍ Ò» õ¥ TG GΪ Ô ÁÏ ¸Ê ÓÍ ¶þ õ¥ TG GΪ Ô ÁÏ ¸Ê ÓÍ ¶þ õ¥ TG
25
二、 甘油三酯的分解代谢
1. 脂肪动员 (1) 概念:
甘油三酯
(均含脂酸)
饱和脂酸
2. 不饱和脂酸
(不含双键) (含双键)
长链脂酸 12-26c 3 . 中链脂酸 6-10c
短链脂酸 2-4c
(16c、18c)
7
* 体内脂酸来源:
1. 机体自身合成: 饱和、单不饱和, 储存于脂肪组织中
2. 食物脂肪供给: 多不饱和(必需脂酸, PG等的前体)
8
第一节 不饱和脂酸的命名及分类
14
辅脂酶 (colipase)
动物生物化学 第七章 脂类代谢
CH2OH甘油激酶 CH2OPO23- 磷酸甘油脱氢酶 CH2OPO23-
CHOH
CHOH
CO
CH2OHATP ADP CH2OH NAD+ NADH+ H+ CH2OH
2.脂肪酸的分解代谢
(1)脂肪酸的-氧化
• 脂肪酸的-氧化作用是指脂肪酸在氧化 分解时,碳链的断裂发生在脂肪酸的位,即脂肪酸碳链的断裂方式是每次切 除2个碳原子。脂肪酸的-氧化是含偶数 碳原子或奇数碳原子饱和脂肪酸的主要 分解方式。
• 胰脂肪酶是一种非专一性水解酶,对脂肪酸碳 链的长短及饱和度专一性不严格。但该酶具有 较好的位置选择性,即易于水解甘油酯的1位 及3位的酯键,主要产物为甘油单酯和脂肪酸。 甘油单酯则被另一种甘油单酯脂肪酶水解,得 到甘油的脂肪酸。
1.脂肪的动员
1.甘油的代谢
• 甘油经血液输送到肝脏后,在ATP存在下,由甘油激 酶催化,转变成-磷酸甘油。这是一个不可逆反应过 程。-磷酸甘油在脱氢酶(含辅酶NAD+)作用下, 脱氢形成磷酸二羟丙酮。磷酸二羟丙酮是糖酵解途径 的一个中间产物,它可以沿着糖酵解途径的逆过程合 成葡萄糖及糖原;也可以沿着糖酵解正常途径形成丙 酮酸,再进入三羧酸循环被完全氧化。
• (2)许多类脂及其衍生物具有重要生理作用。脂类代 谢的中间产物是合成激素、胆酸和维生素等的基本原 料,对维持机体的正常活动有重要影响作用。
• (3)人类的某些疾病如动脉粥样硬化、脂肪肝和酮尿 症等都与脂类代谢紊乱有关。
7.1 脂肪的分解代谢
• 脂肪在脂肪酶催化下水解成甘油和脂肪酸,它 们在生物体内将沿着不同途径进行代谢。
• 由于软脂酸转化成软脂酰CoA时消耗了1分子ATP中的两个 高能磷酸键的能量(ATP分解为AMP, 可视为消耗了2个 ATP),因此,1分子软脂酸完全氧化净生成 131 – 2 = 129 个ATP。
7脂类代谢
R –CH=CH-CO~SCoA
脱氢
α ,β -烯脂酰CoA
H 2O
硫 解
NADH+H+ NAD+
水 化
R –C-CH2-CO~SCoA | | O β -酮脂酰CoA
再脱氢
R –CH-CH2-CO~SCoA | OH β -羟脂酰CoA
β-氧化小结:
a. β-氧化包括脱氢、加水、再脱氢、硫解4步反 应,每步均可逆行,但全过程趋向分解。 b. 含偶数碳原子的脂酰CoA,每经β-氧化一次, 生成一分子乙酰CoA,1分子FADH2 、1分子 NADH+H+,其本身碳链缩短两个碳原子,如此 反复进行,直至最后全部转变为乙酰CoA。 c. 脂酰CoA每经β-氧化一次,可生成5分子ATP。
肉毒碱脂酰转移酶Ⅰ
肉毒碱脂酰转移酶Ⅱ
CoA-SH
R-CO-肉毒碱
膜间隙 线粒体内膜
R-CO-肉毒碱
基质
CoA-SH
(三)脂肪酸的氧化分解
2.脂酰CoA的β -氧化(脱氢、水化、再脱氢、硫解)
FAD FADH2
R –CH2-CH2-CO~SCoA 脂酰CoA R –CO~SCoA
CH3-CO~SCoA
(三)脂肪酸的氧化分解
1.1 脂肪酸活化(胞液)
脂酰CoA合成酶
R-CH2-CH2-COOH
脂肪酸
ATP+HSCoA Mg2+
R-CH2-CH2-CO~SCoA
AMP+PPi
脂酰CoA
(三)脂肪酸的氧化分解
1.2 脂肪酸转运
R-CO~SCoA 肉毒碱
肉毒碱 载体
肉毒碱
R-CO~SCoA
生物化学7 脂类代谢与合成
脂肪酸的分解代谢脂肪酸对生物体有四种重要的功能,其一脂肪酸是磷脂和糖脂的组成单元,这些分子又是生物膜的组成成分;其二,脂肪酸以共价键与糖蛋白的蛋白质相接,经过修饰的这个糖蛋白在脂肪酸残基的引导下指向膜的靶标位置;其三脂肪酸时燃料分子,它们以三脂酰甘油的形式贮存起来;其四,脂肪酸的某些衍生物担当者激素及胞内信使的职能。
长链脂肪酸的氧化铈动物、许多原生生物和一些细菌获取能量的主要途径。
在脂肪酸氧化的过程中,电子的转移通过线粒体呼吸链推动ATP合成,并产生乙酰辅酶A。
乙酰辅酶A经过柠檬酸循环产生二氧化碳,进一步实现能量贮存。
脊椎动物中,乙酰辅酶A在肝脏会转化为酮体,这是一种可溶于水的燃料,当葡萄糖不能供应室,它可向脑和其他组织提供能量。
在高等植物中,脂肪酸氧化产物乙酰辅酶A首先用作生物合成的前体,其次再用作为燃料。
脂肪酸氧化的生物功能尽管因不同生物体有所差别,但是它的反应机制都是相同的。
脂肪酸的氧化可分为三步一是长链脂肪酸降解为两个碳原子即乙酰辅酶A二是乙酰辅酶A经过柠檬酸循环氧化成二氧化碳三是还原的电子载体到线粒体呼吸链的电子传递三脂酰甘油即三酰甘油或脂肪是脂肪酸的甘油三酯。
三脂酰甘油在人类的饮食脂肪中,以及作为代谢能量的主要贮存形式中约占百分之九十。
脂肪可完全氧化成二氧化碳和水,由于脂肪分子中绝大部分碳原子和葡萄糖相比,都处于较低的氧化状态,因此脂肪氧化代谢产生的能量按同等干重计算比糖类或蛋白值高出2倍以上。
脂肪是非极性化合物,它以水合形式贮存,因此按同等重量计算,脂肪的代谢能量实际高达糖原的6倍,脂肪的酶促降解三脂酰甘油是水不溶性的,而消化作用的酶确是水溶性的,因此三脂酰甘油的消化是在脂质-水的界面出发生的。
三酰甘油的消化速度取决于界面的表面积,在小肠的“剧烈搅拌”下,特别是在胆汁盐的乳化作用下,消化量大幅度增高。
胆汁盐是强有力的,用于消化的“去污剂”,它是在肝脏中合成的,经胆囊分泌进入小肠,脂肪的消化和吸收也主要在小肠中进行。
第七章 脂类代谢
兰州科技职业学院课程名称:生物化学授课教师:李妮 No: _17___第七章脂类代谢第一节概述一、什么是脂类?指脂肪和类脂的总称为脂类。
二、分类1. 脂肪 (fat)甘油一酯、甘油二酯、甘油三酯2. 类脂(lipoid)胆固醇 (cholesterol, Ch) 、胆固醇酯 (cholesterol ester, CE) 、磷脂(phospholipid, PL) 、糖脂 (glycolipids,GL)。
三、脂类在体内的分布(一)脂肪的生理功能1.储能和氧化供能2.提供必需脂肪酸必需脂肪酸:机体不能合成,必须由食物供给的不饱和脂肪酸称为,如亚油酸、亚麻酸、花生四烯酸。
3.协助脂溶性维生素吸收4.保温和保护作用(二)类脂的生理功能1.维持生物膜的正常结构和功能2.转化为多种重要的生理活性物质在体内胆固醇可转化成胆汁酸、类固醇激素、维生素D3等重要物质。
必需脂肪酸可以转化为前列腺素、白三烯等具有重要生理功能的物质。
第二节甘油三酯代谢一、甘油三酯的分解代谢(一)脂肪动员1.定义:贮存在脂肪组织中的甘油三酯,在脂肪酶催化下,逐步水解为甘油和游离脂肪酸(FFA)并释放入血,经血液运输至全身各组织而被氧化利用的过程称为脂肪动员。
2.脂肪动员过程3. 限速酶甘油三酯脂肪酶(激素敏感性脂肪酶)使甘油三酯脂肪酶活性降低的激素:(1).胰岛素(2).前列腺素E思考:糖尿病病人胰岛素分泌减少时如何影响脂肪动员?使甘油三酯脂肪酶活性增加的激素:1.肾上腺素2.去甲肾上腺素3.促肾上腺皮质激素4.胰高血糖素5.促甲状腺激素刺激激素(二)脂肪酸的氧化1.脂肪酸氧化的反应部位除脑组织外,大多数组织均可进行,其中肝、肌肉最活跃。
2.亚细胞定位胞液、线粒体。
3.脂肪酸氧化的反应过程第一阶段:脂肪酸的活化第二阶段:脂酰CoA进入线粒体第三阶段:β-氧化过程第四阶段:乙酰CoA的彻底氧化4.脂肪酸的活化——脂酰 CoA 的生成 (胞液)(1)脂酰CoA合成酶(acyl-CoA synthetase)存在于内质网及线粒体外膜上。
第七章脂质代谢
中毒,破坏机体水盐代谢平衡
严重饥饿和未经治疗的糖尿病人体内可产生大量的酮体, 血液中出现大量丙酮(有毒但不是酸性),血液中出现的 乙酰乙酸和羟丁酸是酸性物质,使血液pH降低,发生“酸 中毒”,另外,尿中酮体显著升高,称为“酮病”。
脂肪酸硫激酶
O
O
RCH2CH2CH2C AMP+CoA SH
RCH2CH2CH2C SCoA+ AM
(二)脂酰CoA转运入线粒体 10碳以上的脂酰CoA只能透过线粒体外膜,但
不能透过线粒体内膜 •脂酰CoA载体
肉毒碱(3-羟基-4-三甲氨基丁酸)
脂酰肉碱转移酶Ⅰ
脂酰肉碱转移酶Ⅱ
(三)脂肪酸的β氧化
三酰甘油脂肪酶
R2-C-O-CH CH2OH
--
O=
H2O
R1COOH
CH2OH H2O
R2COOH CH2OH
二酰甘油脂肪酶
R2-C-O-CH CH2OH
单酰甘油脂肪酶
HCOH CH2OH
一.甘油的代谢
• 甘油在肝脏(存在甘油激酶)后,由甘油激酶催 化,转变成-磷酸甘油。
• -磷酸甘油在脱氢酶(含辅酶NAD+)作用下, 脱氢形成磷酸二羟丙酮。
106 个ATP
脂肪酸-氧化的生理意义
•为机体提供比糖氧化更多的能量 •乙酰CoA还可作为脂肪酸和某些AA的合成原料 •产生大量的水可供陆生动物对水的需要
大灰熊
Unlike most hibernating species, the bear maintains a body temperature of between 32 and 35ºC, close to the normal (nonhibernating) level. Although expending about 25,000 kJ/day (6,000 kcal/day), the bear does not eat, drink, urinate, or defecate for months at a time.
第七章脂类代谢复习题-带答案
第七章脂代谢一、名词解释80、脂肪酸答案:〔fatty acid〕自然界中绝大多数为含偶数碳原子,不分枝的饱和或不饱和的一元羧酸。
81、必需脂肪酸答案:〔essential fatty acids EFA〕人体及哺乳动物正常生长所需要,而体内又不能自身合成,只有通过食物中摄取的脂肪酸:如亚油酸,亚麻酸,花生四烯酸〔可通过亚油酸进一步合成〕。
82、β-氧化作用答案:〔beta oxidation〕是指脂肪酸在一系列酶的作用下,在α-碳原子和β-碳原子之间发生断裂,β-碳原子被氧化形成羧基,生成乙酰CoA 和较原来少2个碳原子的脂肪酸的过程。
83、α-氧化作用答案:〔alpha oxidation〕以游离脂肪酸为底物,在分子氧的参与下生成D-α-羟脂肪酸或少一个碳原子的脂肪酸。
84、ω-氧化作用答案:〔omega oxidation〕指远离脂肪酸羧基的末端碳原子〔ω-碳原子〕被氧化成羟基,再进一步氧化成羧基,生成α,ω --二羧酸的过程。
85、乙醛酸循环答案:〔glyoxylate cycle 〕是植物体内一条由脂肪酸转化为碳水化合物途径,发生在乙醛酸循环体中,可看作三羧酸循环支路,它绕过两个脱羧反响,将两分子乙酰CoA转变成一分子琥珀酸的过程。
二、填空题102、大部分饱和脂肪酸的生物合成在中进展。
答案:胞液103、自然界中绝大多数脂肪酸含数碳原子。
答案:偶104、参加饱和脂肪酸从头合成途径的两个酶系统是和。
答案:乙酰辅酶A羧化酶;脂肪酸合成酶复合体105、脂肪酸生物合成的原料是,其二碳供体的活化形式是。
答案:乙酰CoA;丙二酸单酰CoA106、生成二酸单酰辅酶A需要催化,它包含有三种成分、和。
答案:乙酰辅酶A羧化酶系;生物素羧化酶〔BC〕;生物素羧基载体蛋白〔BCCP〕;转羧基酶〔CT〕107、大肠杆菌脂肪酸合成酶复合体至少由六种酶组成、、、、、和一个对热稳定的低分子量蛋白质。
答案:酰基转移酶、丙二酸单酰转移酶、ß-酮脂酰ACP合成酶〔缩合酶〕、ß-酮脂酰ACP 复原酶、ß -羟脂酰ACP脱水酶、烯脂酰ACP复原酶;酰基载体蛋白〔ACP〕108、大肠杆菌脂肪酸合成酶复合体中承受脂酰基的两个巯基臂分别存在于和上。
生物化学第七章脂类代谢
软脂酸合成的总反应式:
乙酰CoA + 7丙二酸单酰CoA + 14NADPH+H+
脂肪酸合成酶系 软脂酸(16C)+14 NADP++8HSCoA+7CO2+6H2O
软 脂 酸 的 合 成 总 图
目录
(四) 脂酸合成的调节
(1)代谢物的调节作用
乙酰CoA羧化酶的别构调节 抑制剂:软脂酰CoA及其他长链脂酰CoA
激活剂:柠檬酸、异柠檬酸
糖代谢加强,NADPH及乙酰CoA供应增 多,有利于脂酸的合成。 大量进食糖类能增强脂肪合成酶的活性从 而使脂肪合成增加。
(2)激素调节
胰岛素
胰高血糖素 肾上腺素 生长素 + 脂酸合成
﹣ 脂酸合成 ﹣ TG合成
乙酰CoA羧化酶的共价调节 胰高血糖素:激活PKA,使之磷酸化而失活 胰岛素:通过磷蛋白磷酸酶,使之去磷酸化 而复活
作用:转移羧基
(2)软脂酸合成 各种生物合成软脂酸的过程基本相似。 软脂酸的合成是一个重复加成过程,每 次延长2个碳原子。由脂酸合成酶系催化。
真核生物7种酶蛋白结构域(脂肪酰基转移酶、
丙二酰酰CoA酰基转移酶、β酮脂肪酰合成酶、β酮
脂肪酰还原酶、β羟脂酰基脱水酶、脂烯酰还原酶、
硫酯酶)和脂酰基载体蛋白(ACP)聚合在一条多肽
第 七 章
脂类代谢
Metabolism of Lipid
第一节 脂 类 的 概 述
一、脂类的概念:
脂类(lipids)是脂肪(fat)和类脂(lipoid)的总称。
脂肪(甘油三酯 triglyceride)
脂类 类脂 胆固醇(酯) cholesterol 磷脂 phospholipid
糖脂
脂类物质的基本构成:
第7章 脂类代谢
• (3)胆固醇:胆固醇可反馈抑制HMG CoA还原酶的合成,使肝胆固醇
的合成减少,但是,小肠不受这种反馈调节影响,因此大量进食胆固 醇,血中胆固醇浓度仍然可以升高。
• 4.排泄
体内大部分胆固醇在肝脏中转变成胆汁酸,随胆汁排出,这是胆固 醇主要的排泄方式。另外,少数胆固醇直接随胆汁排入肠道随粪便排 出。
第 4 节 血脂
一、血脂
(一)血脂的组成和含量
血浆中所含脂类统称为血脂。血脂包含甘油三酯、
胆固醇和胆固醇酯、磷脂以及游离脂肪酸等。
* 血脂含量受膳食、年龄、性别、职业及代谢等的影 响,波动范围很大。
(二)甘油的氧化分解
(三)脂肪酸的氧化
肝脏和肌肉中最为活跃。线粒体是脂肪酸氧化的主 要部位,其过程可分为以下三个阶段:
1. 脂肪酸活化成脂酰CoA :胞液
2. 脂酰CoA转运进入线粒体 :肉碱
3. 脂肪酸的β -氧化
• 脂酰CoA氧化过程发生在脂酰羧基端β -碳原子上,
所以称为β -氧化。
• 从脂酰CoA的β -碳原子开始,经过脱氢、加水、
再脱氢和硫解四步连续反应。
(四)酮体的生成和利用
• 酮体是脂肪酸在肝细胞氧化分解时产生的特有
中间代谢物,包括乙酰乙酸、β-羟丁酸及丙酮。
• 其中β-羟丁酸约占总量的70%,乙酰乙酸约占
30%,丙酮含量极少。
1.酮体的生成
2.酮体的利用
2.酮体代谢的生理意义
• 酮体是脂肪酸在肝内正常的中间代谢产物,是肝脏输出脂
7脂和脂代谢
无色或略带黄色的结晶,m.p148.5℃,在高真空 度下可升华,微 溶于水,溶于乙醇、乙醚、氯仿 等有机溶剂。人体内发现的胆结石几乎全是由胆 甾醇所组成的,胆固醇的名称也是由此而来的。
胆酸
HO H H HO H HO H COOH
胆汁酸存在于动物的胆汁中,从人和牛的胆汁 中所分离出来的胆汁酸主要为胆酸。胆酸是油脂的 乳化剂,其生理作用是使脂肪乳化,促进它在肠中 的水解和吸收。故胆酸被称为“生物肥皂“。
N+(CH3)3
R-C -O-CH2
肉毒碱转酯 酰基酶Ⅱ
线粒体内膜
(3) -氧化
a. 脱氢
βα
R C C C H2 H2 H2 O C
βα
O C
~
SCoA
脱氢酶 FAD FADH2
R C C C H2 H H
~ SCoA
△2 反烯脂酰CoA
b. 水化(或水合)
βα
R C C C H2 H H O C
(2) 转运—
酯酰CoA进入线粒体基质示意图
O R-C-OH ATP CoASH AMP+PPi O R-C-S-CoA
外侧
N+(CH3)3
内侧
β-氧化
CH2
HO-CH2 COOO
肉毒碱
肉毒碱
移 位 酶
R-C-S-CoA
肉毒碱转酯 酰基酶Ⅰ
CoASH
酯酰肉毒碱
O
CH2 COO-
酯酰肉毒碱
CoASH
TCA
ATP
脂酰SCoA β α
R C C C C H2 H2 H2 H2 O C OH
ATP AMP+PPi FADH2 + NADH + H+
第七章脂类代谢习题及答案
第七章脂类代谢一、知识要点(一)脂肪的生物功能:脂类是指一类在化学组成和结构上有很大差异,但都有一个共同特性,即不溶于水而易溶于乙醚、氯仿等非极性溶剂中的物质。
通常脂类可按不同组成分为五类,即单纯脂、复合脂、萜类和类固醇及其衍生物、衍生脂类及结合脂类。
脂类物质具有重要的生物功能。
脂肪是生物体的能量提供者。
脂肪也是组成生物体的重要成分,如磷脂是构成生物膜的重要组分,油脂是机体代谢所需燃料的贮存和运输形式。
脂类物质也可为动物机体提供溶解于其中的必需脂肪酸和脂溶性维生素。
某些萜类及类固醇类物质如维生素A、D、E、K、胆酸及固醇类激素具有营养、代谢及调节功能。
有机体表面的脂类物质有防止机械损伤与防止热量散发等保护作用。
脂类作为细胞的表面物质,与细胞识别,种特异性和组织免疫等有密切关系。
(二)脂肪的降解在脂肪酶的作用下,脂肪水解成甘油和脂肪酸。
甘油经磷酸化和脱氢反应,转变成磷酸二羟丙酮,纳入糖代谢途径。
脂肪酸与ATP和CoA在脂酰CoA合成酶的作用下,生成脂酰CoA。
脂酰CoA在线粒体内膜上肉毒碱:脂酰CoA转移酶系统的帮助下进入线粒体衬质,经β-氧化降解成乙酰CoA,在进入三羧酸循环彻底氧化。
β-氧化过程包括脱氢、水合、再脱氢和硫解四个步骤,每次β-氧化循环生成FADH2、NADH、乙酰CoA和比原先少两个碳原子的脂酰CoA。
此外,某些组织细胞中还存在α-氧化生成α羟脂肪酸或CO2和少一个碳原子的脂肪酸;经ω-氧化生成相应的二羧酸。
萌发的油料种子和某些微生物拥有乙醛酸循环途径。
可利用脂肪酸β-氧化生成的乙酰CoA合成苹果酸,为糖异生和其它生物合成提供碳源。
乙醛酸循环的两个关键酶是异柠檬酸裂解酶和苹果酸合成酶前者催化异柠檬酸裂解成琥珀酸和乙醛酸,后者催化乙醛酸与乙酰CoA生成苹果酸。
(三)脂肪的生物合成脂肪的生物合成包括三个方面:饱和脂肪酸的从头合成,脂肪酸碳链的延长和不饱和脂肪酸的生成。
脂肪酸从头合成的场所是细胞液,需要CO2和柠檬酸的参与,C2供体是糖代谢产生的乙酰CoA。
第七章 脂类代谢
游离胆固醇 总磷脂 卵磷脂 神经磷脂 脑磷脂
40~70(55) 100~250(200) 50~200(100) 50~130(70) 15~35(20)
1.03~1.81(1.42) 48.4~80.7(64.6) 16.1~64.6(32.3) 16.1~42.0(22.6) 4.8~13.0(6.4) 肝 肝 肝 肝
甘油三酯代谢
+ NADH+H NAD +
ADP CH2OH
CHOH P
甘油激酶 CH2OH (肝、肾、肠) CH2O
磷酸甘油脱氢酶
3-磷酸甘油
CH2OH C O P
糖酵解
丙酮酸
→乙酰辅酶A→TAC
CH2O
糖异生 糖或糖原
磷酸二羟丙酮
第二节
甘油三酯代谢
(三)脂肪酸的β-氧化
甘油三酯的分解代谢主要是脂肪酸的氧化分 解。机体脂肪酸的氧化是从脂肪酸羧基端的β碳原子开始,每氧化一次断裂两个碳原子,故又 称为脂肪酸的β-氧化。除大脑、成熟红细胞外, 大多数组织都能利用脂肪酸氧化供能,以肝和肌 肉组织最活跃。线粒体是脂肪酸氧化的主要部位。
二十一世纪
??
第一节 概
述
脂类是脂肪及类脂的总称,是生物体内一 类重要的有机化合物。
脂肪是由一分子甘油和三分子脂肪酸脱水缩合 而成的酯,又称三酯酰甘油或甘油三酯(TG)。 类脂包括磷脂(PL)、糖脂、胆固醇(Ch)及 胆固醇脂(CE)。 脂类的共同特征是不溶于水而易溶于乙醚、氯 仿等有机溶剂。
第一节
第二节 甘油三酯代谢
脂肪酸的氧化过程可概括为:脂肪酸活化 为脂酰CoA、脂酰CoA进入线粒体、脂肪酸的 β-氧化过程及乙酰CoA的彻底氧化四个阶段。 1.脂肪酸活化为脂酰CoA 在细胞质中,脂 酰CoA合成酶催化脂肪酸与HSCoA生成脂酰CoA 的过程称为脂肪酸的活化。反应过程中ATP供 能后生成AMP ,两个高能磷酸键断裂,相当 于消耗2分子ATP。
7-脂肪酸的合成代谢
脂肪酸的合成代谢---介绍细胞内脂肪酸合成的基本代谢途径及其相关酶的性质软脂酸的生物合成脂肪酸的合成不是降解的逆过程脂肪酸合成主要场所:细胞溶胶;肝脏组织,脂肪组织和乳腺组织为主;植物种子和果实等器官合成的原料: 脂肪酸氧化,丙酮酸氧化脱羧等生成的乙酰CoA(线粒体),不能透过线粒体内膜进入细胞溶胶,柠檬酸穿梭途径。
脂酰肉碱穿梭柠檬酸穿梭柠檬酸穿梭●脂肪酸的合成通过连续添加2碳单位进行合成◆合成和分解是两条不同的代谢途径◆使用不同的酶系和辅酶催化●脂肪酸合成的原料:•乙酰CoA NADPH为还原力●脂肪酸合成的中间物—丙二酸单酰CoA●脂肪酸合成的装置:•乙酰CoA羧化酶•脂肪酸合酶复合体含有6个活性部位和1个ACP(酰基载体蛋白)丙二酸单酰CoA的形成CH3COSCoA+HCO3-ATP 乙酰CoA羧化酶生物素、Mn2++HOOC CH2COSCoA ADP Pi++丙二酰CoA⏹脂肪酸合酶与合成过程●催化脂肪酸的合成,至少具有六种酶活性和一个酰基载体蛋白;因有机体的种类不同存在不同的结构和装配差异.●酰基载体蛋白(ACP):辅基为磷酸泛酰巯基乙胺,末端巯基与反应中间物酯化,将中间物从一个反应中心转移到另一个反应中心乙酰CoA-ACP转乙酰(脂酰基)酶将乙酰基转移到β-酮脂酰-ACP合成酶Cys残基上.脂肪酸合成的启动乙酰基丙二酸酰基CoA-ACP转移酶催化将丙二酸酰基转移到ACP的巯基,形成酯键. 脂肪酸合成的装载乙酰CoAβ-酮脂酰ACP合酶催化乙酰基(脂酰基)与丙二酸酰基缩合.缩合形成β-酮脂酰ACPβ-酮脂酰ACP还原酶还原:还原β-酮基为β-羟基.β-羟丁酰ACPβ-羟脂酰ACP脱水酶脱水:催化β-脂酰ACP脱水,产生双键.烯脂酰ACP还原酶二次还原:催化双键还原.SCO CH 2ACPCH 2CH 3E SH SHACPESCOCH 3SCOCH 3ACP ESHSACPESCOCH 3COCH 2COOHSCO CH 2ACPCCH 3ESHO SCO CH 2ACPCHESHOH CH 3SCO CHACPCHE SHCH 3SHACPESH 转酰基酶CO 2β-酮脂酰-ACP 合酶3CoASHHOOCCH 2CO-SCoA 丙二酰CoA-ACP 转酰基酶21bNADP +NADPH+H +45HO HNADP +NADPH+H +烯脂酰-ACP 还原酶6加氢启动脱水加氢装载缩合HSCoA乙酰CoA-ACP 转酰基酶CH 3COSCoA1a经7轮cycle合成了棕榈酰-S-ACPCH3(CH2)14CO-S-ACPCH3(CH2)14COOH+ACP-SHCH3(CH2)14COSCoA+ACP-SH软脂酰合成中能量消耗ATP 7NADPH 14比较真核生物软脂酸降解与软脂酸合成的异同?硫解酶L-羟酯酰CoA 脱氢酶烯酯酰CoA 脱水酶烯酰还原酶⏹脂肪酸碳链的延长●脂肪酸的合成只能到16C 软脂酸,继续延长碳链由两个酶系经两条途径在不同细胞部位完成●线粒体脂肪酸延长酶系: 脂肪酸降解的逆反应,最后一步使用了还原剂NADPHβ-OX线粒体酶系脂酰CoA 脱氢脱氢硫解加氢脱水加氢缩合加水内质网脂肪酸延长酶系:软脂酰-CoA以丙二酸单酰-CoA为二碳单位的供体,可合成硬脂酸可延长饱和FA,也可延长不饱和FA引物:脂酰CoA2C单位:来自丙二酸单酰CoA载体:CoA硬脂酸→油酸脂肪酸降解和合成的调节代谢途径自身调控(别构调控,竞争)激素调控(共价修饰)基因表达调控(酶量)⏹脂肪酸降解的调节●丙二酰-CoA●别构调节肉碱酰基转移酶I,浓度高抑制酶活性,抑制脂肪酸的分解代谢;促进脂肪酸的合成代谢脂肪酸合成的调节动物柠檬酸,乙酰CoA软脂酰-CoA胰岛素胰高血糖素,肾上腺素酶量调控乙酰CoA+草酰乙酸→柠檬酸→胞浆脂肪酸合成的第一个关键反应葡萄糖合成糖原储存3-磷酸甘油磷酸二羟丙酮乙酰CoA 脂酰CoA 脂肪草酰乙酸柠檬酸α-酮戊二酸丙二酰CoA 乙酰CoA 羧化酶2H ATP H 2O + 糖转变成脂脂转变成糖甘油磷酸化为3-磷酸甘油,转变为磷酸二羟丙酮,异生为糖。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
脂代谢(一)名词解释1.1.必需脂肪酸(essential fatty acid)2.2.脂肪酸的α-氧化(α- oxidation)3.3.脂肪酸的β-氧化(β- oxidation)4.4.脂肪酸的ω-氧化(ω- oxidation)5.5.乙醛酸循环(glyoxylate cycle)6.6.柠檬酸穿梭(citriate shuttle)7.7.乙酰CoA羧化酶系(acetyl-CoA carnoxylase)8.8.脂肪酸合成酶系统(fatty acid synthase system)9.9.(二)填空题:1.是动物和许多植物主要的能源贮存形式,是由与3分子酯化而成的。
2.在线粒体外膜脂酰CoA合成酶催化下,游离脂肪酸与和反应,生成脂肪酸的活化形式,再经线粒体内膜进入线粒体衬质。
3.一个碳原子数为n(n为偶数)的脂肪酸在β-氧化中需经次β-氧化循环,生成个乙酰CoA,个FADH2和个 NADH+H+。
4.乙醛酸循环中两个关键酶是和 ,使异柠檬酸避免了在循环中的两次反应,实现从乙酰CoA净合成循环的中间物。
5.脂肪酸从头合成的C2供体是,活化的C2供体是,还原剂是。
6.乙酰CoA羧化酶是脂肪酸从头合成的限速酶,该酶以为辅基,消耗,催化与生成,柠檬酸为其,长链脂酰CoA为其..7.脂肪酸从头合成中,缩合、两次还原和脱水反应时酰基都连接在上,它有一个与一样的长臂。
8.脂肪酸合成酶复合物一般只合成,动物中脂肪酸碳链延长由或酶系统催化;植物的脂肪酸碳链延长酶系定位于。
9.真核细胞中,不饱和脂肪酸都是通过途径合成的;许多细菌的单烯脂肪酸则是经由途径合成的。
10.三酰甘油是由和在磷酸甘油转酰酶的作用下先形成,再由磷酸酶转变成,最后在催化下生成三酰甘油。
11.磷脂合成中活化的二酰甘油供体为,在功能上类似于糖原合成中的或淀粉合成中的。
(三)选择题下列哪项叙述符合脂肪酸的β氧化:A.仅在线粒体中进行B.产生的NADPH用于合成脂肪酸C.被胞浆酶催化D.产生的NADPH用于葡萄糖转变成丙酮酸E.需要酰基载体蛋白参与脂肪酸在细胞中氧化降解A.从酰基CoA开始B.产生的能量不能为细胞所利用C.被肉毒碱抑制D.主要在细胞核中进行E.在降解过程中反复脱下三碳单位使脂肪酸链变短3.下列哪些辅因子参与脂肪酸的β氧化:A ACPB FMNC 生物素D NAD+4.下列关于乙醛酸循环的论述哪些是正确的(多选)?A 它对于以乙酸为唯一碳源的微生物是必要的;B 它还存在于油料种子萌发时形成的乙醛酸循环体;C 乙醛酸循环主要的生理功能就是从乙酰CoA合成三羧酸循环的中间产物;D 动物体内不存在乙醛酸循环,因此不能利用乙酰CoA为糖异生提供原料。
5.脂肪酸从头合成的酰基载体是:A.ACP B.CoA C.生物素D.TPP6.下列关于脂肪酸碳链延长系统的叙述哪些是正确的(多选)?A.动物的内质网酶系统催化的脂肪酸链延长,除以CoA为酰基载体外,与从头合成相同;B.动物的线粒体酶系统可以通过β氧化的逆反应把软脂酸延长为硬脂酸;C.植物的Ⅱ型脂肪酸碳链延长系统分布于叶绿体间质和胞液中,催化软脂酸ACP延长为硬脂酸ACP,以丙二酸单酰ACP为C2供体,NADPH为还原剂;D.植物的Ⅲ型延长系统结合于内质网,可把C18和C18以上的脂肪酸进一步延长。
7.下列哪些是人类膳食的必需脂肪酸(多选)?A.油酸B.亚油酸C.亚麻酸D.花生四烯酸8.下述关于从乙酰CoA合成软脂酸的说法,哪些是正确的(多选)?A.所有的氧化还原反应都以NADPH做辅助因子;B.在合成途径中涉及许多物质,其中辅酶A是唯一含有泛酰巯基乙胺的物质;C.丙二酰单酰CoA是一种“被活化的“中间物;D.反应在线粒体内进行。
9.下列哪些是关于脂类的真实叙述(多选)?A.它们是细胞内能源物质;B.它们很难溶于水C.是细胞膜的结构成分;D.它们仅由碳、氢、氧三种元素组成。
10.脂肪酸从头合成的限速酶是:A.乙酰CoA羧化酶B.缩合酶C.β-酮脂酰-ACP还原酶D.α,β-烯脂酰-ACP还原酶11.下列关于不饱和脂肪酸生物合成的叙述哪些是正确的(多选)?A.细菌一般通过厌氧途径合成单烯脂肪酸;B.真核生物都通过氧化脱氢途径合成单烯脂肪酸,该途径由去饱和酶催化,以NADPH 为电子供体,O2的参与;C.植物体内还存在Δ12-、Δ15 -去饱和酶,可催化油酰基进一步去饱和,生成亚油酸和亚麻酸。
D.植物体内有Δ6-去饱和酶、转移地催化油酰基Δ9 与羧基间进一步去饱和。
12.以干重计量,脂肪比糖完全氧化产生更多的能量。
下面那种比例最接近糖对脂肪的产能比例:A.1:2 B.1:3 C.1:4 D.2:3 E.3:413.软脂酰CoA在β-氧化第一次循环中以及生成的二碳代谢物彻底氧化时,A TP的总量是:A.3ATP B.13ATP C.14 ATP D.17ATP E.18ATP14.下述酶中哪个是多酶复合体?A.ACP-转酰基酶B.丙二酰单酰CoA- ACP-转酰基酶C.β-酮脂酰-ACP还原酶D.β-羟脂酰-ACP脱水酶E.脂肪酸合成酶15.由3-磷酸甘油和酰基CoA合成甘油三酯过程中,生成的第一个中间产物是下列那种?A.2-甘油单酯B.1,2-甘油二酯C.溶血磷脂酸D.磷脂酸E.酰基肉毒碱16.下述哪种说法最准确地描述了肉毒碱的功能?A.转运中链脂肪酸进入肠上皮细胞B.转运中链脂肪酸越过线粒体内膜C.参与转移酶催化的酰基反应D.是脂肪酸合成代谢中需要的一种辅酶(四)是非判断题()1. 脂肪酸的β-氧化和α-氧化都是从羧基端开始的。
()2. 只有偶数碳原子的脂肪才能经β-氧化降解成乙酰CoA.。
()3.脂肪酸从头合成中,将糖代谢生成的乙酰CoA从线粒体内转移到胞液中的化合物是苹果酸。
()4.脂肪酸的从头合成需要柠檬酸裂解提供乙酰CoA.。
()5.脂肪酸β-氧化酶系存在于胞浆中。
()6.肉毒碱可抑制脂肪酸的氧化分解。
()7.萌发的油料种子和某些微生物拥有乙醛酸循环途径,可利用脂肪酸α-氧化生成的乙酰CoA合成苹果酸,为糖异生和其它生物合成提供碳源。
()8.在真核细胞内,饱和脂肪酸在O2的参与下和专一的去饱和酶系统催化下进一步生成各种长链脂肪酸。
()9.脂肪酸的生物合成包括二个方面:饱和脂肪酸的从头合成及不饱和脂肪酸的合成。
()10.甘油在甘油激酶的催化下,生成α-磷酸甘油,反应消耗ATP,为可逆反应。
(五)完成反应式1. 脂肪酸+ ATP +()→()+()+()催化此反应的酶是:脂酰CoA合成酶2.甘油二酯+ R3CO-S-CoA →()+ HSCoA催化此反应的酶是:()3.乙酰CoA + CO2 + ATP →()+ ADP + Pi催化此反应的酶是:( )4.3-磷酸甘油 + ()→()+ NADH + H+催化此反应的酶是:磷酸甘油脱氢酶(六)问答题及计算题1. 按下述几方面,比较脂肪酸氧化和合成的差异:(1)(1)进行部位;(2)(2)酰基载体;(3)(3)所需辅酶(4)(4)β-羟基中间物的构型(5)(5)促进过程的能量状态(6)(6)合成或降解的方向(7)(7)酶系统2. 在脂肪生物合成过程中,软脂酸和硬脂酸是怎样合成的?3. 什么是乙醛酸循环,有何生物学意义?4. 在脂肪酸合成中,乙酰CoA.羧化酶起什么作用?5.说明动物、植物、细菌在合成不饱和脂肪酸方面的差异。
6.1mol软脂酸完全氧化成CO2和H2O可生成多少mol ATP?若1g软脂酸完全氧化时的ΔG0ˊ=9kcal,软脂酸的分子量位56.4,试求能量转化为A TP的效率。
7.1mol甘油完全氧化成CO2和H2O时净生成可生成多少mol ATP?假设在外生成NADH 都通过磷酸甘油穿梭进入线粒体。
三、习题解答(一、)名词解释:1.必需脂肪酸:为人体生长所必需但有不能自身合成,必须从事物中摄取的脂肪酸。
在脂肪中有三种脂肪酸是人体所必需的,即亚油酸,亚麻酸,花生四烯酸。
2.α-氧化:α-氧化作用是以具有3-18碳原子的游离脂肪酸作为底物,有分子氧间接参与,经脂肪酸过氧化物酶催化作用,由α碳原子开始氧化,氧化产物是D-α-羟脂肪酸或少一个碳原子的脂肪酸。
3. 脂肪酸的β-氧化:脂肪酸的β-氧化作用是脂肪酸在一系列酶的作用下,在α碳原子和β碳原子之间断裂,β碳原子氧化成羧基生成含2个碳原子的乙酰CoA和比原来少2个碳原子的脂肪酸。
4. 脂肪酸ω-氧化:ω-氧化是C5、C6、C10、C12脂肪酸在远离羧基的烷基末端碳原子被氧化成羟基,再进一步氧化而成为羧基,生成α,ω-二羧酸的过程。
5. 乙醛酸循环:一种被修改的柠檬酸循环,在其异柠檬酸和苹果酸之间反应顺序有改变,以及乙酸是用作能量和中间物的一个来源。
某些植物和微生物体内有此循环,他需要二分子乙酰辅酶A的参与;并导致一分子琥珀酸的合成。
6. 柠檬酸穿梭:就是线粒体内的乙酰CoA与草酰乙酸缩合成柠檬酸,然后经内膜上的三羧酸载体运至胞液中,在柠檬酸裂解酶催化下,需消耗ATP将柠檬酸裂解回草酰乙酸和,后者就可用于脂肪酸合成,而草酰乙酸经还原后再氧化脱羧成丙酮酸,丙酮酸经内膜载体运回线粒体,在丙酮酸羧化酶作用下重新生成草酰乙酸,这样就可又一次参与转运乙酰CoA的循环。
7.乙酰CoA羧化酶系:大肠杆菌乙酰CoA羧化酶含生物素羧化酶、生物素羧基载体蛋白(BCCP)和转羧基酶三种组份,它们共同作用催化乙酰CoA的羧化反应,生成丙二酸单酰-CoA。
8.脂肪酸合酶系统:脂肪酸合酶系统包括酰基载体蛋白(ACP)和6种酶,它们分别是:乙酰转酰酶;丙二酸单酰转酰酶;β-酮脂酰ACP合成酶;β-酮脂酰ACP还原酶;β-羟;脂酰ACP脱水酶;烯脂酰ACP还原酶。
(二)填空题1.脂肪;甘油;脂肪酸2.A TP-Mg2+;CoA-SH;脂酰S-CoA;肉毒碱-脂酰转移酶系统3.0.5n-1;0.5n;0.5n-1;0.5n-14.异柠檬酸裂解酶;苹果酸合成酶;三羧酸;脱羧;三羧酸5.乙酰CoA;丙二酸单酰CoA;NADPH+H+6.生物素;ATP;乙酰CoA;HCO3-;丙二酸单酰CoA;激活剂;抑制剂7.ACP;CoA;4’-磷酸泛酰巯基乙胺8.软脂酸;线粒体;内质网;细胞溶质9.氧化脱氢;厌氧;10.3-磷酸甘油;脂酰-CoA;磷脂酸;二酰甘油;二酰甘油转移酶11.CDP-二酰甘油;UDP-G;ADP-G(三)选择题1.A:脂肪酸β-氧化酶系分布于线粒体基质内。
酰基载体蛋白是脂肪酸合成酶系的蛋白辅酶。
脂肪酸β-氧化生成NADH,而葡萄糖转变成丙酮酸需要NAD+。
2.A:脂肪酸氧化在线粒体进行,连续脱下二碳单位使烃链变短。
产生的ATP供细胞利用。
肉毒碱能促进而不是抑制脂肪酸氧化降解。