2015版七年级数学下册5.1.2轴对称变换精练精析(新版)湘教版.

合集下载

七年级下册数学课件(湘教版)轴对称变换

七年级下册数学课件(湘教版)轴对称变换

l
B′
A′
A (B ′) Bl
A′
B′ Bl
(图2)
(图3)
想一想:如果有一个图形和一条直线,如何画出与 这个图形关于这条直线对称的图形呢?
例2 如图,已知三角形ABC和直线l,作出与三 角形ABC关于直线l对称的图形.
B C
lA
分析:三角形ABC可以由三个顶点的位置确定,只 要能分别画出这三个顶点关于直线l的对称点,连接 这些对称点,就能得到要画的图形.
为什么?
D
AD=A1D1,BC=B1C1.
3
A
(4)∠1与∠2有什么关系?∠3 B C
与∠4呢?说说你的理由?
D1
4
C1
A1 B1
∠1=∠2,∠3=∠4.
12
思考:综合以上问题,你能得到什么结论?
总结归纳 轴对称的性质
在轴对称图形或两个成轴对称的图形中, 对应点所连的线段被对称轴垂直平分.
三 作轴对称图形
(4)∠1与∠2有什么关系?∠3与∠4呢? ∠1=∠2,∠3=∠4.
做一做:
右图是一个轴对称图形:
(1)找出它的对称轴.
A
(2)连接点A与点A1的线段与 B 对称轴有什么关系?连接
点B与点B1的线段呢?
与对称轴垂直.
D
D1
3
4
A1
C
C1 B1
12
(3)线段AD与线段A1D1有什么
关系?线段BC与B1C1呢?
解:如图所示.
5.如图,在2×2的正方形格纸中,有一个以格点为顶 点的三角形ABC,请你找出格纸中所有与三角形ABC 成轴对称且以格点为顶点的三角形,这样的三角形共
有__5___个.请在下面所给的格纸中一一画出(所给的 六个格纸未必全用).

部审湘教版七年级数学下册5.1.2《轴对称变换》教学设计

部审湘教版七年级数学下册5.1.2《轴对称变换》教学设计

部审湘教版七年级数学下册5.1.2《轴对称变换》教学设计一. 教材分析《轴对称变换》是部审湘教版七年级数学下册第五章第一节的内容,主要介绍了轴对称变换的定义、性质和应用。

通过学习本节课,学生能够理解轴对称变换的概念,掌握轴对称变换的性质,并能应用于实际问题中。

二. 学情分析学生在学习本节课之前,已经掌握了平面几何的基本知识,具备了一定的逻辑思维和空间想象能力。

但是,对于抽象的轴对称变换概念和性质的理解可能存在一定的困难。

因此,在教学过程中,需要注重引导学生从实际问题中抽象出轴对称变换的概念,并通过实例讲解和练习,帮助学生理解和掌握轴对称变换的性质。

三. 教学目标1.知识与技能目标:学生能够理解轴对称变换的概念,掌握轴对称变换的性质,并能应用于实际问题中。

2.过程与方法目标:通过观察、操作、思考、交流等过程,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的自主学习能力和团队合作精神。

四. 教学重难点1.重点:轴对称变换的概念和性质。

2.难点:轴对称变换在实际问题中的应用。

五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生从实际问题中抽象出轴对称变换的概念。

2.互动教学法:通过提问、讨论、合作等方式,促进学生之间的交流,培养学生的团队合作精神。

3.实践操作法:通过实际操作,让学生亲身体验和感知轴对称变换的性质,培养学生的空间想象能力。

六. 教学准备1.教具准备:几何画板、幻灯片等。

2.学具准备:学生自带的尺子、圆规、剪刀等。

七. 教学过程1.导入(5分钟)通过引入实际问题,如剪纸、建筑设计等,让学生感受轴对称变换在现实生活中的应用,激发学生的学习兴趣。

2.呈现(10分钟)讲解轴对称变换的定义和性质,引导学生从实际问题中抽象出轴对称变换的概念。

3.操练(10分钟)学生分组讨论,利用几何画板或其他工具,进行轴对称变换的实际操作,感知轴对称变换的性质。

《5.1.2轴对称变换》作业设计方案-初中数学湘教版12七年级下册

《5.1.2轴对称变换》作业设计方案-初中数学湘教版12七年级下册

《轴对称变换》作业设计方案(第一课时)一、作业目标本作业旨在通过《轴对称变换》的学习,使学生掌握轴对称图形的概念、性质和基本变换方法,能够识别和绘制简单的轴对称图形,并能够运用轴对称变换解决实际问题。

通过作业练习,加深学生对轴对称知识的理解,提升空间想象力和思维能力。

二、作业内容作业内容分为四个部分:1. 基础知识练习:要求学生回顾轴对称图形的定义和性质,通过填空、选择等形式,掌握轴对称图形的概念和基本特点。

2. 图形识别与绘制:设计一系列轴对称图形,要求学生能够快速准确地识别图形的轴对称性,并尝试自行绘制简单的轴对称图形。

3. 变换实践操作:设计一系列与轴对称变换相关的操作题,如给定一个图形,通过轴对称变换得到另一个图形,要求学生运用所学知识完成变换。

4. 实际问题应用:结合生活实际,设计一些与轴对称变换相关的实际问题,如建筑物的对称设计等,要求学生运用所学知识解决实际问题。

三、作业要求作业要求如下:1. 要求学生独立完成作业,不得抄袭他人答案。

2. 学生在完成作业过程中,要认真审题,理解题目要求,按照步骤进行操作。

3. 学生在完成作业后,要仔细检查答案,确保答案的准确性和完整性。

4. 学生在提交作业时,要按照教师的要求格式进行排版和标注。

四、作业评价作业评价将从以下几个方面进行:1. 正确性:答案是否准确无误。

2. 完整性:答案是否完整,是否遗漏了重要步骤或细节。

3. 规范性:作业的排版、格式、标注等是否规范。

4. 创新性:学生在解决问题时是否能够灵活运用所学知识,提出新颖的解决方案。

五、作业反馈作业反馈将通过以下方式进行:1. 教师将对学生的作业进行批改,对错误的地方进行标注和指导。

2. 教师将对学生的作业进行评价和点评,指出学生的优点和不足。

3. 对于共性问题,教师将在课堂上进行讲解和指导。

4. 对于表现优秀的学生,教师将给予表扬和鼓励。

通过这样的作业设计,不仅能够巩固学生对轴对称知识的理解,还能培养学生的空间想象力和实际操作能力。

湘教版七年级数学下册《轴对称变换》精品教案

湘教版七年级数学下册《轴对称变换》精品教案

识,并记忆本节 加强记忆
2.轴对称的性质:
课的知识。
知识。
①对应点所连的线段被对称轴垂直平分.
②对应线段相等,对应角相等.
③轴对称变化不改变图形的形状和大小.
抽对称变换
板书
1.轴对称:平面内两个图形在一条直线的两旁,如果沿着这条直 线折叠,这两个图形能够重合,那么称这两个图形成轴对称.
2.轴对称的性质: ①对应点所连的线段被对称轴垂直平分. ②对应线段相等,对应角相等.
同理,分别画出点 B,C 关于直线 l 的对称点 B′,C′.3. 连接 A′B′,B′C′,C′A′,得到△ A′B′C′ 即为所求.
练习巩固
4.如图所示,AD 为 △ABC 的高,∠B= 2∠C ,借 助于轴对称的性质想一想:CD 与 AB+BD 相等吗?请 说明你的理由.
学生自主完成巩 固练习中的练 习,然后在做完
叫作轴对称图形.这条直线叫作它的 对称轴 .
的内容,并回答
接下来,我们思考一个问题:
老师。
导入新课,
如图,用印章在一张纸上盖一个印(a),趁印迹未
利用导入
干之时,将纸张沿着直线 l 对折,得到印(b),随后
的例子引
打开,观察图形(a)与图形(b)有怎样的关系? 学生思考并回答 起 学 生 的
问题。并跟着教 注意力。
讲授新课
轴对称变换:如果一个图形关于某一条直线做轴
+
对称变换后,能够与另一个图形重合,那么就说这两
例题讲解 个图形关于这条直线对称,也称这两个图形成轴对称. 这条直线叫做对称轴.
原像与像中能互相重合的两个点,其中一点叫做 结合导入的思考
另一个点关于这条直线的对应点.
和老师的讲解,

湘教版数学七年级下册5.1.2《轴对称变换》教学设计

湘教版数学七年级下册5.1.2《轴对称变换》教学设计

湘教版数学七年级下册5.1.2《轴对称变换》教学设计一. 教材分析湘教版数学七年级下册5.1.2《轴对称变换》是学生在学习了平面几何基本概念和性质之后的内容,是对学生空间想象能力和抽象思维能力的一次提升。

本节内容主要介绍了轴对称变换的概念、性质和应用。

通过本节课的学习,学生能够理解轴对称变换的定义,掌握轴对称变换的性质,并能应用于实际问题中。

二. 学情分析学生在学习本节课之前,已经掌握了平面几何的基本概念和性质,具备了一定的空间想象能力和抽象思维能力。

但对于轴对称变换这一概念,学生可能较为陌生,需要通过实例和练习来逐渐理解和掌握。

三. 教学目标1.知识与技能目标:学生能够理解轴对称变换的概念,掌握轴对称变换的性质,并能够应用于实际问题中。

2.过程与方法目标:通过观察、操作、思考、交流等活动,学生能够培养空间想象能力和抽象思维能力。

3.情感态度与价值观目标:学生能够积极参与学习活动,克服困难,勇于探索,增强对数学学习的兴趣和信心。

四. 教学重难点1.重点:轴对称变换的概念和性质。

2.难点:轴对称变换在实际问题中的应用。

五. 教学方法1.引导法:通过问题引导,激发学生的思考,引导学生主动探究轴对称变换的性质。

2.互动法:通过小组讨论、交流,让学生充分发表自己的观点,提高学生的合作能力。

3.实践法:通过让学生动手操作,培养学生的空间想象能力和抽象思维能力。

六. 教学准备1.教具准备:多媒体课件、几何画板、实物模型等。

2.学具准备:学生用书、练习本、铅笔、橡皮等。

七. 教学过程1.导入(5分钟)教师通过展示一些生活中的轴对称图形,如剪刀、飞机模型等,引导学生观察和思考,引出轴对称变换的概念。

2.呈现(10分钟)教师通过多媒体课件,展示轴对称变换的定义和性质,引导学生理解和掌握。

同时,教师可以通过几何画板进行动态演示,让学生更直观地感受轴对称变换的过程。

3.操练(10分钟)教师布置一些实际的例子,让学生运用轴对称变换的知识进行解答。

(湘教版)七年级数学下册:5.1.2《轴对称变换》教学设计

(湘教版)七年级数学下册:5.1.2《轴对称变换》教学设计

(湘教版)七年级数学下册:5.1.2《轴对称变换》教学设计一. 教材分析湘教版七年级数学下册第五章第一节《轴对称变换》是学生在学习了平面几何基本概念和性质之后的内容,是对学生空间想象能力和抽象思维能力的一次提升。

本节课主要让学生了解轴对称变换的概念,性质及其在实际问题中的应用。

教材通过丰富的图片和实例,激发学生的学习兴趣,让学生在观察和操作中感受轴对称变换的特点,培养学生的几何直觉和空间想象能力。

二. 学情分析七年级的学生已经具备了一定的空间想象能力和抽象思维能力,他们对平面几何的基本概念和性质有了初步的了解。

但是,对于轴对称变换这一概念,学生可能较为陌生,需要通过大量的实例和操作来理解和掌握。

此外,学生的学习兴趣和积极性对课堂效果有很大影响,因此在教学过程中,教师需要注重启发引导,激发学生的学习兴趣。

三. 教学目标1.让学生了解轴对称变换的概念,性质及其在实际问题中的应用。

2.培养学生观察、操作、分析、解决问题的能力。

3.培养学生的空间想象能力和几何直觉。

4.激发学生学习数学的兴趣,提高学生自主学习的能力。

四. 教学重难点1.轴对称变换的概念和性质。

2.如何在实际问题中运用轴对称变换。

五. 教学方法1.启发式教学:通过提问、引导,让学生主动思考、探索,提高学生分析问题和解决问题的能力。

2.实例教学:通过丰富的图片和实例,让学生直观地感受轴对称变换的特点,培养学生的空间想象能力。

3.操作教学:让学生动手操作,加深对轴对称变换的理解。

4.小组合作学习:培养学生团队合作精神,提高学生交流表达能力。

六. 教学准备1.准备相关图片和实例,用于引导学生观察和操作。

2.设计好课堂练习题,用于巩固所学知识。

3.准备好课件,用于辅助教学。

七. 教学过程1.导入(5分钟)教师通过展示一些生活中的对称现象,如剪纸、建筑等,引导学生关注对称现象,激发学生学习兴趣。

提问:这些现象有什么共同特点?学生回答后,教师总结引入轴对称变换的概念。

湘教版数学七年级下册5.1 轴对称(49页)

湘教版数学七年级下册5.1 轴对称(49页)
课堂中要使学生体验数学与现实生活与其他学科的联系,锻炼了表达 和解决问题的能力;培养了学生运用数学思维进行表达与交流的能力,发 展应用意识与实践能力。课堂教学要让学生有充分的独立思考的时间,有 丰富的动手操作活动,培养学生学会观察,学会表达。只有坚持学习,与 时俱进,真正做到以培养学生的核心素养为目标,我们才能提高教学质量 。
第5章 轴对称与旋转 5.1轴对称
湘教版·七年级数学下册
第5章 轴对称与旋转 5.1.1轴对称图形
湘教版·七年级数学下册
情境导入 观察下列图片和图形,它们有什么共同特点?
折一折,剪一剪素材
观察图中一组生肖剪纸, 你能发现它们有什么共同的特征吗?
如果一个平面图形沿一条直线折叠后, 直线两侧的部分能够互相重合,那么这个图形 叫做轴对称图形,这条直线叫做它的对称轴.
点 P 与点 P′ 重合
PD = _P_′_D__,∠1=_∠__2_ = __9_0_° 成轴对称的两个图形中,对应点 的连线被对称轴垂直平分.
如果两个图形的对应点的连线被同一条直线垂直平分, 那么这两个图形关于这条直线对称.
已知直线 l 及直线外一点 P,求作点 P′, 使它与点 P 关于直线 l 对称.
[选自教材P114 练习]
随堂演练 1.如图所示的几个图案中,是轴对称图形的是( A )
2.如图所示,下面的 5 个英文字母中是轴对称图形 的有( B )
是轴对称图形的有( B )
A. 1个
B. 2个
C. 3个
D. 4个
4. 如图所示,从轴对称的角度来看,你觉得下面 哪一个图形比较独特?简单说明你的理由.
已知三角形 ABC 和直线 l,作出与
三角形 ABC 关于直线 l 对称的图形.

湘教版数学七年级下册《5.1.2轴对称变换》教学设计

湘教版数学七年级下册《5.1.2轴对称变换》教学设计

湘教版数学七年级下册《5.1.2轴对称变换》教学设计一. 教材分析湘教版数学七年级下册《5.1.2轴对称变换》是学生在学习了平面几何基本概念和性质的基础上,进一步研究图形的变换。

本节内容通过具体的图形变换,让学生了解轴对称变换的定义、性质和应用,培养学生观察、分析和解决问题的能力。

二. 学情分析学生在之前的学习中已经掌握了平面几何的基本概念和性质,对图形变换有一定的认识。

但轴对称变换较为抽象,需要学生通过实例观察、讨论和探究,才能理解和掌握。

三. 教学目标1.理解轴对称变换的定义和性质。

2.能够识别和运用轴对称变换解决实际问题。

3.培养学生的观察能力、分析能力和解决问题的能力。

四. 教学重难点1.轴对称变换的定义和性质。

2.运用轴对称变换解决实际问题。

五. 教学方法采用问题驱动法、案例分析法、小组讨论法等多种教学方法,激发学生的兴趣,引导学生主动参与学习过程。

六. 教学准备1.准备相关的图形和图片,用于展示和分析。

2.准备一些实际问题,用于巩固和拓展。

七. 教学过程1.导入(5分钟)通过展示一些生活中的轴对称图形,如剪纸、建筑等,引导学生观察和思考:这些图形有什么共同的特点?它们是如何产生的?2.呈现(10分钟)呈现轴对称变换的定义和性质,引导学生理解并能够运用。

3.操练(10分钟)让学生通过实际操作,运用轴对称变换对给定的图形进行变换,巩固对轴对称变换的理解。

4.巩固(10分钟)通过解决一些实际问题,让学生运用轴对称变换分析和解决问题,巩固所学知识。

5.拓展(10分钟)引导学生思考轴对称变换在实际生活中的应用,如设计、制造等,拓展学生的思维。

6.小结(5分钟)对本节课的主要内容进行总结,引导学生梳理知识点。

7.家庭作业(5分钟)布置一些有关轴对称变换的练习题,让学生巩固所学知识。

8.板书(5分钟)设计简洁明了的板书,帮助学生理解和记忆轴对称变换的定义和性质。

教学过程每个环节所用的时间如上所示,供您参考。

5新湘教版初中数学七年级下册精品教案.1.2 轴对称变换

5新湘教版初中数学七年级下册精品教案.1.2 轴对称变换

5.1.2轴对称变换1.理解轴对称变换的概念;2.掌握轴对称变换的性质;(难点)3.能够按要求作出一个图形经过轴对称变换后的图形.(重点)一、情境导入观察下图,水面上的图形与映在水里的像有什么关系?二、合作探究探究点一:轴对称变换观察下图中各组图形,其中左边图形不是右边图形轴对称变换得到的是()解析:直线两旁的部分能够互相重合的两个图形叫做这两个图形成轴对称.由图形可以看出:C选项中的伞面不对称,故选C.方法总结:轴对称是指两个图形的一种对称关系,而且只有一条对称轴.判断两个图形是不是成轴对称,关键是寻找对称轴,看直线两边的图形折叠后能否重合.探究点二:轴对称变换的性质【类型一】利用轴对称变换的性质求图形的周长三角形ABC与三角形DEF是关于直线l成轴对称,且三角形ABC的周长是16cm,则三角形DEF的周长是()A.16cm B.18cmC.20cm D.22cm解析:轴对称不改变图形的形状和大小,所以三角形DEF的周长与三角形ABC的周长相等,也是16cm.故选A.方法总结:图形经过轴对称变换,长度、角度和面积等都不改变.【类型二】 利用轴对称变换的性质求角度如图,把一张长方形的纸沿OG 折叠后,B 、D 两点落在B ′、D ′点处,若得∠AOB ′=80°,则∠B ′OG 的度数为________.解析:根据轴对称的性质可得∠B ′OG =∠BOG ,再根据∠AOB ′=80°,可得出∠B ′OG 的度数.解:根据轴对称的性质得:∠B ′OG =∠BOG .由∠AOB ′=80°,得∠B ′OG +∠BOG =100°,∴∠B ′OG =12×100°=50°.故答案为50°. 方法总结:本题考查轴对称变换的性质,在解答此类问题时要注意数形结合的应用.【类型三】 利用轴对称变换的性质求阴影部分的面积如图,△ABC 是面积为a 的等边三角形,AD 是BC 边上的高,点E 、F 是AD 上的两点,则图中阴影部分的面积为________.解析:观察图形,证明△BEF 经过轴对称变换得到△CEF ,故△BEF 与△CEF 的面积相等,则阴影部分面积为等边三角形面积的一半.解:∵△ABC 为等边三角形,AD 是BC 边上的高,∴直线AD 为△ABC 的对称轴,∴S △BEF =S △CEF ,∴阴影部分面积是△ABC 面积的一半.∵S △ABC =a ,∴阴影部分的面积是a 2.故答案为a 2. 方法总结:先观察图形找到突破口——直线AD 为△ABC 的对称轴,从突破口进行解题就显得比较容易.探究点三:轴对称变换的作图如图,作三角形ABC 关于直线l 的对称图形(不写作法).解析:分别作A 、B 、C 关于直线l 的对应点,顺次连接即可.解:如图所示:方法总结:作轴对称图形,关键是作出点关于对称轴的对应点.画对称点的方法可总结如下:过已知点作对称轴的垂线段,延长垂线段,使延长部分长度等于垂线段的长度.三、板书设计轴对称变换⎩⎪⎨⎪⎧轴对称变换的概念轴对称变换的性质轴对称变换的作图本节课学习了轴对称变换,通过生活中的情景引入,让学生感悟生活中的美与数学的联系,激发学生的学习兴趣.教学中注意轴对称图形与轴对称变换的区别与联系,可通过具体实例让学生理解。

湘教版七年级数学下册全册同步练习含答案

湘教版七年级数学下册全册同步练习含答案

2015-2016学年湘教版初中数学七年级下册全册课时作业目录1.1 二元一次方程组课时作业1.3 二元一次方程组的应用(第1课时)课时作业1.3 二元一次方程组的应用(第2课时)课时作业1.4 三元一次方程组课时作业2.1.1 同底数幂的乘法课时作业2.1.2 多项式的乘法课时作业2.1.2 幂的乘方与积的乘方课时作业2.1.3 单项式的乘法课时作业2.1.4 多项式的乘法课时作业2.2.1 平方差公式课时作业2.2.2 完全平方公式课时作业2.2.3 运用乘法公式进行计算课时作业3.1 多项式的因式分解课时作业3.2 提公因式法课时作业3.3 公式法(第1课时)课时作业3.3 公式法(第2课时)课时作业4.1.1 相交与平行课时作业4.1.2 相交直线所成的角课时作业4.2 平移课时作业课时作业4.3 平行线的性质课时作业4.4 平行线的判定课时作业4.5 垂线课时作业4.6 两条平行线间的距离课时作业5.1.1轴对称图形课时作业5.1.2轴对称变换课时作业5.2 旋转课时作业5.3 图形变换的简单应用课时作业6.1.1 平均数课时作业6.1.2 中位数课时作业6.1.3 众数课时作业6.2 方差课时作业建立二元一次方程组(30分钟50分)一、选择题(每小题4分,共12分)1.下列方程中,是二元一次方程的是( )A.3x2-2y=4B.6x+y+9z=0C.+4y=6D.4x=2.以为解的二元一次方程组是( )A. B.C. D.3.(2013·广州中考)已知两数x,y之和是10,x比y的3倍大2,则下面所列方程组正确的是( )A. B.C. D.二、填空题(每小题4分,共12分)4.请写出一个二元一次方程组,使它的解是5.方程(k2-1)x2+(k+1)x+2ky=k+3,当k= 时,它为一元一次方程;当k=时,它为二元一次方程.6.母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从信息中可知,若设鲜花x元/束,礼盒y 元/盒,则可列方程组为.三、解答题(共26分)7.(8分)下列各组数据中哪些是方程3x-2y=11的解?哪些是方程2x+3y=16的解?哪些是方程组的解?为什么?①②③④8.(8分)(1)若是方程2x+y=0的解,求6a+3b+2的值.(2)若是方程3x-y=1的解,求6a-2b+3的值.【拓展延伸】9.(10分)为民医疗器械经销部经营甲、乙两种医疗器械,甲器械每台2万元,乙器械每台5万元,今年厂方给经销部规定了24万元的营销任务,那么该经销部要想刚好完成任务,有哪些销售方案可选择?若乙医疗器械的利润是甲医疗器械的3倍,那么你觉得选择哪个方案更好些?答案解析1.【解析】选D.4x=含有两个未知数x,y,并且含x,y项的次数都是1,是二元一次方程.选项A有二次项,选项B有三个未知数,选项C分母中有未知数,故A,B,C都不是二元一次方程.2.【解析】选D.将分别代入四个方程组中,只有D中的两个方程同时成立.3.【解析】选C.由题意知,x+y=10,x-3y=2,即x=3y+2,所以4.【解析】以为解的二元一次方程有无数个,如x+y=1,x-y=3,x+2y=0等,只要满足x=2,y=-1即可.然后从中选两个方程,但是这两个方程的对应项的系数不能成倍数关系.答案:(答案不唯一)5.【解析】无论是一元一次方程还是二元一次方程,都不可能有二次项,所以k2-1=0,即k=±1.当k=-1时,原方程为-2y=2是一元一次方程;当k=1时,原方程为x+y=2为二元一次方程. 答案:-1 16.【解析】一束鲜花x元,一盒礼盒y元,由一束鲜花和两盒礼盒共55元,得:x+2y=55;由两束鲜花和3盒礼盒共90元,得2x+3y=90,故答案:7.【解析】①②是方程3x-2y=11的解.②③是方程2x+3y=16的解.②是方程组的解.因为方程组的解必须是方程组中两个方程的公共解.8.【解析】(1)把代入方程2x+y=0得2a+b=0,两边同时乘以3得:6a+3b=0,所以6a+3b+2=2.(2)把代入3x-y=1得3a-b=1,则6a-2b+3=2(3a-b)+3=5.【归纳整合】解决本题的方法为整体代入法,将含a,b的式子整体代入,使得整个求解过程更加简便,在解决整体代入法求值问题时,要多观察式子的特点,合理运用整体代入法.9.【解析】设销售甲医疗器械x台,乙医疗器械y台,根据题意,得2x+5y=24.因为x,y都是非负整数,所以x==12-2y-.当y=0时,x=12;当y=2时,x=7;当y=4时,x=2.所以销售方案有三种:方案一:销售甲器械12台,乙器械0台;方案二:销售甲器械7台,乙器械2台;方案三:销售甲器械2台,乙器械4台.设甲医疗器械的利润为a(a>0),则方案一的利润为12a+0×3a=12a(元);方案二的利润为7a+2×3a=13a(元);方案三的利润为2a+4×3a=14a(元).因为14a>13a>12a,所以选择方案三更好些.二元一次方程组的应用(第1课时)(30分钟50分)一、选择题(每小题4分,共12分)1.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路.她去学校共用了16分钟.假设小颖上坡路的平均速度是3千米/时,下坡路的平均速度是5千米/时.若设小颖上坡用了x分钟,下坡用了y分钟,根据题意可列方程组为( ) A.B.C. D.2.(2013·潍坊中考)为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地调查了10000人,并进行统计分析.结果显示:在吸烟者中患肺癌的比例是 2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这10000人中,吸烟者患肺癌的人数为x,不吸烟者患肺癌的人数为y,根据题意,下面列出的方程组正确的是( )A.B.C.D.3.已知甲、乙两种商品的进价和为100元,为促销而打折销售,若甲商品打8折,乙商品打6折,则可赚50元;若甲商品打6折,乙商品打8折,则可赚30元,则甲、乙两种商品的定价分别是( )A.50元,150元B.150元,50元C.100元,50元D.50元,100元二、填空题(每小题4分,共12分)4.甲种电影票每张20元,乙种电影票每张15元.若购买甲,乙两种电影票共40张,恰好用去700元,则甲种电影票买了张.5.学校组织一次有关历史知识的竞赛,共有20道题,每一题答对得5分,答错或不答都倒扣1分,小明最终得了76分,那么他答对道题.6.一个长方形的长减少5cm,宽增加2cm,就变成了一个正方形,并且这两个图形的面积相等,则原长方形的面积为cm2.三、解答题(共26分)7.(8分)(2013·济南中考)某寄宿制学校有大、小两种类型的学生宿舍共50间,大宿舍每间可住8人,小宿舍每间可住6人.该校360名住宿生恰好住满这50间宿舍.求大、小宿舍各有多少间.8.(8分)(2013·宜宾中考)2013年4月20日,四川省芦山县发生7.0级强烈地震,造成大量的房屋损毁,急需大量帐篷.某企业接到任务,须在规定时间内生产一批帐篷.如果按原来的生产速度,每天生产120顶帐篷,那么在规定时间内只能完成任务的90%.为按时完成任务,该企业所有人员都支援到生产第一线,这样,每天能生产160顶帐篷,刚好提前一天完成任务.问规定时间是多少天?生产任务是多少顶帐篷?【拓展延伸】9.(10分)一辆汽车从A地驶往B地,前路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60km/h,在高速公路上行驶的速度为100km/h,汽车从A地到B地一共行驶了2.2h.请你根据以上信息,就该汽车行驶的“路程”或“时间”,提出一个用二元一次方程组解决的问题,并写出解题过程.答案解析1.【解析】选B.第一个等量关系式为:x+y=1.2,第二个等量关系式为:x+y=16,构成方程组2.【解析】选B.根据“吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人”所得的方程是x-y=22;调查的吸烟的人数是,不吸烟的人数是,根据共调查了10000人,列方程得+=10000,所以可列方程组3.【解析】选B.设甲的定价为x元,乙的定价为y元.则解得:4.【解析】设购买甲种电影票x张,乙种电影票y张,由题意得解得即甲种电影票买了20张.答案:20【归纳整合】二元一次方程组的优点当我们遇到两个量之间出现两种等量关系时,可以考虑列二元一次方程组解题.虽然本题也可列一元一次方程,但相比较而言,列二元一次方程组比列一元一次方程更好.5.【解析】设他答对x道题,答错或不答y道题.根据题意,得解得答案:166.【解析】设长方形的长为xcm,宽为ycm,则根据题意得解这个方程组得所以长方形的面积xy=.答案:7.【解析】设大宿舍有x间,小宿舍有y间,根据题意得解得答:大宿舍有30间,小宿舍有20间.8.【解析】设规定时间为x天,生产任务是y顶帐篷,由题意得,解得答:规定时间是6天,生产任务是800顶帐篷.9.【解析】本题答案不唯一,方法一:问题:普通公路段和高速公路段各长多少千米?设普通公路段长为xkm,高速公路段长为ykm.由题意可得:解得答:普通公路段长为60km,高速公路段长为120km.方法二:问题:汽车在普通公路段和高速公路段上各行驶了多少小时?设汽车在普通公路段上行驶了xh,在高速公路段上行驶了yh.由题意可得:解得:答:汽车在普通公路段上行驶了1h,在高速公路段上行驶了1.2h.二元一次方程组的应用(第2课时)(30分钟50分)一、选择题(每小题4分,共12分)1.如图所示的两台天平保持平衡,已知每块巧克力的质量相等,且每个果冻的质量也相等,则每块巧克力和每个果冻的质量分别为( )A.10g,40gB.15g,35gC.20g,30gD.30g,20g2.根据以下对话,可以求得小红所买的笔和笔记本的价格分别是( )A.1.2元/支,3.6元/本B.0.8元/支,3.6元/本C.1.2元/支,2.6元/本D.0.8元/支,2.6元/本3.某校团委与社区联合举办“保护地球,人人有责”活动,选派20名学生分三组到120个店铺发传单,若第一、二、三小组每人分别负责8,6,5个店铺,且每组至少有两人,则学生分组方案有( )A.6种B.5种C.4种D.3种二、填空题(每小题4分,共12分)4.(2013·绍兴中考)我国古代数学名著《孙子算经》中有这样一道题:今有鸡兔同笼,上有35头,下有94足,问鸡兔各几何?此题的答案是鸡有23只,兔有12只.现在小敏将此题改编为:今有鸡兔同笼,上有33头,下有88足,问鸡兔各几何?则此时的答案是鸡有只,兔有只.5.如图,正方形是由k个相同的矩形组成,上下各有2个水平放置的矩形,中间竖放若干个矩形,则k= .6.(2013·鞍山中考)如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的,另一根露出水面的长度是它的.两根铁棒长度之和为220cm,此时木桶中水的深度是cm.三、解答题(共26分)7.(8分)(2013·莱芜中考)某学校将周三“阳光体育”项目定为跳绳活动,为此学校准备购置长、短两种跳绳若干.已知长跳绳的单价比短跳绳单价的两倍多4元,且购买2条长跳绳与购买5条短跳绳的费用相同,求两种跳绳的单价各是多少元?8.(8分)(2013·嘉兴中考)某镇水库的可用水量为12000万立方米,假设年降水量不变,能维持该镇16万人20年的用水量.实施城市化建设,新迁入4万人后,水库只够维持居民15年的用水量.(1)年降水量为多少万立方米?每人年平均用水量为多少立方米?(2)政府号召节约用水,希望将水库的使用年限提高到25年,则该镇居民人均每年需节约多少立方米水才能实现目标?【拓展延伸】9.(10分)某公园的门票价格如表所示:购票人数1~50人51~100人100人以上票价10元/人8元/人5元/人某校七年级甲、乙两班共100多人去该公园举行联欢活动,其中甲班50多人,乙班不足50人.如果以班为单位分别买票,两个班一共应付920元;如果两个班联合起来作为一团体购票,一共只要付515元.问:甲、乙两班分别有多少人?答案解析1.【解析】选C.设每块巧克力的质量为xg,每个果冻的质量为yg,由题意得解得2.【解析】选 A.设小红所买的笔和笔记本的价格分别是x元/支,y元/本,则解得所以小红所买的笔和笔记本的价格分别是1.2元/支,3.6元/本.3.【解析】选 B.设第一小组有x人,第二小组有y人,则第三小组有(20-x-y)人,则8x+6y+5(20-x-y)=120,3x+y=20,当x=2时,y=14,20-x-y=4,符合题意;当x=3时,y=11,20-x-y=6,符合题意;当x=4时,y=8,20-x-y=8,符合题意;当x=5时,y=5,20-x-y=10,符合题意;当x=6时,y=2,20-x-y=12,符合题意,故学生分组方案有5种.4.【解析】设鸡有x只,兔有y只,根据题意可得解得:即鸡有22只,兔有11只.答案:22 115.【解析】设矩形的长为x,矩形的宽为y,中间竖的矩形为n个,则可列方程组解得n=4.则k=2+2+4=8.答案:86.【解析】设长铁棒长为xcm,短铁棒长为ycm,由题意可得解得所以水的深度为×120=80(cm).答案:807.【解析】设长跳绳的单价是x元,短跳绳的单价是y元.由题意,得解得所以长跳绳的单价是20元,短跳绳的单价是8元.8.【解析】(1)设年降水量为x万立方米,每人年平均用水量为y立方米,则:解得答:年降水量为200万立方米,每人年平均用水量为50立方米.(2)设该城镇居民年平均用水量为z立方米才能实现目标,则:12000+25×200=20×25z,解得z=34.所以50-34=16.答:该城镇居民人均每年需要节约16立方米的水才能实现目标.9.【解析】设甲班有x人,乙班有y人,根据题意得,解得答:甲班有55人,乙班有48人.三元一次方程组(30分钟50分)一、选择题(每小题4分,共12分)1.下列方程中,是三元一次方程组的是( )A. B.C. D.2.若方程组的解x与y的值的和为3,则a的值为( )A.7B.4C.0D.-43.(2012·德阳中考)为确保信息安全,信息需加密传输,发送方由明文→密文(加密);接收方由密文→明文(解密).已知加密规则为:明文a,b,c,d对应密文a+2b,2b+c,2c+3d,4d.例如:明文1,2,3,4对应的密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为( )A.4,6,1,7B.4,1,6,7C.6,4,1,7D.1,6,4,7二、填空题(每小题4分,共12分)4.解方程组时,①+②可消去未知数,得到一个二元一次方程.5.已知方程组则x+y+z= .6.已知甲、乙、丙三人各有一些钱,其中甲的钱数是乙的钱数的2倍,乙的钱数比丙的钱数多1元,丙的钱数比甲的钱数少11元.三人共有元.三、解答题(共26分)7.(8分)李红在做这样一个题目:在等式y=ax2+bx+c中,当x=1时,y=6;当x=2时,y=21;当x=-1时,y=0;当x=-2时,y等于多少?她想,在求y值之前应先求a,b,c的值,你认为她的想法对吗?请你帮她求出a,b,c及y的值.8.(8分)某单位职工在植树节时去植树,甲、乙、丙三个小组共植树50棵,乙小组植树的棵数是甲、丙两小组的和的,甲小组植树的棵数恰是乙小组与丙小组的和,问每小组各植树多少棵?【拓展延伸】9.(10分)某企业为了激励员工参与技术革新,设计了技术革新奖,这个奖项分设一、二、三等,按获奖等级颁发一定数额的奖金,每年评选一次,下表是近三年技术革新获奖人数及奖金总额情况.一等奖人数(人)二等奖人数(人)三等奖人数(人)奖金总额(万元)2011年10 20 30 412012年12 20 28 422013年14 25 40 54 那么技术革新一、二、三等奖的奖金数额分别是多少万元?答案解析1.【解析】选C.三元一次方程组里必须有三个方程,故排除A,B;D中有两个方程不是一次方程,故它也不是三元一次方程组.2.【解析】选A.把x+y=3和原方程组联立,得到一个关于x,y,a的三元一次方程组,求得a=7.3.【解析】选C.根据题意,得解得故选C.4.【解析】方程①和②中未知数y的系数互为相反数,相加可消去未知数y,得2x+z=27.答案:y 2x+z=275.【解析】①+②+③得:2x+2y+2z=12,所以x+y+z=6.答案:66.【解析】设甲有x元、乙有y元、丙有z元,根据题意,得解得所以三人共有20+10+9=39(元).答案:397.【解析】她的想法对.根据题意,得解得所以该等式为y=4x2+3x-1,所以当x=-2时,y=4×4-3×2-1=9,即y=9.8.【解析】设甲小组植树x棵、乙小组植树y棵、丙小组植树z棵,根据题意,得解得答:甲小组植树25棵、乙小组植树10棵、丙小组植树15棵.9.【解析】设一、二、三等奖的奖金数额分别是x万元、y万元、z万元,根据题意,得解得答:一、二、三等奖的奖金数额分别是1万元、万元、万元.同底数幂的乘法(30分钟50分)一、选择题(每小题4分,共12分)1.计算(-x)2·x3的结果是( )A.x5B.-x5C.x6D.-x62.下列各式计算正确的个数是( )①x4·x2=x8;②x3·x3=2x6;③a5+a7=a12;④(-a)2·(-a2)=-a4;⑤a4·a3=a7.A.1B.2C.3D.43.下列各式能用同底数幂乘法法则进行计算的是( )A.(x+y)2·(x-y)2B.(x+y)2(-x-y)C.(x+y)2+2(x+y)2D.(x-y)2(-x-y)二、填空题(每小题4分,共12分)4.(2013·天津中考)计算a·a6的结果等于.5.若2n-2×24=64,则n= .6.已知2x·2x·8=213,则x= .三、解答题(共26分)7.(8分)计算:(1)(-3)3·(-3)4·(-3).(2)a3·a2-a·(-a)2·a2.(3)(2m-n)4·(n-2m)3·(2m-n)6.(4)y·y n+1-2y n·y2.8.(8分)已知a x=5,a y=4,求下列各式的值:(1)a x+2. (2)a x+y+1.【拓展延伸】9.(10分)已知2a=3,2b=6,2c=12,试确定a,b,c之间的关系.答案解析1.【解析】选A.(-x)2·x3=x2·x3=x2+3=x5.2.【解析】选B.x4·x2=x4+2=x6,故①错误;x3·x3=x3+3=x6,故②错误;a5与a7不是同类项,不能合并,故③错误;(-a)2·(-a2)=a2·(-a2)=-a2·a2=-a2+2=-a4,故④正确;a4·a3=a4+3=a7,故⑤正确.3.【解析】选 B.A,D选项底数不相同,不是同底数幂的乘法,C选项不是乘法;(x+y)2(-x-y)=-(x+y)2(x+y)=-(x+y)3.4.【解析】根据同底数幂的乘法法则“同底数幂相乘,底数不变,指数相加”,所以a·a6=a1+6=a7. 答案:a75.【解析】因为2n-2×24=2n-2+4=2n+2,64=26,所以2n+2=26,即n+2=6,解得n=4.答案:46.【解析】因为2x·2x·8=2x·2x·23=2x+x+3,所以x+x+3=13,解得x=5.答案:57.【解析】(1)(-3)3·(-3)4·(-3)=(-3)3+4+1=(-3)8=38.(2)a3·a2-a·(-a)2·a2=a3+2-a·a2·a2=a5-a5=0.(3)(2m-n)4·(n-2m)3·(2m-n)6=(n-2m)4·(n-2m)3·(n-2m)6=(n-2m)4+3+6=(n-2m)13.(4)y·y n+1-2y n·y2=y n+1+1-2y n+2=y n+2-2y n+2=(1-2)y n+2=-y n+2.8.【解析】(1)a x+2=a x×a2=5a2.(2)a x+y+1=a x·a y·a=5×4×a=20a.9.【解析】方法一:因为12=3×22=6×2, 所以2c=12=3×22=2a×22=2a+2,即c=a+2,①又因为2c=12=6×2=2b×2=2b+1,所以c=b+1,②①+②得2c=a+b+3.方法二:因为2b=6=3×2=2a×2=2a+1,所以b=a+1,①又因为2c=12=6×2=2b×2=2b+1,所以c=b+1,②①-②得2b=a+c.多项式的乘法(第1课时)(30分钟50分)一、选择题(每小题4分,共12分)1.化简5(2x-3)+4(3-2x)的结果为( )A.2x-3B.2x+9C.8x-3D.18x-32.下列各式中计算错误的是( )A.2x-(2x3+3x-1)=4x4+6x2-2xB.b(b2-b+1)=b3-b2+bC.-x(2x2-2)=-x3+xD.x=x4-2x2+x3.今天数学课上,老师讲了单项式乘以多项式.放学后,小华回到家拿出课堂笔记,认真复习老师课上讲的内容,他突然发现一道题:-3xy·(4y-2x-1)=-12xy2+6x2y+ .空格的地方被钢笔水弄污了,你认为横线上应填写( )A.3xyB.-3xyC.-1D.1二、填空题(每小题4分,共12分)4.(-2x2)3·(x2+x2y2+y2)的结果中次数是10的项的系数是.5.当x=1,y=时,3x(2x+y)-2x(x-y)= .6.如图是在正方形网格中按规律填成的阴影,根据此规律,第n个图中的阴影部分小正方形的个数是.三、解答题(共26分)7.(8分)先化简,再求值.x(x2-6x-9)-x(x2-8x-15)+2x(3-x),其中x=-.8.(8分)如图,一长方形地块用来建造住宅、广场、商厦,求这块地的面积.【拓展延伸】9.(10分)阅读:已知x2y=3,求2xy(x5y2-3x3y-4x)的值.分析:考虑到x,y的可能值较多,不能逐一代入求解,故考虑整体思想,将x2y=3整体代入. 解:2xy(x5y2-3x3y-4x)=2x6y3-6x4y2-8x2y=2(x2y)3-6(x2y)2-8x2y=2×33-6×32-8×3=-24.你能用上述方法解决以下问题吗?试一试!已知ab=3,求(2a3b2-3a2b+4a)·(-2b)的值.答案解析1.【解析】选A.原式=10x-15+12-8x=(10x-8x)+(-15+12)=2x-3.2.【解析】选A.2x-(2x3+3x-1)=2x-2x3-3x+1=-2x3-x+1.3.【解析】选A.-3xy·(4y-2x-1)=-3xy·4y+(-3xy)·(-2x)+(-3xy)·(-1)=-12xy2+6x2y+3xy,所以应填写3xy.4.【解析】(-2x2)3·(x2+x2y2+y2)=-8x6·(x2+x2y2+y2)=-8x8-8x8y2-8x6y2,所以次数是10的项是-8x8y2,系数是-8.答案:-85.【解析】3x(2x+y)-2x(x-y)=6x2+3xy-2x2+2xy=4x2+5xy,当x=1,y=时,原式=4x2+5xy=4×12+5×1×=4+1=5.答案:56.【解析】根据图形可知:第一个图形中阴影部分小正方形个数为4=2+2=1×2+2,第二个图形中阴影部分小正方形个数为8=6+2=2×3+2,第三个图形中阴影部分小正方形个数为14=12+2=3×4+2,……所以第n个图形中阴影部分小正方形个数为n(n+1)+2= n2+n+2,故此题答案为n2+n+2. 答案:n2+n+27.【解析】x(x2-6x-9)-x(x2-8x-15)+2x(3-x)=x3-6x2-9x- x3+8x2+15x+6x-2x2=12x.当x=-时,原式=12×=-2.8.【解析】长方形地块的长为:(3a+2b)+(2a-b),宽为4a, 这块地的面积为:4a·[(3a+2b)+(2a-b)]=4a·(5a+b)=4a·5a+4a·b=20a2+4ab.答:这块地的面积为20a2+4ab.9.【解析】(2a3b2-3a2b+4a)·(-2b)=-4a3b3+6a2b2-8ab=-4(ab)3+6(ab)2-8ab,当ab=3时,原式=-4×33+6×32-8×3=-108+54-24=-78.幂的乘方与积的乘方(30分钟50分) 一、选择题(每小题4分,共12分)1.(2013·遵义中考)计算的结果是( )A.-a3b6B.-a3b5C.-a3b5D.-a3b62.(2013·泸州中考)下列各式计算正确的是( )A.(a7)2=a9B.a7·a2=a14C.2a2+3a3=5a5D.(ab)3=a3b33.如果(2a m b m+n)3=8a9b15成立,则m,n的值为( )A.m=3,n=2B.m=3,n=9C.m=6,n=2D.m=2,n=5二、填空题(每小题4分,共12分)4.若(x2)n=x8,则n= .5.若a n=3,b n=2,则(a3b2)n= .6.××(-1)2013= .三、解答题(共26分)7.(8分)比较3555,4444,5333的大小.8.(8分)计算:(1)(-a3b6)2-(-a2b4)3.(2)2(a n b n)2+(a2b2)n.【拓展延伸】9.(10分)阅读材料:一般地,如果a(a>0,且a≠1)的b次幂等于N,那么数b叫做以a为底N的对数,记作log a N=b. 例如,因为54=625,所以log5625=4;因为32=9,所以log39=2.对数有如下性质:如果a>0,且a≠1,M>0,N>0,那么lo g a(MN)=log a M+log a N.完成下列各题:(1)因为,所以log28= .(2)因为,所以log216= .(3)计算:log2(8×16)= + = .答案解析1.【解析】选D.=·a3·(b2)3=-a3b6.2.【解析】选 D.根据幂的乘方法则,(a7)2=a7×2=a14,选项A错误;根据同底数幂相乘法则,a7·a2=a7+2=a9,选项B错误;2a2与3a3不是同类项,不能合并,选项C错误;选项D符合积的乘方的运算法则,是正确的,故选D.3.【解析】选A.因为(2a m b m+n)3=8a3m b3(m+n)=8a9b15,所以3m=9,3(m+n)=15,解得m=3,n=2.4.【解析】因为(x2)n=x2n=x8,所以2n=8,所以n=4.答案:45.【解析】(a3b2)n=a3n b2n=(a n)3(b n)2=33×22=27×4=108.答案:1086.【解析】原式=×=×=12013×=.答案:7.【解析】因为3555=3111×5=(35)111=243111,4444=4111×4=(44)111=256111,5333=5111×3=(53)111=125111,又因为125<243<256,所以125111<243111<256111,所以5333<3555<4444.8.【解析】(1)原式=a6b12-(-a6b12)=a6b12+a6b12= 2a6b12.(2)原式=2a2n b2n+a2n b2n=3a2n b2n.9.【解析】(1)因为23=8,所以log28=3.(2)因为24=16,所以log216=4.(3)log2(8×16)=log28+log216=3+4=7.答案:(1)23=8 3 (2)24=16 4 (3)log28 log216 7单项式的乘法(30分钟50分)一、选择题(每小题4分,共12分)1.(2013·绍兴中考)计算3a·2b的结果是( )A.3abB.6aC.6abD.5ab2.下列计算中,错误的是( )A.(2xy)3(-2xy)2=32x5y5B.(-2ab2)2(-3a2b)3=-108a8b7C.=x4y3D.=m4n43.某商场4月份售出某品牌衬衣b件,每件c元,营业额a元.5月份采取促销活动,售出该品牌衬衣3b件,每件打八折,则5月份该品牌衬衣的营业额比4月份增加( )A.1.4a元B.2.4a元C.3.4a元D.4.4a元二、填空题(每小题4分,共12分)4.(2013·泰州中考)计算:3a·2a2= .5.计算:= .6.光的速度约为3×105km/s,太阳光到达地球需要的时间约为5×102s,则地球与太阳间的距离约为km.三、解答题(共26分)7.(8分)计算:(1)4y3·(-2x2y).(2)x2y3·xyz.(3)(3x2y)3·(-4xy2).(4)(-xy2z3)4·(-x2y)3.8.(8分)有理数x,y满足条件|2x-3y+1|+(x+3y+5)2=0,求代数式(-2xy)2·(-y2)·6xy2的值.【拓展延伸】9.(10分)已知三角表示2ab c,方框表示(-3x zω)y,求×.答案解析1.【解析】选C.3a·2b=3×2a·b=6ab.2.【解析】选 D.选项A中,(2xy)3(-2xy)2=8x3y3×4x2y2=32x5y5,故此选项正确;选项B 中,(-2ab2)2(-3a2b)3=4a2b4×(-27)a6b3=-108a8b7,故此选项正确;选项C中,=x2y2×x2y=x4y3,故此选项正确;选项D中,=m2n×m2n4=m4n5,故此选项错误.3.【解析】选A.由题意知bc=a.因为5月份售出该品牌衬衣3b件,每件打八折,则每件为0.8c 元.所以5月份该品牌衬衣的营业额为:3b·0.8c=2.4bc=2.4a(元).所以5月份该品牌衬衣的营业额比4月份增加2.4a-a=1.4a(元).4.【解析】3a·2a2=6a3.答案:6a35.【解析】=(a·a2)(b2·b)=-a3b3.答案:-a3b36.【解析】(3×105)×(5×102)=(3×5)×(105×102)=15×107=1.5×108.答案:1.5×1087.【解析】(1)原式=[4×(-2)]x2·(y3·y)=-8x2y4.(2)原式=(x2·x)(y3·y)·z=x3y4z.(3)原式=27x6y3·(-4xy2)=[27×(-4)](x6·x)(y3·y2)=-108x7y5.(4)原式=x4y8z12·(-x6y3)=-(x4·x6)(y8·y3)z12=-x10y11z12.8.【解题指南】由|2x-3y+1|+(x+3y+5)2=0知,2x-3y+1=0,x+3y+5=0,建立方程组,解得x,y 后,代入代数式求值.【解析】由题意得可得所以(-2xy)2·(-y2)·6xy2=4x2y2·(-y2)·6xy2=-24x3y6.当x=-2,y=-1时,原式=-24×(-2)3×(-1)6=-24×(-8)=192.9.【解析】×=2mn3·(-3n5m)2=2mn3·9n10m2=18n13m3.多项式的乘法(第2课时)(30分钟50分)一、选择题(每小题4分,共12分)1.下列计算中,正确的有( )①(2a-3)(3a-1)=6a2-11a+3;②(m+n)(n+m)=m2+mn+n2;③(a-2)(a+3)=a2-6;④(1-a)(1+a)=1-a2.A.4个B.3个C.2个D.1个2.若(x+3)(x+m)=x2+kx-15,则m-k的值为( )A.-3B.5C.-2D.23.图(1)是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )A.2mnB.(m+n)2C.(m-n)2D.m2-n2二、填空题(每小题4分,共12分)4.当x=-7时,代数式(2x+5)(x+1)-(x-3)(x+1)的值为.5.已知(x2+px+8)(x2-3x+q)的展开式中不含x2项和x3项,则p+q的值为.6.若(x+a)(x+b)=x2-6x+8,则ab= .三、解答题(共26分)7.(8分)(1)化简(x+1)2-x(x+2).(2)先化简,再求值.(x+3)(x-3)-x(x-2),其中x=4.8.(8分)若(x-1)(x+1)(x+5)=x3+bx2+cx+d,求b+d的值.【拓展延伸】9.(10分)计算下列式子:(1)(x-1)(x+1)= .(2)(x-1)(x2+x+1)= .(3)(x-1)(x3+x2+x+1)= .(4)(x-1)(x4+x3+x2+x+1)= .用你发现的规律直接写出(x-1)(x n+x n-1+…+x+1)的结果.答案解析1.【解析】选C.因为(2a-3)(3a-1)=6a2-11a+3;(m+n)(n+m)=m2+2mn+n2;(a-2)(a+3)=a2+a-6;(1-a)(1+a)=1-a2,故正确的有2个.2.【解析】选A.因为(x+3)(x+m)=x2+(3+m)x+3m=x2+kx-15.所以m+3=k,3m=-15,解得m=-5,k=-2.所以m-k=-5-(-2)=-5+2=-3.3.【解析】选C.由题意可得,正方形的边长为(m+n),故正方形的面积为(m+n)2,又因为原矩形的面积为4mn,所以中间空的部分的面积=(m+n)2-4mn=(m-n)2.4.【解析】(2x+5)(x+1)-(x-3)(x+1)=(2x2+2x+5x+5)-(x2+x-3x-3)=x2+9x+8.把x=-7代入得:原式=(-7)2+9×(-7)+8=-6.答案:-65.【解析】因为(x2+px+8)(x2-3x+q)=x4-3x3+qx2+p x3-3px2+qpx+8x2-24x+8q= x4+(p-3)x3+(q-3p+8)x2+(qp-24)x+8q,又因为(x2+px+8)(x2-3x+q)的展开式中不含x2项和x3项,所以p-3=0,q-3p+8=0,所以p=3,q=1,所以p+q=4.答案:46.【解析】因为(x+a)(x+b)=x2+bx+ax+ab=x2+(a+b)x+ab,所以x2+(a+b)x+ab= x2-6x+8,所以ab=8.答案:87.【解析】(1)原式=(x+1)(x+1)-x(x+2)=x2+x+x+1-x2-2x=x2+2x+1-x2-2x=1.(2)原式=x2-3x+3x-9-x2+2x=2x-9.当x=4时,原式=2×4-9=-1.8.【解析】(x-1)(x+1)(x+5)=(x2-1)(x+5)=x3+5x2-x-5所以b=5,c=-1,d=-5.即b+d=5-5=0.9.【解析】(1)x2-1 (2)x3-1(3)x4-1 (4)x5-1(x-1)(x n+x n-1+…+x+1)=x n+1-1.平方差公式(30分钟50分)一、选择题(每小题4分,共12分)1.化简:(a+1)2-(a-1)2=( )A.2B.4C.4aD.2a2+22.下列各式计算正确的是( )A.(x+2)(x-2)=x2-2B.(2a+b)(-2a+b)=4a2-b2C.(2x+3)(2x-3)=2x2-9D.(3ab+1)(3ab-1)=9a2b2-13.下列运用平方差公式计算错误的是( )A.(a+b)(a-b)=a2-b2B.(x+1)(x-1)=x2-1C.(2x+1)(2x-1)=2x2-1D.(-a+2b)(-a-2b)=a2-4b2二、填空题(每小题4分,共12分)4.如果x+y=-4,x-y=8,那么代数式x2-y2的值是.5.计算:= .6.观察下列各式,探索发现规律:22-1=3=1×3;42-1=15=3×5;62-1=35=5×7;82-1=63=7×9;102-1=99=9×11;…用含正整数n的等式表示你所发现的规律为.三、解答题(共26分)7.(8分)(1)(2013·株洲中考)先化简,再求值:(x-1)(x+1)-x(x-3),其中x=3.8.(8分)(2013·义乌中考)如图1,从边长为a的正方形纸片中剪去一个边长为b的小正方形,再沿着线段AB剪开,把剪成的两张纸片拼成如图2的等腰梯形.(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2,请直接用含a,b的代数式表示S1,S2.(2)请写出上述过程所揭示的乘法公式.【拓展延伸】9.(10分)阅读下列材料:某同学在计算3×(4+1)(42+1)时,把3写成4-1后,发现可以连续运用平方差公式计算:3×(4+1)(42+1)=(4-1)(4+1)(42+1)=(42-1)(42+1)=162-1.很受启发,后来在求(2+1)(22+1)(24+1)(28+1)…(21024+1)的值时,又改造此法,将乘积式前面乘以1,且把1写为2-1得(2+1)(22+1)(24+1)(28+1)…(21024+1)=(2-1)(2+1)(22+1)(24+1)(28+1)…(21024+1)=(22-1)(22+1)(24+1)(28+1)…(21024+1)=(24-1)(24+1)(28+1)…(21024+1)=…=(21024-1)(21024+1)=22048-1.回答下列问题:(1)请借鉴该同学的经验,计算:(3+1)(32+1)(34+1)(38+1).(2)借用上面的方法,再逆用平方差公式计算:….答案解析1.【解析】选C.(a+1)2-(a-1)2=[(a+1)-(a-1)]·[(a+1)+(a-1)]=2×2a=4a.2.【解析】选D.(x+2)(x-2)=x2-4≠x2-2;(2a+b)(-2a+b)=(b+2a)(b-2a)=b2-4a2≠4a2-b2;(2x+3)(2x-3)=4x2-9≠2x2-9;(3ab+1)(3ab-1)=9a2b2-1.3.【解析】选C.根据平方差得(2x+1)(2x-1)=4x2-1,所以C错误.而A,B,D符合平方差公式条件,计算正确.4.【解析】因为x+y=-4,x-y=8,所以x2-y2=(x+y)(x-y)=(-4)×8=-32.答案:-325.【解析】原式====1.答案:16.【解析】观察式子,每个式子中等号左边的被减数是偶数的平方,减数都是1,等号右边是此偶数前后两个连续奇数的乘积,所以用含正整数n的等式表示其规律为(2n)2-1=(2n-1)(2n+1).答案:(2n)2-1=(2n-1)(2n+1)7.【解析】原式=x2-1-(x2-3x)=x2-1-x2+3x=3x-1,当x=3时,原式=3×3-1=8.(2)解方程:(x-4)(x+3)+(2+x)(2-x)=4.【解析】去括号得x2-4x+3x-12+4-x2=4,移项得x2-4x+3x-x2=4+12-4,合并同类项得-x=12,系数化为1得x=-12.8.【解析】(1)图1中阴影部分面积为S1=a2-b2;图2中阴影部分面积为S2=(2b+2a)(a-b)=(a+b)(a-b).(2)(a+b)(a-b)=a2-b2.9.【解析】(1)(3+1)(32+1)(34+1)(38+1)=(32-1)(32+1)(34+1)(38+1)=(34-1)(34+1)(38+1)=(38-1)(38+1)=(316-1).(2)…=…=××××…××=×=.完全平方公式(30分钟50分)一、选择题(每小题4分,共12分)1.(2013·湘西州中考)下列运算正确的是( )A.a2-a4=a8B.(x-2)(x-3)=x2-6C.(x-2)2=x2-4D.2a+3a=5a2.若a+=7,则a2+的值为( )A.47B.9C.5D.513.如图是一个正方形,分成四部分,其面积分别是a2,ab,ab,b2,则原正方形的边长是( )A.a2+b2B.a+bC.a-bD.a2-b2二、填空题(每小题4分,共12分)4.(2013·晋江中考)若a+b=5,ab=6,则a-b= .5.(2013·泰州中考)若m=2n+1,则m2-4mn+4n2的值是.6.若=9,则的值为.三、解答题(共26分)7.(10分)(1)(2013·福州中考)化简:(a+3)2+a(4-a).(2)(2013·宁波中考)先化简,再求值:(1+a)(1-a)+(a-2)2,其中a=-3.8.(6分)利用完全平方公式计算:(1)482.(2)1052.【拓展延伸】9.(10分)如图所示,有四个同样大小的直角三角形,两条直角边分别为a,b,斜边为c,拼成一个正方形,但中间却留有一个小正方形,你能利用它们之间的面积关系,得到关于a,b,c的等式吗?答案解析1.【解析】选D.A.a2与a4不是同类项,不能合并,故本选项错误;B.(x-2)(x-3)=x2-5x+6,故本选项错误;C.(x-2)2=x2-4x+4,故本选项错误;D.2a+3a=5a,故本选项正确.2.【解析】选A.因为a+=7,所以=72,a2+2·a·+=49,a2+2+=49,所以a2+=47.3.【解析】选B.因为a2+2ab+b2=(a+b)2,所以边长为a+b.4.【解析】因为(a-b)2=(a+b)2-4ab=25-24=1,所以a-b=±1.答案:±15.【解析】因为m=2n+1,即m-2n=1,所以原式=(m-2n)2=1.答案:16.【解析】由=9,可得x2+2+=9.即x2+=7,=x2-2+=7-2=5.答案:57.【解析】(1)原式=a2+6a+9+4a-a2=10a+9. (2)原式=1-a2+a2-4a+4=-4a+5,当a=-3时,原式=12+5=17.8.【解析】(1)482=(50-2)2=2500-200+4=2304.(2)1052=(100+5)2=10000+1000+25=11025.9.【解析】因为小正方形的边长为b-a,所以它的面积为(b-a)2,所以大正方形的面积为4××a×b+(b-a)2. 又因为大正方形的面积为c2,所以4××a×b+(b-a)2=c2,即2ab+b2-2ab+a2=c2,得a2+b2=c2.运用乘法公式进行计算(30分钟50分)一、选择题(每小题4分,共12分)1.若a2+ab+b2+A=(a-b)2,则A式应为( )A.abB.-3abC.0D.-2ab2.计算(m-2n-1)(m+2n-1)的结果为( )A.m2-4n2-2m+1B.m2+4n2-2m+1C.m2-4n2-2m-1D.m2+4n2+2m-13.计算(2a+3b)2(2a-3b)2的结果是( )A.4a2-9b2B.16a4-72a2b2+81b4C.(4a2-9b2)2D.4a4-12a2b2+9b4二、填空题(每小题4分,共12分)4.计算(-3x+2y-z)(3x+2y+z)= .5.矩形ABCD的周长为24,面积为32,则其四条边的平方和为.6.已知a-b=3,则a(a-2b)+b2的值为.三、解答题(共26分)7.(8分)求代数式(a+2b)(a-2b)+(a+2b)2-4ab的值,其中a=1,b=.8.(8分)计算:(x+1)(x+2)(x+3)(x+4).【拓展延伸】9.(10分)我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应(a+b)2=a2+2ab+b2展开式中的系数;第四行的四个数1,3,3,1,恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中的系数等等.。

湘教版七年级数学下册课件:5.轴对称变换

湘教版七年级数学下册课件:5.轴对称变换

知图形将这些点连接起来.
课堂反馈
1. 下列三个图案分别成轴对称吗?如果是, 画 出它们的对称轴,并标出一对对应点.
2.以直线l为对称轴,画出ΔABC在轴反射下的像
ΔA′B′C′.
3.做出五边形ABCDE以直线l为对称轴的对称图形。
l
l
A
¬M
A′
BA
A′
B′
¬N B B′
C
¬S
C′
C D
E ′
C′ D′
A
A
B
C
C
D
如图,用印章在一张纸上盖上一个印(a),
趁印迹未干之时,将纸张沿l着直线 对折,得
到印(b),随后打开,视察图形(a)与(b)有怎 样的关系.
(a)
(b)
探究新知
把图形(a)沿着直线l翻折并将图形“复印” 下来得到图形(b),就叫做该图形关于直线l 作了轴对称变换,也叫轴反射.图形(a)叫做 原像,图形(b)叫做图形(a)在这个轴反射下 的像.
3 在3×3的正方形格点图中,有格点△ABC和△DEF,
且△ABC和△DEF关于某直线成轴对称,请在下面给
出的图中画出4个这样的△DEF.
E
D
C(F)
CF
D C(F)
E
CF
A (D)
BA
B(E) A
B
A(D)
B(E)
方法归纳:作一个图形关于一条已知直线的对称图形,关键
是作出图形上一些点关于这条直线的对称点,然后再根据已
4. 如图给出了一个图案的一半,虚线 l 是这个图案的
对称轴.整个图案是个什么形状?请准确地画出它的另
一半.
l
BA
C D
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

轴对称变换
(30分钟 50分)
一、选择题(每小题4分,共12分) 1.
两个图形关于
某直线对称,对称点一定在( )
A. 直线的两旁
B. 直线的同旁
C. 直线上
D. 直线的两旁或直线上
2. (2013 •郴州中考)如图,在Rt △ ABC 中,/ ACB=90 / A=25° ,D 是 AB 上一点,将 Rt △ ABC 沿 CD 折叠,使 B 点落在AC 边上的B'处,则/ ADB'等于(

A. 25 °
B.30 °
C.35 °
D.40
、填空题(每小题4分,共12分)
4.观察下图中各组图形,其中成轴对称的为 ________ (只写序号). 3.如图,正六边形 ABCDE 关于直线I 的轴对称图形是六边形
A'B'C'D'E'F',
F 列判断错误的是(

A.AB=A'B'
B. BC // B'C'
C.直线I 丄BB'
D. / A'=120
D
B
[>
D f C f
5.
_______________________________
如图
,三角形1与 ___________________ 成轴对称,整个图形中共有条对称轴.
6. 如图,将一张长方形纸片ABCD沿EF折叠,使顶点C,D分别落在点C',D'处,C'E交AF于点G.若/ CEF=70
贝GFD'= _________
三、解答题(共26分)
7. (8分)辨别下列图形是不是轴对称图形或成轴对称,并说明理由
8. (8分)如图,在10 X 10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ ABC(即三角形的顶点都在格点上).
D1
(1)在图中作出△ ABC 关于直线l 对称的△ A i BQ.(要求:A 与A i ,B 与B i ,C 与G 相对应)
⑵在⑴题的结果下,连接BB,CC i ,求四边形BBC i C 的面积.
【拓展延伸】
9. (i0分)在3X 3的正方形格点图中,有格点△ ABC^D ^ DEF,且厶ABC^D ^ DEF 关于某直线成轴对称,请在下 面的备用图中画出所有这样的厶
DEF.
i.【解析】选D.由成轴对称的性质知,若图形的点在直线上,则其对称点在直线上;若图形的点不在直线上 则在直线的两旁•
2.【解析】选D. / B=65° ,根据轴对称的性质可知
/ ADB'=Z CB'D- / A=65° -25 ° =40° .
3. 【解析】选B.由图形可知:A.点A 和B 对称点是点A'和B',所以AB=A'B'.故A 是正确的; B.点B,C,D,E 对称点是点 B',C',D'和E', 所以根据正六边形的性质可得到 BC// D'E',
DE// B'C'.故B 是错误的.
/
/ CB'D=Z B=65° ,所以
ti
H A H
C. 点B,E对称点分别是点B',E',
所以BB'丄直线I.故C是正确的.
D. 正六边形ABCDE关于直线I的轴对称图形是六边形A'BCD'E'F'.
所以六边形A'B'C'D'E'F' 也是正六边形,
则/ A' =120° .故D是正确的.
4. 【解析】③中的伞把不对称,故填①②④.
答案:①②④
5. 【解析】根据轴对称的性质可得三角形1与三角形2、三角形4都分别成轴对称,整个图形为轴对称图形,
有2条对称轴.
答案:三角形2、三角形4 2
6. 【解析】因为四边形ABCD是长方形,所以AD// BC,
所以/ GFE=/ CEF=70 ,/ CEF+Z EFD=180 .
所以/ EFD=11C° .由折叠可知Z EFD'= Z EFD=110°,故Z GFD'=Z EFD'-
Z GFE=11C -70 °=40°.
答案:40
7. 【解析】辨别的标准只有一个,即“轴对称图形”和“关于直线成轴对称”的定义,也就是看沿某条直线翻折过去能否重合.找到这样的直线,才能下肯定的结论.
图形①可以看成由两部分组成的,一部分是完整的圆,另一部分是具有相同圆心的两个圆的大半部分,把它
们沿过两个圆心的直线翻折就能重合,所以①是轴对称图形.
将图形②适当进行翻折,眼睛不能重合,所以这不是轴对称图形.
图形③由于两个图形需要平移后再翻折才能重合,所以它们不是关于直线成轴对称的.
图形④是由三个图形组成的,但它毕竟是作为一个整体出现的.这个整体符合轴对称图形的定义,是轴对称图形•
8. 【解析】⑴如图,△ ABC是厶ABC关于直线I的对称图形.
(2)由图得四边形BBCC是等腰梯形,BB i=4,CC i=2,高是4. 所以:L-. I %
9. 【解析】如图所示:。

相关文档
最新文档