人教版数学七年级下册定义汇总

合集下载

人教版七年级数学下册各章节知识点归纳

人教版七年级数学下册各章节知识点归纳

人教版七年级数学下册各章节知识点归纳第一章:直线与角1. 定义平行线和垂直线的概念,了解直线的性质。

2. 知道角的概念和角的分类,包括锐角、直角、钝角和平角。

3. 掌握角的度量单位:度和弧度。

4. 学习如何用直尺和量角器画角。

第二章:平行线与平面1. 学习如何用直尺和圆规做等分线段、垂线、平行线、垂直平分线和角的平分线。

2. 理解平行线与转角的关系,学会证明平行线与转角的基本性质。

3. 掌握平面的概念,理解平面的性质和表示方法。

4. 学习如何判断平面与平面的位置关系,包括平行、垂直和交叉。

第三章:三角形1. 知道三角形的定义和分类,包括等边三角形、等腰三角形、直角三角形和普通三角形。

2. 掌握三角形内角的和定理和外角的性质。

3. 学习三角形的判定方法,包括SSS、SAS、ASA和AAS。

4. 理解三角形中的全等概念,学会判断和证明两个三角形是否全等。

第四章:四边形1. 知道四边形的定义和分类,包括矩形、正方形、菱形、平行四边形和梯形。

2. 掌握矩形、正方形和菱形的性质,包括边长、对角线、内角和面积的计算方法。

3. 学习平行四边形的性质,包括对角线的关系、内角和、面积和周长的计算方法。

4. 理解梯形的定义和性质,学会计算梯形的面积和周长。

第五章:图形的变化1. 了解图形中的平移、旋转、翻折和对称等基本变化。

2. 学习如何用折纸法进行图形变化。

3. 理解相似图形的概念和性质,学会判断和证明两个图形是否相似。

4. 掌握相似图形的计算方法,包括比例尺和相似比的计算。

第六章:数的运算1. 复习整数的概念和运算法则,包括加法、减法、乘法和除法。

2. 学习分数的概念和运算规则,包括分数的四则运算和混合运算。

3. 掌握百分数的概念和表示方法,包括百分数与分数的转换。

4. 学习用图形表示分数和百分数的大小关系,包括数轴和百分数相应的阶梯图。

第七章:方程与不等式1. 知道方程和不等式的定义和表示方法。

2. 学习一元一次方程和一元一次不等式的解法,包括等式和不等式的性质及运算规则。

人教版七年级数学知识点归纳上下册

人教版七年级数学知识点归纳上下册

初一数学知识点总结(初一上学期)代数初步知识一、代数式:用运算符号“+ - × ÷ …… ”连接数及表示数的字母的式子称为代数式。

注意:用字母表示数有必然的限制,第一字母所取得数应保证它所在的式子成心义,第二字母所取得数还应使实际生活或生产成心义;单唯一个数或一个字母也是代数式。

二、列代数式的几个注意事项:(1)数与字母相乘,或字母与字母相乘通常利用“· ” 乘,或省略不写。

(2)数与数相乘,仍应利用“×”乘,不用“· ”乘,也不能省略乘号。

(3)数与字母相乘时,一样在结果中把数写在字母前面,如a×5应写成5a 。

(4)在代数式中显现除法运算时,一样用分数线将被除式和除式联系,如3÷a 写成a3的形式;(5)a 与b 的差写作a-b ,要注意字母顺序;假设只说两数的差,当别离设两数为a 、b 时,那么应分类,写做a-b 和b-a . 3、几个重要的代数式:(1)a 与b 的平方差是:a 2-b 2; a 与b 差的平方是:(a-b )2。

(2)假设a 、b 、c 是正整数,那么两位整数是:10a+b ;那么三位整数是:100a+10b+c 。

(3)假设m 、n 是整数,那么被5除商m 余n 的数是:5m+n ;偶数是:2n ,奇数是:2n+1;三个持续整数是:n-一、n 、n+1。

(4)假设b >0,那么正数是:a 2+b ,负数是:-a 2-b ,非负数是:b 2,非正数是:-b 2。

有理数1、有理数: (1)凡能写成ab(a 、b 都是整数且a≠0)形式的数,都是有理数。

正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。

(注意:0即不是正数,也不是负数;-a 不必然是负数,+a 也不必然是正数;p 不是有理数)(2)有理数中,一、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性。

七年级下册数学知识点总结人教版

七年级下册数学知识点总结人教版

七年级下册数学知识点总结人教版七年级下册数学知识点总结(人教版)一、实数1. 有理数和无理数的概念- 有理数:整数和分数统称为有理数,包括正整数、负整数、正分数、负分数和零。

- 无理数:不能表示为分数形式的实数,如√2、π等。

2. 实数的运算- 加法:同号相加,异号相减,取绝对值大的数的符号。

- 减法:减去一个数等于加上它的相反数。

- 乘法:正数与正数得正,负数与负数得正,正数与负数得负。

- 除法:除以一个数等于乘以它的倒数。

- 乘方:求一个数的幂。

3. 算术平方根和平方根- 算术平方根:一个数的平方根中最大的正数。

- 平方根:一个数的平方根有两个,一个正数和一个负数。

4. 实数的性质和比较大小- 性质:实数的加法、减法、乘法、除法和乘方的性质。

- 比较大小:正实数大于零,负实数小于零,正实数大于所有负实数。

二、代数1. 代数式- 单项式:只含有乘法运算的代数式。

- 多项式:由若干个单项式相加或相减组成的代数式。

2. 代数式的运算- 加法和减法:合并同类项。

- 乘法:单项式与单项式相乘,多项式与单项式相乘。

- 除法:多项式除以单项式。

3. 因式分解- 提公因式法:找出多项式中所有项共有的因子。

- 公式法:使用平方差公式、完全平方公式等进行分解。

4. 代数方程- 一元一次方程:只含有一个未知数,且未知数的最高次数为1的方程。

- 二元一次方程组:含有两个未知数,每个未知数的次数都为1的方程组。

5. 不等式- 不等式的性质:包括加法、减法、乘法和除法的性质。

- 解一元一次不等式:通过移项、合并同类项、系数化为1等步骤求解。

三、几何1. 平面图形- 点、线、面的基本性质。

- 直线、射线、线段的定义和性质。

- 角的定义、分类和性质,包括邻角、对顶角、同位角等。

2. 三角形- 三角形的基本性质和分类,如等边三角形、等腰三角形和直角三角形。

- 三角形的内角和定理:三角形内角和为180度。

- 三角形的外角性质:一个三角形的外角等于其不相邻的两个内角的和。

人教版七年级下册数学知识点

人教版七年级下册数学知识点

人教版七年级下册数学知识点人教版七年级下册数学知识点概述一、实数1. 有理数和无理数的概念2. 实数的加减乘除运算3. 实数的比较大小4. 绝对值的概念及性质5. 实数的科学计数法二、代数1. 整式的加减乘除运算- 单项式与多项式- 同类项与合并同类项- 多项式的加减法- 多项式的乘法2. 因式分解- 提公因式法- 公式法- 十字相乘法3. 分式的基本概念和性质- 分式的定义- 分式的基本性质- 分式的约分与通分4. 分式的运算- 分式的加减法- 分式的乘除法- 分式的混合运算三、方程与不等式1. 一元一次方程的解法- 方程的建立- 方程的解法2. 二元一次方程组- 代入法- 加减消元法3. 一元一次不等式- 不等式的概念- 不等式的解法- 不等式的应用4. 一元一次不等式的解集- 求解不等式的解集- 不等式解集的表示方法四、几何1. 平面图形的认识- 点、线、面的基本性质- 直线、射线、线段- 角的概念及分类2. 三角形的基本性质- 三角形的定义- 三角形的内角和外角- 等腰三角形和等边三角形3. 四边形的基本性质- 四边形的定义- 平行四边形的性质- 矩形、菱形、正方形的性质4. 圆的基本性质- 圆的定义- 圆的半径、直径、弦、弧- 圆周角和圆心角- 切线的性质五、统计与概率1. 统计的基本概念- 数据的收集与整理- 频数与频率- 统计图表的绘制与解读2. 概率的初步认识- 随机事件的概念- 可能性的判断- 概率的计算基础六、应用题1. 利用所学知识解决实际问题2. 数学建模的初步尝试3. 分析问题与解决问题的基本方法以上是人教版七年级下册数学的主要知识点概述。

学生应掌握这些基础知识点,并能够灵活运用于解决实际问题中。

教师和家长应鼓励学生通过练习和实际应用来巩固和深化理解。

人教版数学七年级下册思维导图

人教版数学七年级下册思维导图

人教版数学七年级下册思维导图-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN5.1相交线5.1.1 相交线1.邻补角(定义:一条公共边,另一边互为反向延长线)2.对顶角(定义:两边互为反向延长线)性质:对顶角相等(同角的补角相等)5.1.2 垂线1.垂线(定义:两条线互相垂直,其中一条直线是直线的垂线)2.垂足(定义:两条互相垂直的线的交点)3.定理:①在同一平面内,过一点有且只有一条直线与已知直线垂直②垂线段最短:连接直线外一点与直线上个点的所有线段中,垂线段最短③点到直线的距离(定义:直线外一点到这条直线的垂线段的长度)5.1.3 同位角、内错角、同旁内角1.同位角(定义:两条直线被第三条直线所截,在截线的同旁,被截两直线的同一侧的角)2.内错角(定义:两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间)3.同旁内角(定义:两条直线被第三条直线所截,在截线同旁,且在被截线之内的两角,)5.2 平行线及其判定5.2.1 平行线1.平行(定义:永不相交)2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

(如果两条直线都与第三条直线平行,那么这两条直线也互相平行)5.2.2 平行线的判定1.同位角相等,两直线平行2.内错角相等,两两直线平行直线平行3.同旁内角互补,两直线平行25.3 平行线的性质5.3.1 平行线的性质1.两直线平行,同位角相等2.两直线平行,内错角相等3.两直线平行,同旁内角互补5.3.2 命题、定理、证明1.命题:题设、结论①真命题:题设成立,结论一定成立②假命题:题设成立,结论不一定成立2.定理3.证明5.4 平移36.1 平方根1.算术平方根、被开方数(规定:0的算术平方根是0)2.平方根、开平方①正数有两个互为相反数的平方根②0的平方根为0③负数没有平方根6.2 立方根1.立方根、开立根6.3 实数1.无理数:无限不循环的小数2.有理数:有限小数和无限循环小数(包含0)3.实数a的相反数是-a4.一个正实数的绝对值是它本身,一个负实数的绝对值时它的相反数,0的绝对值是047.1 平面直角坐标系7.1.1 有序数对(a,b)7.1.2 平面直角坐标系1.横轴x,纵轴y,原点2.象限(坐标轴上的点不属于任何象限)7.2 坐标方法的简单应用7.2.1用坐标表示地理位置7.2.2 用坐标表示平移58.1 二元一次方程组1.二元一次方程:两个未知数的次数都是18.2 消元——解二元一次方程组1.带入消元法2.加减消元法8.3 实际问题与二元一次方程组1.设未知数2.列方程组*8.4三元一次方程组的解法69.1 不等式9.1.1 不等式及其解集1.不等式的解(值)2.解集(含未知数的不等式的所有的解)9.1.2 不等式的性质1.不等式两边加(或减)同一个数(或式子),不等号的方向不变2.不等式两边乘(或除以)同一个正数,不等号的方向不变3.不等式两边乘(或除以)同一个负数,不等号的方向改变9.2 一元一次不等式9.3 一元一次不等式组710.1 统计调查1.全面调查2.抽样调查3.简单随机抽样调查4.数据处理的一般过程:调查、收集数据、整理数据(制表)、描述数据(绘图:条形图,扇形图,折线图,直方图)、分析数据、得出结论10.2 直方图1.计算最大值和最小值的差2.决定组距和组数3.列频数分布表4.画频数分布直方图10.3 课题学习从数据谈节水8。

人教版七年级下册数学知识点总结归纳

人教版七年级下册数学知识点总结归纳

人教版七年级下册数学知识点总结归纳七年级下册数学知识点1概率1.一般地,在大量重复试验中,如果事件A发生的频率n/m会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率。

2.随机事件:在一定的条件下可能发生也可能不发生的事件,叫做随机事件。

3.互斥事件:不可能同时发生的两个事件叫做互斥事件。

4.对立事件:即必有一个发生的互斥事件叫做对立事件。

5.必然事件:那些无需通过实验就能够预先确定它们在每一次实验中都一定会发生的事件称为必然事件。

6.不可能事件:那些在每一次实验中都一定不会发生的事件称为不可能事件。

2相交线与平行线1.相交线在同一平面内,两条直线的位置关系有相交和平行两种。

如果两条直线只有一个公共点时,称这两条直线相交。

2.垂线当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直,其中一条直线叫做另一直线的垂线,交点叫垂足。

3.同位角两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,我们把这样的两个角称为同位角。

4.内错角两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角。

5.同旁内角两条直线被第三条直线所截,在截线同旁,且在被截线之内的两角,叫做同旁内角。

6.平行线几何中,在同一平面内,永不相交(也永不重合)的两条直线叫做平行线。

平行线的性质:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。

7.平移平移,是指在同一平面内,将一个图形上的所有点都按照某个直线方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。

3平面直角坐标系1.定义:平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点。

2.平面上的任意一点都可以用一个有序数对来表示,记为(a,b),a是横坐标,b是纵坐标。

最新版人教版七年级数学下册知识点及典型试题汇总——期末总复习

最新版人教版七年级数学下册知识点及典型试题汇总——期末总复习

人教版七年级数学下册知识点汇总第五章 相交线与平行线一、知识网络结构二、知识要点 1、在同一平面内,两条直线的位置关系有 两 种: 相交 和 平行 ,垂直是相交的一种特殊情况。

2、在同一平面内,不相交的两条直线叫 平行线 。

如果两条直线只有 一个 公共点,称这两条直线相交;如果两条直线 没有 公共点,称这两条直线平行。

3、两条直线相交所构成的四个角中,有 公共顶点 且有 一条公共边 的两个角是邻补角。

邻补角的性质: 邻补角互补 。

如图1所示, 与 互为邻补角, 与 互为邻补角。

+ = 180°; + = 180°; + = 180°; + = 180°。

4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的 反向延长线 ,这样的两个角互为 对顶角 。

对顶角的性质:对顶角相等。

如图1所示, 与 互为对顶角。

= ; = 。

5、两条直线相交所成的角中,如果有一个是 直角或90°时,称这两条直线互相垂直,其中一条叫做另一条的垂线。

如图2所示,当 = 90°时, ⊥ 。

垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。

性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

性质3:如图2所示,当 a ⊥ b 时, = = = = 90°。

点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。

6、同位角、内错角、同旁内角基本特征:①在两条直线(被截线)的 同一方 ,都在第三条直线(截线)的 同一侧 ,这样的两个角叫 同位角 。

图3中,共有 对同位角: 与 是同位角;与 是同位角; 与 是同位角; 与 是同位角。

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧平移命题、定理的两直线平行:平行于同一条直线性质角互补:两直线平行,同旁内性质相等:两直线平行,内错角性质相等:两直线平行,同位角性质平行线的性质的两直线平行 :平行于同一条直线判定直线平行 :同旁内角互补,两判定线平行 :内错角相等,两直判定线平行 :同位角相等,两直判定定义平行线的判定平行线,不相交的两条直线叫平行线:在同一平面内平行线及其判定内角同位角、内错角、同旁垂线相交线相交线相交线与平行线 4321 4321____________________________:图1 1 3 4 2 图2 1 3 4 2 a b 图3 a 57 8 6 1 3 4 2 b cB E D AC F 87654321D CB A ②在两条直线(被截线) 之间 ,并且在第三条直线(截线)的 两侧 ,这样的两个角叫 内错角 。

人教版初中数学知识点汇总(全六册)

人教版初中数学知识点汇总(全六册)

初中数学知识点大集结2017.07七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一.知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a -b=a+(-b ). 10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a . 13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b -a)n , 当n 为正偶数时: (-a)n =a n 或 (a -b)n =(b -a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。

人教版七年级下册数学知识点汇总

人教版七年级下册数学知识点汇总

一、相交线与平行线1. 相交线•邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。

邻补角互补。

•对顶角:一个角的两边分别是另一个角的两边的反向延长线,像这样的两个角互为对顶角。

对顶角相等。

•垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。

垂线的性质包括:过一点有且只有一条直线与已知直线垂直;连接直线外一点与直线上各点的所有线段中,垂线段最短。

2. 平行线•定义:在同一平面内,永不相交的两条直线叫做平行线。

•平行公理:经过直线外一点有且只有一条直线与已知直线平行。

平行公理的推论是,如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

•平行线的性质:o两直线平行,同位角相等。

o两直线平行,内错角相等。

o两直线平行,同旁内角互补。

•平行线的判定:o同位角相等,两直线平行。

o内错角相等,两直线平行。

o同旁内角互补,两直线平行。

3. 平移•定义:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移变换,简称平移。

平移不改变物体的形状和大小。

•对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

连接各组对应点的线段平行且相等。

二、平面直角坐标系•有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)。

•平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。

水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

•坐标:对于平面内任一点P,过P分别向x轴、y轴作垂线,垂足分别在x 轴、y轴上,对应的数a、b分别叫点P的横坐标和纵坐标。

三、三角形•三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

•高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

•中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

(完整版)人教版七年级下册数学知识点总结大全

(完整版)人教版七年级下册数学知识点总结大全

(完整版)人教版七年级下册数学知识点总结大全直角三角形- 定义:有一个角为直角(90度)的三角形。

- 勾股定理:直角三角形斜边的平方等于两腿的平方和。

- 特殊直角三角形:45-45-90度三角形和30-60-90度三角形。

圆- 定义:平面上到一个固定点的距离等于定长的点的集合。

- 元素:圆心、半径、直径、弦、弧、扇形、切线等。

- 四大关系:- 半径和弦垂直- 弦长的一半与半径的乘积等于斜边的一半与半径的乘积- 外接角等于弧对应的圆心角- 弧度与角度之间的换算关系比例与相似- 定义:表示两个或多个有对应关系的数之间的比值关系。

- 比例定理:若a/b = c/d,则a、b、c、d成比例。

- 三线一比例:三角形内部的三条连线和三角形外部的三条平行线与三角形的腰成比例。

- 相似三角形:对应角相等,对应边成比例的三角形。

科学计数法- 定义:一种简便表示极大或极小数的方法。

- 标准形式:数字部分在1到9之间,指数为整数。

- 运算法则:运算时先计算系数的乘除,再计算指数的加减。

二次根式- 定义:含有根号并且被根号包围的代数式。

- 平方根:一个数的平方等于该数。

- 二次根式的运算:相加减后化简、乘除法则。

分式- 定义:由整数与整数或整数代数式的比例组成的式子。

- 分式的性质:分母不能等于0,分子分母互质,分子分母都是整数等。

- 分式的运算:加减乘除、化简、倒数。

线性方程- 定义:等式中含有未知数的方程。

- 解方程:找到使等式成立的未知数的值。

- 一次方程:未知数的次数为1。

- 解一元一次方程:转化为等价方程,通过逆向运算得到未知数的值。

平行线与直线的交角- 定义:两条平行线与直线的交角为对应角或同位角。

- 绳分线定理:直线与两平行线相交时,对应角相等,内错角之和等于180度。

随机事件与概率- 定义:随机试验的可能结果称为随机事件。

- 基本事件与必然事件:基本事件是随机试验的单个结果,必然事件是一定发生的事件。

- 概率的计算:概率等于有利事件数除以可能事件总数。

七年级下册数学知识点总结人教版

七年级下册数学知识点总结人教版

七年级下册数学知识点总结⼈教版第五章相交线与平⾏线⼀、相交线相交线:如果两条直线只有⼀个公共点,就说这两条直线相交,该公共点叫做两直线的交点。

如直线AB、CD相交于点O。

A DC O B对顶⾓:两条直线相交出现对顶⾓。

顶点相同,⾓的两边互为反向延长线.,满⾜这种关系的⾓,互为对顶⾓,对顶⾓相等。

对顶⾓是成对出现的。

邻补⾓:有⼀条公共边,⾓的另⼀边互为反向延长线.满⾜这种关系的两个⾓,互为领补⾓。

邻补⾓与补⾓的区别与联系1.邻补⾓与补⾓都是针对两个⾓⽽⾔的,⽽且数量关系都是两⾓之和为180°2.互为邻补⾓的两个⾓⼀定互补,但是互为补⾓的两个⾓不⼀定是邻补⾓即:互补的两个⾓只注重数量关系⽽不谈位置,⽽互为邻补⾓的两个⾓既要满⾜数量关系⼜要满⾜位置关系。

领补⾓与对顶⾓的⽐较⼆、垂线垂直:当两条直线相交所成的四个⾓中,有⼀个⾓是直⾓时,这两条直线互相垂直,其中⼀条直线叫另⼀条直线的垂线,它们的交点叫垂⾜。

从垂直的定义可知,判断两条直线互相垂直的关键:要找到两条直线相交时四个交⾓中⼀个⾓是直⾓。

垂直的表⽰:⽤“⊥”和直线字母表⽰垂直例如:如图,a、b互相垂直,O叫垂⾜.a叫b的垂线,b也叫a的垂线。

则记为:a⊥b或b⊥a;若要强调垂⾜,则记为:a⊥b, 垂⾜为O.b aO垂直的书写形式:如图,当直线AB 与CD 相交于O 点,∠AOD=90°时,AB ⊥CD ,垂⾜为O 。

书写形式:∵∠AOD=90°(已知)∴AB ⊥CD (垂直的定义)反之,若直线AB 与CD 垂直,垂⾜为O ,那么,∠AOD=90书写形式:∵ AB ⊥CD (已知)∴∠AOD=90° (垂直的定义)应⽤垂直的定义:∠AOC=∠BOC=∠BOD=90° 垂线的画法:如图,已知直线 l 和l 上的⼀点A ,作l 的垂线. 线l 的垂线. ⼯具:直尺、三⾓板1放:放直尺,直尺的⼀边要与已知直线重合; 2靠:靠三⾓板,把三⾓板的⼀直⾓边靠在直尺上; 3移:移动三⾓板到已知点;4画线:沿着三⾓板的另⼀直⾓边画出垂线. 垂线的性质:1、同⼀平⾯内,过⼀点有且只有⼀条直线与已知直线垂直.2、连接直线外⼀点与直线上各点的所有线段中,垂线段最短,或说成垂线段最短。

新人教版七年级数学知识点归纳(上下册)

新人教版七年级数学知识点归纳(上下册)

一:人教版七年级数学知识点归纳(上册)第一章 有理数1.1 正数和负数(1)正数:大于0的数;负数:小于0的数;(2)0既不是正数,也不是负数;(3)在同一个问题中,分别用正数和负数表示的量具有相反的意义;(4)-a 不一定是负数,+a 也不一定是正数;(5)自然数:0和正整数统称为自然数;(6)a>0 ⇔ a 是正数; a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数;a <0 ⇔ a 是负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.1.2 有理数(1)正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数;(2)正整数、0、负整数统称为整数;(3)有理数的分类:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 (4)数轴:规定了原点、正方向、单位长度的一条直线;(即数轴的三要素)(5)一般地,当a 是正数时,则数轴上表示数a 的点在原点的右边,距离原点a 个单位长度;表示数-a 的点在原点的左边,距离原点a 个单位长度;(6)两点关于原点对称:一般地,设a 是正数,则在数轴上与原点的距离为a 的点有两个,它们分别在原点的左右,表示-a 和a ,我们称这两个点关于原点对称;(7)相反数:只有符号不同的两个数称为互为相反数;(8)一般地,a 的相反数是-a ;特别地,0的相反数是0;(9)相反数的几何意义:数轴上表示相反数的两个点关于原点对称;(10)a 、b 互为相反数⇔a+b=0 ;(即相反数之和为0)(11)a 、b 互为相反数⇔1-=b a 或1-=ab ;(即相反数之商为-1) (12)a 、b 互为相反数⇔|a|=|b|;(即相反数的绝对值相等)(13)绝对值:一般地,在数轴上表示数a 的点到原点的距离叫做a 的绝对值;(|a|≥0)(14)一个正数的绝对值是其本身;一个负数的绝对值是其相反数;0的绝对值是0;(15)绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a (16)0a 1a a >⇔= ; 0a 1a a<⇔-=;(17)有理数的比较:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序。

2019年人教版七年级数学下册知识点大全(含概念、公式、实用)

2019年人教版七年级数学下册知识点大全(含概念、公式、实用)

第一章:整式的运算单项式式多项式同底数幂的乘法 幂的乘方 积的乘方同底数幂的除法 零指数幂 负指数幂 整式的加减单项式与单项式相乘 单项式与多项式相乘 整式的乘法 多项式与多项式相乘 整式运算 平方差公式 完全平方公式 单项式除以单项式 整式的除法多项式除以单项式 一、单项式1、都是数字与字母的乘积的代数式叫做单项式。

2、单项式的数字因数叫做单项式的系数。

3、单项式中所有字母的指数和叫做单项式的次数。

4、单独一个数或一个字母也是单项式。

5、只含有字母因式的单项式的系数是1或―1。

6、单独的一个数字是单项式,它的系数是它本身。

7、单独的一个非零常数的次数是0。

8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。

9、单项式的系数包括它前面的符号。

10、单项式的系数是带分数时,应化成假分数。

11、单项式的系数是1或―1时,通常省略数字“1”。

12、单项式的次数仅与字母有关,与单项式的系数无关。

二、多项式1、几个单项式的和叫做多项式。

2、多项式中的每一个单项式叫做多项式的项。

3、多项式中不含字母的项叫做常数项。

4、一个多项式有几项,就叫做几项式。

5、多项式的每一项都包括项前面的符号。

6、多项式没有系数的概念,但有次数的概念。

7、多项式中次数最高的项的次数,叫做这个多项式的次数。

三、整式1、单项式和多项式统称为整式。

2、单项式或多项式都是整式。

3、整式不一定是单项式。

4、整式不一定是多项式。

5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。

四、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。

2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。

3、几个整式相加减的一般步骤:(1)列出代数式:用括号把每个整式括起来,再用加减号连接。

(2)按去括号法则去括号。

(3)合并同类项。

4、代数式求值的一般步骤:(1)代数式化简。

(2)代入计算(3)对于某些特殊的代数式,可采用“整体代入”进行计算。

根据最新人教版七年级数学下册第二单元知识点总结

根据最新人教版七年级数学下册第二单元知识点总结

根据最新人教版七年级数学下册第二单元
知识点总结
本文档将对最新人教版七年级数学下册第二单元的知识点进行总结。

以下是该单元的主要内容:
1. 自然数与整数
- 自然数定义:自然数是人们用于计数、排序和测量的数字,包括0和正整数。

- 整数定义:整数是包括正整数、负整数和0在内的数。

2. 整数的加法和减法
- 整数的加法:整数的加法遵循相同符号相加、不同符号相减的原则。

- 整数的减法:整数的减法可以转化为加法来计算,即减去一个数等于加上它的相反数。

3. 整数的乘法和除法
- 整数的乘法:整数的乘法遵循相乘结果的符号规律,相同符号相乘为正,异号相乘为负。

- 整数的除法:整数的除法遵循乘法的逆运算,即除一个数等于乘以它的倒数。

4. 基于整数的应用问题
- 整数在日常生活中有许多应用,比如表示温度、表示地理海拔等。

- 整数应用问题的解题思路是先把问题转化为数学表达式,然后进行计算。

5. 预备知识的复
- 在研究第二单元之前,需要复前一单元的相关知识,如数轴的使用、数的比较、数的排序等。

这是对最新人教版七年级数学下册第二单元知识点的一个简要总结。

希望对学生们的学习有所帮助!。

七年级下册数学知识点总结人教版

七年级下册数学知识点总结人教版

七年级下册数学知识点总结人教版在七年级下册的数学学习中,我们学习了许多重要的数学知识点。

这些知识点涵盖了数的性质、代数方程、函数关系等多个方面。

下面,我将对这些知识点进行总结,以帮助大家更好地复习和理解。

第一章:数与式这一章主要介绍了整数、小数、分数和正数的概念,以及它们之间的相互转化。

我们学习了数的加法、减法、乘法和除法运算规则,以及运算的性质。

同时,还学习了运算的顺序和加减乘除法的结合律、交换律、分配律等重要的性质。

通过这一章的学习,我们对数的性质和运算有了更深入的认识。

第二章:图形的认识这一章主要介绍了平面图形和立体图形的基本概念和性质。

我们学习了不同图形的定义和特征,并能够根据规定的条件进行图形的判断和绘制。

例如,正方形、长方形、圆形等平面图形的特征和性质,以及正方体、长方体等立体图形的特征和性质。

通过这一章的学习,我们对不同图形的形状和性质有了更深入的了解。

第三章:实数的认识这一章主要介绍了实数的概念和性质。

我们学习了整数、有理数和无理数的定义,并了解了它们之间的关系。

同时,还学习了实数的大小比较和有理数的四则运算规则。

通过这一章的学习,我们对实数的认识更加深入,并能够熟练地进行实数的运算。

第四章:代数方程这一章主要介绍了一元一次方程的概念和解法。

我们学习了如何列代数方程,以及如何利用解方程的方法求出未知数的值。

同时,还学习了一些常见的应用问题,例如两个数的关系问题、速度问题等。

通过这一章的学习,我们对代数方程的解法有了更深刻的理解,并能够熟练地应用到实际问题中。

第五章:比例这一章主要介绍了比例的概念和性质。

我们学习了比例的定义,以及比例中的四个数的关系。

同时,还学习了比例的比较和计算方法,以及比例的应用问题。

通过这一章的学习,我们对比例的概念和性质有了更深入的了解,并能够灵活运用到实际问题中。

第六章:函数与方程式这一章主要介绍了函数关系和方程式的概念和性质。

我们学习了函数的定义和表示方法,并能够根据函数关系进行图像的绘制和判断。

人教版七年级数学下册知识点大全

人教版七年级数学下册知识点大全

人教版七年级数学下册知识点大全第五章相交线与平行线5.1.1相交线1、如果两条直线只有一个公共点,就说这两条直线相交,该公共点叫做两直线的交点。

2、如果两个角有一个公共边,并且它们的另一边互为反向延长线,那么这两个角互为邻补角。

性质:邻补角互补。

(两条直线相交有4对邻补角。

)3、如果两个角的顶点相同,并且两边互为反向延长线,那么这两个角互为对顶角。

性质:对顶角相等。

(两条直线相交,有2对对顶角。

)5.1.2垂线4、当两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。

其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

5、由直线外一点向直线引垂线,这点与垂足间的线段叫做垂线段。

(要找垂线段,先把点来看。

过点画垂线,点足垂线段。

)6、垂线段是垂线上的一部分,它是线段,一端是一个点,另一端是垂足。

7、垂线画法:①放:放直尺,直尺的一边要与已知直线重合;②靠:靠三角板,把三角板的一直角边靠在直尺上;③移:移动三角板到已知点;④画线:沿着三角板的另一直角边画出垂线.8、垂线性质1:过一点有且只有一条直线与已知直线垂直。

9、过一点画已知线段(或射线)的垂线,就是画这条线段(或射线)所在直线的垂线.10、连接直线外一点与直线上各点的所有线段中,垂线段最短。

(垂线段最短.)11、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

5.1.3同位角、同旁内角、内错角12、同位角:如果两个角都在被截的两条直线的同方向,并且都在截线的同侧,即它们的位置相同,这样的一对角叫做同位角。

形如字母“F”。

13、内错角:如果两个角分别在被截的两条直线之间(内),并且分别在截线的两侧(错),这样的一对角叫做内错角。

形如字母“Z”。

14、同旁内角:如果两个角都在被截直线之间(内),并且都在截线的同侧(同旁),这样的一对角叫做同旁内角。

形如字母“U”。

5.2.1平行线15、在同一平面内,不相交的两条直线叫做平行线,记作:a∥b。

初一人教版七年级下册数学完全平方公式

初一人教版七年级下册数学完全平方公式

初一人教版七年级下册数学完全平方公式知识点归纳总结一、完全平方公式的概念完全平方公式是数学中一种重要的恒等式,它描述了一个二次多项式如何表示为一个平方的形式。

具体地说,完全平方公式是形如a²±2ab+b²=(a±b)²的等式。

其中,a和b 是任意实数或代数式,它们可以是数字、字母、单项式或多项式。

二、完全平方公式的定义完全平方公式可以定义为:一个二次多项式,如果它可以表示为(a±b)²的形式,则称该二次多项式为完全平方公式。

其中,a和b可以是任意实数或代数式。

三、完全平方公式的性质唯一性:对于给定的a和b,完全平方公式(a±b)²是唯一的。

这意味着没有其他形式的二次多项式可以表示为完全平方。

展开性:完全平方公式可以展开为a²±2ab+b²的形式。

这是完全平方公式的一个重要性质,它允许我们将一个看似复杂的二次多项式简化为一个更简单的形式。

对称性:完全平方公式具有对称性,即(a+b)²=(b+a)²和(a-b)²=(b-a)²。

这意味着在完全平方公式中,a和b的位置可以互换而不影响公式的值。

四、完全平方公式的特点平方项:完全平方公式的第一项和最后一项都是平方项,即a²和b²。

这两项代表了公式中的主要部分,它们决定了公式的整体形状。

乘积项:完全平方公式的中间项是a和b的乘积的两倍,即±2ab。

这项是公式中的关键部分,它连接了平方项并使整个公式成为一个整体。

正负号:完全平方公式中的正负号取决于中间项是正是负。

如果中间项是正数,则公式为(a+b)²;如果中间项是负数,则公式为(a-b)²。

五、完全平方公式的规律二次项和一次项的关系:在完全平方公式中,二次项(a ²)和一次项(±2ab)之间存在密切的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版数学七年级下册定义汇总2015第五章相交线与平行线相交线52.有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角。

有一个公共顶点,一个角的两边分别是另一个角两边的反向延长线,具有这种位置关系的两个角,互为对顶角。

对顶角的性质:对顶角相等。

53.垂直是相交的一种特殊情形,两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

在同一平面内,过一点有且只有一条直线与已知直线垂直。

54.连接直线外一点与直线上各点的所有线段中,垂线段最短。

简单说成:垂线段最短。

直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

]55.两条直线被第三条直线所截:两个角分别在两条被截直线的同一方,并且都在截线的同一侧,具有这种位置关系的一对角叫做同位角。

两个角都在两条被截直线之间,并且分别在截线的两侧,具有这种位置关系的一对角叫做内错角。

两个角都在两条被截直线之间,并且都在截线同一旁,具有这种位置关系的一对角叫做同旁内角。

平行线及其判定56.在同一平面内,不重合的两天直线只有两种位置关系:相交和平行。

平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

由平行公理,进一步可以得到如下结论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

即:如果b57.判定两条直线平行的方法:判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。

简单说成:同位角相等,两直线平行。

判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。

简单说成:内错角相等,两直线平行。

判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。

简单说成:同旁内角互补,两直线平行。

平行线的性质》58.平行线的性质:性质1:两条平行线被第三条直线所截,同位角相等。

简单说成:两直线平行,同位角相等。

性质2:两条平行线被第三条直线所截,内错角相等。

简单说成:两直线平行,内错角相等。

性质3:两条平行线被第三条直线所截,同旁内角互补。

简单说成:两直线平行,同旁内角互补。

59.判断一件事情的语句,叫做命题.命题由题设和结论组成。

题设是已知事项,结论是由已知事项推出的事项。

题设结论数学中的命题常可以写成“如果……那么……”的形式。

如果题设成立,那么结论一定成立,这样的命题叫做真命题。

题设成立时,不能保证结论一定成立,这样的命题叫做假命题。

正确性是经过推理证实的,这样得到的命题叫做定理。

定理也可以作为继续推理的依据。

一个命题的正确性需要经过推理才能作出判断,这个推理的过程叫做证明。

判断一个命题是假命题,只要举出一个反例,符合题设,但不满足结论就可以了。

;平移60.把一个图形整体沿某一直线方向移动,会得到一个新的图形,新的图形与原图形的形状和大小完全相同。

并且,新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点。

连接各组对应点的线段平行(或在同一条直线上)且相等。

图形的这种移到,叫做平移。

第六章实数平方根61.一般地,如果一个正数x 的平方等于a ,即x 2 a ,那么2这个正数x 叫做 a 的算术平方根。

a 的算术平方根记为 a ,读作“根号 a ”,a 叫做被开方数。

算术平方根的符号 a ,实际上省略了 a 中的根指数2。

因此,a 也可读作“二次根号 a ”。

规定:0 的算术平方根是0.被开方数越大,对应的算术平方根也越大。

此结论对所有正数都成立。

62.一般地,如果一个数的平方等于a ,那么这个数叫做a 的平方根或二次方根。

这就是说,如果x 2 a ,那么x 叫做a 的平方2根。

求一个数a 的平方根的运算,叫做开平方。

正数的平方根有两个,它们互为相反数,其中正的平方根就是这个数的算术平方根。

63.因为02=0 ,并且任何一个不为0 的数的平方都不等于0,所以0 的平方根是0 正数的平方是正数,0 的平方是0,负数的平方也是正数。

即在我们所认识的数中,任何一个数的平方都不会是负数,所以负数没有平方根。

正数有两个平方根,它们互为相反数;0 的平方根是0;负数没有平方根。

正数 a 的算术平方根可以用 a 表示;正数 a 的负的平方根,可以用符号“- a ”表示,故正数 a 的平方根可以用符号“土 a ”表示,读作“正、负根号a ”. 符号 a 只有当 a ≥0 时有意义, a < 0 时无意义。

^立方根64.一般地,如果一个数的立方等于a ,那么这个数叫做a 的立方根或三次方根。

这就是说,如果x= 3a ,那么x 叫做a 的立方根。

求一个数的立方根的运算,叫做开立方。

开平方与平方互为逆运算,开立方与立方互为逆运算。

正数的立方根是正数;负数的立方根是负数;0 的立方根是0.一个数 a 的立方根,用符号“3a ”表示,读作“三次根号a ”,其中a 是被开方数,3 是根指数。

实数65.无限不循环小数叫做无理数。

很多平方根和立方根都是无限不循环小数,如 2 ,- 5 ,32 ,33 等。

像有理数一样,无理数也有正负之分。

66.有理数和无理数统称实数。

正有理数有理数0 有限小数或无限循环小数负有理数、实数正无理数无理数负无理数无限不循环小数由于非0 有理数和无理数都有正负之分,实数也有正负之分,所以实数还可以按大小分类:正实数实数0负实数实数与数轴上的点是一一对应的。

数轴上的每一个点都表示一个实数,对于数轴上的任意两个点,右边的点表示的实数总比左边的点表示的实数大。

有理数关于相反数和绝对值的意义同样适合于实数。

'67.数a 的相反数- a ,这里a 表示任意一个实数。

一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0 的绝对值是0 。

即设 a 表示一个实数,则当 a >0 时, a = a ;当 a = 0 时,a =0;当 a <0 时,a =- a 。

进行实数的运算时,有理数的运算法则及运算性质等同样适用。

第七章平面直角坐标系3平面直角坐标系68.含有两个数的表达方式来表示一个确定的位置,其中两个数各自表示不同的含义。

我们把这种有顺序的两个数 a 和 b 组成的数对,叫做有序数对,记作(a,b)69.在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为x 轴或横轴,取向右为正方向;竖直的数轴称为y 轴或纵轴,取向上为正方向;两坐标轴的交点为平面直角坐标系的原点。

用一个有序数对表示平面内的点,叫做坐标。

建立平面直角坐标系以后,坐标平面就被两条坐标轴分成Ⅰ,Ⅱ,Ⅲ,Ⅳ四个部分,每个部分称为象限,分别叫做第一象限、第二象限,第三象限和第四象限。

坐标轴上的点不属于任何象限。

70.对于坐标平面内任意一点M,都有唯一的一对有序实数(x,y)(即点M 的坐标)和它对应;反过来,对于任意一对有序实数(x,y ),在坐标平面内都有唯一的一点M(即坐标为(x,y)的点)和它对应。

也就是说,坐标平面内的点与有序实数对是一一对应的。

坐标方法的简单应用71.利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程:)①建立坐标系,选择一个适当的参照点为原点,确定x 轴、y 轴的正方向;②根据具体问题确定单位长度;③在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。

一般地,可以建立平面直角坐标系,用坐标表示地理位置。

此外,还可以用方位角和距离表示平面内物体的位置。

72.一般地,在平面直角坐标系中,将点(x,y)向右(或左)平移a 个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移 b 个单位长度,可以得到对应点(x,y+b)(或(x,y-b))。

一般地,将一个图形依次沿两个坐标轴方向平移所得到的图形,可以通过将原来的图形作一次平移得到。

从图形上的点的坐标的某种变化,我们可以看出对这个图形进行了怎样的平移。

一般地,在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移 a 个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移 a 个单位长度。

第八章二元一次方程组二元一次方程组73.每个方程都含有两个未知数(x 和y),并且含有未知数的项的次数都是1,这样的方程叫做二元一次方程包含必须同时满足的条件的两个或两个以上的方程组成一个方程组。

方程组中有两个未知数,含有每个未知数的项的次数都是1,并且一共有两个方程,叫做二元一次方程组。

一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。

一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。

消元——解二元一次方程组<74.将未知数的个数由多化少、逐一解决的思想,叫做消元思想。

把二元一次方程组中的一个方程的一个未知数用含有另一个未知数的式子表示出来。

再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,叫做代入消元法,简称代入法。

当二元一次方程组的两个方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,消去这个未知数,得到一个一元一次方程,叫做加减消元法,简称加减法。

实际问题与二元一次方程组用方程组解决问题时,要根据问题中的数量关系列出方程组,求出方程组的解后,应进一步考虑它是否符合问题的实际意义。

三元一次方程组的解法75.方程组含有三个未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,叫做三元一次方程组。

解三元一次方程组的基本思路:通过“代入”或“加减”进行消元,把“三元”化为“二元”,使解三元一次方程组转化为解二元一次方程组,进而再转化为解一元一次方程。

第九章不等式与不等式组不等式76.用符号“<”或“>”表示大小关系的式子,叫做不等式。

用符号“≠”表示不等关系的式子也是不等式。

使不等式成立的未知数的值叫做不等式的解。

一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解集。

求不等式的解集的过程叫做解不等式。

77.不等式性质:》不等式的性质1:不等式两边加(或减)同一个数(或式子),如果 a > b ,那么 a 土 C > b 土C不等号的方向不变。

不等式的性质2:号的方向不变。

不等式的性质3:号的方向改变。

不等式两边乘(或除以)同一个正数,不等如果 a > b ,C >0,那么ac >bc(或b a >)c c不等式两边乘(或除以)同一个负数,不等如果 a > b ,C <0,那么ac <bc(或b a <)c c符号“≥”读作“大于或等于”,也可说是“不小于”;符号“≤”读作“小于或等于”,也可说是“不大于”。

一元一次不等式78.含有一个未知数,未知数的次数是1 的不等式,叫做一元一次不等式。

相关文档
最新文档