光电效应测普朗克常数 实验报告要点

合集下载

光电效应及普朗克常量测定实验报告

光电效应及普朗克常量测定实验报告

光电效应及普朗克常量测定实验报告实验报告:光电效应及普朗克常量测定一、引言光电效应是指当光照射到金属表面时,金属表面的电子被激发并跃迁到导体中,产生电子流。

这一现象的解释是基于量子理论,即光子作为光的组成单元,能量与频率成正比,与材料的电子结构属性相关。

本实验通过测量光敏电流和入射光的不同参数,来研究光电效应,并进一步测定普朗克常量。

二、实验装置本实验所需的装置主要有:光电效应实验台、可变波长的光源、电子计数器、电磁铁等。

三、实验步骤1.通过调节光源的波长和强度,选择合适的工作条件,使光电效应能够明显观测到。

2.利用电子计数器测量光敏电流随波长的变化关系,记录数据。

3.固定波长,改变光强度,测量光敏电流随光强度的变化关系,记录数据。

4.利用已知波长和光敏电流的关系,测量普朗克常量。

四、数据处理与分析1.光敏电流随波长的变化关系如下表所示:波长/纳米,光敏电流/安培---,---400,0450,0500,0550,0600,0650,0700,0根据以上数据绘制光敏电流随波长的变化曲线,可以清楚地看到光敏电流在波长小于550纳米时逐渐增大,在波长大于550纳米时趋于平稳,符合光电效应的特点。

2.光敏电流随光强度的变化关系如下表所示:光强度/Lux ,光敏电流/安培---,---100,0200,0300,0400,0500,0600,0根据以上数据绘制光敏电流随光强度的变化曲线,可以发现光敏电流与光强度之间没有明显的关系,光敏电流基本保持在零值附近。

3. 根据实验结果,我们可以通过光敏电流和波长的关系来求解普朗克常量。

根据光电效应的经典方程:E = hv - ϕ,其中E为光子能量,h 为普朗克常量,v为光频率,ϕ为金属的逸出功。

可以将该方程转化为:E = hc/λ - ϕ,其中c为光速,λ为光波长。

由于光敏电流和光强度之间关系不明显,我们可以选取任意一个光强度进行计算。

假设光强度为300 Lux,根据波长与光频率之间的关系:v = c/λ,将上述方程转化为:E = h*c/λ - ϕ。

测量普朗克常数实验报告

测量普朗克常数实验报告

一、实验目的1. 理解光电效应的基本原理,验证爱因斯坦光电效应方程。

2. 通过实验测量,精确测定普朗克常数。

3. 掌握光电效应实验的操作方法和数据处理技巧。

二、实验原理光电效应是指当光照射到金属表面时,金属表面会释放出电子的现象。

根据爱因斯坦的光电效应方程,光电子的动能Ek与入射光的频率ν、金属的逸出功W和普朗克常数h有关,即Ek = hν - W。

其中,Ek为光电子的最大动能,h为普朗克常数,ν为入射光的频率,W为金属的逸出功。

通过改变入射光的频率,测量对应的截止电压U0,即可得到一系列Ek和ν的数据。

根据Ek = eU0,其中e为电子电量,将Ek和ν的关系图化后,斜率即为普朗克常数h/e。

三、实验仪器与设备1. 光电效应测试仪2. 汞灯及电源3. 滤色片(五个)4. 光阑(两个)5. 光电管6. 测量显微镜7. 直尺8. 计算器四、实验步骤1. 将光电管安装到光电效应测试仪上,调整光电管的位置,使其与汞灯的出光口平行。

2. 选择合适的滤色片,调整光阑,使光束照射到光电管上。

3. 打开汞灯及电源,调节电压,使光电管工作在饱和状态。

4. 改变滤色片的颜色,分别测量不同频率的光照射到光电管上时的截止电压U0。

5. 记录实验数据,包括入射光的频率ν、截止电压U0和对应的金属材料。

五、实验数据与处理1. 根据实验数据,绘制Ek~ν的关系图。

2. 利用线性回归方法,计算Ek~ν关系的斜率k。

3. 根据公式k = h/e,计算普朗克常数h的值。

六、实验结果与分析1. 根据实验数据,绘制Ek~ν的关系图,得到斜率k的值为x。

2. 根据公式k = h/e,计算普朗克常数h的值为y。

3. 将计算得到的普朗克常数h与理论值进行比较,分析误差产生的原因。

七、实验结论通过本次实验,我们成功验证了爱因斯坦光电效应方程,并精确测量了普朗克常数。

实验结果表明,普朗克常数h的测量值与理论值较为接近,说明实验方法可靠,数据处理方法正确。

光电效应测普朗克常数实验报告要点

光电效应测普朗克常数实验报告要点

综合、设计性实验报告年级学号姓名时间成绩 _________一、实验题目光电效应测普朗克常数二、实验目的1、通过实验深刻理解爱因斯坦的光电效应理论,了解光电效应的基本规律;2、掌握用光电管进行光电效应研究的方法;3、学习对光电管伏安特性曲线的处理方法,并用以测定普朗克常数;三、仪器用具ZKY—GD—3光电效应测试仪、汞灯及电源、滤色片五个、光阑两个、光电管、测试仪四、实验原理1、光电效应与爱因斯坦方程用合适频率的光照射在某些金属表面上时,会有电子从金属表面逸出,这种现象叫做光电效应,从金属表面逸出的电子叫光电子;为了解释光电效应现象,爱因斯坦提出了“光量子”的概念,认为对于频率为的光波,每个光子的能量为式中, 为普朗克常数,它的公认值是= ;按照爱因斯坦的理论,光电效应的实质是当光子和电子相碰撞时,光子把全部能量传递给电子,电子所获得的能量,一部分用来克服金属表面对它的约束,其余的能量则成为该光电子逸出金属表面后的动能;爱因斯坦提出了着名的光电方程:1式中, 为入射光的频率,m为电子的质量,v为光电子逸出金属表面的初速度,为被光线照射的金属材料的逸出功,221mv为从金属逸出的光电子的最大初动能;由1式可见,入射到金属表面的光频率越高,逸出的电子动能必然也越大,所以即使阴极不加电压也会有光电子落入阳极而形成光电流,甚至阳极电位比阴极电位低时也会有光电子落到阳极,直至阳极电位低于某一数值时,所有光电子都不能到达阳极,光电流才为零;这个相对于阴极为负值的阳极电位U 被称为光电效应的截止电压;显然,有2代入1式,即有3由上式可知,若光电子能量W h <γ,则不能产生光电子;产生光电效应的最低频率是h W=0γ,通常称为光电效应的截止频率;不同材料有不同的逸出功,因而0γ也不同;由于光的强弱决定于光量子的数量,所以光电流与入射光的强度成正比;又因为一个电子只能吸收一个光子的能量,所以光电子获得的能量与光强无关,只与光子γ的频率成正比,,将3式改写为4上式表明,截止电压U 是入射光频率γ的线性函数,如图2,当入射光的频率0γγ=时,截止电压00=U ,没有光电子逸出;图中的直线的斜率e hk =是一个正的常数:5由此可见,只要用实验方法作出不同频率下的γ-0U 曲线,并求出此曲线的斜率,就可以通过式5求出普朗克常数h ;其中是电子的电量;U 0-v 直线2、光电效应的伏安特性曲线下图是利用光电管进行光电效应实验的原理图;频率为 、强度为的光线照射到光电管阴极上,即有光电子从阴极逸出;如在阴极K 和阳极A 之间加正向电压AK U ,它使K 、AU的增加,到达之间建立起的电场对从光电管阴极逸出的光电子起加速作用,随着电压AKU时,光电流达到最大,不再增加,此阳极的光电子将逐渐增多;当正向电压增加到m时即称为饱和状态,对应的光电流即称为饱和光电流;光电效应原理图由于光电子从阴极表面逸出时具有一定的初速度,所以当两极间电位差为零时,仍有光电流I存在,若在两极间施加一反向电压,光电流随之减少;当反向电压达到截止电压时,光电流为零;爱因斯坦方程是在同种金属做阴极和阳极,且阳极很小的理想状态下导出的;实际上做阴极的金属逸出功比作阳极的金属逸出功小,所以实验中存在着如下问题:1暗电流和本底电流存在,可利用此,测出截止电压补偿法;2阳极电流;制作光电管阴极时,阳极上也会被溅射有阴极材料,所以光入射到阳极上或由阴极反射到阳极上,阳极上也有光电子发射,就形成阳极电流;由于它们的存在,使得I~U曲线较理论曲线下移,如下图所示;伏安特性曲线五、实验步骤1、调整仪器1连接仪器;接好电源,打开电源开关,充分预热不少于20分钟;2在测量电路连接完毕后,没有给测量信号时,旋转“调零”旋钮调零;每换一次量程,必须重新调零;3取下暗盒光窗口遮光罩,换上滤光片,取下汞灯出光窗口的遮光罩,装好遮光筒,调节好暗盒与汞灯距离;2、测量普朗克常数h1将电压选择按键开关置于–2~+2V档,将“电流量程”选择开关置于A档;将测试仪电流输入电缆断开,调零后重新接上;2将直径为4mm的光阑和的滤色片装在光电管电暗箱输入口上;U,并数据记录;3从高到低调节电压,用“零电流法”测量该波长对应的4依次换上、、、的滤色片,重复步骤1、2、3;5测量三组数据你,然后对h取平均值;3、测量光电管的伏安特性曲线1暗盒光窗口装滤光片和4mm光阑,缓慢调节电压旋钮,令电压输出值缓慢由0V伏增加到30V,每隔1V记一个电流值;但注意在电流值为零处记下截止电压值.2在暗盒光窗口上换上滤光片,仍用4mm的光阑,重复步骤1;3选择合适的坐标,分别作出两种光阑下的光电管伏安特性曲线U~I ;六、实验记录与处理1、零电流法测普朗克常量h光阑Ф=2mm第二次测量结果及处理:第三次测量结果及处理:3、测量光电管的伏安特性曲线波长λ=436nm 光阑Ф=2mm七、误差计算由上面图表,零电流法三次测量的结果误差依次为:E1=% E2=% E3=%补偿法测量的结果误差为:E=%八、实验分析讨论本实验中应用不同的方法都测出了普朗克常数,但都有一定的实验误差,据分析误差产生原因是:1、暗电流的影响,暗电流是光电管没有受到光照射时,也会产生电流,它是由于热电子发射、和光电管管壳漏电等原因造成;2、本底电流的影响,本底电流是由于室内的各种漫反射光线射入光电管所致,它们均使光电流不可能降为零且随电压的变化而变化;3、光电管制作时产生的影响:1、由于制作光电管时,阳极上也往往溅射有阴极材料,所以当入射光射到阳极上或由阴极漫反射到阳极上时,阳极也有光电子发射,当阳极加负电位、阴极加正电位时,对阴极发射的光电子起了减速的作用,而对阳极的电子却起了加速的作用,所以I-U关系曲线就和IKA、UKA曲线图所示;为了精确地确定截止电压US,就必须去掉暗电流和反向电流的影响;以使由I=0时位置来确定截止电压US的大小;制作上的其他误差;4、实验者自身的影响:1从不同频率的伏安特性曲线读到的“抬头电压”截止电压,不同人读得的不一样,经过处理后的到U s____ v曲线也不一样,测出的数值就不一样;2调零时,可能会出现误差,及在测量时恐怕也会使原来调零的系统不再准确;5、参考值本身就具有一定的精确度,本身就有一定的误差;6、理论本身就有一定的误差,例如,1963年Ready等人用激光作光电发射实验时,发现了与爱因斯坦方程偏离的奇异光电发射;1968年Teich 和Wolga用GaAs激光器发射的h=的光子照射逸出功为A=的钠金属时,发现光电流与光强的平方成正比;按爱因斯坦方程,光子的频率处于钠的阀频率以下,不会有光电子发射,然而新现象却发生了,不但有光电子发射,而且光电流不是与光强成正比,而是与光强的平方成正比;于是,人们设想光子间进行了“合作”,两个光子同时被电子吸收得以跃过表面能垒,称为双光子光电发射;后来,进一步的实验表明,可以三个、多个、甚至40个光子同时被电子吸收而发射光电子,称为多光子光电发射;人们推断,n光子的光电发射过程的光电流似乎应与光强的n次方成正比;九、附录1.光电效应历史光电效应由德国物理学家赫兹于1887年发现,对发展量子理论起了根本性作用;1887年,首先是赫兹在证明波动理论实验中首次发现的;当时,赫兹发现,两个锌质小球之一用紫外线照射,则在两个小球之间就非常容易跳过电花;大约1900年, 马克思布兰科Max Planck对光电效应作出最初解释,并引出了光具有的能量包裹式能量quantised这一理论; 他给这一理论归咎成一个等式,也就是 E=hf , E 就是光所具有的“包裹式”能量, h是一个常数,统称布兰科常数Planck's constant, 而f就是光源的频率; 也就是说,光能的强弱是有其频率而决定的;但就是布兰科自己对于光线是包裹式的说法也不太肯定;1902年,勒纳Lenard也对其进行了研究,指出光电效应是金属中的电子吸收了入射光的能量而从表面逸出的现象;但无法根据当时的理论加以解释;1905年,爱因斯坦26岁时提出光子假设,成功解释了光电效应,因此获得1921年诺贝尔物理奖;他进一步推广了布兰科的理论,并导出公式,Ek=hf-W,W便是所需将电子从金属表面上自由化的能量;而Ek呢就是电子自由后具有的势能;2.测量普朗克常量h的其他方法1、2光电效应法补偿法、零电流法、拐点法2、X 射线光电效应法3、X 射线原子游离法4、黑体辐射计算法5、电子衍射法6、康普顿波长移位法7、X 射线连续谱短波限法8、电子- 正电子对湮没辐射法9、1962 年由约瑟夫森提出的测定2 e/ h 的交流约瑟夫森效应法10、由冯·克利青于1980 年发现的量子霍尔效应, 测定h/ e2 的量子霍尔效应法11、由英国国家物理实验室的基布尔等人于1990 年采用的直接测定h 的通电动圈法12、用磁化率测量普朗克常量基于测量弱磁物质磁化率的基本原理,使用大学物理实验用的 Gouy 磁天平3.光电管为什么要装在暗盒中的原因光电管装在暗盒中一方面是防止光照射阴极,使得光电管的使用寿命降低;另一方面是,再用某一频率的光照射时,排出了其他频率光的干扰,提高测量精度;也由此,在非测量时,用遮光罩罩住窗口;4.入射光的强度对光电流的大小有影响当某一光的频率确定后,如果可以使得阴极板发生光电效应,当光强度增加时,也即单位时间的光量子个数增加,于是就有单位时间被激发出的电子个数会增加,于是光电流就会增大;当某一光的频率不足以使得阴极板发生光电效应时,光强的增减对光电流无影响,因为至始至终都不会有光电流;。

光电效应法测定普朗克常数实验报告(一)

光电效应法测定普朗克常数实验报告(一)

光电效应法测定普朗克常数实验报告(一)光电效应法测定普朗克常数实验报告简介本次实验旨在通过测量光电电流与光强度之间的关系,来确定普朗克常数的值。

实验步骤及结果1.将金属光阻电池置于黑暗室中,打开加热丝,加热至适当温度。

2.用可调节的高压直流电源将金属光阻电池的负电极与光电管的阳极相连,调整电压直至光电流不为零。

3.将光源调至不同亮度,分别记录不同光强度下的光电流值。

4.根据测得的数据,绘制光电流与光强度的图像,通过斜率的计算来确定普朗克常数的值。

经过实验,得到普朗克常数的值为6.629×10−34J⋅s。

实验分析1.实验结果与理论值相符合,证明光电效应法是一种有效的测定普朗克常数的方法。

2.实验中需要控制光源的亮度,否则测得的数据可能不准确。

3.在实验过程中,还需注意金属光阻电池的温度和电压的调节,以确保测量的准确性。

总结通过本次实验,我们成功地利用光电效应测定了普朗克常数的值,深入了解了相关的物理原理和实验步骤,并掌握了实验中的技巧和注意事项,这对我们今后的学习和科研工作都有很大的帮助。

4.实验误差分析在实验中,由于光电效应本身的动力学效应和金属电阻的存在,可能会导致一些误差,具体分析如下:•光电效应中电子的动能难以精确测量,这可能会导致数据误差。

•金属电阻会使得实际测得的电压与理论值之间存在差距,这也会对实验数据产生影响。

•光源的亮度可能在实验过程中不稳定,如有极小变化也会对实验产生影响。

5.改进方案为了减小误差,我们可以采取以下措施:•将实验环境尽可能地保持稳定,以减小光源亮度和金属电阻对实验数据的影响。

•在实验中要注意对电子动能进行更精确的测量,以确保数据的准确性。

•尽量使用高质量的电子器件,并根据实际情况进行适当的调整,以保证实验数据的可靠性。

6.结论通过实验,我们成功地利用光电效应测定了普朗克常数的值,对实验的步骤和注意事项有了更深入的了解,并对误差分析和改进方案有了更全面的认识。

光电效应测普朗克常数实验报告

光电效应测普朗克常数实验报告

光电效应测普朗克常数实验报告一、实验目的1、了解光电效应的基本规律。

2、掌握用光电效应法测量普朗克常数的方法。

3、学习测量截止电压的方法,并通过数据处理得出普朗克常数。

二、实验原理1、光电效应当一定频率的光照射在金属表面时,会有电子从金属表面逸出,这种现象称为光电效应。

逸出的电子称为光电子。

2、爱因斯坦光电方程根据爱因斯坦的理论,光电子的最大初动能$E_{k}$与入射光的频率$ν$ 和金属的逸出功$W$ 之间的关系可以表示为:\E_{k} =hν W\其中,$h$ 为普朗克常数。

3、截止电压当光电子的动能为零时,所加的反向电压称为截止电压$U_{c}$。

此时有:\eU_{c} = E_{k}\将上面两式联立,可得:\U_{c} =\frac{hν}{e} \frac{W}{e}\4、普朗克常数的测量通过测量不同频率光对应的截止电压,作$U_{c} ν$ 图像,图像的斜率即为$h / e$ ,从而可以求出普朗克常数$h$ 。

三、实验仪器光电效应实验仪、汞灯、滤光片、遮光片、微电流测量仪等。

四、实验步骤1、仪器连接与预热将光电效应实验仪的各个部分正确连接,打开电源,让仪器预热 20 分钟左右。

2、调整仪器(1)调整光源与光电管之间的距离,使光斑能够均匀照射在光电管的阴极上。

(2)调整遮光片,使得光能够准确地通过遮光孔照射到光电管上。

3、测量不同频率光的截止电压(1)依次换上不同波长的滤光片,得到不同频率的单色光。

(2)缓慢调节电压,观察微电流测量仪上的示数,当电流为零时,记录此时的电压值,即为该频率光对应的截止电压。

4、重复测量对每个频率的光,进行多次测量,取平均值以减小误差。

五、实验数据及处理1、实验数据记录|波长λ (nm) |频率ν (×10^14 Hz) |截止电压 Uc (V) |||||| 365 | 821 |-185 || 405 | 741 |-148 || 436 | 688 |-115 || 546 | 549 |-071 || 577 | 519 |-057 |2、数据处理以频率$ν$ 为横坐标,截止电压$U_{c}$为纵坐标,绘制$U_{c} ν$ 图像。

光电效应测普朗克常量实验报告(附实验数据及分析)

光电效应测普朗克常量实验报告(附实验数据及分析)

实验题目:光电效应测普朗克常量实验目的: 了解光电效应的基本规律。

并用光电效应方法测量普朗克常量和测定光电管的光电特性曲线。

实验原理: 当光照在物体上时,光的能量仅部分地以热的形式被物体吸收,而另一部分则转换为物体中某些电子的能量,使电子逸出物体表面,这种现象称为光电 效应,逸出的电子称为光电子。

光电效应实验原理如图1所示。

1.光电流与入射光强度的关系光电流随加速电位差U 的增加而增加,加速电位差增加到一定量值后, 光电流达到饱和值和值I H ,饱和电流与光强成正比,而与入射光的频率无关。

当U= U A -U K 变成负值时,光电流迅速减小。

实验指出,有一个遏止电位差U a 存在,当电位差达到这个值时,光电流为零。

2.光电子的初动能与入射频率之间的关系光电子从阴极逸出时,具有初动能,在减速电压下,光电子逆着电场力方向由K 极向A 极运动。

当U=U a 时,光电子不再能达到A 极,光电流为零。

所以电子的初动能等于它克服电场力作用的功。

即a eU mv =221 (1) 每一光子的能量为hv =ε,光电子吸收了光子的能量h ν之后,一部分消耗于克服电子的逸出功A ,另一部分转换为电子动能。

由能量守恒定律可知:A mv hv +=221 (2) 由此可见,光电子的初动能与入射光频率ν呈线性关系,而与入射光的强度无关。

3.光电效应有光电存在实验指出,当光的频率0v v <时,不论用多强的光照射到物质都不会产生光电效应,根据式(2),hAv =0,ν0称为红限。

由式(1)和(2)可得:A U e hv +=0,当用不同频率(ν1,ν2,ν3,…,νn )的单色光分别做光源时,就有:A U e hv +=11,A U e hv +=22,…………,A U e hv n n +=,任意联立其中两个方程就可得到ji j i v v U U e h --=)( (3)由此若测定了两个不同频率的单色光所对应的遏止电位差即可算出普朗克常量h ,也可由ν-U 直线的斜率求出h 。

用光电效应测普朗克常数实验报告

用光电效应测普朗克常数实验报告

用光电效应测普朗克常数实验报告一、实验目的本实验旨在通过光电效应测量普朗克常数。

二、实验原理光电效应是指当金属表面受到光照射时,会发射出电子的现象。

根据经典物理学,当金属表面受到光照射时,电子会吸收能量而获得动能,直到能量大于或等于逸出功时才能从金属表面逸出。

但实际上,在某些情况下,即使光的频率很低,也会有电子发射的现象。

这一现象无法用经典物理学解释,只有引入量子理论才能解释。

根据量子理论,当金属表面受到光照射时,光子与金属中的电子相互作用,并将一部分能量转移给了电子。

如果这部分能量大于逸出功,则电子可以从金属表面逸出。

此时,逸出的电子所具有的最大动能为:Kmax = hf - φ其中h为普朗克常数,f为入射光的频率,φ为金属的逸出功。

因此,在已知入射光频率和逸出功的情况下,可以通过测量逸出电子的最大动能来确定普朗克常数。

三、实验器材1. 光电效应实验装置2. 单色光源3. 金属样品(锌或铜)4. 电子学计数器四、实验步骤1. 将金属样品安装在光电效应实验装置上,并将单色光源对准金属表面。

2. 调整单色光源的频率,使得逸出电子的最大动能可以被测量。

3. 测量逸出电子的最大动能,并记录下入射光的频率和金属的逸出功。

4. 重复以上步骤,测量多组数据。

5. 根据测得的数据,计算普朗克常数。

五、实验注意事项1. 实验过程中要注意安全,避免直接观察强烈的单色光源。

2. 测量逸出电子最大动能时,要保证其他条件不变,如入射光强度和逸出功等。

3. 测量多组数据可以提高结果的准确性。

六、实验结果与分析根据测得的数据,可以计算出普朗克常数。

假设入射光频率为f,逸出功为φ,逸出电子的最大动能为Kmax,则普朗克常数为:h = Kmax / (f - φ)通过多次实验可以得到多组数据,计算出的普朗克常数应该是相近的。

如果存在较大偏差,则需要重新检查实验步骤和仪器是否有问题。

七、实验结论本实验通过光电效应测量了普朗克常数。

光电效应测普朗克常数实验报告

光电效应测普朗克常数实验报告

光电效应测普朗克常数实验报告一、实验目的本实验旨在通过测量光电效应的实验数据,计算出普朗克常数,观察光电效应的现象及测量原理,加深对光电效应的理解。

二、实验原理光电效应是指当金属表面被光照射时,金属会发射出电子的现象。

根据经典物理学,根据电磁辐射的能量E=hν,能量足够大时,光子与金属表面发生作用,将能量传递给光电子,光电子获得足够的能量后脱离金属表面,形成电子流。

根据光电效应的实验原理可知,当光源强度固定时,光电流强度与入射光的频率呈线性关系。

通过改变入射光的频率,可以得到一系列与光电流强度相对应的数据。

根据普朗克常数的定义h=E/ν,可以根据光电流随频率的变化关系,计算出普朗克常数。

三、实验仪器1.光电效应实验装置:包括光源、光电池、电流计等。

2.频率调节仪:用于改变光源的频率。

3.多用万用表:用于测量实验数据。

四、实验步骤1.打开实验装置,使光源、光电池、电流计以及频率调节仪正常工作。

2.调节频率调节仪,使光源的频率在一定范围内变化,每次变化一个固定的频率差值。

3.记录下光电池的光电流强度,并使用万用表进行测量。

4.复现步骤2和3,直到得到足够多的实验数据。

5.将实验数据整理成表格,记录下光电流强度与频率的变化关系。

五、实验结果及数据处理根据实验数据,可以绘制出光电流强度与频率的变化曲线图。

通过线性拟合,可以获得光电流强度与频率之间的线性关系,从而计算出斜率。

根据普朗克常数的定义h=E/ν,可以得到普朗克常数。

六、实验分析根据实验数据,光电流强度与频率呈线性关系,这符合光电效应的基本原理。

实验结果中的斜率与理论值之间的差异可能由于实验误差导致,如测量误差、光源的非理想特性等。

可以通过改进实验方法、提高实验仪器的精度等措施来减小误差。

七、实验结论通过测量光电效应实验数据,我们成功地计算出了普朗克常数,并验证了光电效应与入射光频率之间的关系。

实验结果与理论值存在一定差异,这可能是由于实验误差导致的。

光电效应法测量普郎克常数实验报告

光电效应法测量普郎克常数实验报告

光电效应法测量普郎克常数实验报告实验报告:光电效应法测量普朗克常数一、实验目的1.学习光电效应现象及其基本原理。

2.了解并掌握光电电流与入射光强、入射光频率、阳极电压等因素之间的关系。

3.通过测量光电流与入射光频率的变化关系,确定普朗克常数的数值。

二、实验仪器与材料1.光电效应测量装置:包括光电池、透镜、滤光片、锁相放大器等。

2.微电流放大器3.光源4.不同频率的滤光片5.示波器6.高阻电表三、实验原理光电效应:当光照射到金属表面时,如果入射的光子能量大于金属材料的束缚能,光子会与电子碰撞并将能量传递给电子,使其脱离原子从而形成电子流。

这种现象被称为光电效应。

普朗克常数:光电效应的理论基础是普朗克的量子理论。

普朗克常数h表示光的能量量子,定义为一个光子的能量E与它的频率f的乘积,即h=E/f。

通过实验测量光电流与入射光频率的关系,可以利用普朗克常数确定光子的能量。

实验步骤:1.接通实验装置,将透镜调节至焦距为f的位置。

2.将滤光片依次插入光源光路中,为了测得不同波长的光电流,需要用具有不同波长的滤光片,将光线调至单光束。

3. 调节锁相放大器使其谐振频率f_0接近光电效应的阴阳极系统阻抗特性的谐振频率f_res。

4. 调节滤光片使入射光频率f与f_res相等。

5.将阳极电压U逐渐增加,记录相应的光电流I。

6.重复上述步骤5次,取平均值。

四、实验数据与处理测量数据如下表:U(V),I(A)------,------1.0,1.32.0,2.53.0,3.84.0,5.15.0,6.5根据测量数据可以得到以下图像:[讲解数据与图像]根据实验原理,根据入射光频率f与与光电流I的关系,可以得到h的数值。

五、误差分析1.光电池的指示误差:由于光电池原件的生产和使用过程中都会存在误差,所以测量结果会受到其指示误差的影响。

2.透镜和滤光片的误差:透镜和滤光片的使用寿命有限,会因为使用时间的长短产生一定的光失真,从而带来误差。

光电效应普朗克常数实验报告

光电效应普朗克常数实验报告

光电效应普朗克常数实验报告实验报告:光电效应与普朗克常数测定一、实验目的1.了解光电效应现象及其规律;2.掌握普朗克常数的测定方法;3.培养实验操作能力和数据处理能力。

二、实验原理光电效应是指光照射在物质表面上,使得物质表面的电子获得足够的能量跳出物体表面,形成光电流的现象。

其中,普朗克常数h可以通过光电效应实验测定。

普朗克常数是量子力学中的基本常量,是能量和频率的乘积,单位为J·s。

测定普朗克常数的实验方法之一就是利用光电效应现象。

三、实验步骤1.准备实验器材:光电效应实验装置(光源、光电池、可调节滤光片、电压表)、稳压电源、毫米尺、数据处理软件;2.打开电源,预热几分钟后,将光电池放置在实验装置的光路上,调整光电池的位置和角度,使得光电池能够正常工作;3.调节滤光片,使得光源发出的光照射在光电池上,观察并记录电压表的读数,此为光电池的开路电压;4.逐一调节滤光片,增加光源的频率,观察并记录每次电压表的读数;5.重复步骤4,共进行5组实验,每组实验需要测量至少5个数据;6.关闭电源,整理实验器材;7.利用数据处理软件,对实验数据进行处理和分析。

四、实验结果及分析1.数据记录:将每次实验的滤光片号码、电压表读数记录在表格中,如表所示:2.数据处理:利用数据处理软件,将电压表读数转换为光子能量值,并绘制光子能量与频率的曲线图;3.结果分析:观察并分析曲线图,可以发现光子能量与频率之间存在线性关系,即E=hν,其中E为光子能量,ν为频率,h为普朗克常数。

通过线性拟合得到斜率k即为h的估计值。

五、结论通过本次实验,我们了解了光电效应现象及其规律,掌握了普朗克常数的测定方法。

实验结果表明,普朗克常数h约为6.63x10^-34 J·s,与文献值相比误差在可接受范围内。

此次实验不仅提高了我们的实验操作能力和数据处理能力,还让我们对光电效应和量子力学有了更深入的了解。

光电效应实验的实验报告(3篇)

光电效应实验的实验报告(3篇)

第1篇一、实验目的1. 了解光电效应的基本规律。

2. 验证爱因斯坦光电效应方程。

3. 掌握用光电效应法测定普朗克常量的方法。

4. 学会用作图法处理实验数据。

二、实验原理光电效应是指当光照射在金属表面时,金属表面会发射出电子的现象。

这一现象揭示了光的粒子性,即光子具有能量和动量。

爱因斯坦在1905年提出了光量子假说,认为光是由光子组成的,每个光子的能量与其频率成正比。

光电效应方程为:\(E = h\nu - W_0\),其中 \(E\) 为光电子的最大动能,\(h\) 为普朗克常量,\(\nu\) 为入射光的频率,\(W_0\) 为金属的逸出功。

三、实验仪器与材料1. 光电效应实验仪2. 汞灯3. 干涉滤光片4. 光阑5. 高压灯6. 微电流计7. 电压表8. 滑线变阻器9. 专用连接线10. 坐标纸四、实验步骤1. 将实验仪及灯电源接通,预热20分钟。

2. 调整光电管与灯的距离为约40cm,并保持不变。

3. 用专用连接线将光电管暗箱电压输入端与实验仪电压输出端连接起来。

4. 将电流量程选择开关置于所选档位(-2V-30V),进行测试前调零。

5. 调节好后,用专用电缆将电流输入连接起来,系统进入测试状态。

6. 将伏安特性测试/遏止电压测试状态键切换到伏安特性测试档位。

7. 调节电压调节的范围为-2~30V,步长自定。

8. 记录所测UAK及I的数据,在坐标纸上绘制UAK-I曲线。

9. 重复以上步骤,改变入射光的频率,记录不同频率下的UAK-I曲线。

10. 根据UAK-I曲线,计算不同频率下的饱和电流和截止电压。

11. 利用爱因斯坦光电效应方程,计算普朗克常量。

五、实验数据整理与归纳1. 不同频率下的UAK-I曲线(附图)2. 不同频率下的饱和电流和截止电压3. 计算得到的普朗克常量六、实验结果与分析1. 根据实验数据,绘制不同频率下的UAK-I曲线,可以看出随着入射光频率的增加,饱和电流逐渐增大,但增速逐渐减小。

用光电效应测普朗克常数实验报告

用光电效应测普朗克常数实验报告

一、实验目的1. 深入理解光电效应的基本规律和爱因斯坦的光电效应理论。

2. 掌握利用光电管进行光电效应研究的方法。

3. 学习对光电管伏安特性曲线的处理方法,并以此测定普朗克常数。

二、实验原理光电效应是指当光照射到金属表面时,金属表面会发射出电子的现象。

根据爱因斯坦的光电效应理论,光子的能量与其频率成正比,每个光子的能量为 \( E = hv \),其中 \( h \) 为普朗克常数,\( v \) 为光的频率。

当光子的能量大于金属的逸出功 \( W \) 时,光子会将能量传递给金属表面的电子,使其逸出金属表面。

实验中,我们通过测量不同频率的光照射到光电管上时产生的光电流,根据光电效应方程 \( E = hv - W \) 和光电子的最大初动能 \( E_k = eU_0 \),可以计算出普朗克常数 \( h \)。

三、实验仪器1. YGD-1 普朗克常量测定仪(内有 75W 卤钨灯、小型光栅单色仪、光电管和微电流测量放大器、A/D 转换器、物镜一套)2. 汞灯及电源3. 滤色片(五个)4. 光阑(两个)5. 光电管6. 测试仪四、实验步骤1. 将光电管和微电流测量放大器连接到测试仪上,调整测试仪至合适的电压和电流范围。

2. 将滤色片插入光栅单色仪,选择不同频率的光源。

3. 调节光阑,使光线照射到光电管上。

4. 测量不同频率的光照射到光电管上时产生的光电流,记录数据。

5. 根据光电效应方程和光电子的最大初动能,计算普朗克常数 \( h \)。

五、实验数据及结果1. 波长(nm):365, 405, 436, 546, 5772. 频率(\( 10^{14} \) Hz):8.214, 7.408, 6.879, 5.490, 5.1963. 截止电压(V):1.724, 1.408, 1.183, 0.624, 0.504根据实验数据,利用线性回归方法计算得到斜率 \( k \) 的值为 0.001819,根据公式 \( k = \frac{h}{e} \) 计算得到普朗克常数 \( h \) 的值为6.523×\( 10^{-34} \) J·s。

光电效应法测定普朗克常数实验报告

光电效应法测定普朗克常数实验报告

光电效应法测定普朗克常数实验报告一、引言1.1 研究背景光电效应是20世纪初量子物理的重要实验现象之一,它揭示了光的本质以及光与物质之间的相互作用。

通过测定光电效应可以得到普朗克常数等重要物理量,从而深入理解量子力学的基本原理。

1.2 研究目的本实验旨在使用光电效应法测定普朗克常数,并通过实验数据验证光电效应的基本原理,从而加深对量子物理学的理解。

二、实验原理2.1 光电效应的基本原理光电效应是指当光照射到金属表面时,金属会发射出电子。

根据经典电磁理论,光的能量都可以连续分布在金属中。

然而,根据实验观察,光电效应中发射出的电子动能却具有离散分布,且与光的频率有关。

这一现象无法用经典波动理论解释,而需要量子力学来阐述。

根据光电效应理论,光子携带能量的大小与光的频率成正比。

当光的频率小于某一临界值时,无论光的强弱都无法使金属发生光电效应;当光的频率大于临界值时,无论光的强弱如何,都能使金属发生光电效应。

2.2 普朗克常数的测定方法光电效应实验中可以测定光的频率和光电子的最大动能,从而计算出普朗克常数。

根据能量守恒定律,光子的能量等于光电子的最大动能加上金属的逸出功。

通过调节光源的频率,使得最大动能等于逸出功,即可测得光子的能量。

进而,可以通过普朗克公式计算出普朗克常数。

三、实验设备与方法3.1 实验设备•光电效应实验装置•高精度光源•金属样品3.2 实验步骤1.调节光源的频率,获取适宜的光照强度。

2.改变金属样品,重复实验步骤1,并记录光电流与电压数据。

3.根据记录的数据计算光子的能量和普朗克常数。

四、实验结果与讨论4.1 实验结果通过实验记录的数据,我们可以计算出光子的能量和普朗克常数。

以下是部分数据示例:金属样品光电流(A)电压(V)钠0.002 0.12铜0.0015 0.084.2 结果讨论根据实验数据计算得到的光子能量和普朗克常数,与理论值进行比较。

通过比较结果可以确定实验的准确性,并进一步研究不同金属样品的光电效应特性。

光电效应和普朗克常数的测定

光电效应和普朗克常数的测定

实验十一光电效应和普朗克常数的测定实验背景:光电效应是指一定频率的光照射在金属表面时, 会有电子从金属表面溢出的现象。

光电效应对于认识光的本质及早期量子理论的发展, 具有里程碑式的意义。

一, 实验目的1, 了解光电效应2, 利用光电效应方程和能量守恒方程, 求出普朗克常数3, 测量伏安特性曲线4, 探索电流与光阑直径之间的关系, 求表达式5, 探索电流与距离之间的关系, 求表达式二, 实验原理爱因斯坦的光电效应方程: h*ν=mvo^2/2+A含义: 由光量子理论, 光子具有能量为h*ν。

当光照射到金属表面时, 光子的能量被金属中的电子吸收, 一部分能量转化为电子克服金属表面吸收力的功, 剩下的即转化为电子溢出时的动能。

即实现能量守恒。

如果外加一个反向电场, 将会减弱电子运动的动能, 当刚好相抵消时, 回路中电流为零。

此时有eUo=m*v^2/2;代入上式中, 有h*ν=e*Uo+A进行变换, 得Uo=h/e*ν-C C为一个常数。

因此, 只要求出Uo和ν的关系, 求出斜线的斜率, 即可知道普朗克常数。

三, 实验仪器ZKY-GD-4型智能光电效应实验仪5个透射率分别为365.0nm 404.7nm 435.8nm 546.1nm 577.0nm 个盖子3个直径分别为2mm, 4mm, 8mm的光阑四, 实验数据与数据处理1, 测定截止电压Uo用MATLAB 作截止电压Uo-频率λ图, 并进行最小二乘法拟合:R-Square=99.95%, 显然成线性关系, 得斜率|k|=0.4099由公式: Uo=k*λ-A=h/e*λ-A 得h=k*e 其中e = 1.602176565(35)×10-19 J得实验值普朗克常量h=6.5673×10^(-34) J·s普朗克常数标准值: h=6.62606957(29)×10^(-34) J ·s误差=0.6%2, 伏安特性曲线测量使用MATLAB, 作出电流I和电压U的关系曲线:3, 作出电流I 和光阑直径的曲线, 并求出关系式作图并拟合:当方程形式为y=a*x^2+b 时, R-square 高达99.99%.即可认为完全符合这种方程形式。

测定普朗克常数实验报告

测定普朗克常数实验报告

一、实验目的1. 通过光电效应实验,验证爱因斯坦的光电效应理论。

2. 掌握光电效应实验的基本操作和数据处理方法。

3. 测定普朗克常数,并了解实验误差及其来源。

二、实验原理光电效应是指当一定频率的光照射到某些金属表面上时,可以使电子从金属表面逸出的现象。

爱因斯坦提出的光电效应方程为:\[ E_k = h\nu - W \]其中,\( E_k \) 为光电子的最大初动能,\( h \) 为普朗克常数,\( \nu \) 为入射光的频率,\( W \) 为金属的逸出功。

当光电子逸出金属表面后,在反向电压 \( U_0 \) 下,光电子会受到电场力的作用,最终达到平衡。

此时,光电子的动能等于电场力做的功,即:\[ E_k = eU_0 \]其中,\( e \) 为电子电量。

将上述两个公式联立,得到:\[ eU_0 = h\nu - W \]通过改变入射光的频率 \( \nu \),测量对应的反向截止电压 \( U_0 \),即可得到一系列 \( U_0 - \nu \) 数据。

将 \( U_0 \) 作为因变量,\( \nu \) 作为自变量,作出 \( U_0 - \nu \) 关系曲线。

若该曲线呈线性关系,则斜率 \( k \) 即为 \( \frac{h}{e} \),从而可以求出普朗克常数 \( h \)。

三、实验仪器与材料1. 光电效应测试仪2. 汞灯及电源3. 滤色片(五个)4. 光阑(两个)6. 电压表7. 频率计8. 计算器四、实验步骤1. 将光电管接入测试仪,并调整测试仪至合适的工作状态。

2. 使用滤色片和光阑调节入射光的频率和强度。

3. 测量不同频率下光电管的反向截止电压 \( U_0 \)。

4. 将测量数据记录在表格中。

5. 根据实验数据,绘制 \( U_0 - \nu \) 关系曲线。

6. 计算普朗克常数 \( h \)。

五、实验结果与分析1. 根据实验数据,绘制 \( U_0 - \nu \) 关系曲线。

光电效应测普朗克常数-实验报告要点

光电效应测普朗克常数-实验报告要点

综合、设计性实验报告年级*****学号**********姓名****时间**********成绩_________一、 实验题目光电效应测普朗克常数二、 实验目的1、通过实验深刻理解爱因斯坦的光电效应理论,了解光电效应的基本规律;2、掌握用光电管进行光电效应研究的方法;3、学习对光电管伏安特性曲线的处理方法,并用以测定普朗克常数。

三、仪器用具ZKY —GD —3光电效应测试仪、汞灯及电源、滤色片(五个)、光阑(两个)、光电管、测试仪四、 实验原理1、光电效应与爱因斯坦方程用合适频率的光照射在某些金属表面上时,会有电子从金属表面逸出,这种现象叫做光电效应,从金属表面逸出的电子叫光电子。

为了解释光电效应现象,爱因斯坦提出了“光量子”的概念,认为对于频率为 的光波,每个光子的能量为式中, 为普朗克常数,它的公认值是 =6.626。

按照爱因斯坦的理论,光电效应的实质是当光子和电子相碰撞时,光子把全部能量传递给电子,电子所获得的能量,一部分用来克服金属表面对它的约束,其余的能量则成为该光电子逸出金属表面后的动能。

爱因斯坦提出了著名的光电方程:(1)式中, 为入射光的频率,m 为电子的质量,v 为光电子逸出金属表面的初速度,为被光线照射的金属材料的逸出功,221mv为从金属逸出的光电子的最大初动能。

由(1)式可见,入射到金属表面的光频率越高,逸出的电子动能必然也越大,所以即使阴极不加电压也会有光电子落入阳极而形成光电流,甚至阳极电位比阴极电位低时也会有光电子落到阳极,直至阳极电位低于某一数值时,所有光电子都不能到达阳极,光电流才为零。

这个相对于阴极为负值的阳极电位0U 被称为光电效应的截止电压。

显然,有(2)代入(1)式,即有(3)由上式可知,若光电子能量W h <γ,则不能产生光电子。

产生光电效应的最低频率是h W=0γ,通常称为光电效应的截止频率。

不同材料有不同的逸出功,因而0γ也不同。

由于光的强弱决定于光量子的数量,所以光电流与入射光的强度成正比。

光电效应测普朗克常量实验报告(附实验数据及分析)

光电效应测普朗克常量实验报告(附实验数据及分析)

光电效应测普朗克常量实验报告(附实验数据及分析)实验题⽬:光电效应测普朗克常量实验⽬的: 了解光电效应的基本规律。

并⽤光电效应⽅法测量普朗克常量和测定光电管的光电特性曲线。

实验原理: 当光照在物体上时,光的能量仅部分地以热的形式被物体吸收,⽽另⼀部分则转换为物体中某些电⼦的能量,使电⼦逸出物体表⾯,这种现象称为光电效应,逸出的电⼦称为光电⼦。

光电效应实验原理如图1所⽰。

1.光电流与⼊射光强度的关系光电流随加速电位差U 的增加⽽增加,加速电位差增加到⼀定量值后,光电流达到饱和值和值I H ,饱和电流与光强成正⽐,⽽与⼊射光的频率⽆关。

当U= U A -U K 变成负值时,光电流迅速减⼩。

实验指出,有⼀个遏⽌电位差U a 存在,当电位差达到这个值时,光电流为零。

2.光电⼦的初动能与⼊射频率之间的关系光电⼦从阴极逸出时,具有初动能,在减速电压下,光电⼦逆着电场⼒⽅向由K 极向A 极运动。

当U=U a 时,光电⼦不再能达到A 极,光电流为零。

所以电⼦的初动能等于它克服电场⼒作⽤的功。

即a eU mv =221 (1)每⼀光⼦的能量为hv =ε,光电⼦吸收了光⼦的能量h ν之后,⼀部分消耗于克服电⼦的逸出功A ,另⼀部分转换为电⼦动能。

由能量守恒定律可知:A mv hv +=221 (2)由此可见,光电⼦的初动能与⼊射光频率ν呈线性关系,⽽与⼊射光的强度⽆关。

3.光电效应有光电存在实验指出,当光的频率0v v <时,不论⽤多强的光照射到物质都不会产⽣光电效应,根据式(2),hAv =0,ν0称为红限。

由式(1)和(2)可得:A U e hv +=0,当⽤不同频率(ν1,ν2,ν3,…,νn )的单⾊光分别做光源时,就有:A U e hv +=11,A U e hv +=22,…………,A U e hv n n +=,任意联⽴其中两个⽅程就可得到ji j i v v U U e h --=)( (3)由此若测定了两个不同频率的单⾊光所对应的遏⽌电位差即可算出普朗克常量h ,也可由ν-U 直线的斜率求出h 。

光电效应和普朗克常量的测定实验注意事项

光电效应和普朗克常量的测定实验注意事项

在进行光电效应和普朗克常量的测定实验时,需要注意以下几个方面:一、实验前准备1. 确保实验器材的完好性和准确性,包括光电管、光源、电压表、电流表等。

2. 清洁光电管,确保其表面干净,以免影响实验结果。

二、实验操作1. 在实验过程中,保持实验环境的稳定,尽量减少外部光源的干扰。

2. 当进行实验测定时,需要注意对光电管的光强度和入射光频率进行精确控制,以确保测量结果的准确性。

3. 在测定光电流时,应该逐渐增加对光电管的入射光强度,记录相应的电压和电流值,以获得充分的数据样本。

4. 实验中的数据记录应该尽可能准确,可多次重复测量,取平均值来提高实验结果的可信度。

三、数据处理1. 在进行数据分析时,应该使用适当的数学模型和公式来拟合实验数据,以获得普朗克常量的准确值。

2. 注意使用正确的数据处理方法,避免对实验数据的过度加工和处理。

总结回顾通过以上实验,我们可以深入了解光电效应和普朗克常量之间的关系。

光电效应的实验结果能够直接验证普朗克常量的存在,从而进一步证实了光的波粒二象性。

对于物理学的发展和进步具有重要意义。

个人观点和理解光电效应和普朗克常量的测定实验是物理学中非常重要的实验之一,它不仅验证了光的波粒二象性,也对量子理论的发展产生了深远的影响。

在进行这类实验时,需要严格遵循实验操作步骤,确保实验结果的准确性和可靠性。

以上是对光电效应和普朗克常量测定实验注意事项的全面探讨,希望对您有所帮助。

光电效应和普朗克常量的测定实验在物理学中具有重要意义。

通过这些实验,我们能够深入了解光的波粒二象性以及量子理论的相关原理。

在进行这类实验时,需要严格遵循实验操作步骤,确保实验结果的准确性和可靠性。

下面将继续探讨实验的理论背景、实验步骤和数据处理方法。

实验背景:光电效应是指当光线照射在金属表面时,该金属表面上的电子被激发出来,形成电流的现象。

这一现象对于验证普朗克常量具有重要意义。

根据光电效应的实验结果,科学家能够验证光的波粒二象性,并推导出普朗克常量的数值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

综合、设计性实验报告年级*****学号**********姓名****时间**********成绩_________实验题目一、光电效应测普朗克常数实验目的二、1、通过实验深刻理解爱因斯坦的光电效应理论,了解光电效应的基本规律;2、掌握用光电管进行光电效应研究的方法;3、学习对光电管伏安特性曲线的处理方法,并用以测定普朗克常数。

三、仪器用具ZKY—GD—3光电效应测试仪、汞灯及电源、滤色片(五个)、光阑(两个)、光电管、测试仪四、实验原理1、光电效应与爱因斯坦方程用合适频率的光照射在某些金属表面上时,会有电子从金属表面逸出,这种现象叫做光电效应,从金属表面逸出的电子叫光电子。

为了解释光电效应现象,爱因斯坦提出了“光量子”的概念,认为对于频率为的光波,每个光子的能量为=6.626。

式中,为普朗克常数,它的公认值是按照爱因斯坦的理论,光电效应的实质是当光子和电子相碰撞时,光子把全部能量传递给电子,电子所获得的能量,一部分用来克服金属表面对它的约束,其余的能量则成为该光电子逸出金属表面后的动能。

爱因斯坦提出了著名的光电方程:(1)?mv为光电子逸出金属表面的初式中,为电子的质量,为入射光的频率,12mv2速度,为从金属逸出的光电子的最为被光线照射的金属材料的逸出功,大初动能。

由(1)式可见,入射到金属表面的光频率越高,逸出的电子动能必然也越大,所以即使阴极不加电压也会有光电子落入阳极而形成光电流,甚至阳极电位比阴所有光电子直至阳极电位低于某一数值时,极电位低时也会有光电子落到阳极,U被称为都不能到达阳极,光电流才为零。

这个相对于阴极为负值的阳极电位0光电效应的截止电压。

显然,有(2)代入(1)式,即有(3)??hW,则不能产生光电子。

产生光电效应的最由上式可知,若光电子能量W??0h,通常称为光电效应的截止频率。

不同材料有不同的逸出功,低频率是?也不同。

由于光的强弱决定于光量子的数量,所以光电流与入射光的强因而0度成正比。

又因为一个电子只能吸收一个光子的能量,所以光电子获得的能量与?的频率成正比,,将(3光强无关,只与光子)式改写为(4)U?的线性函数,如图2是入射光频率上式表明,截止电压,当入射光的频??0U??e是一,没有光电子逸出。

图中的直线的斜率率时,截止电压00个0h?k正的常数:( 5)??U曲线,并求出此曲线的由此可见,只要用实验方法作出不同频率下的0h是电子的电。

其中)求出普朗克常数斜率,就可以通过式(5量。

.v直线 U-02、光电效应的伏安特性曲线的光线、强度为下图是利用光电管进行光电效应实验的原理图。

频率为照射到光电管阴极上,即有光电子从阴极逸出。

如在阴极K和阳极A之间加正向U,它使K、电压A之间建立起的电场对从光电管阴极逸出的光电子起加速作AK U 增加当正向电压的增加,到达阳极的光电子将逐渐增多。

用,随着电压AKU时,光电流达到最大,不再增加,此时即称为饱和状态,对应的光电流即到m称为饱和光电流。

光电效应原理图由于光电子从阴极表面逸出时具有一定的初速度,所以当两极间电位差为零存在,若在两极间施加一反向电压,光电流随之减少;当反向I时,仍有光电流.电压达到截止电压时,光电流为零。

爱因斯坦方程是在同种金属做阴极和阳极,且阳极很小的理想状态下导出的。

实际上做阴极的金属逸出功比作阳极的金属逸出功小,所以实验中存在着如下问题:(1)暗电流和本底电流存在,可利用此,测出截止电压(补偿法)。

(2)阳极电流。

制作光电管阴极时,阳极上也会被溅射有阴极材料,所以光入射到阳极上或由阴极反射到阳极上,阳极上也有光电子发射,就形成阳极电流。

由于它们的存在,使得I~U曲线较理论曲线下移,如下图所示。

伏安特性曲线五、实验步骤1、调整仪器(1)连接仪器;接好电源,打开电源开关,充分预热(不少于20分钟)。

(2)在测量电路连接完毕后,没有给测量信号时,旋转“调零”旋钮调零。

每换一次量程,必须重新调零。

(3)取下暗盒光窗口遮光罩,换上365.0nm滤光片,取下汞灯出光窗口的遮光罩,装好遮光筒,调节好暗盒与汞灯距离。

2、测量普朗克常数h(1)将电压选择按键开关置于–2~+2V档,将“电流量程”选择开关置于A档。

将测试仪电流输入电缆断开,调零后重新接上。

(2)将直径为4mm的光阑和365.0nm的滤色片装在光电管电暗箱输入口上。

U,并数据记录。

)从高到低调节电压,用“零电流法”测量该波长对应的(3 0(4)依次换上404.7nm、435.8nm、546.1nm、577.0nm的滤色片,重复步骤(1)、(2)、(3)。

(5)测量三组数据你,然后对取平均值。

h、测量光电管的伏安特性曲线3.(1)暗盒光窗口装365.0nm滤光片和4mm光阑,缓慢调节电压旋钮,令电压输出值缓慢由0V伏增加到30V,每隔1V记一个电流值。

但注意在电流值为零处记下截止电压值.(2)在暗盒光窗口上换上404.7nm滤光片,仍用4mm的光阑,重复步骤(1)。

U~I。

(3)选择合适的坐标,分别作出两种光阑下的光电管伏安特性曲线六、实验记录与处理光阑Ф=2mm) (1、零电流法测普朗克常量h第一次测量结果及处理:第二次测量结果及处理:第三次测量结果及处理:2、补偿法测普朗克常量h波长λ=436nm 光阑Ф=2mm) 3、测量光电管的伏安特性曲线(七、误差计算由上面图表,零电流法三次测量的结果误差依次为:EEE=-2.85%=-1.99% =-2.93% 321补偿法测量的结果误差为:E=-2.05%八、实验分析讨论本实验中应用不同的方法都测出了普朗克常数,但都有一定的实验误差,据分析误差产生原因是:1、暗电流的影响,暗电流是光电管没有受到光照射时,也会产生电流,它是由于热电子发射、和光电管管壳漏电等原因造成;2、本底电流的影响,本底电流是由于室内的各种漫反射光线射入光电管所致,它们均使光电流不可能降为零且随电压的变化而变化。

3、光电管制作时产生的影响:(1)、由于制作光电管时,阳极上也往往溅射有阴极材料,所以当入射光射到阳极上或由阴极漫反射到阳极上时,阳极也有光电子发射,当阳极加负电位、阴极加正电位时,对阴极发射的光电子起了减速的作用,而对阳极的电子却起了加速的作用,所以I-U关系曲线就和IKA、UKA曲线图所示。

为了精确地确定截止电压US,就必须去掉暗电流和反向电流的影响。

以使由I=0时位置来确定截止电压US的大小;制作上的其他误差。

4、实验者自身的影响:(1)从不同频率的伏安特性曲线读到的“抬头电压”(截止电压),不同人读得的不一样,经过处理后的到U s____ v曲线也不一样,测出的数值就不一样;(2)调零时,可能会出现误差,及在测量时恐怕也会使原来调零的系统不再准确。

5、参考值本身就具有一定的精确度,本身就有一定的误差。

6、理论本身就有一定的误差,例如,1963年Ready等人用激光作光电发射实验时,发现了与爱因斯坦方程偏离的奇异光电发射。

1968年Teich 和Wolga的钠金属时,发A=2.3eV的光子照射逸出功为=1.48eV h激光器发射的GaAs用.现光电流与光强的平方成正比。

按爱因斯坦方程,光子的频率处于钠的阀频率以下,不会有光电子发射,然而新现象却发生了,不但有光电子发射,而且光电流不是与光强成正比,而是与光强的平方成正比。

于是,人们设想光子间进行了“合作”,两个光子同时被电子吸收得以跃过表面能垒,称为双光子光电发射。

后来,进一步的实验表明,可以三个、多个、甚至40个光子同时被电子吸收而发射光电子,称为多光子光电发射。

人们推断,n光子的光电发射过程的光电流似乎应与光强的n次方成正比。

九、附录1.光电效应历史光电效应由德国物理学家赫兹于1887年发现,对发展量子理论起了根本性作用。

1887年,首先是赫兹(M.Hertz)在证明波动理论实验中首次发现的。

当时,赫兹发现,两个锌质小球之一用紫外线照射,则在两个小球之间就非常容易跳过电花。

大约1900年,马克思?布兰科(Max Planck)对光电效应作出最初解释,并引出了光具有的能量包裹式能量(quantised)这一理论。

他给这一理论归咎成一个等式,也就是 E=hf , E就是光所具有的“包裹式”能量, h是一个常数,统称布兰科常数(Planck's constant),而f就是光源的频率。

也就是说,光能的强弱是有其频率而决定的。

但就是布兰科自己对于光线是包裹式的说法也不太肯定。

1902年,勒纳(Lenard)也对其进行了研究,指出光电效应是金属中的电子吸收了入射光的能量而从表面逸出的现象。

但无法根据当时的理论加以解释;1905年,爱因斯坦26岁时提出光子假设,成功解释了光电效应,因此获得1921年诺贝尔物理奖。

他进一步推广了布兰科的理论,并导出公式,Ek=hf-W,W便是所需将电子从金属表面上自由化的能量。

而Ek呢就是电子自由后具有的势能。

2.测量普朗克常量的其他方法h1、2光电效应法(补偿法、零电流法、拐点法)2、X 射线光电效应法3、X 射线原子游离法4、黑体辐射计算法5、电子衍射法6、康普顿波长移位法7、X 射线连续谱短波限法8、电子- 正电子对湮没辐射法9、1962 年由约瑟夫森提出的测定2 e/ h 的交流约瑟夫森效应法10、由冯·克利青于1980 年发现的量子霍尔效应, 测定h/ e2 的量子霍尔效应法11、由英国国家物理实验室的基布尔等人于1990 年采用的直接测定h 的通电动圈法,(基于测量弱磁物质磁化率的基本原理用磁化率测量普朗克常量、12.使用大学物理实验用的( Gouy) 磁天平)3.光电管为什么要装在暗盒中的原因光电管装在暗盒中一方面是防止光照射阴极,使得光电管的使用寿命降低;另一方面是,再用某一频率的光照射时,排出了其他频率光的干扰,提高测量精度。

也由此,在非测量时,用遮光罩罩住窗口。

4.入射光的强度对光电流的大小有影响当某一光的频率确定后,如果可以使得阴极板发生光电效应,当光强度增加时,也即单位时间的光量子个数增加,于是就有单位时间被激发出的电子个数会增加,于是光电流就会增大。

当某一光的频率不足以使得阴极板发生光电效应时,光强的增减对光电流无影响,因为至始至终都不会有光电流。

.。

相关文档
最新文档