(word完整版)2018年高考浙江卷数学试题解析(精编版)(解析版)
高考文科数学三年真题分类汇编 专题05 立体几何(选择题、填空题)(解析版)
专题05 立体几何(选择题、填空题)1.【2020年高考全国Ⅰ卷文数】埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A BC D 【答案】C【解析】如图,设,CD a PE b ==,则PO ==由题意得212PO ab =,即22142a b ab -=,化简得24()210b b a a -⋅-=,解得b a =.故选C .【点晴】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学计算能力,是一道容易题.2.【2020年高考全国Ⅱ卷文数】已知△ABC 的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为AB .32C .1D 【答案】C【解析】设球O 的半径为R ,则2416R ππ=,解得:2R =. 设ABC 外接圆半径为r ,边长为a ,ABC 的等边三角形,212a ∴=,解得:3a =,2233r ∴==∴球心O 到平面ABC 的距离1d ===.故选:C .【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面. 3.【2020年高考全国Ⅲ卷文数】如图为某几何体的三视图,则该几何体的表面积是A.B .C .D .【答案】C【解析】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S ===⨯⨯=△△△根据勾股定理可得:AB AD DB ===∴ADB △是边长为根据三角形面积公式可得:211sin 60222ADB S AB AD =⋅⋅︒=⋅=△∴该几何体的表面积是:632=⨯++故选:C .【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题.4.【2020年高考全国Ⅰ卷文数】已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC △的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为 A .64π B .48πC .36πD .32π【答案】A【解析】设圆1O 半径为r ,球的半径为R , 依题意,得24,2r r ππ=∴=,ABC 为等边三角形,由正弦定理可得2sin60AB r =︒=,1OO AB ∴==根据球的截面性质1OO ⊥平面ABC ,11,4OO O A R OA ∴⊥====,∴球O 的表面积2464S R ππ==.故选:A【点睛】本题考查球的表面积,应用球的截面性质是解题的关键,考查计算求解能力,属于基础题.5.【2020年高考天津】若棱长为 A .12π B .24πC .36πD .144π【答案】C【解析】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,即3R ==,所以,这个球的表面积为2244336S R πππ==⨯=. 故选:C .【点睛】本题考查正方体的外接球的表面积的求法,求出外接球的半径是本题的解题关键,属于基础题.求多面体的外接球的面积和体积问题,常用方法有:(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;(3)如果设计几何体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点为几何体的球心. 6.【2020年高考北京】某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为A .6+B .6+C .12D .12+【答案】D【解析】由题意可得,三棱柱的上下底面为边长为2的等边三角形,侧面为三个边长为2的正方形,则其表面积为:()1322222sin 60122S ⎛⎫=⨯⨯+⨯⨯⨯⨯︒=+ ⎪⎝⎭故选:D .【点睛】(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.7.【2020年高考浙江】某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:cm 3)是A .73B .143C .3D .6【答案】A【解析】由三视图可知,该几何体是上半部分是三棱锥,下半部分是三棱柱, 且三棱锥的一个侧面垂直于底面,且棱锥的高为1, 棱柱的底面为等腰直角三角形,棱柱的高为2, 所以几何体的体积为11117211212232233⎛⎫⎛⎫⨯⨯⨯⨯+⨯⨯⨯=+= ⎪ ⎪⎝⎭⎝⎭. 故选:A【点睛】本小题主要考查根据三视图计算几何体的体积,属于基础题.8.【2020年高考浙江】已知空间中不过同一点的三条直线l ,m ,n .“l ,m ,n 共面”是“l ,m ,n 两两相交”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】B【解析】依题意,,m n l 是空间不过同一点的三条直线,当,,m n l 在同一平面时,可能////m n l ,故不能得出,,m n l 两两相交.当,,m n l 两两相交时,设,,m n A m l B n l C ⋂=⋂=⋂=,根据公理2可知,m n 确定一个平面α,而,B m C n αα∈⊂∈⊂,根据公理1可知,直线BC 即l α⊂,所以,,m n l 在同一平面.综上所述,“,,m n l 在同一平面”是“,,m n l 两两相交”的必要不充分条件. 故选:B【点睛】本小题主要考查充分、必要条件的判断,考查公理1和公理2的运用,属于中档题.9.【2020年新高考全国Ⅰ卷】日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为A .20°B .40°C .50°D .90°【答案】B【解析】画出截面图如下图所示,其中CD 是赤道所在平面的截线;l 是点A 处的水平面的截线,依题意可知OA l ⊥;AB 是晷针所在直线.m 是晷面的截线,依题意依题意,晷面和赤道平面平行,晷针与晷面垂直,根据平面平行的性质定理可得可知//m CD , 根据线面垂直的定义可得AB m ⊥..由于40,//AOC m CD ∠=︒,所以40OAG AOC ∠=∠=︒, 由于90OAG GAE BAE GAE ∠+∠=∠+∠=︒, 所以40BAE OAG ∠=∠=︒,也即晷针与点A 处的水平面所成角为40BAE ∠=︒. 故选B.【点睛】本小题主要考查中国古代数学文化,考查球体有关计算,涉及平面平行,线面垂直的性质,属于中档题.10.【2019年高考全国Ⅱ卷文数】设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:α内两条相交直线都与β平行是αβ∥的充分条件,由面面平行性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是αβ∥的必要条件,故选B .【名师点睛】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断.面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,,a b a b αβ⊂⊂∥,则αβ∥”此类的错误.11.【2019年高考全国Ⅱ卷文数】如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则A .BM =EN ,且直线BM ,EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM ,EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线 【答案】B【解析】如图所示,作EO CD ⊥于O ,连接ON ,BD , 易得直线BM ,EN 是三角形EBD 的中线,是相交直线. 过M 作MF OD ⊥于F ,连接BF ,平面CDE ⊥平面ABCD ,,EO CD EO ⊥⊂平面CDE ,EO ∴⊥平面ABCD ,M F ⊥平面ABCD , MFB ∴△与EON △均为直角三角形.设正方形边长为2,易知12EO ON EN ===,,5,22MF BF BM ==∴= BM EN ∴≠,故选B .【名师点睛】本题考查空间想象能力和计算能力,解答本题的关键是构造直角三角形.解答本题时,先利用垂直关系,再结合勾股定理进而解决问题.12.【2019年高考浙江卷】祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V 柱体=Sh ,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm ),则该柱体的体积(单位:cm 3)是A .158B .162C .182D .324【答案】B【解析】由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为264633616222++⎛⎫⨯+⨯⨯= ⎪⎝⎭. 故选B.【名师点睛】本题首先根据三视图,还原得到几何体——棱柱,根据题目给定的数据,计算几何体的体积,常规题目.难度不大,注重了基础知识、视图用图能力、基本计算能力的考查.易错点有二,一是不能正确还原几何体;二是计算体积有误.为避免出错,应注重多观察、细心算.13.【2019年高考浙江卷】设三棱锥V –ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P –AC –B 的平面角为γ,则 A .β<γ,α<γB .β<α,β<γC .β<α,γ<αD .α<β,γ<β【答案】B【解析】如图,G 为AC 中点,连接VG ,V 在底面ABC 的投影为O ,则P 在底面的投影D 在线段AO 上,过D 作DE 垂直于AC 于E ,连接PE ,BD ,易得PE VG ∥,过P 作PF AC ∥交VG 于F ,连接BF ,过D 作DH AC ∥,交BG 于H ,则,,BPF PBD PED αβγ=∠=∠=∠,结合△PFB ,△BDH ,△PDB 均为直角三角形,可得cos cos PF EG DH BDPB PB PB PBαβ===<=,即αβ>;在Rt △PED 中,tan tan PD PDED BDγβ=>=,即γβ>,综上所述,答案为B.【名师点睛】本题以三棱锥为载体,综合考查异面直线所成的角、直线与平面所成的角、二面角的概念,以及各种角的计算.解答的基本方法是通过明确各种角,应用三角函数知识求解,而后比较大小.而充分利用图形特征,则可事倍功半.常规解法下易出现的错误有,不能正确作图得出各种角,未能想到利用“特殊位置法”,寻求简便解法.14.【2018年高考全国Ⅱ卷文数】某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N 的路径中,最短路径的长度为A.1722B.5C.3D.2【答案】B【解析】根据圆柱的三视图以及其本身的特征,知点M在上底面上,点N在下底面上,且可以确定点M 和点N分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,=B.【名师点睛】该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.15.【2018年高考全国Ⅱ卷文数】中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是【答案】A【解析】由题意知,题干中所给的是榫头,是凸出的几何体,求得是卯眼的俯视图,卯眼是凹进去的,即俯视图中应有一不可见的长方形,且俯视图应为对称图形.故选A.【名师点睛】本题主要考查空间几何体的三视图,考查考生的空间想象能力和阅读理解能力,考查的数学核心素养是直观想象.16.【2018年高考全国I 卷文数】在长方体1111ABCD A BC D -中,2AB BC ==,1AC 与平面11BBC C 所成的角为30︒,则该长方体的体积为A .8B .C .D .【答案】C【解析】在长方体1111ABCD A BC D -中,连接1BC ,根据线面角的定义可知130AC B ︒∠=,因为2AB =,所以1BC =,从而求得1CC =所以该长方体的体积为22V =⨯⨯= 故选C.【名师点睛】该题考查的是长方体的体积的求解问题,在解题的过程中,需要明确长方体的体积公式为长、宽、高的乘积,而题中的条件只有两个值,所以利用题中的条件求解另一条边的长就显得尤为重要,此时就需要明确线面角的定义,从而得到量之间的关系,最终求得结果.17.【2018年高考全国I 卷文数】已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为 A. B .12π C.D .10π【答案】B【解析】根据题意,可得截面是边长为所以其表面积为22π2π12πS =+=,故选B.【名师点睛】该题考查的是有关圆柱的表面积的求解问题,在解题的过程中,需要利用题的条件确定圆柱的相关量,即圆柱的底面圆的半径以及圆柱的高,在求圆柱的表面积的时候,一定要注意是两个底面圆与侧面积的和.18.【2018年高考浙江卷】某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是A .2B .4C .6D .8【答案】C俯视图正视图【解析】根据三视图可得几何体为一个直四棱柱,高为2,底面为直角梯形,上、下底分别为1,2,梯形的高为2,因此几何体的体积为()112226,2⨯+⨯⨯= 故选C.【名师点睛】先由几何体的三视图还原几何体的形状,再在具体几何体中求体积或表面积等.19.【2018年高考全国Ⅱ卷文数】设A B C D ,,,是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为D ABC -体积的最大值为 A. B .C.D .【答案】B【解析】如图所示,设点M 为三角形ABC 的重心,E 为AC 中点,当点D 在平面ABC 上的射影为M 时,三棱锥D ABC -的体积最大,此时,4OD OB R ===,2ABC S AB ==△,6AB ∴=,点M 为三角形ABC 的重心,23BM BE ∴==Rt OBM ∴△中,有2OM ==,426DM OD OM ∴=+=+=,()max 163D ABC V -∴=⨯=,故选B.【名师点睛】本题主要考查三棱锥的外接球,考查了勾股定理,三角形的面积公式和三棱锥的体积公式,判断出当点D 在平面ABC 上的射影为三角形ABC 的重心时,三棱锥D ABC -体积最大很关键,由M 为三角形ABC 的重心,计算得到23BM BE ==OM ,进而得到结果,属于较难题型.20.【2018年高考全国Ⅱ卷文数】在正方体1111ABCD A BC D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为A BC D 【答案】C【解析】如图,在正方体1111ABCD A BC D -中,CD AB ∥,所以异面直线AE 与CD 所成角为EAB ∠,设正方体边长为2a ,则由E 为棱1CC 的中点,可得CE a =,所以BE =,则tan BE EAB AB ∠===.故选C .【名师点睛】本题主要考查异面直线所成的角,考查考生的空间想象能力、化归与转化能力以及运算求解能力,考查的数学核心素养是直观想象、数学运算.求异面直线所成的角,需要将异面直线所成的角等价转化为相交直线所成的角,然后利用解三角形的知识加以求解.21.【2018年高考浙江卷】已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】因为,,m n m n ⊄⊂∥αα,所以根据线面平行的判定定理得m ∥α. 由m ∥α不能得出m 与α内任一直线平行, 所以m n ∥是m ∥α的充分不必要条件,故选A. 【名师点睛】充分、必要条件的三种判断方法:(1)定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.(2)等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件.22.【2018年高考浙江卷】已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ1【答案】D【解析】设O 为正方形ABCD 的中心,M 为AB 中点,过E 作BC 的平行线EF ,交CD 于F ,过O 作ON 垂直EF 于N ,连接SO ,SN ,SE ,SM ,OM ,OE ,则SO 垂直于底面ABCD ,OM 垂直于AB , 因此123,,,SEN SEO SMO ∠=∠=∠=θθθ 从而123tan ,tan ,tan ,SN SN SO SOEN OM EO OM====θθθ 因为SN SO EO OM ≥≥,,所以132tan tan tan ,≥≥θθθ即132≥≥θθθ,故选D.【名师点睛】分别作出线线角、线面角以及二面角,再构造直角三角形,根据边的大小关系确定角的大小关系.23.【2018年高考北京卷文数】某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A .1B .2C .3D .4【答案】C【解析】由三视图可得四棱锥P ABCD -如图所示,在四棱锥P ABCD -中,2,2,2,1PD AD CD AB ====,由勾股定理可知:3,PA PC PB BC ==== 则在四棱锥中,直角三角形有:,,PAD PCD PAB △△△,共3个, 故选C.【名师点睛】此题考查三视图相关知识,解题时可将简单几何体放在正方体或长方体中进行还原,分析线面、线线垂直关系,利用勾股定理求出每条棱长,进而可进行棱长、表面积、体积等相关问题的求解.解答本题时,根据三视图还原几何体,利用勾股定理求出棱长,再利用勾股定理逆定理判断直角三角形的个数.24.【2020年高考全国Ⅱ卷文数】设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内. p 2:过空间中任意三点有且仅有一个平面. p 3:若空间两条直线不相交,则这两条直线平行. p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l . 则下述命题中所有真命题的序号是__________. ①14p p ∧ ②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝【答案】①③④【解析】对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为α; 若3l 与1l 相交,则交点A 在平面α内,同理,3l 与2l 的交点B 也在平面α内,所以,AB α⊂,即3l α⊂,命题1p 为真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个, 命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面, 命题3p 为假命题;对于命题4p ,若直线m ⊥平面α, 则m 垂直于平面α内所有直线, 直线l ⊂平面α,∴直线m ⊥直线l , 命题4p 为真命题. 综上可知,,为真命题,,为假命题,14p p ∧为真命题,12p p ∧为假命题,23p p ⌝∨为真命题,34p p ⌝∨⌝为真命题.故答案为:①③④.【点睛】本题考查复合命题的真假,同时也考查了空间中线面关系有关命题真假的判断,考查推理能力,属于中等题.25.【2020年高考全国Ⅲ卷文数】已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.【解析】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示, 其中2,3BC AB AC ===,且点M 为BC 边上的中点,设内切圆的圆心为O ,由于AM =122S =⨯⨯△ABC 设内切圆半径为r ,则:ABC AOB BOC AOC S S S S =++△△△△111222AB r BC r AC r =⨯⨯+⨯⨯+⨯⨯()13322r =⨯++⨯= 解得:22r,其体积:3433V r π==.. 【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.26.【2020年高考浙江】已知圆锥的侧面积(单位:cm 2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm )是_______. 【答案】1【解析】设圆锥底面半径为r ,母线长为l ,则21222r l r l ππππ⨯⨯=⎧⎪⎨⨯⨯=⨯⨯⨯⎪⎩,解得1,2r l ==. 故答案为:1【点睛】本小题主要考查圆锥侧面展开图有关计算,属于基础题.27.【2020年高考江苏】如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm ,高为2 cm ,内孔半轻为0.5 cm ,则此六角螺帽毛坯的体积是 ▲ cm.【答案】2π【解析】正六棱柱体积为262⨯圆柱体积为21()222ππ⋅=,所求几何体体积为2π.故答案为: 2π【点睛】本题考查正六棱柱体积、圆柱体积,考查基本分析求解能力,属基础题.28.【2020年新高考全国Ⅰ卷】已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以1D 为半径的球面与侧面BCC 1B 1的交线长为________.【答案】2. 【解析】如图:取11B C 的中点为E ,1BB 的中点为F ,1CC 的中点为G ,因为BAD ∠=60°,直四棱柱1111ABCD A BC D -的棱长均为2,所以△111D B C 为等边三角形,所以1D E=111D E B C ⊥,又四棱柱1111ABCD A BC D -为直四棱柱,所以1BB ⊥平面1111D C B A ,所以111BB B C ⊥, 因为1111BB B C B =,所以1D E ⊥侧面11BC CB ,设P 为侧面11BC CB 与球面的交线上的点,则1DE EP ⊥,1D E =,所以||EP ===,所以侧面11BC CB 与球面的交线上的点到E因为||||EF EG ==11BC CB 与球面的交线是扇形EFG 的弧FG ,因为114B EFC EG π∠=∠=,所以2FEG π∠=,所以根据弧长公式可得22FG π==.故答案为:2.【点睛】本题考查了直棱柱的结构特征,考查了直线与平面垂直的判定,考查了立体几何中的轨迹问题,考查了扇形中的弧长公式,属于中档题.29.【2019年高考全国Ⅱ卷文数】已知∠ACB=90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC ,BC P 到平面ABC 的距离为___________.【解析】作,PD PE 分别垂直于,AC BC ,PO ⊥平面ABC ,连接CO ,由题意可知,CD PD CD PO ⊥⊥,=PD PO P ,CD 平面PDO ,又OD ⊂平面PDO ,CD OD ∴⊥,PD PE ==2PC =,sin sin PCE PCD ∴∠=∠=, 60PCB PCA ︒∴∠=∠=,又易知PO CO ⊥,CO 为ACB ∠的平分线,451,,OCD OD CD OC ︒∴∠=∴===,又2PC =,PO ∴==【名师点睛】本题主要考查学生空间想象能力,合理画图成为关键,准确找到P 在底面上的射影,使用线面垂直定理,得到垂直关系,利用勾股定理解决.注意画图视角选择不当,线面垂直定理使用不够灵活,难以发现垂直关系,问题则很难解决,将几何体摆放成正常视角,是立体几何问题解决的有效手段,几何关系利于观察,解题事半功倍.30.【2019年高考全国Ⅱ卷文数】中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)【答案】261【解析】由图可知第一层(包括上底面)与第三层(包括下底面)各有9个面,计18个面,第二层共有8个面,所以该半正多面体共有18826+=个面.如图,设该半正多面体的棱长为x ,则AB BE x ==,延长CB 与FE 的延长线交于点G ,延长BC 交正方体的棱于H ,由半正多面体对称性可知,BGE △为等腰直角三角形,,21)122BG GE CH x GH x x x ∴===∴=⨯+==,1x ∴==,1.【名师点睛】本题立意新颖,空间想象能力要求高,物体位置还原是关键,遇到新题别慌乱,题目其实很简单,稳中求胜是关键.立体几何平面化,无论多难都不怕,强大空间想象能力,快速还原图形. 31.【2019年高考全国Ⅱ卷文数】学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A BC D -挖去四棱锥O −EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H分别为所在棱的中点,16cm 4cm AB=BC =AA =,,3D 打印所用原料密度为0.9 g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为___________g.【答案】118.8【解析】由题意得,214642312cm 2EFGHS =⨯-⨯⨯⨯=四边形, ∵四棱锥O −EFGH 的高为3cm , ∴3112312cm 3O EFGH V -=⨯⨯=.又长方体1111ABCD A BC D -的体积为32466144cm V =⨯⨯=, 所以该模型体积为3214412132cm O EFGH V V V -=-=-=, 其质量为0.9132118.8g ⨯=.【名师点睛】本题考查几何体的体积问题,理解题中信息联系几何体的体积和质量关系,从而利用公式求解.根据题意可知模型的体积为长方体体积与四棱锥体积之差进而求得模型的体积,再求出模型的质量即可.32.【2019年高考北京卷文数】某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.【答案】40【解析】如图所示,在棱长为4的正方体中,三视图对应的几何体为正方体去掉棱柱1111MPD A NQC B -之后余下的几何体,则几何体的体积()3142424402V =-⨯+⨯⨯=. 【名师点睛】本题首先根据三视图,还原得到几何体,再根据题目给定的数据,计算几何体的体积.属于中等题.(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解. 33.【2019年高考北京卷文数】已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________. 【答案】如果l ⊥α,m ∥α,则l ⊥m .【解析】将所给论断,分别作为条件、结论,得到如下三个命题: (1)如果l ⊥α,m ∥α,则l ⊥m ,正确;(2)如果l ⊥α,l ⊥m ,则m ∥α,不正确,有可能m 在平面α内; (3)如果l ⊥m ,m ∥α,则l ⊥α,不正确,有可能l 与α斜交、l ∥α. 故答案为:如果l ⊥α,m ∥α,则l ⊥m.【名师点睛】本题主要考查空间线面的位置关系、命题、逻辑推理能力及空间想象能力.将所给论断,分别作为条件、结论加以分析即可.34.【2019年高考天津卷文数】若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为__________. 【答案】π42=.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,一个底面的圆心为四棱锥底面的中心, 故圆柱的高为1,圆柱的底面半径为12, 故圆柱的体积为21ππ124⎛⎫⨯⨯= ⎪⎝⎭. 【名师点睛】本题主要考查空间几何体的结构特征以及圆柱的体积计算问题,解答时,根据棱锥的结构特点,确定所求的圆柱的高和底面半径.注意本题中圆柱的底面半径是棱锥底面对角线长度的一半、不是底边棱长的一半.35.【2019年高考江苏卷】如图,长方体1111ABCD A BC D -的体积是120,E 为1CC 的中点,则三棱锥E −BCD 的体积是 ▲ .。
2020年高考数学真题试题(浙江卷)(Word版+答案+解析)
2020年高考数学真题试卷(浙江卷)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合P ={x|1<x <4},Q ={x|2<x <3},则P∩Q =( ) A. {x|1<x≤2} B. {x|2<x <3} C. {x|3≤x <4} D. {x|1<x <4}2.已知a ∈R ,若a ﹣1+(a ﹣2)i (i 为虚数单位)是实数,则a =( ) A. 1 B. ﹣1 C. 2 D. ﹣23.若实数x ,y 满足约束条件 {x −3y +1≤0x +y −3≥0 ,则z =x+2y 的取值范围是( )A. (﹣∞,4]B. [4,+∞)C. [5,+∞)D. (﹣∞,+∞) 4.函数y =xcosx+sinx 在区间[﹣π,+π]的图象大致为( )A. B.C. D.5.某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:cm 3)是( )A. 73B. 143 C. 3 D. 66.已知空间中不过同一点的三条直线m ,n ,l ,则“m ,n ,l 在同一平面”是“m ,n ,l 两两相交”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件 7.已知等差数列{a n }的前n 项和S n , 公差d≠0, a 1d≤1.记b 1=S 2 , b n+1=S n+2﹣S 2n , n ∈N*,下列等式不可能成立的是( )A. 2a 4=a 2+a 6B. 2b 4=b 2+b 6C. a 42=a 2a 8D. b 42=b 2b 88.已知点O (0,0),A (﹣2,0),B (2,0).设点P 满足|PA|﹣|PB|=2,且P 为函数y =3 √4−x 2 图象上的点,则|OP|=( )A. √222B. 4√105C. √7D. √109.已知a ,b ∈R 且ab≠0,若(x ﹣a )(x ﹣b )(x ﹣2a ﹣b )≥0在x≥0上恒成立,则( ) A. a <0 B. a >0 C. b <0 D. b >0 10.设集合S ,T ,S ⊆N*,T ⊆N*,S ,T 中至少有两个元素,且S ,T 满足:①对于任意x ,y ∈S ,若x≠y ,都有xy ∈T ;②对于任意x ,y ∈T ,若x <y ,则 yx ∈S ;下列命题正确的是( )A. 若S 有4个元素,则S ∪T 有7个元素B. 若S 有4个元素,则S ∪T 有6个元素C. 若S 有3个元素,则S ∪T 有4个元素D. 若S 有3个元素,则S ∪T 有5个元素二、填空题:本大题共7小题,共36分。
专题02 相等关系与不等关系(解析版)
1 专题0
2 相等关系与不等关系
【知识框图】
【自主热身,归纳总结】
1、(2020届山东实验中学高三上期中)若,a b 是任意实数,且a b >,则( )
A .22a b >
B .1b
a < C .()10g a
b -> D .1122a b
⎛⎫⎛⎫
< ⎪ ⎪⎝⎭⎝⎭
【答案】D
【解析】a 、b 是任意实数,且a b >,如果0a =,2b =-,显然A 不正确; 如果0a =,2b =-,显然B 无意义,不正确;
如果0a =,1
2b =-,显然C ,1
02lg <,不正确; 因为指数函数12x
y ⎛⎫
= ⎪⎝⎭在定义域上单调递减,且a b >,1122a
b
⎛
⎫⎛⎫∴< ⎪ ⎪⎝⎭⎝⎭满足条件,正确.
故选:D .
2、(2020届山东省滨州市高三上期末)已知x ∈R ,则“121x
⎛⎫
⎪⎭>⎝”是“21x -<<-”的(
) A .充分不必要条件 B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
【答案】B
【解析】 由121x
⎛⎫ ⎪⎭>⎝解得0x <,所以由“21x -<<-”能推出“
0x <”,反之,不能推出;。
2018年新课标I、II、III数学(文)(理)高考真题试卷(Word版含答案)
2018 年一般高等学校招生全国一致考试( Ⅰ卷 )文科数学注意事项:1.答卷前,考生务势必自己的九名、考生号等填写在答题卡和试卷指定地点上.2.回答选择题时,选出每题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需变动,用橡皮擦洁净后,再选涂其余答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题(此题共 12 小题,每题 5 分,共60 分.在每题给出的四个选项中,只有一项是切合题目要求的.)1.已知会合 A 0,2 ,B 2 , 1,0 ,1,2 ,则AIB ()A. 0,2 B. 1,2 C. 0 D. 2, 1,0 ,1,21 i,则 z ()2.设z 2i1 iA.0 B.1C. 1 D. 2 23.某地域经过一年的新乡村建设,乡村的经济收入增添了一倍.实现翻番.为更好地认识该地域乡村的经济收入变化状况,统计了该地域新乡村建设前后乡村的经济收入组成比率.获得以下饼图:则下边结论中不正确的选项是()A.新乡村建设后,栽种收入减少B.新乡村建设后,其余收入增添了一倍以上C.新乡村建设后,养殖收入增添了一倍D.新乡村建设后,养殖收入与第三家产收入的总和超出了经济收入的一半4.记 S n为等差数列a n的前n项和.若 3S3 S2 S4, a1 2 ,则 a3 ()A.12 B.10 C.10 D. 125.设函数 f x x 3a 1 x 2ax .若 f x 为奇函数, 则曲线 yf x 在点 0 ,0 处的切线方程为()A . y2xB . y xC . y 2xD . y x6.在 △ ABC 中, AD 为 BC 边上的中线,uuurE 为 AD 的中点,则 EB ()A . 3 uuur1 uuurB . 1 uuur 3 uuur4 AB4 AC 4 AB AC4 C . 3 uuur 1 uuur D . 1 uuur 3 uuur 4 AB4 AC4 AB AC47.某圆柱的高为 2,底面周长为 16,其三视图以下图,圆柱表面上的点 M 在正视图上的对应点为 A ,圆柱表面上的点 N 在左视图上的对应点为 B ,则在此圆柱 侧面上,从 M 到 N的路径中,最短路径的长度为( )A .2 17B .2 5C .3D .28.设抛物线 C :y24 x 的焦点为 F ,过点2 ,0 且斜率为2的直线与 C 交于 M , N 两点,3uuuur uuur ()则FM FNA .5B . 6C .7D . 89.已知函数 f xx, ≤0 , f xf x x a (),若 g x 存在 2 个零点, 则 a 的exln x ,x 0取值范围是A . 1,0B . ,C . 1,D . 1,10.下列图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆组成,三个半圆的直径分别为直角三角形ABC 的斜边 BC ,直角边 AB , AC , △ ABC 的三边所围成的地区记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p 1 , p 2 , p 3 ,则( )A . p 1 p 2B . p 1 p 3C . p 2 p 3D . p 1 p 2p 3211.已知双曲线 C :xy 2 1 , O 为坐标原点, F 为 C 的右焦点,过 F 的直线与 C 的两条渐 3近线的交点分别为 M , N .若 △ OMN 为直角三角形,则 MN () A .3B . 3C .2 3D . 4212.设函数 f x2 x, ≤ 0,则知足 f x 1f 2x 的 x 的取值范围是()x 01,yA .,1B . 0,C . 1,0D . ,0二、填空题(此题共 4 小题,每题 5 分,共 20 分)13.已知函数 f xlog 2 x 2 a ,若 f 31 ,则 a________.x 2 y 2 ≤ 014.若 x ,y 知足拘束条件x ≥ 0 ,则 z3x 2 y 的最大值为 ________.y 1y ≤ 015.直线 y x 1 与圆 x 2y 2 2 y 3 0 交于 A ,B 两点,则 AB________ .16. △ ABC 的内角 A ,B ,C 的对边分别为 a ,b ,c ,已知 b sinC csin B4asin Bsin C ,b 2c 2 a 2 8 ,则 △ ABC 的面积为 ________.三、解答题(共70 分。
高考数学(浙江专用)总复习教师用书:第10章 第8讲 离散型随机变量的均值与方差 Word版含解析
第8讲 离散型随机变量的均值与方差最新考纲 1.理解取有限个值的离散型随机变量的均值、方差的概念;2.能计算简单离散型随机变量的均值、方差,并能解决一些简单实际问题.知 识 梳 理1.离散型随机变量的均值与方差 若离散型随机变量X 的分布列为(1)均值称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平. (2)方差称D (X )=∑ni =1__(x i -E (X ))2p i 为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均偏离程度,其算术平方根D (X )为随机变量X 的标准差. 2.均值与方差的性质 (1)E (aX +b )=aE (X )+b .(2)D (aX +b )=a 2D (X )(a ,b 为常数). 3.两点分布与二项分布的均值、方差(1)若X 服从两点分布,则E (X )=p ,D (X )=p (1-p ). (2)若X ~B (n ,p ),则E (X )=np ,D (X )=np (1-p ).诊 断 自 测1.判断正误(在括号内打“√”或“×”) (1)期望值就是算术平均数,与概率无关.( )(2)随机变量的均值是常数,样本的平均值是随机变量.( )(3)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,则偏离变量平均程度越小.( )(4)均值与方差都是从整体上刻画离散型随机变量的情况,因此它们是一回事.( )解析 均值即期望值刻画了离散型随机变量取值的平均水平,而方差刻画了离散型随机变量的取值偏离期望值的平均程度,因此它们不是一回事,故(1)(4)均不正确.答案 (1)× (2)√ (3)√ (4)×2.(选修2-3P68T1改编)已知X 的分布列为设Y =2X +3,则E (Y )A.73B.4 C.-1 D.1解析 E (X )=-12+16=-13,E (Y )=E (2X +3)=2E (X )+3=-23+3=73. 答案 A3.已知某离散型随机变量X 的分布列如下表,则随机变量X 的方差D (X )等于( )A.19B.29C.13D.23解析 由已知得m +2m =1得m =13,由于X 服从两点分布,所以D (X )=m ·2m =29. 答案B4.设随机变量X 的分布列为P (X =k )=15(k =2,4,6,8,10),则D (X )等于________. 解析∵E (X )=15(2+4+6+8+10)=6,∴D (X )=15[(-4)2+(-2)2+02+22+42]=8. 答案 85.(2015·广东卷)已知随机变量X 服从二项分布B (n ,p ),若E (X )=30,D (X )=20,则p =________.解析 由于X ~B (n ,p ),且E (X )=30,D (X )=20. 所以⎩⎪⎨⎪⎧np =30,np (1-p )=20.解之得p =13.答案 136.某学校要从5名男生和2名女生中选出2人作为社区志愿者,若用随机变量X 表示选出的志愿者中女生的人数,则随机变量X 的数学期望E (X )=________(结果用最简分数表示).解析 随机变量X 只能取0,1,2三个数,因为P (X =0)=C 25C 27=1021,P (X =1)=C 15C 12C 27=1021,P (X =2)=C 22C 27=121,故E (X )=1×1021+2×121=47.答案 47考点一 一般分布列的均值与方差【例1】(2017·台州调研)为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动.该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为14,16;1小时以上且不超过2小时离开的概率分别为12,23;两人滑雪时间都不会超过3小时.(1)求甲、乙两人所付滑雪费用相同的概率;(2)设甲、乙两人所付的滑雪费用之和为随机变量ξ,求ξ的分布列与数学期望E (ξ),方差D (ξ).解 (1)两人所付费用相同,相同的费用可能为0,40,80元, 两人都付0元的概率为P 1=14×16=124, 两人都付40元的概率为P 2=12×23=13, 两人都付80元的概率为P 3=⎝ ⎛⎭⎪⎫1-14-12×⎝ ⎛⎭⎪⎫1-16-23=14×16=124,则两人所付费用相同的概率为P =P 1+P 2+P 3=124+13+124=512.(2)设甲、乙所付费用之和为ξ,ξ可能取值为0,40,80,120,160,则: P (ξ=0)=14×16=124; P (ξ=40)=14×23+12×16=14; P (ξ=80)=14×16+12×23+14×16=512; P (ξ=120)=12×16+14×23=14; P (ξ=160)=14×16=124. ξ的分布列为E (ξ)=0×124+40×14+80×512+120×14+160×124=80. D (ξ)=(0-80)2×124+(40-80)2×14+(80-80)2×512+(120-80)2×14+(160-80)2×124=4 0003.规律方法 (1)求离散型随机变量的均值与方差关键是确定随机变量的所有可能值,写出随机变量的分布列,正确运用均值、方差公式进行计算.(2)注意E(aX+b)=aE(X)+b,D(aX+b)=a2D(X)的应用.【训练1】根据以往的经验,某工程施工期间的降水量X(单位:mm)对工期的影响如下表:为0.3,0.7,0.9,求:(1)工程延误天数Y的均值与方差;(2)在降水量X至少是300 mm的条件下,工期延误不超过6天的概率.解(1)由条件和概率的加法公式有:P(X<300)=0.3,P(300≤X<700)=P(X<700)-P(X<300)=0.7-0.3=0.4,P(700≤X<900)=P(X<900)-P(X<700)=0.9-0.7=0.2,P(X≥900)=1-P(X<900)=1-0.9=0.1.所以Y的分布列为:于是,E(Y)=0×0.3+2D(Y)=(0-3)2×0.3+(2-3)2×0.4+(6-3)2×0.2+(10-3)2×0.1=9.8.故工期延误天数Y的均值为3,方差为9.8.(2)由概率加法公式,得P(X≥300)=1-P(X<300)=0.7,又P(300≤X<900)=P(X<900)-P(X<300)=0.9-0.3=0.6.由条件概率,得P(Y≤6|X≥300)=P(X<900|X≥300)=P(300≤X<900)P(X≥300)=0.60.7=67.故在降水量X至少是300 mm的条件下,工期延误不超过6天的概率是6 7.考点二与二项分布有关的均值、方差【例2】(2017·北京海淀区模拟)某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为23,中奖可以获得2分;方案乙的中奖率为25,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X ,求X ≤3的概率;(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?解 (1)由已知得,小明中奖的概率为23,小红中奖的概率为25,且两人中奖与否互不影响.记“这2人的累计得分X ≤3”的事件为A , 则事件A 的对立事件为“X =5”, 因为P (X =5)=23×25=415, 所以P (A )=1-P (X =5)=1115, 即这2人的累计得分X ≤3的概率为1115.(2)法一 设小明、小红都选择方案甲抽奖中奖次数为X 1,都选择方案乙抽奖中奖次数为X 2,则这两人选择方案甲抽奖累计得分的数学期望为E (2X 1),选择方案乙抽奖累计得分的数学期望为E (3X 2). 由已知可得,X 1~B ⎝ ⎛⎭⎪⎫2,23,X 2~B ⎝ ⎛⎭⎪⎫2,25,所以E (X 1)=2×23=43,E (X 2)=2×25=45, 因此E (2X 1)=2E (X 1)=83, E (3X 2)=3E (X 2)=125. 因为E (2X 1)>E (3X 2),所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大.法二 设小明、小红都选择方案甲所获得的累计得分为Y 1,都选择方案乙所获得的累计得分为Y 2,则Y 1,Y 2的分布列为:∴E (Y 1)=0×19+2×49+4×49=83, E (Y 2)=0×925+3×1225+6×425=125, 因为E (Y 1)>E (Y 2),所以二人都选择方案甲抽奖,累计得分的数学期望较大. 规律方法 二项分布的期望与方差.(1)如果ξ~B (n ,p ),则用公式E (ξ)=np ;D (ξ)=np (1-p )求解,可大大减少计算量.(2)有些随机变量虽不服从二项分布,但与之具有线性关系的另一随机变量服从二项分布,这时,可以综合应用E (aξ+b )=aE (ξ)+b 以及E (ξ)=np 求出E (aξ+b ),同样还可求出D (aξ+b ).【训练2】(2017·诸暨模拟)甲、乙、丙三人准备报考某大学,假设甲考上的概率为25,甲、丙都考不上的概率为625,乙、丙都考上的概率为310,且三人能否考上相互独立.(1)求乙、丙两人各自考上的概率;(2)设X 表示甲、乙、丙三人中考上的人数与没考上的人数之差的绝对值,求X 的分布列与数学期望.解 (1)设A 表示“甲考上”,B 表示“乙考上”,C 表示“丙考上”, 则P (A )=25,且⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫1-25[1-P (C )]=625,P (B )P (C )=310,解得P(C)=35,P(B)=12.∴乙考上的概率为12,丙考上的概率为35.(2)由题意X的可能取值为1,3,P(X=1)=25×12×25+35×12×25+35×12×35+25×12×25+25×12×35+35×12×35=1925,P(X=3)=25×12×35+35×12×25=625,∴X的分布列为:EX=1×1925+3×625=3725.考点三均值与方差在决策中的应用【例3】计划在某水库建一座至多安装3台发电机的水电站.过去50年的水文资料显示,水库年入流量X(年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.(1)求未来4年中,至多有1年的年入流量超过120的概率;(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X限制,并有如下关系:年亏损800万元.欲使水电站年总利润的均值达到最大,应安装发电机多少台?解(1)依题意,p1=P(40<X<80)=1050=0.2,p2=P(80≤x≤120)=3550=0.7,p 3=P (X >120)=550=0.1.由二项分布,在未来4年中至多有1年的年入流量超过120的概率为 p =C 04(1-p 3)4+C 14(1-p 3)3p 3=⎝ ⎛⎭⎪⎫9104+4×⎝ ⎛⎭⎪⎫9103×⎝ ⎛⎭⎪⎫110=0.947 7. (2)记水电站年总利润为Y (单位:万元). ①安装1台发电机的情形.由于水库年入流量总大于40,故一台发电机运行的概率为1, 对应的年利润Y =5 000,E (Y )=5 000×1=5 000. ②安装2台发电机的情形.依题意,当40<X <80时,一台发电机运行,此时Y =5 000-800=4 200,因此P (Y =4 200)=P (40<X <80)=p 1=0.2;当X ≥80时,两台发电机运行,此时Y =5 000×2=10 000,因此P (Y =10 000)=P (X ≥80)=p 2+p 3=0.8.由此得Y 的分布列如下:所以,E (Y )=4 200×0.2+③安装3台发电机的情形.依题意,当40<X <80时,一台发电机运行,此时Y =5 000-1 600=3 400,因此P (Y =3 400)=P (40<X <80)=p 1=0.2;当80≤X ≤120时,两台发电机运行,此时Y =5 000×2-800=9 200,因此P (Y =9 200)=P (80≤X ≤120)=p 2=0.7;当X >120时,三台发电机运行,此时Y =5 000×3=15 000,因此P (Y =15 000)=P (X >120)=p 3=0.1.因此得Y 的分布列如下:所以,E (Y )=3 400×综上,欲使水电站年总利润的均值达到最大,应安装发电机2台.规律方法 随机变量的均值反映了随机变量取值的平均水平,方差反映了随机变量稳定于均值的程度,它们从整体和全局上刻画了随机变量,是生产实际中用于方案取舍的重要理论依据.一般先比较均值,若均值相同,再用方差来决定. 【训练3】(2017·贵州调研)某投资公司在2018年年初准备将1 000万元投资到“低碳”项目上,现有两个项目供选择:项目一:新能源汽车.据市场调研,投资到该项目上,到年底可能获利30%,也可能亏损15%,且这两种情况发生的概率分别为79和29;项目二:通信设备.据市场调研,投资到该项目上,到年底可能获利50%,可能损失30%,也可能不赔不赚,且这三种情况发生的概率分别为35,13和115.针对以上两个投资项目,请你为投资公司选择一个合理的项目,并说明理由. 解若按“项目一”投资,设获利为X1万元.则X1的分布列为∴E(X1)=300×79+(-150)×29=200(万元).若按“项目二”投资,设获利X2万元,则X2的分布列为:∴E(X2)=500×35+(-300)×13+0×115=200(万元).D(X1)=(300-200)2×79+(-150-200)2×29=35 000,D(X2)=(500-200)2×35+(-300-200)2×13+(0-200)2×115=140 000.所以E(X1)=E(X2),D(X1)<D(X2),这说明虽然项目一、项目二获利相等,但项目一更稳妥. 综上所述,建议该投资公司选择项目一投资.[思想方法]1.掌握下述均值与方差有关性质,会给解题带来方便:(1)E(aX+b)=aE(X)+b,E(X+Y)=E(X)+E(Y),D(aX+b)=a2D(X);(2)若X~B(n,p),则E(X)=np,D(X)=np(1-p).2.基本方法(1)已知随机变量的分布列求它的均值、方差和标准差,可直接按定义(公式)求解;(2)已知随机变量X的均值、方差,求X的线性函数Y=aX+b的均值、方差和标准差,可直接用均值、方差的性质求解;(3)如能分析所给随机变量服从常用的分布(如二项分布),可直接利用它们的均值、方差公式求解.[易错防范]1.在没有准确判断分布列模型之前不能乱套公式.2.对于应用问题,必须对实际问题进行具体分析,一般要将问题中的随机变量设出来,再进行分析,求出随机变量的分布列,然后按定义计算出随机变量的均值、方差.基础巩固题组(建议用时:40分钟)一、选择题1.已知离散型随机变量X的概率分布列为则其方差D(X)=()A.1B.0.6C.2.44D.2.4解析由0.5+m+0.2=1得m=0.3,∴E(X)=1×0.5+3×0.3+5×0.2=2.4,∴D(X)=(1-2.4)2×0.5+(3-2.4)2×0.3+(5-2.4)2×0.2=2.44.答案C2.(2017·西安调研)某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为()A.100B.200C.300D.400解析设没有发芽的种子有ξ粒,则ξ~B(1 000,0.1),且X=2ξ,∴E(X)=E(2ξ)=2E(ξ)=2×1 000×0.1=200.答案B3.已知随机变量X服从二项分布,且E(X)=2.4,D(X)=1.44,则二项分布的参数n,p的值为()A.n=4,p=0.6B.n=6,p=0.4C.n=8,p=0.3D.n=24,p=0.1解析由二项分布X~B(n,p)及E(X)=np,D(X)=np·(1-p)得2.4=np,且1.44=np(1-p),解得n=6,p=0.4.故选B.答案 B4.已知随机变量X+η=8,若X~B(10,0.6),则E(η),D(η)分别是()A.6,2.4B.2,2.4C.2,5.6D.6,5.6解析由已知随机变量X+η=8,所以有η=8-X.因此,求得E(η)=8-E(X)=8-10×0.6=2,D(η)=(-1)2D(X)=10×0.6×0.4=2.4.答案B5.口袋中有5只球,编号分别为1,2,3,4,5,从中任取3只球,以X表示取出的球的最大号码,则X的数学期望E(X)的值是()A.4B.4.5C.4.75D.5解析由题意知,X可以取3,4,5,P(X=3)=1C35=110,P(X=4)=C23C35=310,P(X=5)=C24C35=610=35,所以E(X)=3×110+4×310+5×35=4.5.答案 B 二、填空题6.设X 为随机变量,X ~B ⎝ ⎛⎭⎪⎫n ,13,若随机变量X 的数学期望E (X )=2,则P (X =2)=________;D (X )=________.解析 由X ~B ⎝ ⎛⎭⎪⎫n ,13,E (X )=2,得np =13n =2,∴n =6,则P (X =2)=C 26⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫1-134=80243,D (X )=np (1-p )=6×13×23=43.答案 80243437.随机变量ξ的取值为0,1,2.若P (ξ=0)=15,E (ξ)=1,则D (ξ)=________. 解析设P (ξ=1)=a ,P (ξ=2)=b , 则⎩⎨⎧15+a +b =1,a +2b =1,解得⎩⎪⎨⎪⎧a =35,b =15,所以D (ξ)=(0-1)2×15+(1-1)2×35+(2-1)2×15=25. 答案258.(2017·合肥模拟)某科技创新大赛设有一、二、三等奖(参与活动的都有奖)且相应奖项获奖的概率是以a 为首项,2为公比的等比数列,相应的奖金分别是7 000元、5 600元、4 200元,则参加此次大赛获得奖金的期望是________元. 解析 由题意知a +2a +4a =1,∴a =17,∴获得一、二、三等奖的概率分别为17,27,47,∴所获奖金的期望是E (X )=17×7 000+27×5 600+47×4 200=5 000(元). 答案 5 000 三、解答题9.已知从某批产品中随机抽取1件是二等品的概率为0.2.(1)若从该产品中有放回地抽取产品2次,每次抽取1件,设事件A :“取出的2件产品中至多有1件是二等品”,求P (A );(2)若该批产品共有20件,从中任意抽取2件,X 表示取出的2件产品中二等品的件数,求随机变量X的分布列和数学期望.解(1)记A0表示事件“取出的2件产品中没有二等品”,A1表示事件“取出的2件产品中恰有1件二等品”,则A1与A0互斥,且A=A0+A1,∴P(A)=P(A0)+P(A1)=(1-0.2)2+C12×0.2×(1-0.2)=0.96.(2)随机变量X的所有可能取值为0,1,2,该产品共有二等品20×0.2=4(件),P(X=0)=C216C220=1219,P(X=1)=C116C14C220=3290,P(X=2)=C24C220=395,∴X的分布列为:E(X)=0×1219+1×3295+2×395=25.10.(2017·郑州一模)在“出彩中国人”的一期比赛中,有6位歌手(1~6)登台演出,由现场百家大众媒体投票选出最受欢迎的出彩之星,各家媒体独立地在投票器上选出3位出彩候选人,其中媒体甲是1号歌手的歌迷,他必选1号,另在2号至6号中随机的选2名;媒体乙不欣赏2号歌手,他必不选2号;媒体丙对6位歌手的演唱没有偏爱,因此在1至6号歌手中随机的选出3名.(1)求媒体甲选中3号且媒体乙未选中3号歌手的概率;(2)X表示3号歌手得到媒体甲、乙、丙的票数之和,求X的分布列及数学期望. 解(1)设A表示事件:“媒体甲选中3号歌手”,B表示事件:“媒体乙选中3号歌手”,C表示事件:“媒体丙选中3号歌手”,则P(A)=C14C25=25,P(B)=C24C35=35,∴媒体甲选中3号且媒体乙未选中3号歌手的概率为P(AB)=25×⎝⎛⎭⎪⎫1-35=425.(2)P (C )=C 25C 36=12,由已知得X 的可能取值为0,1,2,3, P (X =0)=P (A B C )=⎝ ⎛⎭⎪⎫1-25×⎝ ⎛⎭⎪⎫1-35×⎝ ⎛⎭⎪⎫1-12=325. P (X =1)=P (A B C )+P (A B C )+P (A B C )=25×⎝ ⎛⎭⎪⎫1-35×⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-25×35×⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-25×⎝ ⎛⎭⎪⎫1-35×12=1950,P (X =2)=P (AB C )+P (A B C )+P (A BC )=25×35×⎝ ⎛⎭⎪⎫1-12+25×⎝ ⎛⎭⎪⎫1-35×12+⎝ ⎛⎭⎪⎫1-25×35×12=1950,P (X =3)=P (ABC )=25×35×12=325, ∴X 的分布列为∴E (X )=0×325+1×1950+2×1950+3×325=32.能力提升题组 (建议用时:25分钟)11.从装有除颜色外完全相同的3个白球和m 个黑球的布袋中随机摸取一球,有放回地摸取5次,设摸得白球数为X ,已知E (X )=3,则D (X )=( ) A.85B.65 C.45D.25解析 由题意,X ~B ⎝⎛⎭⎪⎫5,3m +3, 又E (X )=5×3m +3=3,∴m =2,则X ~B ⎝ ⎛⎭⎪⎫5,35,故D (X )=5×35×⎝ ⎛⎭⎪⎫1-35=65. 答案 B12.袋中装有大小完全相同,标号分别为1,2,3,…,9的九个球.现从袋中随机取出3个球.设ξ为这3个球的标号相邻的组数(例如:若取出球的标号为3,4,5,则有两组相邻的标号3,4和4,5,此时ξ的值是2),则随机变量ξ的均值E (ξ)为( ) A.16 B.13C.12D.23解析 依题意得,ξ的所有可能取值是0,1,2.且P (ξ=0)=C 37C 39=512,P (ξ=1)=C 27·A 22C 39=12,P (ξ=2)=C 17C 39=112,因此E (ξ)=0×512+1×12+2×112=23. 答案 D13.马老师从课本上抄录一个随机变量ξ的分布列如下表:请小牛同学计算ξ糊,但能断定这两个“?”处的数值相同.据此,小牛给出了正确答案E (ξ)=________.解析 设“?”处的数值为x ,则“!”处的数值为1-2x ,则E (ξ)=1×x +2×(1-2x )+3x =x +2-4x +3x =2. 答案 214.甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立.(1)求甲在4局以内(含4局)赢得比赛的概率;(2)记X 为比赛决出胜负时的总局数,求X 的分布列和均值(数学期望).解 用A 表示“甲在4局以内(含4局)赢得比赛”,A k 表示“第k 局甲获胜”,B k 表示“第k 局乙获胜”,则P (A k )=23,P (B k )=13,k =1,2,3,4,5. (1)P (A )=P (A 1A 2)+P (B 1A 2A 3)+P (A 1B 2A 3A 4) =P (A 1)P (A 2)+P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)· P (A 3)P (A 4)=⎝ ⎛⎭⎪⎫232+13×⎝ ⎛⎭⎪⎫232+23×13×⎝ ⎛⎭⎪⎫232=5681. (2)X 的可能取值为2,3,4,5.P (X =2)=P (A 1A 2)+P (B 1B 2)=P (A 1)P (A 2)+P (B 1)·P (B 2)=59, P (X =3)=P (B 1A 2A 3)+P (A 1B 2B 3)=P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)P (B 3)=29, P (X =4)=P (A 1B 2A 3A 4)+P (B 1A 2B 3B 4)=P (A 1)P (B 2)P (A 3)P (A 4)+P (B 1)P (A 2)P (B 3)P (B 4)=1081, P (X =5)=1-P (X =2)-P (X =3)-P (X =4)=881. 故X 的分布列为E (X )=2×59+3×29+4×1081+5×881=22481.15.(2017·绍兴调研)为回馈顾客,某商场拟通过摸球兑奖的方式对1 000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元.求: ①顾客所获的奖励额为60元的概率; ②顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60 000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由. 解(1)设顾客所获的奖励额为X.①依题意,得P(X=60)=C11C13C24=12,即顾客所获的奖励额为60元的概率为1 2.②依题意,得X的所有可能取值为20,60.P(X=60)=12,P(X=20)=C23C24=12,即X的分布列为所以顾客所获的奖励额的数学期望为E(X)=20×12+60×12=40(元).(2)根据商场的预算,每个顾客的平均奖励额为60元.所以,先寻找期望为60元的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以期望不可能为60元;如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以期望也不可能为60元,因此可能的方案是(10,10,50,50),记为方案1.对于面值由20元和40元组成的情况,同理,可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2.以下是对两个方案的分析:对于方案1,即方案(10,10,50,50),设顾客所获的奖励额为X1,则X1的分布列为X1的数学期望为E(X1)=20×16+60×23+100×16=60(元),X1的方差为D(X1)=(20-60)2×16+(60-60)2×23+(100-60)2×16=1 6003.对于方案2,即方案(20,20,40,40),设顾客所获的奖励额为X2,则X2的分布列为X2的数学期望为E(X2)=40×16+60×23+80×16=60(元),X2的方差为D(X2)=(40-60)2×16+(60-60)2×23+(80-60)2×16=4003.由于两种方案的奖励额的数学期望都符合要求,但方案2奖励额的方差比方案1的小,所以应该选择方案2.。
2018年浙江高考英语真题及详细解答(解析版,学生版,精校版)
绝密★启用前2018年6月普通高等学校招生全国统一考试(浙江卷)英语选择题部分第一部分听力做题时,先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题纸上。
第一节听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. What will James do tomorrow?A. Watch a TV program.B. Give a talk.C. Write a report.【答案】B【解析】Text 1W: James, you've been watching TV for the whole evening. What's on?M: It's a science program on the origin of the universe. I'll give a presentation on it in my class tomorrow.2. What can we say about the woman?A. She’s generous.B. She’s curious.C. She’s helpful.【答案】C【解析】Text 2M: Hello, do you have "The Best of Mozart"?W: Um, sorry, we've just sold out. But we can order one for you. If you give us your number, we'llcall you when the CD arrives.3. 音频When does the train leave?A. At 6:30.B. At 8:30.C. At 10:30.【答案】C【解析】Text 3W: We'd better be going now, or we'll be late for the train.M: No rush. It's 8:30 now. We still have two hours.4. 音频How does the woman go to work?A. By car.B. On foot.C. By bike.【答案】B【解析】Text 4M: I am so tired of driving all those hours to work.W: Yeah. I know what you mean. I used to drive two hours to work each way. But now, I live within walking distance of my office. I don't even need a bike.5. What is the probable relationship between the speakers?A. Classmates.B. Teacher and student.C. Doctor and patient.【答案】A【解析】Text 5W: Hi, Andy. I didn't see you in Professor Smith's class yesterday. What happened?M: Well, I had a headache. So, I called him and asked for sick leave.第二节听下面5段对话或独白。
专题23 数列的综合问题(解析版)
第六章 数列专题23 数列的综合问题考点1 数列求和及其应用1. 【2020年高考北京卷8】在等差数列{n a }中,19a =-,51a =-,记12(1,2,)n n T a a a n =⋯=⋯,则数列{n T }( )A .有最大项,有最小项B .有最大项,无最小项C .无最大项,有最小项D .无最大项,无最小项 【答案】A【解析】设公差为d ,a 5-a 1=4d ,即d=2,a n =2n -11,1≤n≤5使,a n <0,n≥6时,a n >0,所以n=4时,T n >0,并且取最大值;n=5时,T n <0;n≥6时,T n <0,并且当n 越来越大时,T n 越来越小,所以T n 无最小项.故选A .2. 【2020年高考浙江卷11】已知数列{}n a 满足()1=2n a n n +,则3S = .【答案】10【解析】由题意可知11212a ⨯==,22332a ⨯==,33462a ⨯==,313610S ∴=++=,故答案为:10. 3. .【2017年高考全国II 卷理数】等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11nk kS ==∑___________. 【答案】21nn + 【解析】设等差数列的首项为1a ,公差为d ,由题意有1123434102a d a d +=⎧⎪⎨⨯+=⎪⎩ ,解得111a d =⎧⎨=⎩ , 数列的前n 项和()()()111111222n n n n n n n S na d n --+=+=⨯+⨯=,裂项可得12112()(1)1k S k k k k ==-++, 所以1111111122[(1)()()]2(1)223111nk knS n n n n ==-+-++-=-=+++∑. 4. 【2020年高考全国Ⅲ卷理数17】设等比数列{}n a 满足113,34n n a a a n +==-. (1)计算23,a a ,猜想{}n a 的通项公式并加以证明; (2)求数列{}2nn a 的前n 项和n S .【答案】(1)21n a n =+;(2)1(21)22n n S n +=-+.【解析】(1)由13a =,134n n a a n +=-,21345a a =-= ,323427a a =-⨯=, …猜想{}n a 的通项公式为21n a n =+.证明如下:(数学归纳法)当1,2,3n =时,显然成立; (1) 假设n k =时,即21k a k =+成立;其中*(N )k ∈, 由134k k a a k +=-3(21)4k k =+-2(1)1k =++ (2) 故假设成立,综上(1)(2),∴21n a n =+*(N )n ∈(2)解法一:令2(21)2n n n n b a n ==+,则前项和1212...3252...(21)2n n n S b b b n =+++=⨯+⨯+++ (1) 由(1)两边同乘以2得:23123252...(21)2(21)2n n n S n n +=⨯+⨯++-++ (2) 由(1)-(2)的322112(12)3222...2(21)26(21)212n nn n n S n n -++--=⨯+⨯++-+=+-+-,化简得1(21)22n n S n +=-+.解法二:由(1)可知,2(21)2nnn a n ⋅=+⋅231325272(21)2(21)2n n n S n n -=⨯+⨯+⨯++-⋅++⋅,①23412325272(21)2(21)2n n n S n n +=⨯+⨯+⨯++-⋅++⋅,②由①-②得:()23162222(21)2n n n S n +-=+⨯+++-+⋅()21121262(21)212n n n -+-=+⨯-+⋅⨯-1(12)22n n +=-⋅-,即1(21)22n n S n +=-⋅+.5. 【2020年高考浙江卷20】已知数列{a n },{b n },{c n }中,11111121,,()nn n n n n n b a b c c a a c c n b ++++====-=⋅∈*N . (Ⅰ)若数列{b n }为等比数列,且公比0q >,且1236b b b +=,求q 与a n 的通项公式; (Ⅱ)若数列{b n }为等差数列,且公差0d >,证明:1211n c c c d+++<+. 【答案】(I )141,23n n q a -==;(II )证明见解析【解析】(I )依题意21231,,b b q b q ===,而1236b b b +=,即216q q +=,由于0q >,∴解得12q =, ∴112n n b -=. ∴2112n n b ++=,故11112412n n n n n c c c -++=⋅=⋅,∴数列{}n c 是首项为1,公比为4的等比数列,∴14n n c -=. ∴14nn c +=.∴114n n n n a a c ++==-,故114n n n a a ---=(*2,n n N ≥∈).∴()()()()11232211n n n n n a a a a a a a a a a ---=-+-++-+-+()1122141444441114n n n ----=+++++=+-413n -=. (II )依题意设()111n b n d dn d =+-=+-,由于12n n n n c bc b ++=, ∴111n n n n c bc b --+=()*2,n n N ≥∈, 故13211221n n n n n c c c c c c c c c c ---=⋅⋅⋅⋅⋅1232111143n n n n n n b b b b b c b b b b b ---+-=⋅⋅⋅⋅⋅ 121111111111n n n n n n b b d b b d b b d b b +++⎛⎫⎛⎫+⎛⎫==-=+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. .∴121223*********n n n c c c d b b b b b b +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+++=+-+-++-⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦11111n d b +⎛⎫⎛⎫=+-⎪ ⎪⎝⎭⎝⎭. 由于10,1d b >=,∴10n b +>,∴1111111n d b d +⎛⎫⎛⎫+-<+ ⎪ ⎪⎝⎭⎝⎭,即1211n c c c d++⋯+<+. 6. 【2020年高考天津卷19】已知{}n a 为等差数列,{}n b 为等比数列,()()115435431,5,4a b a a a b b b ===-=-.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅰ)记{}n a 的前n 项和为n S ,求证:()2*21n n n S S S n ++<∈N;(Ⅰ)对任意的正整数n ,设()21132,,,.n nn n n n n a b n a a c a n b +-+⎧-⎪⎪=⎨⎪⎪⎩为奇数为偶数求数列{}n c 的前2n 项和.【答案】(Ⅰ)n a n =,12n n b -=;(Ⅰ)证明见解析;(Ⅰ)465421949n n n n +--+⨯.【解析】(Ⅰ)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q . 由11a =,()5435a a a =-,可得d =1. 从而{}n a 的通项公式为n a n =. 由()15431,4b b b b ==-,又q ≠0,可得2440q q -+=,解得q =2, 从而{}n b 的通项公式为12n n b -=.(Ⅰ)证明:由(Ⅰ)可得(1)2n n n S +=, 故21(1)(2)(3)4n n S S n n n n +=+++,()()22211124n S n n +=++, 从而2211(1)(2)02n n n S S S n n ++-=-++<,所以221n n n S S S ++<.(Ⅰ)当n 为奇数时,()111232(32)222(2)2n n n n n nn n a b n c a a n n n n-+-+--===-++,当n 为偶数时,1112n n n n a n c b -+-==, 对任意的正整数n ,有222221112221212121k k nnnk k k c k k n --==⎛⎫=-=- ⎪+-+⎝⎭∑∑, 和223111211352321444444nnk kn n k k k n n c -==---==+++++∑∑① 由①得22314111352321444444n k n n k n n c +=--=+++++∑ ② 由①②得22111211312221121441444444414n n k n n n k n n c ++=⎛⎫-⎪--⎝⎭=+++-=---∑, 由于11211121221121156544144334444123414nn n n n n n n ++⎛⎫-⎪--+⎝⎭--=-⨯--⨯=-⨯-,从而得:21565994n k n k n c =+=-⨯∑. 因此,2212111465421949n nnnk k k n k k k n c c c n -===+=+=--+⨯∑∑∑,所以,数列{}n c 的前2n 项和为465421949n nn n +--+⨯. 7. 【2018年高考浙江卷】已知等比数列{a n }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项.数列{b n }满足b 1=1,数列{(b n +1−b n )a n }的前n 项和为2n 2+n . (1)求q 的值;(2)求数列{b n }的通项公式.【答案】(1)2q =;(2)2115(43)()2n n b n -=-+⋅.【解析】(1)由42a +是35,a a 的等差中项得35424a a a +=+, 所以34543428a a a a ++=+=, 解得48a =.由3520a a +=得18()20q q+=,因为1q >,所以2q =.(2)设1()n n n n c b b a +=-,数列{}n c 前n 项和为n S . 由11,1,, 2.n nn S n c S S n -=⎧=⎨-≥⎩解得41n c n =-.由(1)可知12n n a -=,所以111(41)()2n n n b b n -+-=-⋅,故211(45)(),22n n n b b n n ---=-⋅≥,11123221()()()()n n n n n b b b b b b b b b b ----=-+-++-+-23111(45)()(49)()73222n n n n --=-⋅+-⋅++⋅+.设221113711()(45)(),2222n n T n n -=+⋅+⋅++-⋅≥,2211111137()(49)()(45)()22222n n n T n n --=⋅+⋅++-⋅+-⋅ 所以22111111344()4()(45)()22222n n n T n --=+⋅+⋅++⋅--⋅,因此2114(43)(),22n n T n n -=-+⋅≥,又11b =,所以2115(43)()2n n b n -=-+⋅.8. 【2018年高考天津卷理数】设{}n a 是等比数列,公比大于0,其前n 项和为()n S n *∈N ,{}n b 是等差数列. 已知11a =,322a a =+,435a b b =+,5462a b b =+. (1)求{}n a 和{}n b 的通项公式;(2)设数列{}n S 的前n 项和为()n T n *∈N ,(i )求n T ;(ii )证明221()22()(1)(2)2n nk k k k T b b n k k n +*+=+=-∈+++∑N . 【答案】(1)12n n a -=,n b n =;(2)(i )122n n T n +=--;(ii )见解析.【解析】(1)设等比数列{}n a 的公比为q.由1321,2,a a a ==+可得220q q --=.因为0q >,可得2q =,故12n n a -=.设等差数列{}n b 的公差为d ,由435a b b =+,可得13 4.b d +=由5462a b b =+, 可得131316,b d += 从而11,1,b d == 故.n b n =所以,数列{}n a 的通项公式为12n n a -=,数列{}n b 的通项公式为.n b n =(2)(i )由(1),有122112nn n S -==--,故 1112(12)(21)22212n nnkkn n k k T n n n +==⨯-=-=-=-=---∑∑.(ii )证明:因为11212()(222)222(1)(2)(1)(2)(1)(2)21k k k k k k+k T +b b k k k k k k k k k k k k ++++--++⋅===-++++++++,所以,324321221()2222222()()()2(1)(2)3243212n n n nk k k k T b b k k n n n ++++=+=-+-++-=-+++++∑. 9. 【2017年高考天津卷理数】已知{}n a 为等差数列,前n 项和为()n S n *∈N ,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =. (1)求{}n a 和{}n b 的通项公式;(2)求数列221{}n n a b -的前n 项和()n *∈N .【答案】(1)32n a n =-,2nn b =;(2)1328433n n +-⨯+. 【解析】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .由已知2312b b +=,得21()12b q q +=,而12b =,所以260q q +-=. 又因为0q >,解得2q =.所以,2nn b =.由3412b a a =-,可得138d a -= ①. 由114=11S b ,可得1516a d += ②,联立①②,解得11a =,3d =,由此可得32n a n =-.所以,数列{}n a 的通项公式为32n a n =-,数列{}n b 的通项公式为2nn b =.(2)设数列221{}n n a b -的前n 项和为n T ,由262n a n =-,12124n n b --=⨯,有221(31)4nn n a b n -=-⨯, 故23245484(31)4n n T n =⨯+⨯+⨯++-⨯,23414245484(34)4(31)4n n n T n n +=⨯+⨯+⨯++-⨯+-⨯,上述两式相减,得23112(14)324343434(31)44(314n n n n T n n +⨯--=⨯+⨯+⨯++⨯--⨯=----111)4(32)48n n n ++⨯=--⨯-,得1328433n n n T +-=⨯+. 所以,数列221{}n n a b -的前n 项和为1328433n n +-⨯+. 10. 【2016高考山东理数】(本小题满分12分)已知数列{}n a 的前n 项和S n =3n 2+8n ,{}n b 是等差数列,且1.n n n a b b +=+ (Ⅰ)求数列{}n b 的通项公式;(Ⅰ)令1(1).(2)n n n nn a c b ++=+ 求数列{}n c 的前n 项和T n . 【答案】(Ⅰ)13+=n b n ;(Ⅰ)223+⋅=n n n T .【解析】:(Ⅰ)由题意知当2≥n 时,561+=-=-n S S a n n n , 当1=n 时,1111==S a , 所以56+=n a n . 设数列{}n b 的公差为d , 由⎩⎨⎧+=+=322211b b a b b a ,即⎩⎨⎧+=+=d b db 321721111,可解得3,41==d b ,所以13+=n b n .(Ⅰ)由(Ⅰ)知11(66)3(1)2(33)n n n nn c n n +++==+⋅+, 又n n c c c c T +⋅⋅⋅+++=321,得23413[223242(1)2]n n T n +=⨯⨯+⨯+⨯+⋅⋅⋅++⨯,345223[223242(1)2]n n T n +=⨯⨯+⨯+⨯+⋅⋅⋅++⨯,两式作差,得234123[22222(1)2]n n n T n ++-=⨯⨯+++⋅⋅⋅+-+⨯224(21)3[4(1)2]2132n n n n n ++-=⨯+-+⨯-=-⋅ 所以223+⋅=n n n T11. 【2016高考天津理数】已知{}n a 是各项均为正数的等差数列,公差为d ,对任意的,b n n N ∈*是n a 和1n a +的等差中项.(Ⅰ)设22*1,n n n c b b n N +=-∈,求证:{}n c 是等差数列;(Ⅰ)设()22*11,1,nnn n k a d T b n N ===-∈∑,求证:2111.2nk kT d =<∑【答案】(Ⅰ)详见解析(Ⅰ)详见解析【解析】:(I )证明:由题意得21n n n b a a +=,有22112112n n n n n n n n c b b a a a a da +++++=-=-=,因此()212122n n n n c c d a a d +++-=-=,所以{}n c 是等差数列.(II )证明:()()()2222221234212n n n T b b b b b b -=-++-++-+()()()22224222212n n n a a d a a a d d n n +=+++=⋅=+所以()222211111111111112121212nn n k k k k T d k k d k k d n d ===⎛⎫⎛⎫==-=⋅-< ⎪ ⎪+++⎝⎭⎝⎭∑∑∑. 考点2 数列与不等式相结合问题1. 【2018年高考浙江卷】已知1234,,,a a a a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则 A .1324,a a a a << B .1324,a a a a >< C .1324,a a a a <>D .1324,a a a a >>【答案】B【解析】令()ln 1,f x x x =--则()11f x x'=-,令()0,f x '=得1x =,所以当1x >时,()0f x '>,当01x <<时,()0f x '<,因此()()10,ln 1f x f x x ≥=∴≥+.若公比0q >,则()1234123123ln a a a a a a a a a a +++>++>++,不合题意; 若公比1q ≤-,则()()212341110,a a a a a q q +++=++≤但()()212311ln ln 1ln 0a a a a q q a ⎡⎤++=++>>⎣⎦,即()12341230ln a a a a a a a +++≤<++,不合题意; 因此()210,0,1q q -<<∈,22113224,0a a q a a a q a ∴>=<=<,故选B.2. 【2019年高考浙江卷】设等差数列{}n a 的前n 项和为n S ,34a =,43a S =,数列{}n b 满足:对每个12,,,n n n n n n n S b S b S b *++∈+++N 成等比数列.(1)求数列{},{}n n a b 的通项公式; (2)记,n c n *=∈N证明:12+.n c c c n *++<∈N【答案】(1)()21n a n =-,()1n b n n =+;(2)证明见解析. 【解析】(1)设数列{}n a 的公差为d ,由题意得11124,333a d a d a d +=+=+,解得10,2a d ==.从而*22,n a n n =-∈N . 所以2*n S n n n =-∈N ,,由12,,n n n n n n S b S b S b +++++成等比数列得()()()212n n n n n n S b S b S b +++=++.解得()2121n n n n b S S S d++=-. 所以2*,n b n n n =+∈N .(2)*n c n ===∈N . 我们用数学归纳法证明.(i )当n =1时,c 1=0<2,不等式成立;(ii )假设()*n k k =∈N时不等式成立,即12k c c c +++<那么,当1n k =+时,121k k c c c c +++++<<<==.即当1n k =+时不等式也成立. 根据(i )和(ii),不等式12n c c c +++<对任意*n ∈N 成立.3. 【2018年高考江苏卷】设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项为1b ,公比为q 的等比数列.(1)设110,1,2a b q ===,若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围; (2)若*110,,a b m q =>∈∈N ,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,,1n m =+均成立,并求d的取值范围(用1,,b m q 表示). 【答案】(1);(2)见解析.【解析】(1)由条件知:. 因为1||n n a b b -≤对n =1,2,3,4均成立, 即对n =1,2,3,4均成立, 即11,1d 3,32d 5,73d 9,得. 因此,d 的取值范围为.(2)由条件知:.若存在d ,使得1||n n a b b -≤(n =2,3,···,m +1)成立,即,75[,]32112(,)n n n a n d b -=-=1 12|()1|n n d ---≤≤≤≤≤≤≤≤7532d ≤≤75[,]32111(1),n n n a b n d b b q -=+-=1111|1|2,3,,(1())n b n d b q b n m -+--≤=+即当时,d 满足. 因为,则,从而,,对均成立.因此,取d =0时,1||n n a b b -≤对均成立.下面讨论数列的最大值和数列的最小值(). ①当时,, 当时,有,从而.因此,当时,数列单调递增, 故数列的最大值为. ②设,当x >0时,, 所以单调递减,从而<f (0)=1.当时,, 因此,当时,数列单调递减, 故数列的最小值为. 因此,d 的取值范围为. 4. 【2017年高考浙江卷】已知数列{x n }满足:x 1=1,x n =x n +1+ln(1+x n +1)(n *∈N ). 证明:当n *∈N 时, (1)0<x n +1<x n ;(2)2x n +1− x n ≤12n n x x +; (3)112n -≤x n ≤212n -.【答案】(1)见解析;(2)见解析;(3)见解析. 【解析】(1)用数学归纳法证明:0n x >.2,3,,1n m =+1111211n n q q b d b n n ---≤≤--q ∈112n m q q -<≤≤11201n q b n --≤-1101n q b n ->-2,3,,1n m =+2,3,,1n m =+12{}1n q n ---1{}1n q n --2,3,,1n m =+2n m ≤≤111 2222111()()()n n n n n n n n q q nq q nq n q q q n n n n n n -------+--+-==---112mq <≤2n m q q ≤≤1() 20n n n n q q q ---+>21n m ≤≤+12{}1n q n ---12{}1n q n ---2m q m-()()21x f x x =-ln 21(0(n )l 22)x f x x '=--<()f x ()f x 2n m ≤≤111112111()()()nn n q q n n f q n n n n --=≤-=<-21n m ≤≤+1{}1n q n --1{}1n q n --mq m11(2)[,]m mb q b q m m-当n =1时,x 1=1>0. 假设n =k 时,x k >0,那么n =k +1时,若10k x +≤,则110ln(1)0k k k x x x ++<=++≤,矛盾,故10k x +>.因此0()n x n *>∈N .所以111ln(1)n n n n x x x x +++=++>,因此10()n n x x n *+<<∈N .(2)由11ln(1)n n n x x x ++=++得,2111111422(2)ln(1)n n n n n n n n x x x x x x x x ++++++-+=-+++.记函数2()2(2)ln(1)(0)f x x x x x x =-+++≥,22()ln(1)0(0)1x xf'x x x x +=++>>+,函数f (x )在[0,+∞)上单调递增,所以()(0)f x f ≥=0,因此2111112(2)ln(1)()0n n n n n x x x x f x +++++-+++=≥,故112()2n n n n x x x x n *++-≤∈N . (3)因为11111ln(1)2n n n n n n x x x x x x +++++=++≤+=,所以112n n x -≥,由1122n n n n x x x x ++≥-,得 111112()022n n x x +-≥->, 所以12111111112()2()2222n n n n x x x ----≥-≥⋅⋅⋅≥-=, 故212n n x -≤.综上,1211()22n n n x n *--≤≤∈N . 考点3 与数列有关的综合问题1. 【2020年高考江苏卷20】已知数列*{}()n a n N ∈的首项11a =,前n 项和为n S .设λ与k 是常数.若对一切正整数n ,均有11111k k k n n n S S a λ++-=成立,则称此数列为“k λ-”数列.(1)若等差数列是“1λ-”数列,求λ的值;(2)若数列{}n a 是2”数列,且0n a >,求数列{}n a 的通项公式; (3)对于给定的λ,是否存在三个不同的数列{}n a 为“3λ-”数列,且0n a ≥?若存在,求出λ的取值范围;若不存在,说明理由. 【答案】见解析【解析】(1)1k =时,111n n n n a S S a λ+++=-=,∴1λ=.(2=11n n n a S S ++=-=, ==11144()33n n n n S a S S +++==-.从而14n n S S +=. 又111S a ==,14n n S -=,2134n n n n a S S --=-=⋅,2n ≥.综上,21,134,2n n n a n -=⎧=⎨⋅≥⎩.(3)若存在三个不同的数列{}n a 为“3λ-”数列,则11133311n n n S S a λ++-=,则21123333331111133()n n n n nn n n n SS S S S S a S S λλ+++++-+-==-,由11a =,0n a ≥则0n S >,令113()0n n nS p S +=>,则3323(1)33(1)0n n n p p p λλ--+--=, 1λ=时,2n np p =,由0n p >可得1n p =,则1n n S S +=,即10n a +=, 此时{}n a 唯一,不存在三个不同的数列{}n a ;1λ≠时,令331t λ=-,则3210n n n p tp tp -+-=,则2(1)[(1)1]0n n n p p t p -+-+=, ①1t ≤时2(1)10n n p t p +-+>,则1n p =同理不存在三个不同的数列{}n a ;②13t <<时,2(1)40t ∆=--<,2(1)10n n p t p +-+=无解,则1n p =,同理不存在三个不同的数列{}n a ; ③3t =时,3(1)0n p -=,则1n p =,同理不存在三个不同的数列{}n a ; ④3t >即01λ<<时,2(1)40t ∆=-->,2(1)10n n p t p +-+=有两解α,β,设αβ<,12t αβ+=->,10αβ=>,则01αβ<<<,则对任意*n N ∈,11n n S S +=或31n n S S α+=或31n nSS β+=,此时1n S =,31,1,2n n S n β=⎧=⎨≥⎩,31,1,2,3n n S n β=⎧=⎨≥⎩均符合条件,对应1,10,2n n a n =⎧=⎨≥⎩,31,11,20,3n n a n n β=⎧⎪=-=⎨⎪≥⎩,31,10,21,30,4n n n a n n β=⎧⎪=⎪=⎨-=⎪⎪≥⎩,则存在三个不同的数列{}n a 为“3λ-”数列,且0n a ≥,综上,01λ<<.2. 【2019年高考浙江卷】设a ,b ∈R ,数列{a n }满足a 1=a ,a n +1=a n 2+b ,n *∈N ,则 A . 当101,102b a => B . 当101,104b a => C . 当102,10b a =-> D . 当104,10b a =->【答案】A【解析】①当b =0时,取a =0,则0,n a n *=∈N .②当<0b 时,令2x x b =+,即20x x b -+=.则该方程140b ∆=->,即必存在0x ,使得2000x x b -+=,则一定存在10 ==a a x ,使得21n n n a a b a +=+=对任意n *∈N 成立,解方程20a a b -+=,得a =,10≤时,即90b -时,总存在a =,使得121010a a a ==⋯=≤, 故C 、D 两项均不正确.③当0b >时,221a a b b =+≥, 则2232a a b b b =+≥+,()22243a a bbb b =+++.(ⅰ)当12b =时,22451111711,1222162a a ⎡⎤⎛⎫++=>>+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦≥,则26111112224a ⎛⎫>++=> ⎪⎝⎭,2719222a >+=, 28918310224a ⎛⎫>+=> ⎪⎝⎭ ,则2981102a a =+>, 21091102a a =+> , 故A 项正确.(ⅱ)当14b =时,令1==0a a ,则2231111,4442a a ⎛⎫==+< ⎪⎝⎭,所以224311114242a a ⎛⎫=+<+= ⎪⎝⎭,以此类推,所以2210911114242a a ⎛⎫=+<+= ⎪⎝⎭,故B 项不正确. 故本题正确答案为A.3. 【2017年高考全国I 卷理数】几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 A .440 B .330C .220D .110【答案】A【解析】由题意得,数列如下:11,1,2,1,2,4,1,2,4,,2k-则该数列的前(1)122k k k ++++=项和为 11(1)1(12)(122)222k k k k S k -++⎛⎫=+++++++=-- ⎪⎝⎭,要使(1)1002k k +>,有14k ≥,此时122k k ++<,所以2k +是第1k +组等比数列1,2,,2k 的部分和,设1212221t t k -+=+++=-,所以2314t k =-≥,则5t ≥,此时52329k =-=, 所以对应满足条件的最小整数293054402N ⨯=+=,故选A. 4. 【2017年高考全国II 卷理数】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯A .1盏B .3盏C .5盏D .9盏【答案】B【解析】设塔的顶层共有灯x 盏,则各层的灯数构成一个首项为x ,公比为2的等比数列,结合等比数列的求和公式有7(12)38112x -=-,解得3x =,即塔的顶层共有灯3盏,故选B . 5. 【2018年高考江苏卷】已知集合*{|21,}A x x n n ==-∈N ,*{|2,}nB x x n ==∈N .将AB 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为___________. 【答案】27【解析】所有的正奇数和()2n n *∈N 按照从小到大的顺序排列构成{}n a ,在数列|{}n a 中,25前面有16个正奇数,即5621382,2a a ==.当n =1时,1211224S a =<=,不符合题意;当n =2时,2331236S a =<=,不符合题意;当n =3时,3461248S a =<=,不符合题意;当n =4时,4510<12=60S a =,不符合题意;……;当n =26时,()2752621221(141)441625032121=2516S a⨯-⨯+=+=+=<-,不符合题意;当n =27时,()8527221222(143)21484+62=546>12=5420S a⨯-⨯+=+=-,符合题意.故使得+1>12n n S a 成立的n 的最小值为27.6. 【2019年高考北京卷理数】已知数列{a n },从中选取第i 1项、第i 2项、…、第i m 项(i 1<i 2<…<i m ),若12m i i i a a a <<⋅⋅⋅<,则称新数列12m i i i a a a ⋅⋅⋅,,,为{a n }的长度为m 的递增子列.规定:数列{a n }的任意一项都是{a n }的长度为1的递增子列.(1)写出数列1,8,3,7,5,6,9的一个长度为4的递增子列;(2)已知数列{a n }的长度为p 的递增子列的末项的最小值为0m a ,长度为q 的递增子列的末项的最小值为0n a .若p <q ,求证:0m a <0n a ;(3)设无穷数列{a n }的各项均为正整数,且任意两项均不相等.若{a n }的长度为s 的递增子列末项的最小值为2s –1,且长度为s 末项为2s –1的递增子列恰有2s -1个(s =1,2,…),求数列{a n }的通项公式.【答案】(1) 1,3,5,6(答案不唯一);(2)见解析;(3)见解析. 【解析】(1)1,3,5,6.(答案不唯一) (2)设长度为q 末项为0n a 的一个递增子列为1210,,,,q r r r n a a a a -.由p <q ,得10p q r r n a a a -≤<.因为{}n a 的长度为p 的递增子列末项的最小值为0m a , 又12,,,p r r r a a a 是{}n a 的长度为p 的递增子列,所以0p m r a a ≤. 所以00m n a a <·(3)由题设知,所有正奇数都是{}n a 中的项.先证明:若2m 是{}n a 中的项,则2m 必排在2m −1之前(m 为正整数). 假设2m 排在2m −1之后. 设121,,,,21m p p p a a a m --是数列{}n a 的长度为m 末项为2m −1的递增子列,则121,,,,21,2m p p p a a a m m--是数列{}n a 的长度为m +1末项为2m 的递增子列.与已知矛盾. 再证明:所有正偶数都是{}n a 中的项.假设存在正偶数不是{}n a 中的项,设不在{}n a 中的最小的正偶数为2m .因为2k 排在2k −1之前(k =1,2,…,m −1),所以2k 和21k -不可能在{}n a 的同一个递增子列中.又{}n a 中不超过2m +1的数为1,2,…,2m −2,2m −1,2m +1,所以{}n a 的长度为m +1且末项为2m +1的递增子列个数至多为1(1)22221122m m m --⨯⨯⨯⨯⨯⨯=<个.与已知矛盾.最后证明:2m 排在2m −3之后(m ≥2为整数).假设存在2m (m ≥2),使得2m 排在2m −3之前,则{}n a 的长度为m +1且末项为2m +l 的递增子列的个数小于2m.与已知矛盾.综上,数列{}n a 只可能为2,1,4,3,…,2m −3,2m ,2m −1,….经验证,数列2,1,4,3,…,2m −3,2m ,2m −1,…符合条件. 所以1,1,n n n a n n +⎧=⎨-⎩为奇数,为偶数.7. 【2017年高考北京卷理数】设{}n a 和{}n b 是两个等差数列,记1122max{,,,}n n n c b a n b a n b a n =--⋅⋅⋅-(1,2,3,)n =⋅⋅⋅,其中12max{,,,}s x x x ⋅⋅⋅表示12,,,s x x x ⋅⋅⋅这s 个数中最大的数.(1)若n a n =,21n b n =-,求123,,c c c 的值,并证明{}n c 是等差数列; (2)证明:或者对任意正数M ,存在正整数m ,当n m ≥时,nc M n>;或者存在正整数m ,使得12,,,m m m c c c ++⋅⋅⋅是等差数列.【答案】(1)详见解析;(2)详见解析. 【解析】(1)111110,c b a =-=-=21122max{2,2}max{121,322}1c b a b a =--=-⨯-⨯=-,3112233max{3,3,3}max{131,332,533}2c b a b a b a =---=-⨯-⨯-⨯=-.当3n ≥时,1111()()()()20k k k k k k k k b na b na b b n a a n ++++---=---=-<, 所以k k b na -关于*k ∈N 单调递减. 所以112211max{,,,}1n n n c b a n b a n b a n b a n n =---=-=-.所以对任意1,1n n c n ≥=-,于是11n n c c +-=-, 所以{}n c 是等差数列.(2)设数列{}n a 和{}n b 的公差分别为12,d d ,则12111121(1)[(1)]()(1)k k b na b k d a k d n b a n d nd k -=+--+-=-+--. 所以1121211121(1)(),,n b a n n d nd d nd c b a n d nd -+-->⎧=⎨-≤⎩当时,当时,①当10d >时,取正整数21d m d >,则当n m ≥时,12nd d >,因此11n c b a n =-. 此时,12,,,m m m c c c ++是等差数列.②当10d =时,对任意1n ≥,1121121(1)max{,0}(1)(max{,0}).n c b a n n d b a n d a =-+-=-+-- 此时,123,,,,,n c c c c 是等差数列. ③当10d <时, 当21d n d >时,有12nd d <. 所以1121121112(1)()()n c b a n n d nd b d n d d a d n n n -+---==-+-++ 111212()||.n d d a d b d ≥-+-+--对任意正数M ,取正整数12112211||max{,}M b d a d d d m d d +-+-->-, 故当n m ≥时,n c M n >. 8. 【2016高考江苏卷】(本小题满分16分)记{}1,2,100U =…,.对数列{}()*n a n N ∈和U 的子集T ,若T =∅,定义0T S =;若{}12,,k T t t t =…,,定义12+k T t t t S a a a =++….例如:{}=1,3,66T 时,1366+T S a a a =+.现设{}()*n a n N ∈是公比为3的等比数列,且当{}=2,4T 时,=30T S .(1)求数列{}n a 的通项公式;(2)对任意正整数()1100k k ≤≤,若{}1,2,k T ⊆…,,求证:1T k S a +<; (3)设,,C D C U D U S S ⊆⊆≥,求证:2C C D D S S S +≥.【答案】(1)13n n a -=(2)详见解析(3)详见解析【解析】:(1)由已知得1*13,n n a a n N -=•∈.于是当{2,4}T =时,2411132730r S a a a a a =+=+=.又30r S =,故13030a =,即11a =.所以数列{}n a 的通项公式为1*3,n n a n N -=∈.(2)因为{1,2,,}T k ⊆,1*30,n n a n N -=>∈, 所以1121133(31)32k k k r k S a a a -≤+++=+++=-<. 因此,1r k S a +<. (3)下面分三种情况证明.①若D 是C 的子集,则2C CD C D D D D S S S S S S S +=+≥+=. ②若C 是D 的子集,则22C C DC C CD S S S S S S +=+=≥. ③若D 不是C 的子集,且C 不是D 的子集. 令UE C C D =,UF D C C =则E φ≠,F φ≠,EF φ=. 于是C E C D S S S =+,D F C D S S S =+,进而由C D S S ≥,得E F S S ≥.设k 是E 中的最大数,l 为F 中的最大数,则1,1,k l k l ≥≥≠.由(2)知,1E k S a +<,于是1133l k l F E k a S S a -+=≤≤<=,所以1l k -<,即l k ≤.又k l ≠,故1l k ≤-,从而1121131133222l l k E F l a S S a a a ----≤+++=+++==≤, 故21E F S S ≥+,所以2()1C CD D C D S S S S -≥-+, 即21C C D D S S S +≥+.综合①②③得,2C C D D S S S +≥.9. 【2016高考新课标3理数】已知数列{}n a 的前n 项和1n n S a λ=+,其中0λ≠. (I )证明{}n a 是等比数列,并求其通项公式;(II )若53132S =,求λ. 【答案】(Ⅰ)1)1(11---=n n a λλλ;(Ⅰ)1λ=-. 【解析】:(Ⅰ)由题意得1111a S a λ+==,故1≠λ,λ-=111a ,01≠a . 由n n a S λ+=1,111+++=n n a S λ得n n n a a a λλ-=++11,即n n a a λλ=-+)1(1.由01≠a ,0≠λ得0≠n a ,所以11-=+λλn n a a . 因此}{n a 是首项为λ-11,公比为1-λλ的等比数列,于是1)1(11---=n n a λλλ. (Ⅰ)由(Ⅰ)得n n S )1(1--=λλ,由32315=S 得3231)1(15=--λλ,即=-5)1(λλ321, 解得1λ=-.10. 【2016年高考北京理数】(本小题13分)设数列A :1a ,2a ,…N a (N ≥).如果对小于n (2n N ≤≤)的每个正整数k 都有k a <n a ,则称n 是数列A 的一个“G 时刻”.记“)(A G 是数列A 的所有“G 时刻”组成的集合.(1)对数列A :-2,2,-1,1,3,写出)(A G 的所有元素;(2)证明:若数列A 中存在n a 使得n a >1a ,则∅≠)(A G ;(3)证明:若数列A 满足n a -1n a - ≤1(n=2,3, …,N ),则)(A G 的元素个数不小于N a -1a .【答案】(1)()G A 的元素为2和5;(2)详见解析;(3)详见解析.【解析】:(1))(A G 的元素为2和5.(2)因为存在n a 使得1a a n >,所以{}∅≠>≤≤∈*1,2a a N i N i i . 记{}1,2min a a N i N i m i >≤≤∈=*,则2≥m ,且对任意正整数m k a a a m k <≤<1,.因此)(A G m ∈,从而∅≠)(A G .(3)当1a a N ≤时,结论成立.以下设1a a N >.由(Ⅰ)知∅≠)(A G .设{}p p n n n n n n A G <⋅⋅⋅<<⋅⋅⋅=2121,,,,)(,记10=n .则p n n n n a a a a <⋅⋅⋅<<<210.对p i ,,1,0⋅⋅⋅=,记{}i n k i i a a N k n N k G >≤<∈=*,.如果∅≠i G ,取i i G m min =,则对任何i i m n k i a a a m k <≤<≤,1.从而)(A G m i ∈且1+=i i n m . 又因为p n 是)(A G 中的最大元素,所以∅=p G . 从而对任意n k n p ≤≤,p n k a a ≤,特别地,p n N a a ≤. 对i i n n a a p i ≤-⋅⋅⋅=-+11,1,,1,0. 因此1)(111111+≤-+=--++++i i i i i n n n n n a a a a a . 所以p a a a a a a i i p n p i n n N ≤-=-≤--∑=)(1111.。
(完整版)2018年高考全国1卷理科数学试题及答案详细解析(word版_精校版)
绝密★启用前2018年普通高等学校招生全国统一考试(全国卷Ⅰ)理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设1i2i 1iz -=++,则||z = A .0 B .12 C .1 D .22.已知集合2{|20}A x x x =-->,则A =R ðA .{|12}x x -<<B .{|12}x x -≤≤C {|1}{|2}x x x x <->UD .{|1}{|2}x x x x -U ≤≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番. 为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记n S 为等差数列{}n a 的前n 项和. 若3243S S S =+,12a =,则5a = A .12- B .10- C .10 D .125.设函数32()(1)f x x a x ax =+-+. 若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为A .2y x =-B .y x =-C .2y x =D .y x = 6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =uu rA .3144AB AC -uu u r uuu r B .1344AB AC -uuu r uuu rC .3144AB AC +uu u r uuu rD .1344AB AC +uuu r uuu r7.某圆柱的高为2,底面周长为16,其三视图如右图. 圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .217B .25C .3D .28.设抛物线24C y x =:的焦点为F ,过点(2,0)-且斜率为23的直线与C 交于M ,N 两点,则FM FN?uuu r uuu r A .5B .6C .7D .89.已知函数e ,0,()ln ,0,x x f x x x ⎧=⎨>⎩≤ ()()g x f x x a =++. 若()g x 存在2个零点,则a 的取值范围是 A .[1,0)-B .[0,)+∞C .[1,)-+∞D .[1,)+∞10.下图来自古希腊数学家希波克拉底所研究的几何图形. 此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ. 在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则A .12p p =B .13p p =C .23p p =D .123p p p =+11.已知双曲线2213x C y :-=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N . 若OMN △为直角三角形,则||MN = A .32B .3C .23D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为 A .33B .23C .32D .3二、填空题:本题共4小题,每小题5分,共20分。
(完整版)2018年浙江专升本高等数学真题(最新整理)
2018 年浙江专升本高数考试真题答案
一、选择题:本大题共 5 小题,每小题 4 分,共 20 分。
1、设
f
(x)
sin x x
x
, ,
x x
0
,则
0
f
(x)
在 (1,1) 内(
C
)
A、有可去间断点 B、连续点
C、有跳跃间断点 D、有第二间断点
解析: lim f (x) lim x 0, lim f (x) lim sin x 1
a
a
a
5、下列级数绝对收敛的是( C )
A、 (1)n1
n1 n 1
B、
(1)n1
n1 ln(n 1)
C、
cos n
n1 n3 9
D、 1
n1 n
解析:A. lim n
1
n 1 1,由 1 发散
1
n1 n
n
1 发散 n 1
1
B. lim n
n 1
lim ln(1 n) lim 1 0 ,由 1 发散 1 发散
1
解析: lim(1 a sin x) x
1 ln(1asin x)
lim e x
lim ln(1asin x)
e x0
x
1 a cos x
lim 1asin x
e x0
1
ea
x0
x0
7、 lim f (3) f (3 2x) 3 ,则 f (3) 3
x0
sin x
2
解析: lim f (3) f (3 2x) 2 lim f (3 2x) f (3) 2 f (3) 3
x0
历年高考数学真题汇编专题09 基本不等式的应用(解析版)
历年高考数学真题汇编专题09 基本不等式的应用1、【2019年高考江苏】在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线x +y =0的距离的最小值是_____. 【答案】4. 【解析】设01(,)P x x,则4d ==≥2、【2019年高考天津卷文数】设0,0,24x y x y >>+=,则(1)(21)x y xy++的最小值为__________.【答案】92【解析】(1)(21)2212552x y xy y x xy xy xy xy xy++++++===+. 因为0,0,24x y x y >>+=,所以24x y +=≥,2,02xy ≤<≤,当且仅当22x y ==时取等号成立. 又因为519225=22xy +≥+⨯, 所以(1)(21)x y xy ++的最小值为92.3、【2019年高考浙江卷】若0,0a b >>,则“4a b +≤”是 “4ab ≤”的( )A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件【答案】A【解析】当0, 0a >b >时,a b +≥当且仅当a b =时取等号,则当4a b +≤时,有4a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立,综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件.4、【2018年高考天津卷文数】(2018天津文科)已知,a b ∈R ,且360a b -+=,则128ab +的最小值为 . 【答案】14【解析】由a −3b +6=0可知a −3b =−6,且2a +18b=2a +2−3b ,因为对于任意x ,2x >0恒成立,结合基本不等式的结论可得:2a +2−3b ≥2×√2a ×2−3b =2×√2−6=14.当且仅当{2a =2−3ba −3b =6,即{a =3b =−1 时等号成立. 综上可得2a +18b 的最小值为14.【名师点睛】利用基本不等式求最值时,要灵活运用以下两个公式: ①22,,2a b a b ab ∈+≥R ,当且仅当a b =时取等号;②,a b +∈R ,a b +≥,当且仅当a b =时取等号.解题时要注意公式的适用条件、等号成立的条件,同时求最值时注意“1的妙用”.5、【2018年高考江苏卷】在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为___________. 【答案】9【解析】由题意可知,S △ABC =S △ABD +S △BCD ,由角平分线性质和三角形面积公式得12acsin120°=12a ×1×sin60°+12c ×1×sin60°,化简得ac =a +c,1a +1c =1, 因此4a +c =(4a +c )(1a +1c )=5+ca +4a c≥5+2√c a ⋅4a c=9,当且仅当c =2a =3时取等号,则4a +c 的最小值为9.6、【2017年高考江苏卷】某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是___________.【答案】30【解析】总费用为600900464()4240x x x x +⨯=+≥⨯=,当且仅当900x x=,即30x =时等号成立.一、三个不等式关系:(1)a ,b ∈R ,a 2+b 2≥2ab ,当且仅当a =b 时取等号. (2)a ,b ∈R +,a +b ≥2ab ,当且仅当a =b 时取等号. (3)a ,b ∈R ,a 2+b 22≤(a +b 2)2,当且仅当a =b 时取等号.上述三个不等关系揭示了a 2+b 2 ,ab ,a +b 三者间的不等关系.其中,基本不等式及其变形:a ,b ∈R +,a +b ≥2ab (或ab ≤(a +b 2)2),当且仅当a =b 时取等号,所以当和为定值时,可求积的最值;当积为定值是,可求和的最值. 二、.算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数不小于它们的几何平均数. 三、.利用基本不等式求最值问题 已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大)四、对于f (x )=x +ax ,当a ≤0时,f (x )在(-∞,0),(0,+∞)为增函数;当a >0时,f (x )在(-∞,a ),(a ,+∞)为增函数;在(-a ,0),(0,a )为减函数. 注意 在解答题中利用函数f (x )=x +ax 的单调性时,需要利用导数进行证明.五、利用基本不等式解决条件最值的关键是构造和为定值或积为定值,主要有两种思路:(1)对条件使用基本不等式,建立所求目标函数的不等式求解.常用的方法有:拆项法、变系数法、凑因子法、换元法、整体代换法等.(2)条件变形,进行“1”的代换求目标函数最值.在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.六、对于多元问题的不等式的基本解题思路就是把多元问题转化为单元问题。
2018年全国统一高考数学试题(文)(Word版,含答案解析)
绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.()i 23i += A .32i -B .32i +C .32i --D .32i -+2.已知集合{}1,3,5,7A =,{}2,3,4,5B =,则AB =A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,73.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A .0.6B .0.5C .0.4D .0.36.双曲线22221(0,0)x y a b a b-=>>的离心率为3,则其渐近线方程为A .2y x =±B .3y x =±C .22y x =±D .32y x =±7.在ABC △中,5cos 25C =,1BC =,5AC =,则AB = A .42B .30C .29D .258.为计算11111123499100S =-+-++-,设计了如图的程序框图,则在空白框中应填入 开始0,0N T ==S N T =-S 输出1i =100i <1N N i =+11T T i =++结束是否A .1i i =+B .2i i =+C .3i i =+D .4i i =+9.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 A .22B .32C .52D .7210.若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为 A .312-B .23-C .312- D .31-12.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(f ff++(50)f ++=A .50-B .0C .2D .50二、填空题:本题共4小题,每小题5分,共20分。
专题3.4 三角恒等变换(解析版)
第三篇 三角函数与解三角形 专题3.4 三角恒等变换【考纲要求】1. 会用向量的数量积推导出两角差的余弦公式.2.能利用两角差的余弦公式推导出两角差的正弦、正切公式.3.能利用两角差的余弦公式推导出两角和的正弦、余弦、正切公式和二倍角的正弦、余弦、正切公式,了解它们的内在联系.4.能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆). 【命题趋势】三角恒等变换是三角变换的工具,主要考查利用两角和与差的三角公式、二倍角公式进行三角函数的化简与求值.可单独考查,也可与三角函数的知识综合考查. 【核心素养】本讲内容主要考查数学运算、逻辑推理的核心素养. 【素养清单•基础知识】1.两角和与差的正弦、余弦、正切公式 sin(α±β)=sin αcos β±cos αsin β. cos(α±β)=cos αcos β∓sin αsin β. tan(α±β)=tan α±tan β1∓tan αtan β.2.二倍角的正弦、余弦、正切公式 sin 2α=2sin αcos α.cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. tan 2α=2tan α1-tan 2α.3.有关公式的逆用、变形(1)tan α±tan β=tan(α±β)(1∓tan αtan β). (2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2(3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin ⎝⎛⎭⎫α±π4.(4)a sin α+b cos α=a 2+b 2sin(α+φ)⎝⎛⎭⎫tan φ=b a ,a sin α+b cos α=a 2+b 2cos(α-φ)⎝⎛⎭⎫tan φ=a b .【素养清单•常用结论】 常见的几种角的变换 (1)α=(α+β)-β=(α-β)+β.(2)2α=(α+β)+α-β,2β=α+β-(α-β). (3)α+β2=α-β2-⎝⎛⎭⎫α2-β,α=2×α2. 【真题体验】1.【2019年高考全国Ⅱ卷理数】已知α∈(0,),2sin2α=cos2α+1,则sin α=( )A .B .C .D .【答案】B【解析】,,,又,,又,,故选B .【名师点睛】本题是对三角函数中二倍角公式、同角三角函数基本关系式的考查,中等难度,判断正余弦的正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出三角函数值的正负很关键,切记不能凭感觉.解答本题时,先利用二倍角公式得到正余弦关系,再利用角范围及正余弦平方和为1关系得出答案.2.【2019年高考江苏卷】已知,则的值是 .【答案】【解析】由,得,解得,或.,当时,上式当时,上式=综上,【名师点睛】本题考查三角函数的化简求值,渗透了逻辑推理和数学运算素养.采取转化法,利用分类讨论和转化与化归思想解题.由题意首先求得的值,然后利用两角和的正弦公式和二倍角公式将原问题转化为齐次式求值的问题,最后切化弦求得三角函数式的值即可.3.【2018年高考全国Ⅲ卷理数】若,则()A.B.C.D.【答案】B【解析】.故选B.【名师点睛】本题主要考查三角函数的求值,考查考生的运算求解能力,考查的核心素养是数学运算.4.【2018年高考全国卷II理数】若在是减函数,则的最大值是()A.B.C.D.【答案】A【解析】因为,所以由得,因此,从而的最大值为,故选A.【名师点睛】解答本题时,先确定三角函数单调减区间,再根据集合包含关系确定的最大值.函数的性质:(1).(2)周期(3)由求对称轴.(4)由求增区间;由求减区间.5.【2017年高考全国Ⅱ理数】函数()的最大值是.【答案】1【解析】化简三角函数的解析式:,由自变量的范围:可得:,当时,函数取得最大值1.【名师点睛】本题经三角函数式的化简将三角函数的问题转化为二次函数的问题,二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析. 6.【2018年高考全国Ⅱ理数】已知,,则__________.【答案】【解析】因为,,所以所以,因此【名师点睛】本题主要考查三角恒等变换,考查考生分析问题、解决问题的能力,考查的核心素养是数学运算.7.【2017年高考江苏卷】若则.【答案】【解析】.故答案为.【考点】两角和的正切公式【名师点睛】三角函数求值的三种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数.(2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.一般有如下两种思路:①适当变换已知式,进而求得待求式的值;②变换待求式,便于将已知式的值代入,从而达到解题的目的.(3)给值求角:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,进而确定角.8.【2019年高考浙江卷】设函数.(1)已知函数是偶函数,求的值;(2)求函数的值域.【答案】(1)或;(2).【解析】(1)因为是偶函数,所以,对任意实数x都有,即,故,所以.又,因此或.(2).因此,函数的值域是.【名师点睛】本题主要考查三角函数及其恒等变换等基础知识,同时考查运算求解能力.9.【2017年高考江苏卷】已知向量(1)若a∥b,求的值;(2)记,求的最大值和最小值以及对应的的值.【答案】(1);(2)时,取到最大值3;时,取到最小值.【解析】(1)因为,,a∥b,所以.若,则,与矛盾,故.于是.又,所以.(2).因为,所以,从而.于是,当,即时,取到最大值3;当,即时,取到最小值.【考法拓展•题型解码】 考法一 三角函数式的化简解题技巧:三角函数式的化简遵循的“三看”原则(1)一看式中各角:善于发现角之间的差别与联系,合理对角拆分,恰当选择三角公式,能求值的求出值,减少角的个数.(2)二看函数名称:看函数名称之间的差异,利用诱导公式、切弦互化、二倍角公式等实现名称的统一. (3)三看结构特征:分析结构特征,找到变形的方向,常见的有“遇到分式要通分”“整式因式分解”“二次式配方”等.【例1】 (1)已知0<θ<π,则(1+sin θ+cos θ)⎝⎛⎭⎫sin θ2-cos θ22+2cos θ=__________.(2)化简:(sin 2α+cos 2α-1)(sin 2α-cos 2α+1)sin 4α=__________.(3)化简:⎝ ⎛⎭⎪⎫1tan α2-tan α2·⎝⎛⎭⎫1+tan α·tan α2=__________. 【答案】(1)-cos θ (2)tan α (3)2sin α【解析】 (1)由θ∈(0,π)得0<θ2<π2,所以cos θ2>0,所以2+2cos θ=4cos 2θ2=2cos θ2.又(1+sin θ+cos θ)⎝⎛⎭⎫sin θ2-cos θ2 =⎝⎛⎭⎫2sin θ2cos θ2+2cos 2θ2·⎝⎛⎭⎫sin θ2-cos θ2 =2cos θ2⎝⎛⎭⎫sin 2θ2-cos 2θ2=-2cos θ2cos θ. 故原式=-2cos θ2cos θ2cosθ2=-cos θ.(2)(sin 2α+cos 2α-1)(sin 2α-cos 2α+1)sin 4α=sin 22α-(cos 2α-1)22sin 2α·cos 2α=sin 22α-cos 22α+2cos 2α-12sin 2α·cos 2α=-2cos 22α+2cos 2α2sin 2α·cos 2α=1-cos 2αsin 2α=2sin 2α2sin αcos α=sin αcos α=tan α. (3)原式=⎝ ⎛⎭⎪⎫cos α2sin α2-sin α2cos α2·⎝ ⎛⎭⎪⎫1+sin αcos α·sin α2cos α2=cos 2α2-sin 2α2sin α2cos α2·cos αcos α2+sin αsinα2cos αcos α2=2cos αsin α·cosα2cos αcosα2=2sin α. 考法二 三角函数式的求值答题模板:解三角函数求值问题的一般步骤 (1)给值(角)求值问题的一般步骤 ①化简条件式子或待求式子;②观察条件与所求之间的联系,从函数名称及角入手; ③将已知条件代入所求式子,化简求值. (2)给值求角问题的一般步骤 ①先求角的某一个三角函数值; ②确定角的范围;③根据角的范围写出所求的角.【例2】 (1)sin 50°(1+3tan 10°)=( ) A .-1 B .0 C .1 D .2【答案】C【解析】(1)sin 50°(1+3tan 10°)=sin 50°(1+tan 60°·tan 10°) =sin 50°·cos 60°cos 10°+sin 60°sin 10°cos 60°cos 10°=sin 50°·cos (60°-10°)cos 60°cos 10°=2sin 50°cos 50°cos 10°=sin 100°cos 10°=cos 10°cos 10°=1.(2)已知α为第二象限角,且sin 2α=-2425,则cos α-sin α的值为( )A .75B .-75C .15D .-15【答案】B【解析】由α为第二象限的角可知cos α<0,sin α>0,所以cos α-sin α<0,而(cos α-sin α)2=1-sin 2α=1+2425=4925,所以cos α-sin α=-75. (3)已知tan 2α=-22,且π4<α<π2,则2cos 2 α2-sin α-12sin ⎝⎛⎭⎫π4+α的值是( )A . 2B .- 2C .-3+2 2D .3-2 2【答案】C【解析】因为π4<α<π2,所以tan α>0,所以由tan 2 α=2tan α1-tan 2 α=-22可得tan α= 2.原式=2cos 2α2-1-sin α2⎝⎛⎭⎫sin π4cos α+cos π4sin α=cos α-sin αcos α+sin α=1-tan α1+tan α=1-21+2=-3+2 2.故选C .【例3】 (1)设α,β为钝角,且sin α=55,cos β=-31010,则α+β的值为( ) A .3π4B .5π4C .7π4D .5π4或7π4【答案】C【解析】因为α,β为钝角,sin α=55,cos β=-31010, 所以cos α=-255,sin β=1010,所以cos(α+β)=cos αcos β-sin αsin β=22>0. 又α+β∈(π,2π),所以α+β=7π4.(2)已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,则2α-β的值为__________.【答案】-3π4【解析】因为tan α=tan[(α-β)+β]=tan (α-β)+tan β1-tan (α-β)tan β=12-171+12×17=13>0,所以0<α<π2. 又因为tan 2α=2tan α1-tan 2α=2×131-⎝⎛⎭⎫132=34>0,所以0<2α<π2,所以tan(2α-β)=tan 2α-tan β1+tan 2αtan β=34+171-34×17=1.因为tan β=-17<0,所以π2<β<π,-π<2α-β<0,所以2α-β=-3π4.考法三 三角恒等变换与三角函数的综合问题 归纳总结三角恒等变换的综合应用主要是将三角恒等变换与三角函数的性质相结合,通过变换,将复杂的函数式化为y =A sin(ωx +φ)+b 的形式再研究性质.在研究性质时注意利用整体思想解决相关问题. 【例4】 设函数f (x )=sin ωx ·cos ωx -3cos 2ωx +32(ω>0)的图象上相邻最高点与最低点的距离为π2+4. (1)求ω的值;(2)若函数y =f (x +φ)⎝⎛⎭⎫0<φ<π2是奇函数,求函数g (x )=cos(2x -φ)在[0,2π]上的单调递减区间. 【答案】见解析【解析】 (1)f (x )=sin ωx ·cos ωx -3cos 2ωx +32=12sin 2ωx -3(1+cos 2ωx )2+32=12sin 2ωx -32cos 2ωx =sin ⎝⎛⎭⎫2ωx -π3.设T 为f (x )的最小正周期,由f (x )的图象上相邻最高点与最低点的距离为π2+4,得⎝⎛⎭⎫T 22+[2f (x )max ]2=π2+4.因为f (x )max=1,所以⎝⎛⎭⎫T 22+4=π2+4,整理得T =2π.又因为ω>0,T =2π2ω=2π,所以ω=12.(2)由(1)可知f (x )=sin ⎝⎛⎭⎫x -π3,所以f (x +φ)=sin ⎝⎛⎭⎫x +φ-π3.因为y =f (x +φ)是奇函数,所以sin ⎝⎛⎭⎫φ-π3=0.又因为0<φ<π2,所以φ=π3,所以g (x )=cos(2x -φ)=cos ⎝⎛⎭⎫2x -π3.令2k π≤2x -π3≤2k π+π,k ∈Z ,则k π+π6≤x ≤k π+2π3,k ∈Z ,所以函数g (x )的单调递减区间是⎣⎡⎦⎤k π+π6,k π+2π3,k ∈Z .又因为x ∈[0,2π],所以当k =0时,g (x )的单调递减区间为⎣⎡⎦⎤π6,2π3;当k =1时,g (x )的单调递减区间为⎣⎡⎦⎤7π6,5π3.所以函数g (x )在[0,2π]上的单调递减区间是⎣⎡⎦⎤π6,2π3,⎣⎡⎦⎤7π6,5π3. 【易错警示】易错点 化简求值时不能正确地确定函数值的符号【典例】 函数f (x )=6cos 2ωx2+3sin ωx -3(ω>0)在一个周期内的图象如图所示,A 为图象的最高点,B ,C为图象与x 轴的交点,且△ABC 为正三角形. (1)求ω的值及f (x )的值域;(2)若f (x 0)=835,且x 0∈⎝⎛⎭⎫-103,23,求f (x 0+1)的值.【错解】:(1)同正解(1). (2)f (x )=23sin ⎝⎛⎭⎫π4x +π3, f (x 0)=23sin ⎝⎛⎭⎫π4x 0+π3=835. 所以sin ⎝⎛⎭⎫π4x 0+π3=45, 所以cos ⎝⎛⎭⎫π4x 0+π3=±35. 所以f (x 0+1)=23sin ⎝⎛⎭⎫π4x 0+π3+π4=23×22·⎣⎡⎦⎤sin ⎝⎛⎭⎫π4x 0+π3+cos ⎝⎛⎭⎫π4x 0+π3=6⎝⎛⎭⎫45±35, 所以f (x 0+1)=765或f (x 0+1)=65.【错因分析】:一般情况下,当求出sin α的值再求cos α的值时,一定要根据题设条件得到α的取值范围,进而利用平方关系求值,本题中求出了sin ⎝⎛⎭⎫π4x 0+π3=45,但角度π4x 0+π3比较复杂,所以一般同学找不到它的取值范围.或嫌麻烦不愿去找,因而导致失分.【正解】:(1)f (x )=3+3cos ωx +3sin ωx -3=23sin ⎝⎛⎭⎫ωx +π3, 所以值域为[-23,23].因为BC =T 2=233×2=4,所以T =8=2πω,所以ω=π4.(2)f (x )=23sin ⎝⎛⎭⎫π4x +π3, f (x 0)=23sin ⎝⎛⎭⎫π4x 0+π3=835. 所以sin ⎝⎛⎭⎫π4x 0+π3=45,因为x 0∈⎝⎛⎭⎫-103,23, 所以π4x 0+π3∈⎝⎛⎭⎫-π2,π2,cos ⎝⎛⎭⎫π4x 0+π3=35. 所以f (x 0+1)=23sin ⎝⎛⎭⎫π4x 0+π3+π4=23×22·⎣⎡⎦⎤sin ⎝⎛⎭⎫π4x 0+π3+cos ⎝⎛⎭⎫π4x 0+π3=6⎝⎛⎭⎫45+35=765. 【误区防范】三角函数化简求值中应注意的几个问题(1)解题时注意观察角、名、结构等特征,注意利用整体思想解决相关问题.(2)运用公式时要注意公式成立的条件,要注意和、差、倍角的相对性,要注意升幂、降幂公式的灵活运用,要注意“1”的各种变形.(3)在三角求值时,往往要估计角的范围后再求值.特别是在(0,π)范围内,正弦值对应的角不唯一. 【跟踪训练】 已知cos 2θ=725,π2<θ<π,则2cos 2θ2-sin θ2sin ⎝⎛⎭⎫θ+π4=__________.【答案】2【解析】 原式=1+cos θ-sin θsin θ+cos θ.因为cos 2θ=725,π2<θ<π.π<2θ<2π,所以sin 2θ=-2425且cos θ<0<sin θ.因为(cos θ-sin θ)2=1-sin 2θ=4925且cos θ-sin θ<0,所以cos θ-sin θ=-75.又725=cos 2θ=(cos θ-sinθ)(cos θ+sin θ),所以cos θ+sin θ=-15,所以原式=1-75-15=2.【递进题组】1.化简2sin (π-α)+sin 2α2cos 2α2=( )A .sin αB .sin 2αC .2sin αD .sin α2【答案】C【解析】 原式=2sin α+2sin αcos α1+cos α=2sin α(1+cos α)(1+cos α)=2sin α.2.计算sin 20°cos 70°-cos 160°sin 70°的值为( ) A .0 B .-sin 50° C .1 D .-1【答案】C【解析】原式=sin 20°cos 70°+cos 20°sin 70°=sin(20°+70°)=1.3.(2018·全国卷Ⅱ)已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)=__________. 【答案】 -12【解析】 将两式平方相加得2+2sin(α+β)=1,所以sin(α+β)=-12.4.设θ为第二象限角,若tan ⎝⎛⎭⎫θ+π4=12,则sin θ+cos θ=__________. 【答案】 -105【解析】 因为tan ⎝⎛⎭⎫θ+π4=12, 所以tan θ=tan ⎣⎡⎦⎤⎝⎛⎭⎫θ+π4-π4= tan ⎝⎛⎭⎫θ+π4-tan π41+tan ⎝⎛⎭⎫θ+π4tan π4=12-11+12×1=-13,即sin θ=-13cos θ,又因为sin 2θ+cos 2θ=1,所以19cos 2θ+cos 2θ=1,cos 2θ=910,因为θ为第二象限角,所以cos θ=-31010,sin θ=-13cos θ=1010,sin θ+cos θ=-31010+1010=-105. 5.(2018·山东卷)设f (x )=23sin(π-x )sin x -(sin x -cos x )2. (1)求f (x )的单调递增区间;(2)把y =f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移π3个单位,得到函数y =g (x )的图象,求g ⎝⎛⎭⎫π6的值. 【答案】见解析【解析】 (1)f (x )=23sin 2x -(1-2sin x cos x )= 3(1-cos 2x )+sin 2x -1=sin 2x -3cos 2x +3-1= 2sin ⎝⎛⎭⎫2x -π3+3-1. 由2k π-π2≤2x -π3≤2k π+π2(k ∈Z ),得k π-π12≤x ≤k π+5π12(k ∈Z ),所以f (x )的单调递增区间是⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z ).(2)由(1)知f (x )=2sin ⎝⎛⎭⎫2x -π3+3-1,把y =f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y =2sin ⎝⎛⎭⎫x -π3+3-1的图象,再把所得到的图象向左平移π3个单位,得到y =2sin x +3-1的图象,即g (x )=2sin x +3-1.所以g ⎝⎛⎭⎫π6=2sin π6+3-1= 3. 【考卷送检】 一、选择题1.已知sin 2α=13,则cos 2⎝⎛⎭⎫α-π4=( ) A .-13B .-23C .13D .23【答案】D【解析】 cos 2⎝⎛⎭⎫α-π4=1+cos ⎝⎛⎭⎫2α-π22=1+sin 2α2=23. 2.(2017·山东卷)函数y =3sin 2x +cos 2x 的最小正周期为( ) A .π2B .2π3C .πD .2π【答案】C【解析】 y =3sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π6,其最小正周期为2π2=π.故选C . 3.(2018·全国卷Ⅰ)已知函数f (x )=2cos 2x -sin 2x +2,则( ) A .f (x )的最小正周期为π,最大值为3 B .f (x )的最小正周期为π,最大值为4 C .f (x )的最小正周期为2π,最大值为3 D .f (x )的最小正周期为2π,最大值为4【答案】B【解析】 因为函数f (x )=1+cos 2x -1-cos 2x 2+2=32cos 2x +52,所以f (x )的最小正周期为2π2=π,最大值为32+52=4.故选B . 4.(2019·绵阳中学月考)已知sin ⎝⎛⎭⎫2π3-α+sin α=435,则sin ⎝⎛⎭⎫α+7π6=( ) A .-45B .-35C .-25D .-15【答案】A【解析】 由题意得sin ⎝⎛⎭⎫2π3-α+sin α=32cos α+32sin α=3sin ⎝⎛⎭⎫α+π6=435,所以sin ⎝⎛⎭⎫α+π6=45,所以sin ⎝⎛⎭⎫α+7π6=-sin ⎝⎛⎭⎫α+π6=-45. 5.(2019·深圳中学期中)已知tan ⎝⎛⎭⎫α+π4=12,且-π2<α<0,则2sin 2α+sin 2αcos ⎝⎛⎭⎫α-π4=( ) A .-255B .-3510C .-31010D .255【答案】A【解析】 由tan ⎝⎛⎭⎫α+π4=tan α+11-tan α=12得tan α=-13.又-π2<α<0,故sin α=-1010.故2sin 2α+sin 2αcos ⎝⎛⎭⎫α-π4=2sin α(sin α+cos α)22(sin α+cos α)=22sin α=-255.6.已知sin ⎝⎛⎭⎫π6-α=cos ⎝⎛⎭⎫π6+α,则cos 2α=( ) A .1 B .-1 C .12D .0【答案】D【解析】 因为sin ⎝⎛⎭⎫π6-α=cos ⎝⎛⎭⎫π6+α,所以12cos α-32sin α=32cos α-12sin α,即⎝⎛⎭⎫12-32sin α=-⎝⎛⎭⎫12-32cos α,所以tan α=sin αcos α=-1,所以cos 2α=cos 2α-sin 2α=cos 2α-sin 2αsin 2α+cos 2α=1-tan 2αtan 2α+1=0.二、填空题7.tan ⎝⎛⎭⎫π4+α·cos 2α2cos 2⎝⎛⎭⎫π4-α的值为________.【答案】 1【解析】 原式=sin ⎝⎛⎭⎫π4+α·cos 2α2sin 2⎝⎛⎭⎫π4+αcos ⎝⎛⎭⎫π4+α=cos 2α2sin ⎝⎛⎭⎫π4+αcos ⎝⎛⎭⎫π4+α=cos 2αsin 2⎝⎛⎭⎫π4+α=cos 2αsin ⎝⎛⎭⎫π2+2α=cos 2αcos 2α=1. 8.若锐角α,β满足(1+3tan α)(1+3tan β)=4,则α+β=________. 【答案】 π3【解析】 由(1+3tan α)(1+3tan β)=4可得tan α+tan β1-tan αtan β=3,即tan(α+β)= 3.又α+β∈(0,π),所以α+β=π3.9.已知α,β∈⎝⎛⎭⎫0,π2,tan(α+β)=9tan β,则tan α的最大值为________. 【答案】 43【解析】 因为α,β∈⎝⎛⎭⎫0,π2,所以tan α>0,tan β>0, 所以tan α=tan(α+β-β)=tan (α+β)-tan β1+tan (α+β)·tan β=8tan β1+9tan 2β=81tan β+9tan β≤82×3=43⎝⎛⎭⎫当且仅当1tan β=9tan β时等号成立,即(tan α)max =43.三、解答题10.(2018·浙江卷)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P ⎝⎛⎭⎫-35,-45. (1)求sin(α+π)的值;(2)若角β满足sin(α+β)=513,求cos β的值.【答案】见解析【解析】 (1)由角α的终边过点P ⎝⎛⎭⎫-35,-45得sin α=-45,所以sin(α+π)=-sin α=45.(2)由角α的终边过点P ⎝⎛⎭⎫-35,-45得cos α=-35,由sin(α+β)=513得cos(α+β)=±1213.由β=(α+β)-α得cos β=cos(α+β)cos α+sin(α+β)sin α,所以cos β=-5665或cos β=1665.11.已知函数f (x )=sin 2x -sin 2⎝⎛⎭⎫x -π6,x ∈R . (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤-π3,π4上的最大值和最小值. 【答案】见解析【解析】 (1)由已知,有f (x )=1-cos 2x 2-1-cos ⎝⎛⎭⎫2x -π32=12⎝⎛⎭⎫12cos 2x +32sin 2x -12cos 2x =34sin 2x -14cos 2x=12sin ⎝⎛⎭⎫2x -π6.所以f (x )的最小正周期T =2π2=π. (2)因为f (x )在区间⎣⎡⎦⎤-π3,-π6上是减函数,在区间⎣⎡⎦⎤-π6,π4上是增函数,且f ⎝⎛⎭⎫-π3=-14,f ⎝⎛⎭⎫-π6=-12,f ⎝⎛⎭⎫π4=34,所以f (x )在区间⎣⎡⎦⎤-π3,π4上的最大值为34,最小值为-12. 12.已知函数f (x )=3sin(ωx +φ)+2sin 2ωx +φ2-1(ω>0,0<φ<π)为奇函数,且相邻两对称轴间的距离为π2. (1)当x ∈⎣⎡⎦⎤-π2,π4时,求f (x )的单调递减区间; (2)将函数y =f (x )的图象沿x 轴方向向右平移π6个单位长度,再把横坐标缩短到原来的12(纵坐标不变),得到函数y =g (x )的图象.当x ∈⎣⎡⎦⎤-π12,π6时,求函数g (x )的值域. 【答案】见解析【解析】 (1)由题意得f (x )=3sin(ωx +φ)-cos ()ωx +φ=2sin ⎝⎛⎭⎫ωx +φ-π6,因为相邻两对称轴间的距离为π2,所以T =2πω=π,ω=2.又因为函数f (x )为奇函数,所以φ-π6=k π,k ∈Z ,φ=k π+π6,k ∈Z .因为0<φ<π,所以φ=π6,故函数f (x )=2sin 2x .令π2+2k π≤2x ≤3π2+2k π,k ∈Z ,得π4+k π≤x ≤3π4+k π,k ∈Z ,令k =-1,得-3π4≤x ≤-π4,因为x ∈⎣⎡⎦⎤-π2,π4,所以函数f (x )的单调递减区间为⎣⎡⎦⎤-π2,-π4. (2)由题意可得g (x )=2sin ⎝⎛⎭⎫4x -π3,因为x ∈⎣⎡⎦⎤-π12,π6,所以-2π3≤4x -π3≤π3,所以-1≤sin ⎝⎛⎭⎫4x -π3≤32,g (x )∈[-2,3],即函数g (x )的值域为[-2,3].13.(2019·洛阳统考)已知函数f (x )=sin 2ωx 2+12sin ωx -12(ω>0),x ∈R ,若f (x )在区间(π,2π)内没有零点,则ω的取值范围是( ) A .⎝⎛⎦⎤0,18 B .⎝⎛⎦⎤0,14∪⎣⎡⎭⎫58,1 C .⎝⎛⎦⎤0,58 D .⎝⎛⎦⎤0,18∪⎣⎡⎦⎤14,58 【答案】D【解析】 f (x )=sin 2ωx 2+12sin ωx -12=12sin ωx -12cos ωx =22sin ⎝⎛⎭⎫ωx -π4,因为π<x <2π,所以ωπ-π4<ωx -π4<2ωπ-π4,因为函数f (x )在区间(π,2π)内没有零点,所以⎩⎪⎨⎪⎧2π2ω≥π,f (π)·f (2π)≥0即⎩⎨⎧0<ω≤1,22sin ⎝⎛⎭⎫ωπ-π4≥0,22sin ⎝⎛⎭⎫2ωπ-π4≥0或⎩⎨⎧0<ω≤1,22sin ⎝⎛⎭⎫ωπ-π4≤0,22sin ⎝⎛⎭⎫2ωπ-π4≤0,则⎩⎪⎨⎪⎧0<ω≤1,2k +14≤ω≤2k +54,k +18≤ω≤k +58(k ∈Z )或⎩⎪⎨⎪⎧0<ω≤1,2k -34≤ω≤2k +14,k -38≤ω≤k +18(k ∈Z ),所以0<ω≤18或14≤ω≤58.。
2018年浙江高考理科数学试题含答案(Word版)
2018年普通高等学校招生全国统一考试(浙江卷)数学(理科)一.选择题:本大题共10小题,每小题5分,共50分、 在每小题给出得四个选项中,只有一项就是符合题目要求得、(1)设全集,集合,则( )A. B 、 C 、 D 、(2)已知就是虚数单位,,则“”就是“”得( )A 、 充分不必要条件B 、 必要不充分条件C 、 充分必要条件D 、 既不充分也不必要条件(3)某几何体得三视图(单位:cm)如图所示,则此几何体得表面积就是A 、 90B 、 129C 、 132D 、 1384.为了得到函数得图像,可以将函数得图像( )A.向右平移个单位 B 、向左平移个单位C 、向右平移个单位D 、向左平移个单位5.在得展开式中,记项得系数为,则 ( )A 、45B 、60C 、120D 、 2106.已知函数则且,3)3()2()1(0,)(23≤-=-=-≤+++=f f f c bx ax x x f ( )A. B 、 C 、 D 、7.在同意直角坐标系中,函数得图像可能就是( )8.记,,设为平面向量,则( )A 、B 、C 、D 、9、已知甲盒中仅有1个球且为红球,乙盒中有个红球与个篮球,从乙盒中随机抽取个球放入甲盒中、(a)放入个球后,甲盒中含有红球得个数记为;(b)放入个球后,从甲盒中取1个球就是红球得概率记为、则A. B 、C 、D 、10.设函数,,,记|)()(||)()(||)()(|98991201a f a f a f a f a f a f I k k k k k k k -++-+-=Λ,则A 、B 、C 、D 、二、填空题:本大题共7小题,每小题4分,共28分、11.若某程序框图如图所示,当输入50时,则该程序运算后输出得结果就是________、12.随机变量得取值为0,1,2,若,,则________、13.当实数,满足时,恒成立,则实数得取值范围就是________、14.、在8张奖券中有一、二、三等奖各1张,其余5张无奖、将这8张奖券分配给4个人,每人2张,不同得获奖情况有_____种(用数字作答)、15.设函数若,则实数得取值范围就是______16.设直线与双曲线(0a b>>)两条渐近线分别交于点,若点满足,则该双曲线得离心率就是__________17、如图,某人在垂直于水平地面得墙面前得点处进行射击训练、已知点到墙面得距离为,某目标点沿墙面得射击线移动,此人为了准确瞄准目标点,需计算由点观察点得仰角得大小、若则得最大值19(本题满分14分)已知数列与满足、若为等比数列,且(1)求与;(2)设。
2018年高考数学(浙江专用)总复习教师用书:第9章 第9讲 圆锥曲线的综合问题 Word版含解析
第9讲 圆锥曲线的综合问题最新考纲 1.掌握解决直线与椭圆、抛物线的位置关系的思想方法;2.了解圆锥曲线的简单应用;3.理解数形结合的思想.知 识 梳 理1.直线与圆锥曲线的位置关系判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A ,B 不同时为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (也可以消去x )得到一个关于变量x (或变量y )的一元方程,即⎩⎨⎧Ax +By +C =0,F (x ,y )=0消去y ,得ax 2+bx +c =0. (1)当a ≠0时,设一元二次方程ax 2+bx +c =0的判别式为Δ,则Δ>0⇔直线与圆锥曲线C 相交;Δ=0⇔直线与圆锥曲线C 相切; Δ<0⇔直线与圆锥曲线C 相离.(2)当a =0,b ≠0时,即得到一个一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行;若C 为抛物线,则直线l 与抛物线的对称轴的位置关系是平行或重合. 2.圆锥曲线的弦长设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),则|AB |=1+k 2|x 1-x 2|=1+1k 2²|y 1-y 2|诊 断 自 测1.判断正误(在括号内打“√”或“³”)(1)直线l 与椭圆C 相切的充要条件是:直线l 与椭圆C 只有一个公共点.( ) (2)直线l 与双曲线C 相切的充要条件是:直线l 与双曲线C 只有一个公共点.( ) (3)直线l 与抛物线C 相切的充要条件是:直线l 与抛物线C 只有一个公共点.( )(4)如果直线x =ty +a 与圆锥曲线相交于A (x 1,y 1),B (x 2,y 2)两点,则弦长|AB |=1+t 2|y 1-y 2|.( )(5)若抛物线C 上存在关于直线l 对称的两点,则需满足直线l 与抛物线C 的方程联立消元后得到的一元二次方程的判别式Δ>0.( )解析 (2)因为直线l 与双曲线C 的渐近线平行时,也只有一个公共点,是相交,但并不相切.(3)因为直线l 与抛物线C 的对称轴平行或重合时,也只有一个公共点,是相交,但不相切.(5)应是以l 为垂直平分线的线段AB 所在的直线l ′与抛物线方程联立,消元后所得一元二次方程的判别式Δ>0. 答案 (1)√ (2)³ (3)³ (4)√ (5)³2.直线y =kx -k +1与椭圆x 29+y 24=1的位置关系为( ) A.相交B.相切C.相离D.不确定解析 直线y =kx -k +1=k (x -1)+1恒过定点(1,1),又点(1,1)在椭圆内部,故直线与椭圆相交. 答案 A3.若直线y =kx 与双曲线x 29-y 24=1相交,则k 的取值范围是( ) A.⎝ ⎛⎭⎪⎫0,23 B.⎝ ⎛⎭⎪⎫-23,0 C.⎝ ⎛⎭⎪⎫-23,23D.⎝ ⎛⎭⎪⎫-∞,-23∪⎝ ⎛⎭⎪⎫23,+∞ 解析 双曲线x 29-y 24=1的渐近线方程为y =±23x ,若直线与双曲线相交,数形结合,得k ∈⎝ ⎛⎭⎪⎫-23,23.答案 C4.过点(0,1)作直线,使它与抛物线y 2=4x 仅有一个公共点,这样的直线有( ) A.1条B.2条C.3条D.4条解析 过(0,1)与抛物线y 2=4x 相切的直线有2条,过(0,1)与对称轴平行的直线有一条,这三条直线与抛物线都只有一个公共点.答案 C5.已知F 1,F 2是椭圆16x 2+25y 2=1 600的两个焦点,P 是椭圆上一点,且PF 1⊥PF 2,则△F 1PF 2的面积为________. 解析 由题意可得|PF 1|+|PF 2|=2a =20,|PF 1|2+|PF 2|2=|F 1F 2|2=4c 2=144=(|PF 1|+|PF 2|)2-2|PF 1|·|PF 2|=202-2|PF 1|·|PF 2|,解得|PF 1|·|PF 2|=128,所以△F 1PF 2的面积为12|PF 1|·|PF 2|=12³128=64. 答案 646.(2017·嘉兴七校联考)椭圆x 24+y 23=1的左焦点为F ,直线x =m 与椭圆相交于点A ,B ,当m =________时,△F AB 的周长最大,此时△F AB 的面积是________. 解析 设椭圆x 24+y 23=1的右焦点为F ′,则F (-1,0),F ′(1,0).由椭圆的定义和性质易知,当直线x =m 过F ′(1,0)时△F AB 的周长最大,此时m =1,把x =1代入x 24+y 23=1得y 2=94,y =±32,S △F AB =12|F 1F 2||AB |=12³2³3=3. 答案 1 3第1课时 直线与圆锥曲线考点一 直线与圆锥曲线的位置关系【例1】 在平面直角坐标系xOy 中,已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的左焦点为F 1(-1,0),且点P (0,1)在C 1上. (1)求椭圆C 1的方程;(2)设直线l 同时与椭圆C 1和抛物线C 2:y 2=4x 相切,求直线l 的方程. 解 (1)椭圆C 1的左焦点为F 1(-1,0),∴c =1, 又点P (0,1)在曲线C 1上,∴0a 2+1b 2=1,得b =1,则a 2=b 2+c 2=2, 所以椭圆C 1的方程为x 22+y 2=1.(2)由题意可知,直线l 的斜率显然存在且不等于0,设直线l 的方程为y =kx +m , 由⎩⎪⎨⎪⎧x 22+y 2=1,y =kx +m消去y ,得(1+2k 2)x 2+4kmx +2m 2-2=0. 因为直线l 与椭圆C 1相切,所以Δ1=16k 2m 2-4(1+2k 2)(2m 2-2)=0. 整理得2k 2-m 2+1=0.①由⎩⎨⎧y 2=4x ,y =kx +m消去y ,得k 2x 2+(2km -4)x +m 2=0. 因为直线l 与抛物线C 2相切,所以Δ2=(2km -4)2-4k 2m 2=0,整理得km =1.②综合①②,解得⎩⎨⎧k =22,m =2或⎩⎨⎧k =-22,m =- 2.所以直线l 的方程为y =22x +2或y =-22x - 2.规律方法 研究直线与圆锥曲线的位置关系时,一般转化为研究其直线方程与圆锥曲线方程组成的方程组解的个数,消元后,应注意讨论含x 2项的系数是否为零的情况,以及判别式的应用.但对于选择、填空题要充分利用几何条件,用数形结合的方法求解.【训练1】 在平面直角坐标系xOy 中,点M 到点F (1,0)的距离比它到y 轴的距离多1.记点M 的轨迹为C . (1)求轨迹C 的方程;(2)设斜率为k 的直线l 过定点P (-2,1),若直线l 与轨迹C 恰好有一个公共点,求实数k 的取值范围.解 (1)设点M (x ,y ),依题意|MF |=|x |+1, ∴(x -1)2+y 2=|x |+1,化简得y 2=2(|x |+x ), 故轨迹C 的方程为y 2=⎩⎨⎧4x (x ≥0),0(x <0).(2)在点M 的轨迹C 中,记C 1:y 2=4x (x ≥0);C 2:y =0(x <0). 依题意,可设直线l 的方程为y -1=k (x +2).由方程组⎩⎨⎧y -1=k (x +2),y 2=4x ,可得ky 2-4y +4(2k +1)=0.①①当k =0时,此时y =1.把y =1代入轨迹C 的方程,得x =14.故此时直线l :y =1与轨迹C 恰好有一个公共点⎝ ⎛⎭⎪⎫14,1.②当k ≠0时,方程①的Δ=-16(2k 2+k -1)=-16(2k -1)(k +1),② 设直线l 与x 轴的交点为(x 0,0),则由y -1=k (x +2),令y =0,得x 0=-2k +1k .③ (ⅰ)若⎩⎨⎧Δ<0,x 0<0,由②③解得k <-1,或k >12.所以当k <-1或k >12时,直线l 与曲线C 1没有公共点,与曲线C 2有一个公共点,故此时直线l 与轨迹C 恰好有一个公共点.(ⅱ)若⎩⎨⎧Δ=0,x 0≥0,即⎩⎪⎨⎪⎧2k 2+k -1=0,2k +1k<0,解集为∅.综上可知,当k <-1或k >12或k =0时,直线l 与轨迹C 恰好有一个公共点. 考点二 弦长问题【例2】 (2016·四川卷)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线l :y =-x +3与椭圆E 有且只有一个公共点T .(1)求椭圆E 的方程及点T 的坐标;(2)设O 是坐标原点,直线l ′平行于OT ,与椭圆E 交于不同的两点A ,B ,且与直线l 交于点P .证明:存在常数λ,使得|PT |2=λ|P A |·|PB |,并求λ的值. (1)解 由已知,a =2b ,则椭圆E 的方程为x 22b 2+y 2b 2=1. 由方程组⎩⎪⎨⎪⎧x 22b 2+y 2b 2=1,y =-x +3,得3x 2-12x +(18-2b 2)=0.①方程①的判别式为Δ=24(b 2-3),由Δ=0,得b 2=3,此时方程①的解为x =2,所以椭圆E 的方程为x 26+y 23=1.点T 的坐标为(2,1). (2)证明 由已知可设直线l ′的方程为y =12x +m (m ≠0), 由方程组⎩⎪⎨⎪⎧y =12x +m ,y =-x +3,可得⎩⎪⎨⎪⎧x =2-2m3,y =1+2m 3.所以P 点坐标为⎝ ⎛⎭⎪⎫2-2m 3,1+2m 3.|PT |2=89m 2. 设点A ,B 的坐标分别为A (x 1,y 1),B (x 2,y 2).由方程组⎩⎪⎨⎪⎧x 26+y 23=1,y =12x +m ,可得3x 2+4mx +(4m 2-12)=0.②方程②的判别式为Δ=16(9-2m 2), 由Δ>0,解得-322<m <322. 由②得x 1+x 2=-4m3,x 1x 2=4m 2-123.所以|P A |=⎝ ⎛⎭⎪⎫2-2m 3-x 12+⎝ ⎛⎭⎪⎫1+2m 3-y 12=52⎪⎪⎪⎪⎪⎪2-2m 3-x 1,同理|PB |=52⎪⎪⎪⎪⎪⎪2-2m 3-x 2.所以|P A |·|PB |=54⎪⎪⎪⎪⎪⎪⎝ ⎛⎭⎪⎫2-2m 3-x 1⎝ ⎛⎭⎪⎫2-2m 3-x 2=54⎪⎪⎪⎪⎪⎪⎝ ⎛⎭⎪⎫2-2m 32-⎝ ⎛⎭⎪⎫2-2m3(x 1+x 2)+x 1x 2 =54⎪⎪⎪⎪⎪⎪⎝ ⎛⎭⎪⎫2-2m 32-⎝ ⎛⎭⎪⎫2-2m 3⎝ ⎛⎭⎪⎫-4m 3+4m 2-123 =109m 2.故存在常数λ=45,使得|PT |2=λ|P A |·|PB |.规律方法 有关圆锥曲线弦长问题的求解方法:涉及弦长的问题中,应熟练的利用根与系数关系、设而不求法计算弦长;涉及垂直关系时也往往利用根与系数关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解.【训练2】 已知椭圆x 2a 2+y 2b 2=1(a >b >0)经过点(0,3),离心率为12,左、右焦点分别为F 1(-c ,0),F 2(c ,0). (1)求椭圆的方程;(2)若直线l :y =-12x +m 与椭圆交于A ,B 两点,与以F 1F 2为直径的圆交于C ,D 两点,且满足|AB ||CD |=534,求直线l 的方程.解 (1)由题设知⎩⎪⎨⎪⎧b =3,c a =12,b 2=a 2-c 2,解得a =2,b =3,c =1,∴椭圆的方程为x 24+y 23=1.(2)由(1)知,以F 1F 2为直径的圆的方程为x 2+y 2=1, ∴圆心到直线l 的距离d =2|m |5,由d <1,得|m |<52.(*) ∴|CD |=21-d 2=21-45m 2=255-4m 2.设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =-12x +m ,x 24+y 23=1,得x 2-mx +m 2-3=0,由根与系数关系可得x 1+x 2=m ,x 1x 2=m 2-3. ∴|AB |=⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫-122[m 2-4(m 2-3)] =1524-m 2. 由|AB ||CD |=534,得4-m 25-4m2=1,解得m =±33,满足(*).∴直线l 的方程为y =-12x +33或y =-12x -33.考点三 中点弦问题【例3】 (1)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ) A.x 245+y 236=1 B.x 236+y 227=1 C.x 227+y 218=1D.x 218+y 29=1(2)已知双曲线x 2-y 23=1上存在两点M ,N 关于直线y =x +m 对称,且MN 的中点在抛物线y 2=18x 上,则实数m 的值为________.解析 (1)因为直线AB 过点F (3,0)和点(1,-1),所以直线AB 的方程为y =12(x-3),代入椭圆方程x 2a 2+y 2b 2=1消去y ,得⎝ ⎛⎭⎪⎫a 24+b 2x 2-32a 2x +94a 2-a 2b 2=0,所以AB 的中点的横坐标为32a22⎝ ⎛⎭⎪⎫a 24+b 2=1,即a 2=2b 2,又a 2=b 2+c 2,所以b =c =3,a =32,选D.(2)设M (x 1,y 1),N (x 2,y 2),MN 的中点P (x 0,y 0), 则⎩⎪⎨⎪⎧x 21-y 213=1,①x 22-y223=1, ②x 1+x 2=2x 0, ③y 1+y 2=2y 0, ④由②-①得(x 2-x 1)(x 2+x 1)=13(y 2-y 1)(y 2+y 1), 显然x 1≠x 2.∴y 2-y 1x 2-x 1·y 2+y 1x 2+x 1=3,即k MN ·y 0x 0=3,∵M ,N 关于直线y =x +m 对称,∴k MN =-1,∴y 0=-3x 0.又∵y 0=x 0+m ,∴P ⎝ ⎛⎭⎪⎫-m 4,3m 4,代入抛物线方程得916m 2=18·⎝ ⎛⎭⎪⎫-m 4, 解得m =0或-8,经检验都符合. 答案 (1)D (2)0或-8规律方法 处理中点弦问题常用的求解方法(1)点差法:即设出弦的两端点坐标后,代入圆锥曲线方程,并将两式相减,式中含有x 1+x 2,y 1+y 2,y 1-y 2x 1-x 2三个未知量,这样就直接联系了中点和直线的斜率,借用中点公式即可求得斜率.(2)根与系数的关系:即联立直线与圆锥曲线的方程得到方程组,化为一元二次方程后,由根与系数的关系求解.【训练3】 设抛物线过定点A (-1,0),且以直线x =1为准线. (1)求抛物线顶点的轨迹C 的方程;(2)若直线l 与轨迹C 交于不同的两点M ,N ,且线段MN 恰被直线x =-12平分,设弦MN 的垂直平分线的方程为y =kx +m ,试求m 的取值范围. 解 (1)设抛物线顶点为P (x ,y ),则焦点F (2x -1,y ). 再根据抛物线的定义得|AF |=2,即(2x )2+y 2=4, 所以轨迹C 的方程为x 2+y 24=1.(2)设弦MN 的中点为P ⎝ ⎛⎭⎪⎫-12,y 0,M (x M ,y M ),N (x N ,y N ),则由点M ,N 为椭圆C 上的点,可知⎩⎨⎧4x 2M +y 2M =4,4x 2N +y 2N =4.两式相减,得4(x M -x N )(x M +x N )+(y M -y N )(y M +y N )=0, 将x M +x N =2³⎝ ⎛⎭⎪⎫-12=-1,y M +y N =2y 0,y M -y N x M -x N=-1k 代入上式得k =-y 02.又点P ⎝ ⎛⎭⎪⎫-12,y 0在弦MN 的垂直平分线上,所以y 0=-12k +m .所以m =y 0+12k =34y 0.由点P ⎝ ⎛⎭⎪⎫-12,y 0在线段BB ′上(B ′,B 为直线x =-12与椭圆的交点,如图所示),所以y B ′<y 0<y B ,也即-3<y 0< 3. 所以-334<m <334,且m ≠0.[思想方法]1.有关弦的三个问题(1)涉及弦长的问题,应熟练地利用根与系数的关系,设而不求计算弦长;(2)涉及垂直关系往往也是利用根与系数的关系设而不求简化运算;(3)涉及过焦点的弦的问题,可考虑利用圆锥曲线的定义求解. 2.求解与弦有关问题的两种方法(1)方程组法:联立直线方程和圆锥曲线方程,消元(x 或y )成为二次方程之后,结合根与系数的关系,建立等式关系或不等式关系.(2)点差法:在求解圆锥曲线且题目中已有直线与圆锥曲线相交和被截线段的中点坐标时,设出直线和圆锥曲线的两个交点坐标,代入圆锥曲线的方程并作差,从而求出直线的斜率,然后利用中点求出直线方程.“点差法”的常见题型有:求中点弦方程、求(过定点、平行弦)弦中点轨迹、垂直平分线问题.必须提醒的是“点差法”具有不等价性,即要考虑判别式Δ是否为正数. [易错防范]判断直线与圆锥曲线位置关系时的注意点(1)直线与双曲线交于一点时,易误认为直线与双曲线相切,事实上不一定相切,当直线与双曲线的渐近线平行时,直线与双曲线相交于一点.(2)直线与抛物线交于一点时,除直线与抛物线相切外易忽视直线与对称轴平行或重合时也相交于一点.基础巩固题组 (建议用时:40分钟)一、选择题1.过抛物线y 2=2x 的焦点作一条直线与抛物线交于A ,B 两点,它们的横坐标之和等于2,则这样的直线( ) A.有且只有一条 B.有且只有两条 C.有且只有三条D.有且只有四条解析 ∵通径2p =2,又|AB |=x 1+x 2+p ,∴|AB |=3>2p ,故这样的直线有且只有两条. 答案 B2.直线y =b a x +3与双曲线x 2a 2-y 2b 2=1(a >0,b >0)的交点个数是( ) A.1B.2C.1或2D.0解析 因为直线y =b a x +3与双曲线的渐近线y =ba x 平行,所以它与双曲线只有1个交点. 答案 A3.经过椭圆x 22+y 2=1的一个焦点作倾斜角为45°的直线l ,交椭圆于A ,B 两点,设O 为坐标原点,则OA →²OB →等于( ) A.-3B.-13C.-13或-3D.±13解析 依题意,当直线l 经过椭圆的右焦点(1,0)时,其方程为y -0=tan 45°(x -1),即y =x -1,代入椭圆方程x 22+y 2=1并整理得3x 2-4x =0,解得x =0或x =43,所以两个交点坐标分别为(0,-1),⎝ ⎛⎭⎪⎫43,13,∴OA →·OB →=-13,同理,直线l 经过椭圆的左焦点时,也可得OA →·OB →=-13. 答案 B4.抛物线y =x 2到直线x -y -2=0的最短距离为( ) A. 2B.728C.2 2D.526解析 设抛物线上一点的坐标为(x ,y ),则d =|x -y -2|2=|-x 2+x -2|2=⎪⎪⎪⎪⎪⎪-⎝ ⎛⎭⎪⎫x -122-742,∴x =12时, d min =728. 答案 B5.已知A ,B ,P 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)上不同的三点,且A ,B 连线经过坐标原点,若直线P A ,PB 的斜率乘积k P A ²k PB =23,则该双曲线的离心率为( ) A.52B.62C. 2D.153解析 设A (x 1,y 1),P (x 2,y 2)根据对称性,得B 点坐标为 (-x 1,-y 1),因为A ,P 在双曲线上,所以⎩⎪⎨⎪⎧x 21a 2-y 21b 2=1,x 22a 2-y 22b 2=1,两式相减,得k P A k PB =b 2a 2=23,所以e 2=a 2+b 2a 2=53,故e =153.答案 D 二、填空题6.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),F (2,0)为其右焦点,过F 且垂直于x 轴的直线与椭圆相交所得的弦长为2.则椭圆C 的方程为________.解析由题意得⎩⎪⎨⎪⎧c =2,b 2a =1,a 2=b 2+c 2,解得⎩⎨⎧a =2,b =2,∴椭圆C 的方程为x 24+y 22=1.答案 x 24+y 22=17.已知抛物线y =ax 2(a >0)的焦点到准线的距离为2,则直线y =x +1截抛物线所得的弦长等于________.解析 由题设知p =12a =2,∴a =14.抛物线方程为y =14x 2,焦点为F (0,1),准线为y =-1. 联立⎩⎪⎨⎪⎧y =14x 2,y =x +1,消去x ,整理得y 2-6y +1=0,∴y 1+y 2=6,∵直线过焦点F , ∴所得弦|AB |=|AF |+|BF |=y 1+1+y 2+1=8. 答案 88.(2017·金华月考)过椭圆x 216+y 24=1内一点P (3,1),且被这点平分的弦所在直线的方程是________;此弦的长为________.解析 设直线与椭圆交于A (x 1,y 1),B (x 2,y 2)两点, 由于A ,B 两点均在椭圆上,故x 2116+y 214=1,x 2216+y 224=1, 两式相减得(x 1+x 2)(x 1-x 2)16+(y 1+y 2)(y 1-y 2)4=0.又∵P 是A ,B 的中点,∴x 1+x 2=6,y 1+y 2=2, ∴k AB =y 1-y 2x 1-x 2=-34.∴直线AB 的方程为y -1=-34(x -3).即3x +4y -13=0.由⎩⎪⎨⎪⎧3x +4y -13=0,x 216+y 24=1,消去y 整理得13x 2-78x +105=0,x 1+x 2=6,x 1x 2=10513,|AB |=1+k 2|x 1-x 2|=1+k 2(x 1+x 2)2-4x 1x 2=1+⎝ ⎛⎭⎪⎫-342·62-4³10513=53913.答案 3x +4y -13=0 53913三、解答题9.设F 1,F 2分别是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过F 1且斜率为1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列. (1)求E 的离心率;(2)设点P (0,-1)满足|P A |=|PB |,求E 的方程. 解 (1)由椭圆定义知|AF 2|+|BF 2|+|AB |=4a , 又2|AB |=|AF 2|+|BF 2|,得|AB |=43a , l 的方程为y =x +c ,其中c =a 2-b 2.设A (x 1,y 1),B (x 2,y 2),则A ,B 两点的坐标满足方程组⎩⎪⎨⎪⎧y =x +c ,x 2a 2+y 2b 2=1,消去y ,化简得(a 2+b 2)x 2+2a 2cx +a 2(c 2-b 2)=0,则x 1+x 2=-2a 2c a 2+b 2,x 1x 2=a 2(c 2-b 2)a 2+b 2.因为直线AB 的斜率为1,所以|AB |=2|x 2-x 1|=2[(x 1+x 2)2-4x 1x 2],即43a=4ab 2a 2+b2,故a 2=2b 2, 所以E 的离心率e =c a =a 2-b 2a =22. (2)设AB 的中点为N (x 0,y 0),由(1)知 x 0=x 1+x 22=-a 2c a 2+b 2=-2c 3,y 0=x 0+c =c 3. 由|P A |=|PB |,得k PN =-1,即y 0+1x 0=-1,得c =3,从而a =32,b =3.故椭圆E 的方程为x 218+y 29=1. 10.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (2,0),离心率为22.直线y =k (x -1)与椭圆C 交于不同的两点M ,N . (1)求椭圆C 的方程;(2)当△AMN 的面积为103时,求k 的值.解(1)由题意得⎩⎪⎨⎪⎧a =2,c a =22,a 2=b 2+c 2.解得b =2,所以椭圆C 的方程为x 24+y 22=1. (2)由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 22=1,得(1+2k 2)x 2-4k 2x +2k 2-4=0.设点M ,N 的坐标分别为(x 1,y 1),(x 2,y 2), 则y 1=k (x 1-1),y 2=k (x 2-1), x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-41+2k 2,所以|MN |=(x 2-x 1)2+(y 2-y 1)2 =(1+k 2)[(x 1+x 2)2-4x 1x 2] =2(1+k 2)(4+6k 2)1+2k 2又因为点A (2,0)到直线y =k (x -1)的距离d =|k |1+k 2,所以△AMN 的面积为S =12|MN |²d =|k |4+6k 21+2k 2,由|k |4+6k 21+2k2=103,解得k =±1. 能力提升题组 (建议用时:30分钟)11.已知椭圆x 24+y2b 2=1(0<b <2)的左、右焦点分别为F 1,F 2,过F 1的直线l 交椭圆于A ,B 两点,若|BF 2|+|AF 2|的最大值为5,则b 的值是( ) A.1B. 2C.32D. 3解析 由椭圆的方程,可知长半轴长为a =2,由椭圆的定义,可知|AF 2|+|BF 2|+|AB |=4a =8,所以|AB |=8-(|AF 2|+|BF 2|)≥3.由椭圆的性质,可知过椭圆焦点的弦中,通径最短,即2b 2a =3,可求得b 2=3,即b = 3. 答案 D12.抛物线C 1:y =12p x 2(p >0)的焦点与双曲线C 2:x 23-y 2=1的右焦点的连线交C 1于第一象限的点M .若C 1在点M 处的切线平行于C 2的一条渐近线,则p =( ) A.316B.38C.233D.433解析 ∵双曲线C 2:x 23-y 2=1,∴右焦点为F (2,0),渐近线方程为y =±33x .抛物线C 1:y =12p x 2(p >0),焦点为F ′⎝ ⎛⎭⎪⎫0,p 2.设M (x 0,y 0),则y 0=12p x 20. ∵k MF ′=k FF ′,∴12p x 20-p 2x 0=p2-2.①又∵y ′=1p x ,∴y ′|x =x 0=1p x 0=33.② 由①②得p =433. 答案 D13.设抛物线y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,P A ⊥l ,A 为垂足.如果直线AF 的斜率为-3,那么|PF |=________.解析 直线AF 的方程为y =-3(x -2),联立⎩⎨⎧y =-3x +23,x =-2,得y =43,所以P(6,43).由抛物线的性质可知|PF |=6+2=8. 答案 814.(2015·全国Ⅰ卷)在直角坐标系xOy 中,曲线C :y =x 24与直线l :y =kx +a (a >0)交于M ,N 两点,(1)当k =0时,分别求C 在点M 和N 处的切线方程;(2)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由. 解 (1)由题设可得M (2a ,a ),N (-2a ,a ), 或M (-2a ,a ),N (2a ,a ).又y ′=x 2,故y =x 24在x =2a 处的导数值为a ,C 在点(2a ,a )处的切线方程为y -a =a (x -2a ), 即ax -y -a =0.y =x 24在x =-2a 处的导数值为-a ,C 在点(-2a ,a )处的切线方程为y -a =-a (x +2a ),即ax +y +a =0.故所求切线方程为ax -y -a =0和ax +y +a =0. (2)存在符合题意的点,证明如下:设P (0,b )为符合题意的点,M (x 1,y 1),N (x 2,y 2),直线PM ,PN 的斜率分别为k 1,k 2.将y =kx +a 代入C 的方程得x 2-4kx -4a =0. 故x 1+x 2=4k ,x 1x 2=-4a .从而k 1+k 2=y 1-b x 1+y 2-bx 2=2kx 1x 2+(a -b )(x 1+x 2)x 1x 2=k (a +b )a.当b =-a 时,有k 1+k 2=0,则直线PM 的倾斜角与直线PN 的倾斜角互补, 故∠OPM =∠OPN ,所以点P (0,-a )符合题意.15.已知抛物线C :y 2=2px (p >0)的焦点为F ,直线y =4与y 轴的交点为P ,与C 的交点为Q ,且|QF |=54|PQ |. (1)求C 的方程;(2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l ′与C 相交于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程. 解 (1)设Q (x 0,4),代入y 2=2px 得x 0=8p . 所以|PQ |=8p ,|QF |=p 2+x 0=p 2+8p .由题设得p 2+8p =54³8p ,解得p =-2(舍去)或p =2. 所以C 的方程为y 2=4x .(2)依题意知l 与坐标轴不垂直,故可设l 的方程为x =my +1(m ≠0).代入y 2=4x 得y 2-4my -4=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4m ,y 1y 2=-4. 故AB 的中点为D (2m 2+1,2m ), |AB |=m 2+1|y 1-y 2|=4(m 2+1).又l ′的斜率为-m ,所以l ′的方程为x =-1m y +2m 2+3. 将上式代入y 2=4x ,并整理得y 2+4m y -4(2m 2+3)=0. 设M (x 3,y 3),N (x 4,y 4),则y 3+y 4=-4m , y 3y 4=-4(2m 2+3).故MN 的中点为E ⎝ ⎛⎭⎪⎫2m 2+2m 2+3,-2m ,|MN |=1+1m 2|y 3-y 4|=4(m 2+1)2m 2+1m 2.由于MN 垂直平分AB ,故A ,M ,B ,N 四点在同一圆上等价于|AE |=|BE |=12|MN |, 从而14|AB |2+|DE |2=14|MN |2, 即4(m 2+1)2+⎝ ⎛⎭⎪⎫2m +2m 2+⎝ ⎛⎭⎪⎫2m 2+22=4(m 2+1)2(2m 2+1)m 4.化简得m 2-1=0,解得m =1或m =-1. 所求直线l 的方程为x -y -1=0或x +y -1=0.第2课时 定点、定值、范围、最值问题考点一 定点问题【例1】 (2017·枣庄模拟)已知椭圆x 2a 2+y 2b 2=1(a >0,b >0)过点(0,1),其长轴、焦距和短轴的长的平方依次成等差数列.直线l 与x 轴正半轴和y 轴分别交于Q ,P ,与椭圆分别交于点M ,N ,各点均不重合且满足PM →=λ1MQ →,PN →=λ2NQ →. (1)求椭圆的标准方程;(2)若λ1+λ2=-3,试证明:直线l 过定点并求此定点.解 (1)设椭圆的焦距为2c ,由题意知b =1,且(2a )2+(2b )2=2(2c )2,又a 2=b 2+c 2,所以a 2=3.所以椭圆的方程为x 23+y 2=1.(2)由题意设P (0,m ),Q (x 0,0),M (x 1,y 1),N (x 2,y 2), 设l 方程为x =t (y -m ),由PM →=λ1MQ →知(x 1,y 1-m )=λ1(x 0-x 1,-y 1), ∴y 1-m =-y 1λ1,由题意y 1≠0,∴λ1=my 1-1.同理由PN →=λ2NQ →知λ2=m y2-1.∵λ1+λ2=-3,∴y 1y 2+m (y 1+y 2)=0,①联立⎩⎨⎧x 2+3y 2=3,x =t (y -m )得(t 2+3)y 2-2mt 2y +t 2m 2-3=0,∴由题意知Δ=4m 2t 4-4(t 2+3)(t 2m 2-3)>0,② 且有y 1+y 2=2mt 2t 2+3,y 1y 2=t 2m 2-3t 2+3,③将③代入①得t 2m 2-3+2m 2t 2=0, ∴(mt )2=1.由题意mt <0,∴mt =-1,满足②,得l 方程为x =ty +1,过定点(1,0),即Q 为定点. 规律方法 圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法,根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.【训练1】 (2017·杭州七校联考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两焦点在x 轴上,且两焦点与短轴的一个顶点的连线构成斜边长为2的等腰直角三角形. (1)求椭圆的方程;(2)过点S ⎝ ⎛⎭⎪⎫0,-13的动直线l 交椭圆C 于A ,B 两点,试问:在坐标平面上是否存在一个定点Q ,使得以线段AB 为直径的圆恒过点Q ?若存在,求出点Q 的坐标;若不存在,请说明理由.解 (1)∵椭圆两焦点与短轴的一个端点的连线构成等腰直角三角形,∴b =c .又斜边长为2,即2c =2,故c =b =1,a =2,椭圆方程为x 22+y 2=1. (2)当l 与x 轴平行时,以线段AB 为直径的圆的方程为x 2+⎝ ⎛⎭⎪⎫y +132=169;当l 与y 轴平行时,以线段AB 为直径的圆的方程为x 2+y 2=1. 由⎩⎨⎧x 2+⎝ ⎛⎭⎪⎫y +132=169,x 2+y 2=1,得⎩⎨⎧x =0,y =1,故若存在定点Q ,则Q 的坐标只可能为Q (0,1). 下面证明Q (0,1)为所求:若直线l 的斜率不存在,上述已经证明. 若直线l 的斜率存在,设直线l :y =kx -13, A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx -13,x 2+2y 2-2=0,得(9+18k 2)x 2-12kx -16=0,Δ=144k 2+64(9+18k 2)>0, x 1+x 2=12k 18k 2+9,x 1x 2=-1618k 2+9,QA →=(x 1,y 1-1),QB →=(x 2,y 2-1), QA →²QB →=x 1x 2+(y 1-1)(y 2-1) =(1+k 2)x 1x 2-4k 3(x 1+x 2)+169=(1+k 2)·-169+18k2-4k 3²12k 9+18k 2+169=0, ∴QA →⊥QB →,即以线段AB 为直径的圆恒过点Q (0,1).考点二 定值问题【例2】 (2016·山东卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的长轴长为4,焦距为2 2. (1)求椭圆C 的方程;(2)过动点M (0,m )(m >0)的直线交x 轴于点N ,交C 于点A ,P (P 在第一象限),且M 是线段PN 的中点.过点P 作x 轴的垂线交C 于另一点Q ,延长QM 交C 于点B .①设直线PM ,QM 的斜率分别为k ,k ′,证明k ′k 为定值. ②求直线AB 的斜率的最小值. (1)解 设椭圆的半焦距为c .由题意知2a =4,2c =2 2.所以a =2,b =a 2-c 2= 2. 所以椭圆C 的方程为x 24+y 22=1. (2)①证明 设P (x 0,y 0)(x 0>0,y 0>0). 由M (0,m ),可得P (x 0,2m ),Q (x 0,-2m ). 所以直线PM 的斜率k =2m -m x 0=m x 0.直线QM 的斜率k ′=-2m -m x 0=-3mx 0.此时k ′k =-3.所以k ′k 为定值-3. ②解 设A (x 1,y 1),B (x 2,y 2).由①知直线P A 的方程为y =kx +m .则直线QB 的方程为y =-3kx +m .联立⎩⎪⎨⎪⎧y =kx +m ,x 24+y 22=1,整理得(2k 2+1)x 2+4mkx +2m 2-4=0, 由x 0x 1=2m 2-42k 2+1,可得x 1=2(m 2-2)(2k 2+1)x 0,所以y 1=kx 1+m =2k (m 2-2)(2k 2+1)x 0+m .同理x 2=2(m 2-2)(18k 2+1)x 0,y 2=-6k (m 2-2)(18k 2+1)x 0+m .所以x 2-x 1=2(m 2-2)(18k 2+1)x 0-2(m 2-2)(2k 2+1)x 0=-32k 2(m 2-2)(18k 2+1)(2k 2+1)x 0, y 2-y 1=-6k (m 2-2)(18k 2+1)x 0+m -2k (m 2-2)(2k 2+1)x 0-m=-8k (6k 2+1)(m 2-2)(18k 2+1)(2k 2+1)x 0, 所以k AB =y 2-y 1x 2-x 1=6k 2+14k =14⎝ ⎛⎭⎪⎫6k +1k , 由m >0,x 0>0,可知k >0,所以6k +1k ≥26,当且仅当k =66时取“=”. 故此时2m -m 4-8m 2-0=66,即m =147,符合题意. 所以直线AB 的斜率的最小值为62. 规律方法 圆锥曲线中的定值问题的常见类型及解题策略(1)求代数式为定值.依题意设条件,得出与代数式参数有关的等式,代入代数式,化简即可得出定值;(2)求点到直线的距离为定值.利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求得;(3)求某线段长度为定值.利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得.【训练2】 (2016·北京卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,A (a ,0),B (0,b ),O (0,0),△OAB 的面积为1. (1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线P A 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:|AN |·|BM |为定值. (1)解 由已知c a =32,12ab =1.又a 2=b 2+c 2,解得a =2,b =1,c = 3. 所以椭圆方程为x 24+y 2=1.(2)证明 由(1)知,A (2,0),B (0,1). 设椭圆上一点P (x 0,y 0),则x 204+y 20=1. 当x 0≠0时,直线P A 方程为y =y 0x 0-2(x -2), 令x =0得y M =-2y 0x 0-2.从而|BM |=|1-y M |=⎪⎪⎪⎪⎪⎪1+2y 0x 0-2.直线PB 方程为y =y 0-1x 0x +1.令y =0得x N =-x 0y 0-1.∴|AN |=|2-x N |=⎪⎪⎪⎪⎪⎪2+x 0y 0-1. ∴|AN |²|BM |=⎪⎪⎪⎪⎪⎪2+x 0y 0-1²⎪⎪⎪⎪⎪⎪1+2y 0x 0-2=⎪⎪⎪⎪⎪⎪x 0+2y 0-2x 0-2²⎪⎪⎪⎪⎪⎪x 0+2y 0-2y 0-1 =⎪⎪⎪⎪⎪⎪x 20+4y 20+4x 0y 0-4x 0-8y 0+4x 0y 0-x 0-2y 0+2 =⎪⎪⎪⎪⎪⎪4x 0y 0-4x 0-8y 0+8x 0y 0-x 0-2y 0+2=4. 当x 0=0时,y 0=-1,|BM |=2,|AN |=2,所以|AN |·|BM |=4.故|AN |·|BM |为定值. 考点三 范围问题【例3】 (2016·天津卷)设椭圆x 2a 2+y 23=1(a >3)的右焦点为F ,右顶点为A .已知1|OF |+1|OA |=3e|F A |,其中O 为原点,e 为椭圆的离心率. (1)求椭圆的方程;(2)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H .若BF ⊥HF ,且∠MOA ≤∠MAO ,求直线l 的斜率的取值范围.解 (1)设F (c ,0),由1|OF |+1|OA |=3e |F A |, 即1c +1a =3c a (a -c ),可得a 2-c 2=3c 2.又a 2-c 2=b 2=3,所以c 2=1,因此a 2=4. 所以椭圆的方程为x 24+y 23=1.(2)设直线l 的斜率为k (k ≠0),则直线l 的方程为y =k (x -2).设B (x B ,y B ),由方程组⎩⎪⎨⎪⎧x 24+y 23=1,y =k (x -2)消去y ,整理得(4k 2+3)x 2-16k 2x +16k 2-12=0.解得x =2或x =8k 2-64k 2+3.由题意得x B =8k 2-64k 2+3,从而y B =-12k4k 2+3.由(1)知F (1,0),设H (0,y H ),有FH →=(-1,y H),BF →=⎝ ⎛⎭⎪⎫9-4k 24k 2+3,12k 4k 2+3. 由BF ⊥HF ,得BF→²FH →=0,所以4k 2-94k 2+3+12ky H 4k 2+3=0,解得y H =9-4k 212k .因为直线MH 的方程为y =-1k x +9-4k212k .设M (x M ,y M ),由方程组⎩⎪⎨⎪⎧y =k (x -2),y =-1k x +9-4k 212k 消去y ,解得x M =20k 2+912(k 2+1).在△MAO 中,∠MOA ≤∠MAO ⇔|MA |≤|MO |,即(x M -2)2+y 2M ≤x 2M +y 2M ,化简得x M ≥1,即20k 2+912(k 2+1)≥1,解得k ≤-64或k ≥64.所以直线l 的斜率的取值范围为⎝ ⎛⎦⎥⎤-∞,-64或⎣⎢⎡⎭⎪⎫64,+∞.规律方法 解决圆锥曲线中的取值范围问题应考虑的五个方面(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围; (2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围; (4)利用已知的不等关系构造不等式,从而求出参数的取值范围;(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.【训练3】 (2017·威海模拟)已知圆x 2+y 2=1过椭圆x 2a 2+y 2b 2=1(a >b >0)的两焦点,与椭圆有且仅有两个公共点,直线l :y =kx +m 与圆x 2+y 2=1相切,与椭圆x 2a 2+y 2b 2=1相交于A ,B 两点.记λ=OA→²OB →,且23≤λ≤34. (1)求椭圆的方程; (2)求k 的取值范围;(3)求△OAB 的面积S 的取值范围. 解 (1)由题意知2c =2,所以c =1. 因为圆与椭圆有且只有两个公共点,从而b =1,故a =2,所以所求椭圆方程为x 22+y 2=1. (2)因为直线l :y =kx +m 与圆x 2+y 2=1相切,所以原点O 到直线l 的距离为|m |12+k 2=1, 即m 2=k 2+1.由⎩⎪⎨⎪⎧y =kx +m ,x 22+y 2=1,得(1+2k 2)x 2+4kmx +2m 2-2=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-21+2k 2.λ=OA →²OB →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+km (x 1+x 2)+m 2=k 2+11+2k 2,由23≤λ≤34,得12≤k 2≤1,即k 的取值范围是⎣⎢⎡⎦⎥⎤-1,-22∪⎣⎢⎡⎦⎥⎤22,1.(3)|AB |2=(x 1-x 2)2+(y 1-y 2)2=(1+k 2)[(x 1+x 2)2-4x 1x 2]=2-2(2k 2+1)2,由12≤k 2≤1,得62≤|AB |≤43. 设△OAB 的AB 边上的高为d , 则S =12|AB |d =12|AB |,所以64≤S ≤23. 即△OAB 的面积S 的取值范围是⎣⎢⎡⎦⎥⎤64,23.考点四 最值问题【例4】 (2015·浙江卷)已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx +12对称. (1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点). 解 (1)由题意知m ≠0,可设直线AB 的方程为 y =-1m x +b .由⎩⎪⎨⎪⎧x 22+y 2=1,y =-1m x +b消去y ,得⎝ ⎛⎭⎪⎫12+1m 2x 2-2b m x +b 2-1=0.因为直线y =-1m x +b 与椭圆x 22+y 2=1有两个不同的交点,所以Δ=-2b 2+2+4m 2>0,①将AB 中点M ⎝ ⎛⎭⎪⎫2mbm 2+2,m 2b m 2+2代入直线方程y =mx +12解得b =-m 2+22m 2②由①②得m <-63或m >63. (2)令t =1m ∈⎝ ⎛⎭⎪⎫-62,0∪⎝⎛⎭⎪⎫0,62,则|AB |=t 2+1²-2t 4+2t 2+32t 2+12.且O 到直线AB 的距离为d =t 2+12t 2+1.设△AOB 的面积为S (t ), 所以S (t )=12|AB |²d =12-2⎝ ⎛⎭⎪⎫t 2-122+2≤22. 当且仅当t 2=12时,等号成立. 故△AOB 面积的最大值为22.规律方法 处理圆锥曲线最值问题的求解方法圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何法,即通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解. 【训练4】 已知椭圆C :x 2+2y 2=4. (1)求椭圆C 的离心率;(2)设O 为原点.若点A 在直线y =2上,点B 在椭圆C 上,且OA ⊥OB ,求线段AB 长度的最小值.解 (1)由题意,椭圆C 的标准方程为x 24+y 22=1. 所以a 2=4,b 2=2, 从而c 2=a 2-b 2=2.因此a =2,c = 2.故椭圆C 的离心率e =c a =22. (2)设点A ,B 的坐标分别为(t ,2),(x 0,y 0),其中x 0≠0. 因为OA ⊥OB ,所以OA →²OB →=0,即tx 0+2y 0=0,解得t =-2y 0x 0.又x 20+2y 20=4,所以|AB |2=(x 0-t )2+(y 0-2)2=(x 0+2y 0x 0)2+(y 0-2)2=x 20+y 20+4y 20x 20+4 =x 20+4-x 202+2(4-x 20)x 20+4=x 202+8x 20+4(0<x 20≤4). 因为x 202+8x 20≥4(0<x 20≤4),当且仅当x 20=4时等号成立,所以|AB |2≥8.故线段AB 长度的最小值为2 2.[思想方法]1.求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值. 2.定点的探索与证明问题(1)探索直线过定点时,可设出直线方程为y =kx +b ,然后利用条件建立b 、k 等量关系进行消元,借助于直线系的思想找出定点.(2)从特殊情况入手,先探求定点,再证明与变量无关. 3.求解范围问题的方法求范围问题的关键是建立求解关于某个变量的目标函数,通过求这个函数的值域确定目标的范围,要特别注意变量的取值范围. 4.圆锥曲线中常见最值的解题方法(1)几何法,若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决;(2)代数法,若题目的条件和结论能体现一种明确的函数关系,则可先建立起目标函数,再求这个函数的最值,最值常用基本不等式法、配方法及导数法求解. [易错防范]1.求范围问题要注意变量自身的范围.2.利用几何意义求最值时,要注意“相切”与“公共点唯一”的不等价关系.注意特殊关系,特殊位置的应用.3.在解决直线与抛物线的位置关系时,要特别注意直线与抛物线的对称轴平行的特殊情况.4.解决定值、定点问题,不要忘记特值法.基础巩固题组 (建议用时:40分钟)一、选择题1.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( ) A.⎣⎢⎡⎦⎥⎤-12,12 B.[-2,2] C.[-1,1]D.[-4,4]解析 Q (-2,0),设直线l 的方程为y =k (x +2),代入抛物线方程,消去y 整理得k 2x 2+(4k 2-8)x +4k 2=0,由Δ=(4k 2-8)2-4k 2·4k 2=64(1-k 2)≥0,解得-1≤k ≤1. 答案 C2.(2017·石家庄模拟)已知P 为双曲线C :x 29-y 216=1上的点,点M 满足|OM→|=1,且OM →²PM →=0,则当|PM →|取得最小值时点P 到双曲线C 的渐近线的距离为( ) A.95B.125C.4D.5解析 由OM→·PM →=0,得OM ⊥PM ,根据勾股定理,求|MP |的最小值可以转化为求|OP |的最小值,当|OP |取得最小值时,点P 的位置为双曲线的顶点(±3,0),而双曲线的渐近线为4x ±3y =0,∴所求的距离d =125,故选B. 答案 B3.已知椭圆C 的方程为x 216+y 2m 2=1(m >0),如果直线y =22x 与椭圆的一个交点M 在x 轴上的射影恰好是椭圆的右焦点F ,则m 的值为( ) A.2B.2 2C.8D.2 3解析 根据已知条件得c =16-m 2,则点(16-m 2,2216-m 2)在椭圆x 216+y2m 2=1(m >0)上,∴16-m 216+16-m 22m 2=1,可得m =2 2. 答案 B4.若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线与抛物线y =x 2+2有公共点,则此双曲线的离心率的取值范围是( ) A.[3,+∞) B.(3,+∞) C.(1,3]D.(1,3)解析 依题意可知双曲线渐近线方程为y =±b a x ,与抛物线方程联立消去y 得x2±bax +2=0. ∵渐近线与抛物线有交点, ∴Δ=b 2a 2-8≥0,求得b 2≥8a 2, ∴c =a 2+b 2≥3a ,∴e =ca ≥3. 答案 A5.(2017·丽水调研)斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则|AB |的最大值为( ) A.2B.455C.4105D.8105解析 设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),直线l 的方程为y =x +t ,由⎩⎨⎧x 2+4y 2=4,y =x +t消去y ,得5x 2+8tx +4(t 2-1)=0, 则x 1+x 2=-85t ,x 1x 2=4(t 2-1)5.∴|AB |=1+k 2|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2 =2·⎝ ⎛⎭⎪⎫-85t 2-4³4(t 2-1)5=425·5-t 2, 当t =0时,|AB |max =4105. 答案 C 二、填空题6.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点与抛物线y 2=16x 的焦点相同,则双曲线的方程为________. 解析 由条件知双曲线的焦点为(4,0), 所以⎩⎪⎨⎪⎧a 2+b 2=16,b a =3,解得a =2,b =23,故双曲线方程为x 24-y 212=1. 答案 x 24-y 212=17.已知动点P (x ,y )在椭圆x 225+y 216=1上,若A 点坐标为(3,0),|AM →|=1,且PM →²AM→=0,则|PM →|的最小值是________. 解析 ∵PM→·AM →=0,∴AM →⊥PM →.∴|PM→|2=|AP →|2-|AM →|2=|AP →|2-1, ∵椭圆右顶点到右焦点A 的距离最小, 故|AP →|min =2,∴|PM →|min = 3. 答案38.(2017·杭州调研)若双曲线x 2-y2b 2=1(b >0)的一条渐近线与圆x 2+(y -2)2=1至多有一个公共点,则双曲线离心率的取值范围是________;与圆相切时渐近线的方程为________.解析 双曲线的渐近线方程为y =±bx ,则有|0-2|1+b2≥1,解得b 2≤3,则e 2=1+b 2≤4,∵e >1,∴1<e ≤2.当渐近线与圆相切时,b 2=3,a 2=1,∴渐近线方程为y =±3x .答案 (1,2] y =±3x 三、解答题9.如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率是22,点P (0,1)在短轴CD 上,且PC →²PD →=-1.(1)求椭圆E 的方程;(2)设O 为坐标原点,过点P 的动直线与椭圆交于A ,B 两点.是否存在常数λ,使得OA →²OB →+λP A →²PB →为定值?若存在,求λ的值;若不存在,请说明理由. 解 (1)由已知,点C ,D 的坐标分别为(0,-b ),(0,b ). 又点P 的坐标为(0,1),且PC→²PD →=-1, 于是⎩⎪⎨⎪⎧1-b 2=-1,c a =22,a 2-b 2=c 2.解得a =2,b = 2.所以椭圆E 方程为x 24+y 22=1.。
高考数学复习考点题型专题讲解 题型26 点、线、面性质(解析版)
高考数学复习考点题型专题讲解题型:点、线、面性质【高考题型一】:点、线、面位置关系及性质。
『解题策略』:画★号的可用于证明依据(大题的第一问),其它的只用于判断(小题)。
①两条直线平行的判定:ⅰ.定义:在同一个平面内且没有公共点的两条直线平行。
★ⅱ.如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行(线面平行⇒线线平行)。
★ⅲ.平行于同一直线的两直线平行(平行线的传递性)。
★ⅳ.垂直于同一平面的两直线平行。
★ⅴ.两平行平面与同一个平面相交,那么两条交线平行(面面平行⇒线线平行)。
ⅵ.如果一条直线和两个相交平面都平行,那么这条直线与这两个平面的交线平行。
ⅶ.三个平面两两相交,三条交线平行或交于一点(如有两条交线平行,则三条互相平行)。
★ⅷ. 两直线的方向向量存在系数λ,即:12//l l 或1l 与2l 重合⇔12//v v (12,v v 是两条直线的方向向量)。
②两条直线垂直的判定:ⅰ.定义:若两直线成90︒角,则这两直线互相垂直。
★ⅱ.一条直线与两条平行直线中的一条垂直,也必与另一条垂直。
★ⅲ.一条直线垂直于一个平面,则垂直于这个平面内的任意一条直线(线面垂直⇒线线垂直)。
★ⅳ.三垂线定理和它的逆定理:在平面内的一条直线,若和这个平面的一条斜线的射影垂直,则它也和这条斜线垂直(若和斜线垂直,则和射影垂直)。
ⅴ.如果一条直线与一个平面平行,那么这条直线与这个平面的垂线垂直。
ⅵ.三个两两垂直的平面的交线两两垂直。
★ⅶ.两直线的方向向量数量积为零。
③直线与平面平行的判定:ⅰ.定义:若一条直线和平面没有公共点,则这直线与这个平面平行。
★ⅱ.如果平面外一条直线和这个平面内的一条直线平行,则这条直线与这个平面平行(线线平行⇒线面平行)(关键是找线,找线一般思路是利用中位线或平行四边形。
)。
★ⅲ.两个平面平行,其中一个平面内的直线平行于另一个平面。
ⅳ.如果一个平面和平面外的一条直线都垂直于同一平面,那么这条直线和这个平面平行。
专题09 立体几何与空间向量-高考数学复习必备之2015-2019年浙江省高考试题分项解析(解析版)
第九章 立体几何与空间向量一、选择题1.(2019年浙江卷)设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P AC B --的平面角为γ,则( ) A. ,βγαγ<<B. ,βαβγ<<C.,βαγα<<D.,αβγβ<<【答案】B 【解析】方法1:如图G 为AC 中点,V 在底面ABC 的投影为O ,则P 在底面投影D 在线段AO 上,过D 作DE 垂直AE ,易得//PE VG ,过P 作//PF AC 交VG 于F ,过D 作//DH AC ,交BG 于H ,则,,BPF PBD PED α=∠β=∠γ=∠,则cos cos PF EG DH BDPB PB PB PBα===<=β,即αβ>,tan tan PD PDED BDγ=>=β,即y >β,综上所述,答案为B.方法2:由最小角定理βα<,记V AB C --的平面角为γ'(显然γ'=γ) 由最大角定理β<γ'=γ,故选B.法2:(特殊位置)取V ABC -为正四面体,P 为VA 中点,易得cos sin sin α=⇒α=β=γ=B. 2.(2019年浙江卷)祖暅是我国南北朝时代的伟大科学家.他提出的“幂势既同,则积不容易”称为祖暅原理,利用该原理可以得到柱体体积公式V Sh =柱体,其中S 是柱体的底面积,h 是柱体的高,若某柱体的三视图如图所示,则该柱体的体积是()A. 158B. 162C. 182D. 32【答案】B【解析】由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为2646336162 22++⎛⎫⨯+⨯⨯=⎪⎝⎭.3.(2018年浙江卷)已知四棱锥S−ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点),设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S−AB−C的平面角为θ3,则A.θ1≤θ2≤θ3 B.θ3≤θ2≤θ1 C.θ1≤θ3≤θ2 D.θ2≤θ3≤θ1【答案】D【解析】设O为正方形ABCD的中心,M为AB中点,过E作BC的平行线EF,交CD于F,过O作ON垂直EF于N,连接SO,SN,OM,则SO垂直于底面ABCD,OM垂直于AB,因此从而因为,所以即,选D.4.(2018年浙江卷)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是A .2B .4C .6D .8 【答案】C 【解析】根据三视图可得几何体为一个直四棱柱,高为2,底面为直角梯形,上下底分别为1,2,梯形的高为2,因此几何体的体积为选C.5.(2018年浙江卷)已知直线,和平面,,则“”是“”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】D 【解析】 直线,平面,且,若,当时,,当时不能得出结论,故充分性不成立;若,过作一个平面,若时,则有,否则不成立,故必要性也不成立.由上证知“”是“”的既不充分也不必要条件,故选D .6.(2017年浙江卷)如图,已知正四面体D –ABC (所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP=PB ,2BQ CRQC RA==,分别记二面角D –PR –Q ,D –PQ –R ,D –QR –P 的平面角为α,β,γ,则A .γ<α<βB .α<γ<βC .α<β<γD .β<γ<α【答案】B【解析】设O 为三角形ABC 中心,则O 到PQ 距离最小,O 到PR 距离最大,O 到RQ 距离居中,而高相等,因此αγβ<<,所以选B .7.(2017年浙江卷)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:)是A .B .C .D .【答案】A【解析】由三视图可知几何体为半个圆锥和一个三棱锥的组合体,∴=,故选A.8.(2016年浙江文)已知互相垂直的平面αβ, 交于直线l.若直线m ,n 满足m∥α,n⊥β,则 A .m∥l B.m∥n C.n⊥l D.m⊥n 【答案】C 【解析】 由题意知,l l αββ=∴⊂,,n n l β⊥∴⊥.故选C.9.(2016年浙江理)已知互相垂直的平面αβ,交于直线l.若直线m ,n 满足,m n αβ∥⊥, 则 A .m ∥l B .m ∥n C .n ⊥l D .m ⊥n 【答案】C 【解析】 由题意知,l l αββ=∴⊂,,n n l β⊥∴⊥.故选C .10.(2015年浙江文)如图,斜线段与平面所成的角为,为斜足,平面上的动点满足,则点的轨迹是A .直线B .抛物线C .椭圆D .双曲线的一支 【答案】C【解析】由题可知,当点运动时,在空间中,满足条件的绕旋转形成一个圆锥,用一个与圆锥高成角的平面截圆锥,所得图形为椭圆.故选C.11.(2015年浙江文)设,是两个不同的平面,,是两条不同的直线,且,( )A .若,则B .若,则C .若,则D .若,则【答案】A【解析】由面面垂直的判定定理:如果一个平面经过另一平面的一条垂线,则两面垂直,可得,可得12.(2015年浙江文)某几何体的三视图如图所示(单位: cm ),则该几何体的体积是( )A .8 3cmB .12 3cm C .323 3cm D .4033cm 【答案】C【解析】由三视图可知,该几何体是一个棱长为2的正方体与一个底面边长为2,高为2的正四棱锥的组合体,故其体积为32313222233V cm =+⨯⨯=.故选C. 13.(2015年浙江理)某几何体的三视图如图所示(单位:),则该几何体的体积是( )A .B .C .D .【答案】C【解析】由三视图可知该几何体是四棱柱与同底的四棱锥的组合体,所以其体积为,故应选C.14.(2015年浙江理)如图,已知ABC ∆,D 是AB 的中点,沿直线CD 将ACD ∆折成A CD '∆,所成二面角A CD B '--的平面角为α,则( )A.A DB α'∠≤B.A DB α'∠≥C.A CB α'∠≤D.A CB α'∠≤ 【答案】B. 【解析】设ADC θ∠=,设2AB =,则由题意1AD BD ==,在空间图形中,设A B t '=,在A CB '∆中,2222222112cos 22112A D DB AB t t A DB A D DB '+-+--'∠==='⨯⨯⨯,在空间图形中,过A '作AN DC ⊥,过B 作BM DC ⊥,垂足分别为N ,M ,过N 作//NP MB ,连结A P ',∴NP DC ⊥,则A NP '∠就是二面角A CD B '--的平面角,∴A NP α'∠=,在Rt A ND '∆中,cos cos DN A D A DC θ''=∠=,sin sin A N A D A DC θ'''=∠=, 同理,sin BM PN θ==,cos DM θ=,故2cos BP MN θ==, 显然BP ⊥面A NP ',故BP A P '⊥,在Rt A BP '∆中,2222222(2cos )4cos A P A B BP t t θθ''=-=-=-,在A NP '∆中,222cos cos 2A N NP A P A NP A N NP α''+-'=∠='⨯2222sin sin (4cos )2sin sin t θθθθθ+--=⨯222222222222cos 2cos 1cos cos 2sin 2sin sin sin sin t t A DB θθθθθθθθ+--'==+=∠+, ∵210sin θ>,22cos 0sin θθ≥,∴cos cos A DB α'≥∠(当2πθ=时取等号), ∵α,[0,]A DB π'∠∈,而cos y x =在[0,]π上为递减函数,∴A DB α'≤∠,故选B.二、填空题15.(2016年浙江文)某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是______cm 2,体积是______cm 3.【答案】80,40【解析】由三视图知该组合体是一个长方体上面放置了一个小正方体,22262244242280S =⨯+⨯+⨯⨯-⨯=表,3244240V =+⨯⨯=.16.(2016年浙江文)如图,已知平面四边形ABCD ,AB=BC=3,CD=1,,∠ADC=90°.沿直线AC 将ACD 翻折成ACD',直线AC 与BD' 所成角的余弦的最大值是______.【解析】如图,连接BD′,设直线AC 与'BD 所成的角为θ.O 是AC 的中点.由已知得AC =,以OB 为x 轴, OA 为y 轴,过O 与平面ABC 垂直的直线为z 轴,建立空间直角坐标系,则A ⎛⎫ ⎪ ⎪⎝⎭, B ⎫⎪⎪⎝⎭, 0,C ⎛⎫⎪ ⎪⎝⎭.作DH AC ⊥于H ,连接D′H翻折过程中, 'D H 始终与AC 垂直, 则2CD CH CA ===则OH = DH ==因此'cos ,sin 636D αα⎛⎫-- ⎪ ⎪⎝⎭(设∠DHD′=α),则'BD αα⎛⎫= ⎪ ⎪⎝⎭,与CA 平行的单位向量为()0,1,0n =,所以cos cos ',BD n θ= ''BD n BD n⋅==,所以cos 1α=-时, cos θ取得最大值,为6.17.(2016年浙江理)某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是 cm 2,体积是 cm 3.【答案】72 ,32 【解析】几何体为两个相同长方体组合,长方体的长、宽、高分别为4,2,2,所以体积为32(224)32cm ⨯⨯⨯=,由于两个长方体重叠的部分为一个边长为2的正方形,所以表面积为2(222⨯⨯⨯+244)2(22)72⨯⨯-⨯=2cm .18.(2016年浙江理)如图,在ABC 中,AB=BC=2,∠ABC=120°.若平面ABC 外的点P 和线段AC 上的点D ,满足PD=DA ,PB=BA ,则四面体PBCD 的体积的最大值是 .【答案】【解析】中,因为,所以.由余弦定理可得,所以.设,则,.在中,由余弦定理可得.故.在中,,.由余弦定理可得,所以.由此可得,将ABD沿BD翻折后可与PBD重合,无论点D在任何位置,只要点D的位置确定,当平面PBD⊥平面BDC时,四面体PBCD的体积最大(欲求最大值可不考虑不垂直的情况).过作直线的垂线,垂足为.设,则,即,解得.而的面积.当平面PBD⊥平面BDC时:四面体的体积.观察上式,易得,当且仅当,即时取等号,同时我们可以发现当时,取得最小值,故当时,四面体的体积最大,为19.(2015年浙江理)如图,三棱锥A BCD -中, 3,2AB AC BD CD AD BC ======,点,M N 分别是,AD BC 的中点,则异面直线,AN CM 所成的角的余弦值是________.【答案】78【解析】如下图,连结DN ,取DN 中点P ,连结PM , PC ,则可知即为异面直线,所成角(或其补角)易得,,,∴,即异面直线,所成角的余弦值为.三、解答题20.(2019年浙江卷)如图,已知三棱柱111ABC A B C -,平面11A AC C ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是11,AC A B 的中点.(1)证明:EF BC ⊥;(2)求直线EF 与平面1A BC 所成角的余弦值.【答案】(1)证明见解析;(2)35. 【解析】(1)如图所示,连结11,A E B E ,等边1AAC △中,AE EC =,则sin 0sin 2B A ,≠∴= 平面ABC ⊥平面11A ACC ,且平面ABC ∩平面11A ACC AC =, 由面面垂直的性质定理可得:1A E ⊥平面ABC ,故1A E BC ⊥,由三棱柱的性质可知11A B AB ∥,而AB BC ⊥,故11A B BC ⊥,且1111A B A E A =,由线面垂直的判定定理可得:BC ⊥平面11A B E ,结合EF ⊆平面11A B E ,故EF BC ⊥.(2)在底面ABC 内作EH ⊥AC ,以点E 为坐标原点,EH ,EC ,1EA 方向分别为x ,y ,z 轴正方向建立空间直角坐标系E xyz -.设1EH =,则AE EC ==11AA CA ==3BC AB ==,据此可得:()()()130,,,0,0,3,2A B A C ⎛⎫ ⎪ ⎪⎝⎭,由11AB A B =可得点1B的坐标为132B ⎛⎫ ⎪⎝⎭,利用中点坐标公式可得:34F ⎛⎫ ⎪⎝⎭,由于()0,0,0E , 故直线EF的方向向量为:34EF ⎛⎫=⎪⎝⎭ 设平面1A BC 的法向量为(),,m x y z =,则:()()133,,,330222233,,,02222m A B x y z x y z m BC x y z x y ⎧⎛⎫⋅=⋅-=+-=⎪ ⎪ ⎪⎪⎝⎭⎨⎛⎫⎪⋅=⋅-=-+= ⎪⎪ ⎪⎝⎭⎩, 据此可得平面1A BC 的一个法向量为()1,3,1m =,34EF ⎛⎫= ⎪⎝⎭此时4cos ,5EF mEF m EF m ⋅===⨯,设直线EF与平面1A BC所成角为θ,则43 sin cos,,cos55EF mθθ===.21.(2018年浙江卷)如图,已知多面体ABCA 1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(Ⅰ)证明:AB1⊥平面A1B1C1;(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.【答案】(Ⅰ)见解析;(Ⅱ).【解析】方法一:(Ⅰ)由得,所以.故.由,得,由得,由,得,所以,故.因此平面.(Ⅱ)如图,过点作,交直线于点,连结.由平面得平面平面,由得平面,所以是与平面所成的角.学科.网由得,所以,故.因此,直线与平面所成的角的正弦值是.方法二:(Ⅰ)如图,以AC的中点O为原点,分别以射线OB,OC为x,y轴的正半轴,建立空间直角坐标系O-xyz.由题意知各点坐标如下:因此由得.由得.所以平面.(Ⅱ)设直线与平面所成的角为.由(Ⅰ)可知设平面的法向量.由即可取.所以.因此,直线与平面所成的角的正弦值是.22.(2017年浙江卷)如图,已知四棱锥P-ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(I)证明:CE∥平面PAB;(II)求直线CE与平面PBC所成角的正弦值【答案】(I)见解析;(II).8【解析】(Ⅰ)如图,设PA 中点为F ,连接EF ,FB .因为E ,F 分别为PD ,PA 中点,所以//EF AD 且12EF AD =, 又因为//BC AD , 12BC AD =,所以//EF BC 且EF BC =, 即四边形BCEF 为平行四边形,所以//CE BF ,因此//CE 平面PAB .(Ⅱ)分别取BC ,AD 的中点为M ,N .连接PN 交EF 于点Q ,连接MQ .因为E ,F ,N 分别是PD ,PA ,AD 的中点,所以Q 为EF 中点,在平行四边形BCEF 中,MQ//CE .由△PAD 为等腰直角三角形得PN ⊥AD .由DC ⊥AD ,N 是AD 的中点得BN ⊥AD .所以AD ⊥平面PBN ,由BC //AD 得BC ⊥平面PBN ,那么平面PBC ⊥平面PBN .过点Q 作PB 的垂线,垂足为H ,连接MH .MH 是MQ 在平面PBC 上的射影,所以∠QMH 是直线CE 与平面PBC 所成的角.设CD =1.在△PCD 中,由PC =2,CD =1,得CE ,在△PBN 中,由PN =BN =1,PB QH =14,在Rt△MQH 中,QH=14,MQ ,所以sin∠QMH =8,所以直线CE 与平面PBC 23.(2016年浙江文)如图,在三棱台ABC –DEF 中,平面BCFE⊥平面ABC ,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.(Ⅰ)求证:BF⊥平面ACFD ;(Ⅱ)求直线BD 与平面ACFD 所成角的余弦值.【答案】(1)证明详见解析;(2)7. 【解析】(Ⅰ)延长,,AD BE CF 相交于一点K ,如图所示.因为平面BCFE ⊥平面ABC ,且AC BC ⊥,所以 AC ⊥平面BCK ,因此, BF AC ⊥.又因为//EF BC , 1BE EF FC ===, 2BC =,所以 BCK 为等边三角形,且F 为CK 的中点,则BF CK ⊥所以BF ⊥平面ACFD .(Ⅱ)因为BF ⊥平面ACK ,所以BDF ∠是直线BD 与平面ACFD 所成的角.在Rt BFD 中, 32BF DF ==,得cos 7BDF ∠=.所以,直线BD 与平面ACFD 所成的角的余弦值为7.24.(2016年浙江理)如图,在三棱台ABC DEF -中,平面BCFE ⊥平面ABC ,=90ACB ∠︒,BE=EF=FC=1,BC=2,AC=3.(Ⅰ)求证:BF⊥平面ACFD ;(Ⅱ)求二面角B -AD -F 的平面角的余弦值.【答案】(Ⅰ)证明见解析;(Ⅱ) 4.【解析】(Ⅰ)延长AD , BE , CF 相交于一点K ,如图所示.因为平面BCFE ⊥平面ABC ,且AC BC ⊥,所以AC ⊥平面BCK ,因此BF AC ⊥. 又因为//EF BC , 1BE EF FC ===, 2BC =,所以BCK 为等边三角形,且F 为CK 的中点,则F C B ⊥K .所以F B ⊥平面ACFD .(Ⅱ)方法一:过点F 作FQ AK ⊥于Q ,连结BQ .因为F B ⊥平面ACK ,所以BF AK ⊥,则AK ⊥平面BQF ,所以BQ AK ⊥.所以BQF ∠是二面角B AD F --的平面角.在Rt ACK 中, 3AC =, 2CK =,得FQ =在Rt BQF 中, 13FQ = BF =cos 4BQF ∠=.所以二面角B AD F -- 方法二:如图,延长AD , BE , CF 相交于一点K ,则BCK 为等边三角形.取BC 的中点O ,则KO BC ⊥,又平面BCFE ⊥平面ABC ,所以, KO ⊥平面ABC .以点O 为原点,分别以射线OB , OK 的方向为x , z 的正方向,建立空间直角坐标系Oxyz .由题意得()1,0,0B , ()1,0,0C -,(K , ()1,3,0A --,12E ⎛ ⎝⎭,1F(,0,22-. 因此, ()0,3,0AC =,(AK =, ()2,3,0AB =. 设平面ACK 的法向量为,平面ABK 的法向量为. 由0{ 0AC m AK m ⋅=⋅=,得111130{ 30y x y =++=,取)1m =-; 由0{ 0AB n AK n ⋅=⋅=,得22222230{ 30x y x y +=++=,取. 于是,cos ,m n m n m n ⋅〈〉==⋅. 所以,二面角B AD F --25.(2015年浙江文)如图,在三棱锥中,在底面ABC 的射影为BC 的中点,D 为的中点.(1)证明:; (2)求直线和平面所成的角的正弦值.【答案】(1)见解析;(2)【解析】(1)设为中点,由题意得平面,所以. 因为,所以.所以平面.由,分别为的中点,得且,从而且, 所以是平行四边形,所以. 因为平面,所以平面.(2)作,垂足为,连结. 因为平面,所以. 因为,所以平面. 所以平面. 所以为直线与平面所成角的平面角.由,得.由平面,得.由,得. 所以 26.(2015年浙江理)如图,在三棱柱111ABC A B C --中,90BAC ∠=,2AB AC ==,14A A =,1A 在底面ABC 的射影为BC 的中点,D 为11B C 的中点.(1)证明:1A D ⊥平面1A B C ;(2)求二面角1A -BD-1B 的平面角的余弦值.【答案】(1)详见解析;(2)18-. 【解析】(1)设E 为BC 的中点,由题意得1A E ⊥平面ABC ,∴1A E AE ⊥,∵AB AC =, ∴AE BC ⊥,故AE ⊥平面1A BC ,由D ,E 分别11B C ,BC 的中点,得1//DE B B 且 1DE B B =,从而1//DE A A ,∴四边形1A AED 为平行四边形,故1//A D AE ,又∵AE ⊥ 平面11A BC ,∴1A D ⊥平面11A BC ;(2)作1A F BD ⊥,且1A F BD F =,连结1B F ,由AE EB ==1190A EA A EB ∠=∠=,得114A B A A ==,由11A D B D =, 11A B B B =,得11A DB B DB ∆≅∆,由1A F BD ⊥,得1B F BD ⊥,因此11A FB ∠为二面角11A BD B --的平面角,由1A D =14A B =,190DA B ∠=,得BD = 1143A FB F ==,由余弦定理得,111cos 8A FB ∠=-.。
正弦定理余弦定理(解析版)
考点31 正弦定理、余弦定理【命题解读】高考对正弦定理和余弦定理的考查较为灵活,题型多变,往往以小题的形式独立考查正弦定理或余弦定理,以解答题的形式综合考查定理的综合应用,多与三角形周长、面积有关;有时也会与平面向量、三角恒等变换等结合考查,试题难度控制在中等或以下,主要考查灵活运用公式求解计算能力、推理论证能力、数学应用意识、数形结合思想等 【基础知识回顾】1.正弦定理a sin A =b sin B =csin C =2R (R 为△ABC 外接圆的半径).a 2=b 2+c2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C .3.三角形的面积公式(1)S △ABC =12ah a (h a 为边a 上的高); (2)S △ABC =12ab sin C =12bc sin A =12ac sin B ; (3)S =12r (a +b +c )(r 为三角形的内切圆半径).1、 在△ABC 中,若AB =13,BC =3,C =120°,则AC 等于( )A .1B .2C .3D .4 【答案】:A 【解析】:设在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,则a =3,c =13,C =120°,由余弦定理得13=9+b 2+3b ,解得b =1或b =-4(舍去),即AC =1. 2、 已知△ABC ,a =5,b =15,A =30°,则c 等于( )A .2 5 B.5 C .25或 5 D .均不正确【答案】:C 【解析】:∵a sin A =b sin B ,∴sin B =b sin A a =155·sin 30°=32.∵b >a ,∴B =60°或120°. 若B =60°,则C =90°,∴c =a 2+b 2=2 5. 若B =120°,则C =30°,∴a =c = 5.3、 在△ABC 中,A =60°,AB =2,且△ABC 的面积为32,则BC 的长为( )A.32B.3 C .2 3 D .2 【答案】:B 【解析】:因为S =12AB ·AC sin A =12×2×32AC =32,所以AC =1, 所以BC 2=AB 2+AC 2-2AB ·AC cos A =3.所以BC = 3. 4、 在△ABC 中,cos C 2=55,BC =1,AC =5,则AB 等于( )A .4 2 B.30 C.29 D .25【答案】:A 【解析】:∵cos C 2=55,∴cos C =2cos 2C 2-1=2×⎝⎛⎭⎫552-1=-35.在△ABC 中,由余弦定理,得AB 2=AC 2+BC 2-2AC ·BC ·cos C =52+12-2×5×1×⎝⎛⎭⎫-35=32,∴AB =32=4 2.故选A.5、 设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定【答案】:B 【解析】:由正弦定理得sin B cos C +sin C cos B =sin 2A , ∴sin(B +C )=sin 2A ,即sin(π-A )=sin 2A ,sin A =sin 2A . ∵A ∈(0,π),∴sin A >0,∴sin A =1, 即A =π2,∴△ABC 为直角三角形.6、在△ABC 中,cos 2B 2=a +c2c (a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .等边三角形B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形 【答案】:B 【解析】:∵cos 2B 2=1+cos B 2,cos 2B 2=a +c2c ,∴(1+cos B )·c =a +c ,∴a =cos B ·c =a 2+c 2-b 22a , ∴2a 2=a 2+c 2-b 2,∴a 2+b 2=c 2,∴△ABC 为直角三角形.7、 △ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin C +c sin B =4a sin B sin C ,b 2+c 2-a 2=8,则△ABC的面积为 . 【答案】:233 【解析】:由b sin C +c sin B =4a sin B sin C , 得sin B sin C +sin C sin B =4sin A sin B sin C ,因为sin B sin C ≠0,所以sin A =12.因为b 2+c 2-a 2=8,所以cos A =b 2+c 2-a 22bc >0, 所以bc =833,所以S △ABC =12×833×12=233.8、 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知cos A -3cos C cos B =3c -a b ,则sin Csin A 的值为__________. 【答案】:3 【解析】:由正弦定理a sin A =b sin B =csin C ,得cos A -3cos C cos B =3c -a b =3sin C -sin A sin B , 即(cos A -3cos C )sin B =(3sin C -sin A )·cos B , 化简可得sin(A +B )=3sin(B +C ),又知A +B +C =π,所以sin C =3sin A ,因此sin Csin A =3.考向一 运用正余弦定理解三角形例1、(2020届山东实验中学高三上期中)在ABC △中,若3,120AB BC C ==∠=,则AC =( ) A .1 B .2C .3D .4【答案】A 【解析】余弦定理2222?cos AB BC AC BC AC C =+-将各值代入 得2340AC AC +-=解得1AC =或4AC =-(舍去)选A.变式1、(2021·山东泰安市·高三三模)在中,,,,则( )ABC .D .【答案】DABC3AC =2BC =3cos 4C =tan A =33【解析】由余弦定理可以求出,有可判断,进而可以求出. 【解析】由余弦定理得:, 所以,因为,所以,所以, 故选:D .变式2、【2020江苏淮阴中学期中考试】在ABC 中,如果sin :sin :sin 2:3:4A B C =,那么tan C =________.【答案】【解析】∵sin A :sin B :sin C =2:3:4,∴由正弦定理可得:a :b :c =2:3:4,∴不妨设a =2t ,b =3t ,c =4t ,则cos C 2222224916122234a b c t t t ab t t +-+-===-⨯⨯,∵C ∈(0,π),∴tanC ==答案为变式3、(2020届山东省泰安市高三上期末)在△ABC 中,内角A ,B ,C 的对边分别为,,a b c ,若cos cos sin A B C a b c +=,22265b c a bc +-=,则tan B =______. 【答案】4 【解析】∵cos cos sin A B Ca b c+=, ∴由正弦定理得cos cos sin sin sin sin A B CA B C+=, ∴111tan tan A B+=, 又22265b c a bc +-=,∴由余弦定理得62cos 5A =,∴3cos 5A =,∵A 为ABC ∆的内角,∴4sin 5A =,∴4tan 3A =,∴tan 4B =, 故答案为:4.2AB =AB BC =A C =tan A 2222232cos 3223244AB AC BC BC AC C =+-⋅=+-⨯⨯⨯=2AB =AB BC =A C =3cos cos 4A C ==tan 3A =变式4、(2020届山东省潍坊市高三上期中)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知10a b +=,5c =,sin 2sin 0B B +=. (1)求a ,b 的值: (2)求sin C 的值.【答案】(1)3a =,7b =;(2. 【解析】(1)由sin 2sin 0B B +=,得2sin cos sin 0B B B +=, 因为在ABC ∆中,sin 0B ≠,得1cos 2B =-, 由余弦定理2222cos b a c ac B =+-,得22215252b a a ⎛⎫=+-⨯⨯⨯-⎪⎝⎭, 因为10b a =-,所以2221(10)5252a a a ⎛⎫-=+-⨯⨯⨯- ⎪⎝⎭, 解得3a =,所以7b =.(2)由1cos 2B =-,得sin B =由正弦定理得5sin sin 7214c C B b ==⨯=方法总结:本题考查正弦定理、余弦定理的公式.在解三角形时,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.考查基本运算能力和转化与化归思想.考向二 利用正、余弦定理判定三角形形状例2、已知a ,b ,c 分别是△ABC 三个内角A ,B ,C 的对边,下列四个命题中正确的是( )A .若tan A +tanB +tanC >0,则△ABC 是锐角三角形 B .若a cos A =b cos B ,则△ABC 是等腰三角形 C .若b cos C +c cos B =b ,则△ABC 是等腰三角形D .若a cos A =b cos B =ccos C ,则△ABC 是等边三角形 【答案】:ACD 【解析】:∵tan A +tan B +tan C =tan A tan B tan C >0, ∴A ,B ,C 均为锐角,∴选项A 正确;由a cos A =b cos B 及正弦定理,可得sin 2A =sin 2B , ∴A =B 或A +B =π2,∴△ABC 是等腰三角形或直角三角形,∴选项B 错; 由b cos C +c cos B =b 及正弦定理, 可知sin B cos C +sin C cos B =sin B , ∴sin A =sin B ,∴A =B ,∴选项C 正确;由已知和正弦定理,易知tan A =tan B =tan C , ∴选项D 正确.变式1、△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且2a sin A =(2b +c)sin B +(2c +b)sin C.(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状. 【解析】 (1)由已知,根据正弦定理得:2a 2=(2b +c)b +(2c +b)c ,即a 2=b 2+c 2+bc ,由余弦定理得:a 2=b 2+c 2-2bc cos A ,故cos A =-12,A =120°.(2)由(1)得:sin 2A =sin 2B +sin 2C +sin B sin C ,∵A =120°,∴34=sin 2B +sin 2C +sin B sin C ,与sin B +sin C=1联立方程组解得:sin B =sin C =12,∵0°<B <60°,0°<C <60°,故B =C =30°,∴△ABC 是等腰钝角三角形.变式2、(1)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin A sin B =ac ,(b +c +a )(b +c -a )=3bc ,则△ABC 的形状为( )A .直角三角形B .等腰非等边三角形C .等边三角形D .钝角三角形【答案】 (1)B (2)C 【解析】(1)法一:因为b cos C +c cos B =a sin A , 由正弦定理知sin B cos C +sin C cos B =sin A sin A , 得sin(B +C )=sin A sin A .又sin(B +C )=sin A ,得sin A =1, 即A =π2,因此△ABC 是直角三角形.法二:因为b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac =2a 22a =a ,所以a sin A =a ,即sin A =1,故A =π2,因此△ABC 是直角三角形.(2)因为sin A sin B =a c ,所以a b =ac ,所以b =c . 又(b +c +a )(b +c -a )=3bc , 所以b 2+c 2-a 2=bc ,所以cos A =b 2+c 2-a 22bc =bc 2bc =12. 因为A ∈(0,π),所以A =π3, 所以△ABC 是等边三角形.方法总结: 判定三角形形状的途径:①化边为角,通过三角变换找出角之间的关系;②化角为边,通过代数变形找出边之间的关系.正(余)弦定理是转化的桥梁.考查转化与化归思想. 考点三 运用正余弦定理研究三角形的面积考向三 运用正余弦定理解决三角形的面积例3、在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知b cos C +c cos B =2a cos A . (1) 求角A 的大小;(2) 若AB →·AC →=3,求△ABC 的面积. 【解析】:(1) (解法1)在△ABC 中,由正弦定理,及b cos C +c cos B =2a cos A , 得sin B cos C +sin C cos B =2sin A cos A , 即sin A =2sin A cos A .因为A ∈(0,π),所以sin A ≠0, 所以cos A =12,所以A =π3.(解法2)在△ABC 中,由余弦定理,及b cos C +c cos B =2a cos A , 得b a 2+b 2-c 22ab +c a 2+c 2-b 22ac =2a b 2+c 2-a 22bc , 所以a 2=b 2+c 2-bc ,所以cos A =b 2+c 2-a 22bc =12. 因为A ∈(0,π),所以A =π3.(2) 由AB →·AC →=cb cos A =3,得bc =23,所以△ABC 的面积为S =12bc sin A =12×23×sin60°=32变式1、在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a ≠b ,c =3,cos 2A -cos 2B =3sin A cosA -3sinB cos B . (1) 求角C 的大小;(2) 若sin A =45,求△ABC 的面积. 【解析】:(1) 由题意得 1+cos2A 2-1+cos2B 2=32sin 2A -32sin 2B , 即32sin 2A -12cos 2A =32sin 2B -12cos 2B ,sin ⎝⎛⎭⎫2A -π6=sin ⎝⎛⎭⎫2B -π6.由a ≠b ,得A ≠B .又A +B ∈(0,π),得2A -π6+2B -π6=π,即A +B =2π3,所以C =π3. (2) 由c =3,sin A =45,a sin A =c sin C ,得a =85. 由a <c ,得A <C ,从而cos A =35,故sin B =sin(A +C )=sin A cos C +cos A sin C =4+3310, 所以,△ABC 的面积为S =12ac sin B =83+1825.变式2、(2020届山东实验中学高三上期中)在ABC ∆中,,,a b c 分别为内角,,A B C 的对边,若32sin sin sin ,cos 5B AC B =+=,且6ABC S ∆=,则b =__________. 【答案】4【解析】已知等式2sin sin B A sinC =+,利用正弦定理化简得:2b a c =+,3cos ,5B =∴可得4sin 5B ==,114sin 6225ABC S ac B ac ∆∴==⨯=,可解得15ac =,∴余弦定理可得,2222cos b a c ac B =+-()()221cos a c ac B =+-+=23421515b ⎛⎫-⨯⨯+ ⎪⎝⎭,∴可解得4b =,故答案为4.变式3、【2020江苏溧阳上学期期中考试】在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,若3b =,222sin sin 3sin A B C -=,1cos 3A =-,则ABC ∆的面积是______.【解析】3b =,222sin sin 3sin A B C -=,∴由正弦定理可得2222339a c b c =+=+,又1cos 3A =-,∴由余弦定理可得22222cos 92a b c bc A c c =+-=++,223992c c c ∴+=++,解得1c =,又sin A ==,11sin 3122ABC S bc A ∆∴==⨯⨯.方法总结:1.求三角形面积的方法(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积.(2)若已知三角形的三边,可先求其一个角的余弦值,再求其正弦值,代入公式求面积.总之,结合图形恰当选择面积公式是解题的关键.2.已知三角形面积求边、角的方法(1)若求角,就寻求夹这个角的两边的关系,利用面积公式列方程求解. (2)若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解.考向三 结构不良题型例4、(2020届山东省烟台市高三上期末)在条件①()(sin sin )()sin a b A B c b C +-=-,②sin cos()6a Bb A π=+,③sin sin 2B Cb a B +=中任选一个,补充到下面问题中,并给出问题解答.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,6b c +=,a =, . 求ABC ∆的面积. 【解析】 若选①:由正弦定理得(a b)()(c b)a b c +-=-, 即222b c a bc +-=,所以2221cos 222b c a bc A bc bc +-===,因为(0,)A π∈,所以3A π=.又2222()3a b c bc b c bc =+-=+-,a =6bc +=,所以4bc =,所以11sin 4sin 223ABC S bc A π∆==⨯⨯= 若选②:由正弦定理得sin sin sin cos()6A B B A π=+.因为0B π<<,所以sin 0B ≠,sin cos()6A A π=+,化简得1sin sin 2A A A =-,即tan 3A =,因为0A π<<,所以6A π=.又因为2222cos6a b c bc π=+-,所以2222bc =24bc =-所以111sin (246222ABC S bc A ∆==⨯-⨯=- 若选③:由正弦定理得sin sinsin sin 2B CB A B +=, 因为0B π<<,所以sin 0B ≠,所以sinsin 2B CA +=,又因为BC A +=π-, 所以cos 2sin cos 222A A A=,因为0A π<<,022A π<<,所以cos 02A≠,1sin 22A ∴=,26A π=,所以3A π=.又2222()3a b c bc b c bc =+-=+-,a =6bc +=,所以4bc =,所以11sin 4sin 223ABC S bc A π∆==⨯⨯= 变式1、(2020届山东省德州市高三上期末)已知a ,b ,c 分别为ABC ∆内角A ,B ,C 的对边,若ABC ∆同时满足下列四个条件中的三个:①b ac -=②2cos 22cos 12A A +=;③a =④b =(1)满足有解三角形的序号组合有哪些?(2)在(1)所有组合中任选一组,并求对应ABC ∆的面积. (若所选条件出现多种可能,则按计算的第一种可能计分) 【解析】(1)由①()33b a c c a b -+=+得,()2223a c b +-=-,所以222cos 2a c b B ac +-== 由②2cos 22cos 12AA +=得,22cos cos 10A A +-=, 解得1cos 2A =或cos 1A =-(舍),所以3A π=,因为1cos 32B =-<-,且()0,B π∈,所以23B π>,所以A B π+>,矛盾.所以ABC ∆不能同时满足①,②. 故ABC ∆满足①,③,④或②,③,④; (2)若ABC ∆满足①,③,④,因为2222cos b a c ac B =+-,所以28623c c =++⨯,即2420c c +-=.解得2c =.所以ABC ∆的面积1sin 2S ac B ==若ABC ∆满足②,③,④由正弦定理sin sin a b A B==sin 1B =,所以c =ABC ∆的面积1sin 2S bc A ==变式2、(2020cos )sin b C a c B -=;②22cos a c b C +=;③sin sin2A Cb A += 这三个条件中任选一个,补充在下面问题中的横线上,并解答相应的问题.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足________________,b =4a c +=,求ABC ∆的面积.【解析】cos sin )sin sin B C A C B -=. 由sin sin()sin cos cos sin A B C B C B C =+=+,得sin sin sin B C C B =. 由0C π<<,得sin 0C ≠.所以sin B B =.又cos 0B ≠(若cos 0B =,则sin 0,B =22sin cos 0B B +=这与22sin cos 1B B +=矛盾),所以tan B = 又0B π<<,得23B π=.由余弦定理及b =得22222cos3a c ac π=+-, 即212()a c ac =+-.将4a c +=代入,解得4ac =.所以1sin 2ABC S ac B =△1422=⨯⨯= 在横线上填写“22cos a c b C +=”. 解:由22cos a c b C +=及正弦定理,得2sin sin 2sin cos A C B C ++=.又sin sin()sin cos cos sin A B C B C B C =+=+, 所以有2cos sin sin 0B C C +=. 因为(0,)C π∈,所以sin 0C ≠. 从而有1cos 2B =-.又(0,)B π∈, 所以23B π=由余弦定理及b =得22222cos3a c ac π=+-即212()a c ac =+-.将4a c +=代入, 解得4ac =.所以11sin 4222ABCSac B ==⨯⨯=在横线上填写“sin sin2A Cb A +=”解:由正弦定理,得sin sin sin 2BB A A π-=.由0A π<<,得sin A θ≠,所以sin 2B B =由二倍角公式,得2sincos 222B B B =.由022B π<<,得cos 02B ≠,所以sin 22B =. 所以23B π=,即23B π=.由余弦定理及b =得22222cos3a c ac π=+-. 即212()a c ac =+-.将4a c +=代入, 解得4ac =.所以1sin 2ABC S ac B =△142=⨯=1、【2020年高考全国III 卷理数】在△ABC 中,cos C =23,AC =4,BC =3,则cos B = A .19B .13C .12D .23【答案】A 【解析】在ABC 中,2cos 3C =,4AC =,3BC =,根据余弦定理:2222cos AB AC BC AC BC C =+-⋅⋅,2224322433AB =+-⨯⨯⨯,可得29AB = ,即3AB =, 由22299161cos22339AB BC AC B AB BC +-+-===⋅⨯⨯,故1cos 9B =. 故选:A .2、【2018年高考全国Ⅱ理数】在ABC △中,cos25C =,1BC =,5AC =,则AB =A . BCD .【答案】A【解析】因为223cos 2cos 121,255C C ⎛⎫=-=⨯-=- ⎪ ⎪⎝⎭所以22232cos 125215325AB BC AC BC AC C AB ⎛⎫=+-⋅=+-⨯⨯⨯-== ⎪⎝⎭,则 A.3、【2018年高考全国Ⅲ理数】ABC △的内角A B C ,,的对边分别为a ,b ,c ,若ABC △的面积为2224a b c +-,则C =A .π2B .π3 C .π4D .π6【答案】C【解析】由题可知2221sin 24ABCa b c S ab C +-==△,所以2222sinC a b c ab +-=, 由余弦定理2222cos a b c ab C +-=,得sin cos C C =,因为()0,πC ∈,所以π4C =,故选C.4、【2019年高考全国Ⅱ卷理数】ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为_________.【答案】【解析】由余弦定理得2222cos b a c ac B =+-,所以2221(2)2262c c c c +-⨯⨯⨯=,即212c =,解得c c ==-,所以2a c ==,11sin 222ABC S ac B ==⨯=△ 5、【2019年高考浙江卷】在ABC △中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则BD =___________,cos ABD ∠=___________.【答案】5,10【解析】如图,在ABD △中,由正弦定理有:sin sin AB BD ADB BAC =∠∠,而3π4,4AB ADB =∠=,5AC ,34sin ,cos 55BC AB BAC BAC AC AC ∠==∠==,所以BD =ππcos cos()cos cos sin sin 4410ABD BDC BAC BAC BAC ∠=∠-∠=∠+∠=.6、【2018年高考浙江卷】在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =b =2,A =60°,则sin B =___________,c =___________.【答案】7,3【解析】由正弦定理得sinsin a A b B =,所以πsin sin 3B ==由余弦定理得22222cos ,742,3a b c bc A c c c =+-∴=+-∴=(负值舍去).7、(2020届山东省枣庄市高三上学期统考)ABC ∆的内角A ,B ,C 的对边分别为,,a b c ,已知()2cos cos 0a c B b A ++=.(I )求B ;(II )若3,b ABC =∆的周长为3ABC +∆的面积. 【解析】 (Ⅱ)()2cos cos 0a c B b A ++=,()sin 2sin cos sin cos 0A C B B A ∴++=,()sin cos sin cos 2sin cos 0A B B A C B ++=,()sin 2cos sin 0A B B C ++=, ()sin sin A B C +=.1cos 2B ∴=-,20,3B B ππ<<∴=.(Ⅱ)由余弦定理得221922a c ac ⎛⎫=+-⨯-⎪⎝⎭, ()2229,9a c ac a c ac ++=∴+-=,33,a b c b a c ++=+=∴+= 3ac ∴=,11sin 322ABCSac B ∴==⨯=. 8、(2020届山东省潍坊市高三上期中)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知10a b +=,5c =,sin 2sin 0B B +=.(1)求a ,b 的值: (2)求sin C 的值. 【解析】(1)由sin 2sin 0B B +=,得2sin cos sin 0B B B +=, 因为在ABC ∆中,sin 0B ≠,得1cos 2B =-, 由余弦定理2222cos b a c ac B =+-,得22215252b a a ⎛⎫=+-⨯⨯⨯-⎪⎝⎭, 因为10b a =-,所以2221(10)5252a a a ⎛⎫-=+-⨯⨯⨯- ⎪⎝⎭, 解得3a =,所以7b =.(2)由1cos 2B =-,得sin 2B =由正弦定理得5sin sin 7c C B b ===9、【2020年新高考全国Ⅱ卷】在①ac =sin 3c A =,③c =这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在ABC △,它的内角,,A B C 的对边分别为,,a b c ,且sin A B =,6C π=,________? 注:如果选择多个条件分别解答,按第一个解答计分. 【解析】方案一:选条件①.由6C π=和余弦定理得2222a b c ab +-=.由sin A B =及正弦定理得a .222=b c =.由①ac =1a b c ==.因此,选条件①时问题中的三角形存在,此时1c =. 方案二:选条件②.由6C π=和余弦定理得2222a b c ab +-=.由sin A B =及正弦定理得a .222=b c =,6B C π==,23A π=.由②sin 3c A =,所以6c b a ===.因此,选条件②时问题中的三角形存在,此时c = 方案三:选条件③.由6C π=和余弦定理得2222a b c ab +-=.由sin A B =及正弦定理得a .222=b c =.由③c =,与b c =矛盾.因此,选条件③时问题中的三角形不存在.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前2018年普通高等学校招生全国统一考试(浙江卷)数学本试题卷分选择题和非选择题两部分。
全卷共4页,选择题部分1至2页;非选择题部分3至4页。
满分150分。
考试用时120分钟。
考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
参考公式:若事件A,B互斥,则若事件A,B相互独立,则若事件A在一次试验中发生的概率是p,则n次独立重复试验中事件A恰好发生k次的概率台体的体积公式其中分别表示台体的上、下底面积,表示台体的高柱体的体积公式其中表示柱体的底面积,表示柱体的高锥体的体积公式其中表示锥体的底面积,表示锥体的高球的表面积公式球的体积公式其中表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知全集U={1,2,3,4,5},A={1,3},则A. B. {1,3} C. {2,4,5} D. {1,2,3,4,5}【答案】C【解析】分析:根据补集的定义可得结果.详解:因为全集,,所以根据补集的定义得,故选C.点睛:若集合的元素已知,则求集合的交集、并集、补集时,可根据交集、并集、补集的定义求解.2. 双曲线的焦点坐标是A. (−,0),(,0)B. (−2,0),(2,0)C. (0,−),(0,)D. (0,−2),(0,2)【答案】B【解析】分析:根据双曲线方程确定焦点位置,再根据求焦点坐标.详解:因为双曲线方程为,所以焦点坐标可设为,因为,所以焦点坐标为,选B.点睛:由双曲线方程可得焦点坐标为,顶点坐标为,渐近线方程为.3. 某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是A. 2B. 4C. 6D. 8【答案】C【解析】分析:先还原几何体为一直四棱柱,再根据柱体体积公式求结果.详解:根据三视图可得几何体为一个直四棱柱,高为2,底面为直角梯形,上下底分别为1,2,梯形的高为2,因此几何体的体积为选C.点睛:先由几何体的三视图还原几何体的形状,再在具体几何体中求体积或表面积等.4. 复数(i为虚数单位)的共轭复数是A. 1+iB. 1−iC. −1+iD. −1−i【答案】B【解析】分析:先分母实数化化简复数,再根据共轭复数的定义确定结果.详解:,∴共轭复数为,选B.点睛:本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如. 其次要熟悉复数的相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭复数为.5. 函数y=sin2x的图象可能是A. B.C. D.【答案】D【解析】分析:先研究函数的奇偶性,再研究函数在上的符号,即可判断选择.详解:令,因为,所以为奇函数,排除选项A,B;因为时,,所以排除选项C,选D.点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复.6. 已知平面α,直线m,n满足mα,nα,则“m∥n”是“m∥α”的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】分析:根据线面平行的判定定理得充分性成立,而必要性显然不成立.详解:因为,所以根据线面平行的判定定理得.由不能得出与内任一直线平行,所以是的充分不必要条件,故选A.点睛:充分、必要条件的三种判断方法:(1)定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.(2)等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.7. 设0<p<1,随机变量ξ的分布列是ξ0 1 2P则当p在(0,1)内增大时,A. D(ξ)减小B. D(ξ)增大C. D(ξ)先减小后增大D. D(ξ)先增大后减小【答案】D【解析】分析:先求数学期望,再求方差,最后根据方差函数确定单调性.详解:,,,∴先增后减,因此选D.点睛:8. 已知四棱锥S−ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点),设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S−AB−C的平面角为θ3,则A. θ1≤θ2≤θ3B. θ3≤θ2≤θ1C. θ1≤θ3≤θ2D. θ2≤θ3≤θ1【答案】D【解析】分析:分别作出线线角、线面角以及二面角,再构造直角三角形,根据边的大小关系确定角的大小关系.详解:设O为正方形ABCD的中心,M为AB中点,过E作BC的平行线EF,交CD于F,过O作ON垂直EF于N,连接SO,SN,OM,则SO垂直于底面ABCD,OM垂直于AB,因此从而因为,所以即,选D.点睛:线线角找平行,线面角找垂直,面面角找垂面.9. 已知a,b,e是平面向量,e是单位向量.若非零向量a与e的夹角为,向量b满足b2−4e·b+3=0,则|a−b|的最小值是A. −1B. +1C. 2D. 2−【答案】A【解析】分析:先确定向量所表示的点的轨迹,一个为直线,一个为圆,再根据直线与圆的位置关系求最小值.详解:设,则由得,由得因此的最小值为圆心到直线的距离减去半径1,为选A.点睛:以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程、解不等式、求函数值域或直线与曲线的位置关系,是解决这类问题的一般方法.10. 已知成等比数列,且.若,则A. B. C. D.【答案】B【解析】分析:先证不等式,再确定公比的取值范围,进而作出判断.详解:令则,令得,所以当时,,当时,,因此,若公比,则,不合题意;若公比,则但,即,不合题意;因此,,选B.点睛:构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
11. 我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一。
凡百钱,买鸡百只,问鸡翁、母、雏各几何?”设鸡翁,鸡母,鸡雏个数分别为,,,则当时,___________,___________.【答案】(1). 8(2). 11【解析】分析:将z代入解方程组可得x,y值.详解:点睛:实际问题数学化,利用所学的知识将陌生的性质转化为我们熟悉的性质,是解决这类问题的突破口.12. 若满足约束条件则的最小值是___________,最大值是___________.【答案】(1). -2(2). 8【解析】分析:先作可行域,再平移目标函数对应的直线,从而确定最值.详解:作可行域,如图中阴影部分所示,则直线过点A(2,2)时取最大值8,过点B(4,-2)时取最小值-2.点睛:线性规划的实质是把代数问题几何化,即用数形结合的思想解题.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界处取得.13. 在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=2,A=60°,则sinB=___________,c=___________.【答案】(1). (2). 3【解析】分析:根据正弦定理得sin B,根据余弦定理解出c.详解:由正弦定理得,所以由余弦定理得(负值舍去).点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化为边和角之间的关系,从而达到解决问题的目的.14. 二项式的展开式的常数项是___________.【答案】7【解析】分析:先根据二项式展开式的通项公式写出第r+1项,再根据项的次数为零解得r,代入即得结果. 详解:二项式的展开式的通项公式为,令得,故所求的常数项为点睛:求二项展开式有关问题的常见类型及解题策略:(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数的值,再由通项写出第项,由特定项得出值,最后求出特定项的系数.15. 已知λ∈R,函数f(x)=,当λ=2时,不等式f(x)<0的解集是___________.若函数f(x)恰有2个零点,则λ的取值范围是___________.【答案】(1). (1,4)(2).【解析】分析:根据分段函数,转化为两个不等式组,分别求解,最后求并集.先讨论一次函数零点的取法,再对应确定二次函数零点的取法,即得参数的取值范围.详解:由题意得或,所以或,即,不等式f(x)<0的解集是点睛:已知函数有零点求参数取值范围常用的方法和思路:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.16. 从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成___________个没有重复数字的四位数.(用数字作答)【答案】1260【解析】分析:按是否取零分类讨论,若取零,则先排首位,最后根据分类与分步计数原理计数.详解:若不取零,则排列数为若取零,则排列数为因此一共有个没有重复数字的四位数.点睛:求解排列、组合问题常用的解题方法:(1)元素相邻的排列问题——“捆邦法”;(2)元素相间的排列问题——“插空法”;(3)元素有顺序限制的排列问题——“除序法”;(4)带有“含”与“不含”“至多”“至少”的排列组合问题——间接法.17. 已知点P(0,1),椭圆+y2=m(m>1)上两点A,B满足=2,则当m=___________时,点B横坐标的绝对值最大.【答案】5【解析】分析:先根据条件得到A,B坐标间的关系,代入椭圆方程解得B的纵坐标,即得B的横坐标关于m 的函数关系,最后根据二次函数性质确定最值取法.详解:设,由得因为A,B在椭圆上,所以,与对应相减得,当且仅当时取最大值.点睛:解析几何中的最值是高考的热点,在圆锥曲线的综合问题中经常出现,求解此类问题的一般思路为在深刻认识运动变化的过程之中,抓住函数关系,将目标量表示为一个(或者多个)变量的函数,然后借助于函数最值的探求来使问题得以解决.三、解答题:本大题共5小题,共74分。