高等数学定积分提高习题

合集下载

定积分练习题

定积分练习题

定积分练习题定积分练习题在微积分学习中,定积分是一个重要的概念和工具。

它不仅可以用来计算曲线下的面积,还可以解决各种实际问题。

为了更好地理解和应用定积分,下面将给出一些练习题,通过解题的过程来加深对定积分的理解。

1. 计算定积分∫[0, 2] x^2 dx。

解析:根据定积分的定义,我们可以将曲线y = x^2与x轴所围成的面积表示为∫[0, 2] x^2 dx。

为了计算这个积分,我们可以使用定积分的基本性质,即将曲线下的面积分成若干个小矩形,然后将这些矩形的面积相加。

将区间[0, 2]均匀分成n个小区间,每个小区间的长度为Δx = (2-0)/n = 2/n。

在每个小区间中,选择一个任意点xi,然后计算该点处的函数值f(xi) = (xi)^2。

然后将每个小矩形的面积f(xi)Δx相加,即可得到曲线下的面积。

当n趋向于无穷大时,这个和式就可以表示为定积分∫[0, 2] x^2 dx。

通过计算这个和式,我们可以得到∫[0, 2] x^2 dx = 8/3。

2. 计算定积分∫[1, 3] (2x+1) dx。

解析:这个定积分的计算与上一个例子类似。

我们可以将曲线y = 2x+1与x轴所围成的面积表示为∫[1, 3] (2x+1) dx。

同样地,我们可以将区间[1, 3]均匀分成n个小区间,每个小区间的长度为Δx = (3-1)/n = 2/n。

在每个小区间中,选择一个任意点xi,然后计算该点处的函数值f(xi) = 2xi+1。

然后将每个小矩形的面积f(xi)Δx相加,即可得到曲线下的面积。

当n趋向于无穷大时,这个和式就可以表示为定积分∫[1, 3] (2x+1) dx。

通过计算这个和式,我们可以得到∫[1, 3] (2x+1) dx = 12。

3. 计算定积分∫[0, π/2] sin(x) dx。

解析:这个定积分的计算稍微复杂一些,因为它涉及到三角函数。

我们可以将曲线y = sin(x)与x轴所围成的面积表示为∫[0, π/2] sin(x) dx。

定积分练习题+答案

定积分练习题+答案

x
arctan(cos x) 2
04
27
8.
1 x5e x2 dx =
1
答案: 0 .
由于被积函数是奇函数.
9.设 f ( x) 是连续奇函数,且
1 f ( x)dx 1,则
0
f ( x)dx =
0
1
答案: 1
1
0
因为 f ( x) 是连续奇函数, 则 f ( x)dx f ( x)dx 0
ln(1 t)dt
9. lim 0
=(
x0 1 cos x
(A) 1
(B) 2
).
(C ) 4
(D) 8
答案: C.
sin2 x
因为 lim 0 ln(1 t)dt lim ln(1 sin2x) 2cos 2x
x 0 1 cos x
x 0
sin x
lim 2cos 2x lim ln(1 sin2x) sin2x
x 0
x 0 sin2x
sin x
2 lim sin2x 2sin x cos x 4
x 0 sin2x
sin x
18
10.设 F( x)
x 0
1 1 t2
dt
1 x 0
1 1 t2
dt
,则Biblioteka ().( A ) F(x) 0
( B ) F(x)
2
( C ) F( x) arctan x ( D ) F( x) 2arctan x
0
0
(C ) 0
( D ) 以上都不正确
二、填空题
1. lim 1 xndx = n 0
b
a
2. f ( x)dx f ( x)dx =

定积分典型例题及习题答案

定积分典型例题及习题答案

04 定积分习题答案及解析
习题一答案及解析
要点一
答案
$frac{1}{2}$
要点二
解析
根据定积分的几何意义,该积分表示一个半圆的面积,半径 为1,因此结果为半圆的面积,即$frac{1}{2}$。
习题二答案及解析
答案:$0$
解析:由于函数$f(x) = x$在区间$[-1, 1]$上为奇函数,根据定积分的性质,奇函数在对称区间上的积 分为0。
定积分的分部积分法
总结词
分Hale Waihona Puke 积分法是一种通过将两个函数的乘积进行求导来计算定积分的方法。
详细描述
分部积分法是通过将两个函数的乘积进行求导来找到一个函数的定积分。具体来说,对于两 个函数u(x)和v'(x),其乘积的导数为u'v+uv',其中u'表示u对x的导数。分部积分法可以表示 为∫bau(x)v'(x)dx=∫bau'(x)v(x)dx+∫bau(x)v(x)dx,其中u'(x)和u(x)分别是u对x的导数和函
定积分典型例题及习题答案
目录
• 定积分的基本概念 • 定积分的计算方法 • 定积分典型例题解析 • 定积分习题答案及解析
01 定积分的基本概念
定积分的定义
总结词
定积分的定义是通过对函数进行分割、 近似、求和、取极限等步骤来得到的。
详细描述
定积分定义为对于一个给定的函数f(x),选择一 个区间[a,b],并将其分割为n个小区间,在每 个小区间上选择一个代表点,并求出函数在这 些点的近似值,然后将这些近似值进行求和, 最后取这个和的极限。
数值。通过分部积分法,可以将复杂的定积分转换为更简单的形式进行计算。

定积分练习题

定积分练习题

定积分练习题一、基本概念题1. 计算定积分 $\int_{0}^{1} (3x^2 + 4) \, dx$。

2. 计算定积分 $\int_{1}^{2} (x^3 2x) \, dx$。

3. 设函数 $f(x) = x^2 3x + 2$,求 $\int_{1}^{3} f(x) \,dx$。

4. 已知函数 $g(x) = \sqrt{1 x^2}$,求 $\int_{1}^{1} g(x) \, dx$。

5. 计算 $\int_{0}^{\pi} \sin x \, dx$。

二、定积分的性质题6. 利用定积分的性质,计算 $\int_{0}^{2} (3x^2 + 4x) \,dx$。

7. 已知 $\int_{0}^{1} f(x) \, dx = 2$,求 $\int_{1}^{2}f(x) \, dx$。

8. 设 $f(x)$ 是奇函数,证明 $\int_{a}^{a} f(x) \, dx = 0$。

9. 已知 $\int_{0}^{1} (f(x) + g(x)) \, dx = 5$,$\int_{0}^{1} (f(x) g(x)) \, dx = 3$,求 $\int_{0}^{1} f(x) \, dx$ 和 $\int_{0}^{1} g(x) \, dx$。

三、定积分的计算题10. 计算 $\int_{0}^{\pi} x \cos x \, dx$。

11. 计算 $\int_{0}^{\frac{\pi}{2}} \ln(\sin x) \, dx$。

12. 计算 $\int_{1}^{e} \frac{1}{x} \, dx$。

13. 计算 $\int_{0}^{1} \frac{1}{\sqrt{1 x^2}} \, dx$。

14. 计算 $\int_{0}^{2} |x 1| \, dx$。

四、定积分的应用题15. 计算由曲线 $y = x^2$,直线 $x = 2$ 和 $y = 0$ 所围成的图形的面积。

定积分练习题

定积分练习题

定积分练习题(总14页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--题型1.定积分与极限的计算2.计算下列定积分3.计算下列广义积分内容一.定积分的概念与性质1.定积分的定义2.定积分的性质3.变上限函数及其导数4.牛顿—莱布尼茨公式5.换元积分公式与分部积分公式6.广义积分题型题型I 利用定积分定义求极限题型II比较定积分的大小题型III利用积分估值定理解题题型IV 关于积分上限函数以及牛顿—莱布尼茨公式问题 题型V 定积分的计算 题型VI 积分等式证明 题型VII 积分不等式证明 题型VIII 广义积分的计算自测题五1.根据极限计算定积分2.根据定积分求导3.求极限4.求下列定积分5.证明题4月21日定积分练习题基础题:一.选择题、填空题1.将和式的极限)0(.......321lim 1>+++++∞→p nn P pp p p n 表示成定积分 ( )A .dx x⎰101B .dx x p⎰1C .dx xp ⎰10)1(D .dx nxp ⎰10)(2.将和式)21.........2111(lim nn n n +++++∞→表示为定积分 . 3.下列等于1的积分是( )A .dx x ⎰1B .dx x ⎰+10)1(C .dx ⎰11D .dx ⎰10214.dx x |4|102⎰-= ( )A .321B .322C .323D .325 5.曲线]23,0[,cos π∈=x x y 与坐标周围成的面积( )A .4B .2C .25D .3 6.dx e e x x ⎰-+1)(=( )A .ee 1+B .2eC .e2D .ee 1-7.若10xm e dx =⎰,11e n dx x=⎰,则m 与n 的大小关系是( ) A .m n >B .m n <C .m n =D .无法确定8. 按万有引力定律,两质点间的吸引力221rm m kF =,k 为常数,21,m m 为两质点的质量,r 为两点间距离,若两质点起始距离为a ,质点1m 沿直线移动至离2m 的距离为b 处,试求所作之功(b >a ) .9.由曲线21y x =-和x 轴围成图形的面积等于S .给出下列结果: ①121(1)x dx --⎰;②121(1)x dx --⎰;③122(1)x dx -⎰;④0212(1)x dx --⎰.则S 等于( ) A .①③B .③④C .②③D .②④10.0(sin cos sin )x y t t t dt =+⎰,则y 的最大值是( ) A .1B .2C .72-D .011. 若()f x 是一次函数,且1()5f x dx =⎰,1017()6xf x dx =⎰,那么21()f x dx x⎰的值是 .12.⎪⎪⎩⎪⎪⎨⎧=≠⎰=0,0,)()(2x cx x dt t tf x F x,其中)(x f 在0=x 处连续,且0)0(=f 若)(x F 在 0=x 处连续,则=c ( )。

(完整word版)定积分典型例题20例答案

(完整word版)定积分典型例题20例答案

定积分典型例题20例答案例1 求33322321lim(2)n n n n n →∞+++.分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限.解 将区间[0,1]n 等分,则每个小区间长为1i x n ∆=,然后把2111n n n=⋅的一个因子1n 乘入和式中各项.于是将所求极限转化为求定积分.即33322321lim(2)n n n n n →∞+++=333112lim ()n n n n nn →∞+++=13034xdx =⎰.例2 2202x x dx -⎰=_________.解法1 由定积分的几何意义知,2202x x dx -⎰等于上半圆周22(1)1x y -+= (0y ≥)与x 轴所围成的图形的面积.故2202x x dx -⎰=2π. 解法2 本题也可直接用换元法求解.令1x -=sin t (22t ππ-≤≤),则222x x dx -⎰=2221sin cos t tdt ππ--⎰=2221sin cos t tdt π-⎰=2202cos tdt π⎰=2π 例3 (1)若22()x t xf x e dt -=⎰,则()f x '=___;(2)若0()()xf x xf t dt =⎰,求()f x '=___.分析 这是求变限函数导数的问题,利用下面的公式即可()()()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-⎰.解 (1)()f x '=422x x xe e ---;(2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()xf x x f t dt =⎰,则可得()f x '=0()()xf t dt xf x +⎰.例4 设()f x 连续,且31()x f t dt x -=⎰,则(26)f =_________.解 对等式310()x f t dt x -=⎰两边关于x 求导得32(1)31f x x -⋅=,故321(1)3f x x -=,令3126x -=得3x =,所以1(26)27f =. 例5 函数11()(3)(0)x F x dt x t =->⎰的单调递减开区间为_________.解 1()3F x x'=-,令()0F x '<得13x >,解之得109x <<,即1(0,)9为所求. 例6 求0()(1)arctan xf x t tdt =-⎰的极值点.解 由题意先求驻点.于是()f x '=(1)arctan x x -.令()f x '=0,得1x =,0x =.列表如下:故1x =为()f x 的极大值点,0x =为极小值点.例7 已知两曲线()y f x =与()y g x =在点(0,0)处的切线相同,其中2arcsin 0()xt g x e dt -=⎰,[1,1]x ∈-,试求该切线的方程并求极限3lim ()n nf n→∞.分析 两曲线()y f x =与()y g x =在点(0,0)处的切线相同,隐含条件(0)(0)f g =,(0)(0)f g ''=.解 由已知条件得2(0)(0)0t f g e dt -===⎰,且由两曲线在(0,0)处切线斜率相同知2(arcsin )2(0)(0)11x x e f g x -=''===-.故所求切线方程为y x =.而3()(0)3lim ()lim33(0)330n n f f n nf f n n→∞→∞-'=⋅==-. 例8 求 22000sin lim(sin )x x xtdtt t t dt→-⎰⎰;分析 该极限属于型未定式,可用洛必达法则. 解 22000sin lim (sin )x x xtdtt t t dt→-⎰⎰=2202(sin )lim (1)(sin )x x x x x x →-⋅⋅-=220()(2)lim sin x x x x →-⋅-=304(2)lim 1cos x x x→-⋅-x(,0)-∞0 (0,1)1 (1,)+∞()f x '-+-=2012(2)lim sin x x x→-⋅=0.注 此处利用等价无穷小替换和多次应用洛必达法则.例9 试求正数a 与b ,使等式2201lim1sin x x t dt x b x a t→=-+⎰成立. 分析 易见该极限属于型的未定式,可用洛必达法则. 解 20201lim sin x x t dt x b x a t →-+⎰=220lim 1cos x x a x b x →+-=22001lim lim 1cos x x x b x a x→→⋅-+201lim 11cos x x b x a →==-,由此可知必有0lim(1cos )0x b x →-=,得1b =.又由2012lim 11cos x x x a a→==-, 得4a =.即4a =,1b =为所求. 例10 设sin 20()sin x f x t dt =⎰,34()g x x x =+,则当0x →时,()f x 是()g x 的( ).A .等价无穷小.B .同阶但非等价的无穷小.C .高阶无穷小.D .低阶无穷小.解法1 由于 22300()sin(sin )cos lim lim()34x x f x x xg x x x →→⋅=+ 2200cos sin(sin )lim lim34x x x x x x →→=⋅+ 22011lim 33x x x →==. 故()f x 是()g x 同阶但非等价的无穷小.选B .解法2 将2sin t 展成t 的幂级数,再逐项积分,得到sin 223370111()[()]sin sin 3!342x f x t t dt x x =-+=-+⎰,则344340001111sin (sin )sin ()1342342lim lim lim ()13x x x x x x f x g x x x x→→→-+-+===++. 例11 计算21||x dx -⎰.分析 被积函数含有绝对值符号,应先去掉绝对值符号然后再积分.解 21||x dx -⎰=0210()x dx xdx --+⎰⎰=220210[][]22x x --+=52.注 在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如 33222111[]6dx x x --=-=⎰,则是错误的.错误的原因则是由于被积函数21x 在0x =处间断且在被积区间内无界.例12 设()f x 是连续函数,且10()3()f x x f t dt =+⎰,则()________f x =.分析 本题只需要注意到定积分()baf x dx ⎰是常数(,a b 为常数).解 因()f x 连续,()f x 必可积,从而10()f t dt ⎰是常数,记1()f t dt a =⎰,则()3f x x a =+,且11(3)()x a dx f t dt a +==⎰⎰.所以2101[3]2x ax a+=,即132a a +=, 从而14a =-,所以 3()4f x x =-.例13 计算2112211x x dx x-++-⎰.分析 由于积分区间关于原点对称,因此首先应考虑被积函数的奇偶性. 解 2112211x x dx x-++-⎰=211112221111x x dx dx x x--++-+-⎰⎰.由于22211x x+-是偶函数,而211x x+-是奇函数,有112011xdx x-=+-⎰, 于是2112211x x dx x -++-⎰=2102411x dx x +-⎰=22120(11)4x x dx x--⎰=11200441dx x dx --⎰⎰ 由定积分的几何意义可知12014x dx π-=⎰, 故211122444411x x dx dx xππ-+=-⋅=-+-⎰⎰.例14 计算220()xd tf x t dt dx -⎰,其中()f x 连续. 分析 要求积分上限函数的导数,但被积函数中含有x ,因此不能直接求导,必须先换元使被积函数中不含x ,然后再求导.解 由于220()xtf x t dt -⎰=2221()2x f x t dt-⎰. 故令22x t u -=,当0t =时2u x =;当t x =时0u =,而2dt du =-,所以220()x tf x t dt -⎰=201()()2x f u du -⎰=201()2x f u du ⎰, 故220()x d tf x t dt dx -⎰=201[()]2x d f u du dx ⎰=21()22f x x⋅=2()xf x .错误解答220()x d tf x t dt dx -⎰22()(0)xf x x xf =-=. 错解分析 这里错误地使用了变限函数的求导公式,公式()()()xad x f t dt f x dx 'Φ==⎰中要求被积函数()f t 中不含有变限函数的自变量x ,而22()f x t -含有x ,因此不能直接求导,而应先换元.例15 计算30sin x xdx π⎰.分析 被积函数中出现幂函数与三角函数乘积的情形,通常采用分部积分法.解30s i n x x d x π⎰30(c o s )x d x π=-⎰33[(c o s )](c o s )x x x d x ππ=⋅---⎰ 30cos 6xdx ππ=-+⎰326π=-. 例16 计算120ln(1)(3)x dx x +-⎰.分析 被积函数中出现对数函数的情形,可考虑采用分部积分法.解 120ln(1)(3)x dx x +-⎰=101ln(1)()3x d x +-⎰=1100111[ln(1)]3(3)(1)x dx x x x +-⋅--+⎰ =101111ln 2()2413dx x x-++-⎰11ln 2ln324=-. 例17 计算20sin x e xdx π⎰.分析 被积函数中出现指数函数与三角函数乘积的情形通常要多次利用分部积分法.解 由于2sin xe xdx π⎰20sin xxde π=⎰220[sin ]cos xx e x e xdx ππ=-⎰220cos x e e xdx ππ=-⎰, (1)而20cos xe xdx π⎰20cos xxde π=⎰220[cos ](sin )xx e x e x dx ππ=-⋅-⎰20sin 1x e xdx π=-⎰, (2)将(2)式代入(1)式可得20sin xe xdx π⎰220[sin 1]x e e xdx ππ=--⎰,故20sin xe xdx π⎰21(1)2e π=+.例18 计算1arcsin x xdx ⎰.分析 被积函数中出现反三角函数与幂函数乘积的情形,通常用分部积分法.解 10arcsin x xdx ⎰210arcsin ()2x xd =⎰221100[arcsin ](arcsin )22x x x d x =⋅-⎰21021421x dx x π=--⎰. (1) 令sin x t =,则2121x dx x-⎰222sin sin 1sin td t tπ=-⎰220sin cos cos ttdt t π=⋅⎰220sin tdt π=⎰201cos22t dt π-==⎰20sin 2[]24t t π-4π=. (2)将(2)式代入(1)式中得1arcsin x xdx =⎰8π. 例19设()f x [0,]π上具有二阶连续导数,()3f π'=且0[()()]cos 2f x f x xdx π''+=⎰,求(0)f '.分析 被积函数中含有抽象函数的导数形式,可考虑用分部积分法求解. 解 由于0[()()]cos f x f x xdx π''+⎰00()sin cos ()f x d x xdf x ππ'=+⎰⎰[]000{()sin ()sin }{[()cos ]()sin }f x x f x xdx f x x f x xdx ππππ'''=-++⎰⎰()(0)2f f π''=--=.故 (0)f '=2()235f π'--=--=-. 例20 计算243dxx x +∞++⎰. 分析 该积分是无穷限的的反常积分,用定义来计算. 解2043dx x x +∞++⎰=20lim 43t t dx x x →+∞++⎰=0111lim ()213t t dx x x →+∞-++⎰ =011lim [ln ]23t t x x →+∞++=111lim (ln ln )233t t t →+∞+-+ =ln 32.。

(完整版)定积分练习题

(完整版)定积分练习题

一、选择题1. 设连续函数f (x )>0,则当a <b 时,定积分⎠⎛a bf (x )d x 的符号( ) A .一定是正的 B .一定是负的C .当0<a <b 时是正的,当a <b <0时是负的D .以上结论都不对解析: 由⎠⎛a bf (x )d x 的几何意义及f (x )>0,可知⎠⎛a b f (x )d x 表示x =a ,x =b ,y =0与y =f (x )围成的曲边梯形的面积.∴⎠⎛ab f (x )d x >0.答案:A 2. 若22223,,sin a x dx b x dx c xdx ===⎰⎰⎰,则a ,b ,c 的大小关系是( )A .a <c <bB .a <b <cC .c <b <aD .c <a <b解析:a =13x 3 |20=83,b =14x 4 |20=4,c =-cos x |20=1-cos2,∴c <a <b . 答案:D3. 求曲线y =x 2与y =x 所围成图形的面积,其中正确的是( )A .S =⎠⎛01(x 2-x )d xB .S =⎠⎛01(x -x 2)d xC .S =⎠⎛01(y 2-y )d yD .S =⎠⎛01(y -y )d y[答案] B[解析] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x ≥x 2,故函数y =x 2与y =x 所围成图形的面积S =⎠⎛01(x -x 2)d x .4.11(sin 1)x dx -+⎰的值为( )A. 2B.0C.22cos1+D. 22cos1- 【答案】A 【解析】[][]1111(sin 1)cos (cos11)cos(1)12x dx x x --+=-+=-+----=⎰5. 由曲线22y x x =+与直线y x =所围成的封闭图形的面积为 ( )A .16B .13C .56D .23【答案】 A由22,x x x +=解得两个交点坐标为(-1,0)和(0,0), 利用微积分的几何含义可得封闭图形的面积为:23201111111((2)()|().32326S x x x dx x x --=-+=--=--=⎰ 二、填空题6. 已知f (x )=⎠⎛0x(2t -4)d t ,则当x ∈[-1,3]时,f (x )的最小值为________.解析: f (x )=⎠⎛0x(2t -4)d t =(t 2-4t )| x 0=x 2-4x =(x -2)2-4(-1≤x ≤3),∴当x =2时,f (x )min =-4.答案: -47. 一物体以v (t )=t 2-3t +8(m/s)的速度运动,在前30 s 内的平均速度为________. 解析:由定积分的物理意义有:s =3020(38)t t dt -+⎰=(13t 3-32t 2+8t )|300=7890(m).∴v =s t =789030=263(m/s).答案:263 m/s 三、解答题8.求下列定积分:(1)⎠⎛12⎝⎛⎭⎫x -x 2+1x d x ;(2)(cos e )d x x x π-⎰+;(3)⎠⎛49x (1+x )d x ;(4)⎠⎛0πcos 2x 2d x .解析: (1)⎠⎛12⎝⎛⎭⎫x -x 2+1x d x =⎠⎛12x d x -⎠⎛12x 2d x +⎠⎛121x d x =x 22| 21-x 33| 21+ln x |21=32-73+ln 2=ln 2-56. (2)(cos e )d x x x π-⎰+=00cosxd e d x x x ππ--+⎰⎰=sin x ||0-π+e x 0-π=1-1eπ. (3)⎠⎛49x (1+x )d x =⎠⎛49(x 12+x )d x =⎪⎪⎝⎛⎭⎫23x 32+12x 249=23×932-23×432+12×92-12×42=4516. (4)⎠⎛πcos 2x 2d x =⎠⎛0π1+cos x 2d x =12x |0π+12sin x |0π=π2.9. 已知函数f (x )=x 3+ax 2+bx +c 的图象如图:直线y =0在原点处与函数图象相切,且此切线与函数图象所围成的区域(阴影)面积为274,求f (x ).解:由f (0)=0得c =0, f ′(x )=3x 2+2ax +b . 由f ′(0)=0得b =0, ∴f (x )=x 3+ax 2=x 2(x +a ),由∫-a 0[-f (x )]d x =274得a =-3. ∴f (x )=x 3-3x 2.10.已知f (x )为二次函数,且f (-1)=2,f ′(0)=0,⎠⎛01f (x )d x =-2. (1)求f (x )的解析式;(2)求f (x )在[-1,1]上的最大值与最小值. 解析: (1)设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b .由f (-1)=2,f ′(0)=0,得⎩⎪⎨⎪⎧ a -b +c =2b =0,即⎩⎪⎨⎪⎧c =2-ab =0.∴f (x )=ax 2+(2-a ).又⎠⎛01f (x )d x =⎠⎛01[ax 2+(2-a )]d x=⎣⎡⎦⎤13ax 3+(2-a )x | 10=2-23a =-2, ∴a =6,∴c =-4. 从而f (x )=6x 2-4.(2)∵f (x )=6x 2-4,x ∈[-1,1], 所以当x =0时,f (x )min =-4; 当x =±1时,f (x )max =2.B 卷:5+2+2一、选择题1. 已知f (x )为偶函数且61(),2f x dx =⎰则66()f x dx -⎰等于( )A .2B .4C .1D .-1解析:∵f (x )为偶函数,∴661()(),2f x dx f x dx -==⎰⎰∴6660()2() 1.f x dx f x dx -==⎰⎰答案:C2. (改编题)A . 3 B. 4 C. 3.5 D. 4.5 【答案】C【解析】2220202101102,0()2,()(2)(2)(2)|(2)|2,02232 3.5.2x x x x f x x f x dx x dx x dx x x x x ----≥⎧=-=∴=++-=++-⎨+<⎩=+=⎰⎰⎰3. 已知函数y =x 2与y =kx (k >0)的图象所围成的阴影部分的面积为92,则k 等于( )A .2B .1C .3D .4答案:C解析:由⎩⎪⎨⎪⎧y =x2y =kx 消去y 得x 2-kx =0,所以x =0或x =k ,则阴影部分的面积为 ∫k 0(kx -x 2)d x =(12kx 2-13x 3) |k 0=92. 即12k 3-13k 3=92,解得k =3. 4. 一物体在力F (x )=⎩⎪⎨⎪⎧10 (0≤x ≤2)3x +4 (x >2)(单位:N)的作用下沿与力F 相同的方向,从x=0处运动到x =4(单位:m)处,则力F (x )作的功为( )A .44B .46C .48D .50解析: W =⎠⎛04F (x )d x =⎠⎛0210d x +⎠⎛24(3x +4)d x =10x | 20+⎝⎛⎭⎫32x 2+4x | 42=46.答案:B5. 函数()x f 满足()00=f ,其导函数()x f '的图象如下图,则()x f 的图象与x 轴所围成的A .31 B .34 C .2 D .38 【答案】B【解析】由导函数()x f '的图像可知,函数()x f 为二次函数,且对称轴为1,x =-开口方向向上,设函数2()(0),(0)0,0.()2,f x ax bx c a f c f x ax b '=++>=∴==+因过点(-1,0)与(0,2),则有2(1)0,202,1, 2.a b a b a b ⨯-+=⨯+=∴==2()2f x x x ∴=+, 则()x f 的图象与x 轴所围成的封闭图形的面积为232032-22114(2)()|=2)(2).333S x x dx x x -=--=--⨯+-=⎰(- 二、填空题6.(改编题)设20lg ,0(),3,0ax x f x x t dt x >⎧⎪=⎨+≤⎪⎩⎰若((1))1,f f =则a 为 。

(完整版)定积分习题及答案

(完整版)定积分习题及答案

第五章定积分(A 层次)1.203cos sin xdx x ;2.a dx x ax222;3.31221xxdx ;4.1145x xdx ;5.411xdx ;6.14311xdx ;7.21ln 1e xx dx ;8.02222xxdx ;9.dx x 02cos 1;10.dx x x sin 4;11.dx x 224cos 4;12.55242312sin dx xxx x ;13.342sin dx xx ;14.41ln dx xx ;15.1xarctgxdx ;16.202cosxdx e x ;17.dx x x 02sin ;18.dx x e 1ln sin ;19.243cos cos dx x x ;20.40sin 1sin dx x x ;21.dx xxx 02cos 1sin ;22.2111lndx xx x ;23.dx xx 4211;24.20sin ln xdx ;25.211dx xxdx0。

(B 层次)1.求由0cos 0x y ttdtdte 所决定的隐函数y 对x 的导数dxdy 。

2.当x 为何值时,函数x tdt tex I 02有极值?3.x xdt t dxd cos sin 2cos 。

4.设1,211,12xx x x xf ,求20dx x f 。

5.1lim22xdtarctgt xx 。

6.设其它,00,sin 21xx xf ,求x dt t f x。

7.设时当时当0,110,11xex xxf x,求201dx xf 。

8.2221limnn nnn。

9.求nk nknknnen e 12lim 。

10.设x f 是连续函数,且12dt t f x x f ,求x f 。

11.若2ln 261xtedt ,求x 。

12.证明:212121222dxeex。

13.已知axxx dx ex axa x 224lim,求常数a 。

定积分典型例题20例答案

定积分典型例题20例答案

定积分典型例题20例答案例1 求3321lim)n n n →∞+.分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限.解 将区间[0,1]n 等分,则每个小区间长为1i x n ∆=,然后把2111n n n=⋅的一个因子1n 乘入和式中各项.于是将所求极限转化为求定积分.即3321lim)n n n →∞+=31lim )n n n n →∞+=34=⎰.例2 0⎰=_________.解法1 由定积分的几何意义知,0⎰等于上半圆周22(1)1x y -+= (0y ≥)与x 轴所围成的图形的面积.故0⎰=2π. 解法2 本题也可直接用换元法求解.令1x -=sin t (22t ππ-≤≤),则⎰=22tdt ππ-⎰=2tdt =2202cos tdt π⎰=2π例3 (1)若22()x t xf x e dt -=⎰,则()f x '=___;(2)若0()()xf x xf t dt =⎰,求()f x '=___.分析 这是求变限函数导数的问题,利用下面的公式即可()()()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-⎰.解 (1)()f x '=422x x xe e ---;(2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()xf x x f t dt =⎰,则可得()f x '=0()()xf t dt xf x +⎰.例4 设()f x 连续,且31()x f t dt x -=⎰,则(26)f =_________.解 对等式310()x f t dt x -=⎰两边关于x 求导得32(1)31f x x -⋅=,故321(1)3f x x -=,令3126x -=得3x =,所以1(26)27f =. 例5函数1()(3(0)x F x dt x =>⎰的单调递减开区间为_________.解()3F x '=()0F x '<3>,解之得109x <<,即1(0,)9为所求.例6 求0()(1)arctan xf x t tdt =-⎰的极值点.解 由题意先求驻点.于是()f x '=(1)arctan x x -.令()f x '=0,得1x =,0x =.列表如下:故1x =为()f x 的极大值点,0x =为极小值点.例7 已知两曲线()y f x =与()y g x =在点(0,0)处的切线相同,其中2arcsin 0()xt g x e dt -=⎰,[1,1]x ∈-,试求该切线的方程并求极限3lim ()n nf n→∞.分析 两曲线()y f x =与()y g x =在点(0,0)处的切线相同,隐含条件(0)(0)f g =,(0)(0)f g ''=.解 由已知条件得2(0)(0)0t f g e dt -===⎰,且由两曲线在(0,0)处切线斜率相同知(0)(0)1f g =''===.故所求切线方程为y x =.而3()(0)3lim ()lim33(0)330n n f f n nf f n n→∞→∞-'=⋅==-. 例8 求 22000sin lim(sin )x x xtdtt t t dt→-⎰⎰;分析 该极限属于型未定式,可用洛必达法则. 解 22000sin lim (sin )x x xtdtt t t dt→-⎰⎰=2202(sin )lim (1)(sin )x x x x x x →-⋅⋅-=220()(2)lim sin x x x x →-⋅-=304(2)lim 1cos x x x→-⋅-=2012(2)lim sin x x x→-⋅=0.注 此处利用等价无穷小替换和多次应用洛必达法则.例9 试求正数a 与b,使等式201lim1sin x x x b x →=-⎰成立. 分析 易见该极限属于型的未定式,可用洛必达法则. 解2001lim sin x x x b x →-⎰=20x →=20lim 1cos x x x b x →→-2011cos x x b x →==-,由此可知必有0lim(1cos )0x b x →-=,得1b =.又由2011cos x x x →=-, 得4a =.即4a =,1b =为所求. 例10 设sin 20()sin x f x t dt =⎰,34()g x x x =+,则当0x →时,()f x 是()g x 的( ).A .等价无穷小.B .同阶但非等价的无穷小.C .高阶无穷小.D .低阶无穷小.解法1 由于 22300()sin(sin )cos lim lim()34x x f x x xg x x x →→⋅=+ 2200cos sin(sin )lim lim34x x x x x x →→=⋅+ 22011lim 33x x x →==. 故()f x 是()g x 同阶但非等价的无穷小.选B .解法2 将2sin t 展成t 的幂级数,再逐项积分,得到sin 223370111()[()]sin sin 3!342x f x t t dt x x =-+=-+⎰,则344340001111sin (sin )sin ()1342342lim lim lim ()13x x x x x x f x g x x x x→→→-+-+===++. 例11 计算21||x dx -⎰.分析 被积函数含有绝对值符号,应先去掉绝对值符号然后再积分.解 21||x dx -⎰=0210()x dx xdx --+⎰⎰=220210[][]22x x --+=52.注 在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如33222111[]6dx x x --=-=⎰,则是错误的.错误的原因则是由于被积函数21x 在0x =处间断且在被积区间内无界.例12 设()f x 是连续函数,且10()3()f x x f t dt =+⎰,则()________f x =.分析 本题只需要注意到定积分()baf x dx ⎰是常数(,a b 为常数).解 因()f x 连续,()f x 必可积,从而10()f t dt ⎰是常数,记1()f t dt a =⎰,则()3f x x a =+,且11(3)()x a dx f t dt a +==⎰⎰.所以2101[3]2x ax a+=,即132a a +=, 从而14a =-,所以 3()4f x x =-.例13 计算21-⎰.分析 由于积分区间关于原点对称,因此首先应考虑被积函数的奇偶性. 解 21-⎰=211--+⎰⎰2是偶函数,而是奇函数,有10-=⎰, 于是21-⎰=214⎰=04⎰=1044dx -⎰⎰由定积分的几何意义可知4π=⎰, 故2114444dx ππ-=-⋅=-⎰⎰.例14 计算220()xd tf x t dt dx -⎰,其中()f x 连续. 分析 要求积分上限函数的导数,但被积函数中含有x ,因此不能直接求导,必须先换元使被积函数中不含x ,然后再求导.解 由于220()xtf x t dt -⎰=2221()2x f x t dt-⎰. 故令22x t u -=,当0t =时2u x =;当t x =时0u =,而2dt du =-,所以220()x tf x t dt -⎰=201()()2x f u du -⎰=201()2x f u du ⎰,故220()x d tf x t dt dx -⎰=201[()]2x d f u du dx ⎰=21()22f x x⋅=2()xf x .错误解答220()xd tf x t dt dx -⎰22()(0)xf x x xf =-=. 错解分析 这里错误地使用了变限函数的求导公式,公式()()()xad x f t dt f x dx 'Φ==⎰中要求被积函数()f t 中不含有变限函数的自变量x ,而22()f x t -含有x ,因此不能直接求导,而应先换元.例15 计算30sin x xdx π⎰.分析 被积函数中出现幂函数与三角函数乘积的情形,通常采用分部积分法.解30sin x xdx π⎰30(cos )xd x π=-⎰330[(cos )](cos )x x x dx ππ=⋅---⎰30cos 6xdx ππ=-+⎰6π=-. 例16 计算120ln(1)(3)x dx x +-⎰.分析 被积函数中出现对数函数的情形,可考虑采用分部积分法.解 120ln(1)(3)x dx x +-⎰=101ln(1)()3x d x +-⎰=1100111[ln(1)]3(3)(1)x dx x x x +-⋅--+⎰ =101111ln 2()2413dx x x-++-⎰11ln 2ln324=-. 例17 计算20sin x e xdx π⎰.分析 被积函数中出现指数函数与三角函数乘积的情形通常要多次利用分部积分法.解 由于2sin xe xdx π⎰20sin xxde π=⎰220[sin ]cos xx e x e xdx ππ=-⎰220cos x e e xdx ππ=-⎰, (1)而20cos xe xdx π⎰20cos xxde π=⎰220[cos ](sin )xx e x e x dx ππ=-⋅-⎰20sin 1x e xdx π=-⎰, (2)将(2)式代入(1)式可得20sin xe xdx π⎰220[sin 1]x e e xdx ππ=--⎰,故20sin xe xdx π⎰21(1)2e π=+.例18 计算1arcsin x xdx ⎰.分析 被积函数中出现反三角函数与幂函数乘积的情形,通常用分部积分法.解 10arcsin x xdx ⎰210arcsin ()2x xd =⎰221100[arcsin ](arcsin )22x x x d x =⋅-⎰21142π=-⎰. (1) 令sin x t =,则21⎰22sin t π=⎰220sin cos cos ttdt t π=⋅⎰220sin tdt π=⎰201cos22t dt π-==⎰20sin 2[]24t t π-4π=. (2)将(2)式代入(1)式中得1arcsin x xdx =⎰8π. 例19设()f x [0,]π上具有二阶连续导数,()3f π'=且0[()()]cos 2f x f x xdx π''+=⎰,求(0)f '.分析 被积函数中含有抽象函数的导数形式,可考虑用分部积分法求解. 解 由于0[()()]cos f x f x xdx π''+⎰00()sin cos ()f x d x xdf x ππ'=+⎰⎰[]000{()sin ()sin }{[()cos ]()sin }f x x f x xdx f x x f x xdx ππππ'''=-++⎰⎰()(0)2f f π''=--=.故 (0)f '=2()235f π'--=--=-. 例20 计算2043dxx x +∞++⎰.分析 该积分是无穷限的的反常积分,用定义来计算.解2043dx x x +∞++⎰=20lim 43t t dx x x →+∞++⎰=0111lim ()213t t dx x x →+∞-++⎰ =011lim [ln ]23t t x x →+∞++=111lim (ln ln )233t t t →+∞+-+ =ln 32.。

定积分习题及答案

定积分习题及答案

(A层次)1. 4.7. 兀f 。

2 s in x cos3 xdx ; r xdx -1✓5-4x ,e 2dx f 1 x ✓l +I n x ;10. f 一冗九x 4s in 汕; 冗13. f f-�dx; 4 Sill X 冗16. f 。

2产co sx dx ;冗第五章定积分2. f 。

a x 2✓a 2—x 2dx; 5.「I✓x dx +l ;8. f -o 2 x 2 + d 2xx + 2 ; 冗11. f� 冗4c os 4xdx ;14. 17. 2f14 Jn X`dx ;f 。

兀(xsinx)2dx ;冗19. f� ✓cosx-cos 3 xdx;20. f 。

4 smx dx · 1 + S lll . X , 22. 4If 0 2 xln l +x dx ; l -x25. f +00dx0 (1 + x 2 XI + xa \ (B层次)23. f +oo l +x 2 dx · -oo 1 +X 4' 心(a�o )。

3. 6.9. 厂dx1 X 飞l +x2 r dx`3 斤言-1;f。

冗✓1+ c os2xdx;3· 212 fs x sm xdx · ·-5 x 4 + 2x 2 + 1' 15. f 。

1 xa rct gxdx ; 18. {es in(lnx 雇21. 24. f 。

冗xs mx dx .1 +C OS 2X 冗f 。

2 ln sin x dx ;d y 1. 求由f 。

:e r dt+f x costd t=O所确定的隐函数对x 的导数odx 2. 当x 为何值时,函数I(x)= f x t e -t 2dt有极值?。

3.d厂cos矿t。

dx si n x(}Ix+l, x�14. 设八x )�{归,X > 1'求l。

勹(x )dx 。

2f x(a rc tg t) 2d t5. lirn 。

定积分习题及答案

定积分习题及答案

定积分习题及答案定积分习题及答案定积分是微积分中的重要概念之一,广泛应用于数学、物理、工程等领域。

掌握定积分的计算方法和应用是学习微积分的关键。

在本文中,我们将介绍一些常见的定积分习题,并给出详细的解答。

1. 计算定积分∫(0 to 1) x^2 dx。

解答:根据定积分的定义,我们可以先求出x^2的不定积分,然后再进行定积分的计算。

x^2的不定积分为(1/3)x^3,所以∫(0 to 1) x^2 dx = (1/3)x^3 |(0 to1) = (1/3)(1^3 - 0^3) = 1/3。

2. 计算定积分∫(1 to 2) (2x + 1) dx。

解答:根据定积分的性质,我们可以将定积分拆分为两个部分:∫(1 to 2) 2x dx + ∫(1 to 2) 1 dx。

第一个部分的不定积分为x^2,第二个部分的不定积分为x。

所以∫(1 to 2) (2x + 1) dx = (x^2) |(1 to 2) + (x) |(1 to 2) = (2^2 - 1^2) + (2 - 1)= 4 - 1 + 1 = 4。

3. 计算定积分∫(0 to π) sin(x) dx。

解答:sin(x)的不定积分为-cos(x),所以∫(0 to π) sin(x) dx = (-cos(x)) |(0 to π) = -cos(π) - (-cos(0)) = 1 - (-1) = 2。

4. 计算定积分∫(0 to 1) e^x dx。

解答:e^x的不定积分为e^x,所以∫(0 to 1) e^x dx = (e^x) |(0 to 1) = e^1 -e^0 = e - 1。

5. 计算定积分∫(0 to 2π) cos(x) dx。

解答:cos(x)的不定积分为sin(x),所以∫(0 to 2π) cos(x) dx = (sin(x)) |(0 to 2π)= sin(2π) - sin(0) = 0。

高等数学(同济五版)第五章 定积分 练习题册

高等数学(同济五版)第五章 定积分 练习题册

42文档来源为:从网络收集整理.word 版本可编辑.第五章 定积分第一节 定积分的概念与性质一、填空题: 在⎰+1031dx x 与⎰+141dx x 中值比较大的是 .二、选择题(单选): 1.积分中值定理⎰-=baa b f dx x f ))(()(ξ,其中:(A) ξ是[]b a ,上任一点; (B) ξ是[]b a ,上必定存在的某一点; (C) ξ是[]b a ,唯一的某点; (D) ξ是[]b a ,的中点.答:( )2.曲线xe y =与该曲线过原点的切线及y 轴所围成图形的面积值为: (A) ⎰-10)(dx ex e x ; (B)⎰-edy y y y 1)ln (ln ;(C)⎰-e xx dx xe e 1)(; (D)⎰-1)ln (ln dy y y y .答:( )第二节 微积分基本公式一、填空题: 1.=-⎰-2121211dx x.2.0)32(02=-⎰kdx xx )0(>k ,则=k .二、选择题(单选):若)(x f 为可导函数,且已知0)0(=f ,2)0(='f ,则2)(limxdt t f x x ⎰→(A)0; (B)1; (C)2; (D)不存在.答:( )三、试解下列各题:1.设⎪⎩⎪⎨⎧>≤+=1,211,1)(32x x x x x f ,求⎰20)(dx x f .43文档来源为:从网络收集整理.word 版本可编辑.2.设⎪⎩⎪⎨⎧><≤≤=ππx x x x x f ,0,00,sin 21)(,求⎰=x dt t f x 0)()(ϕ在),(∞+-∞上的表达式.四、设)(x f 在],[b a 上连续,且0)(>x f ,⎰⎰+=x axbt f dtdt t f x F )()()(.证明: (1)2)('≥x F ;(2)方程0)(=x f 在),(b a 内有且仅有一个根.第三节 定积分的换元法和分部积分法一、填空题: 1.=-⎰-212121arcsin dx xx .2.⎰-=++43432cos 1)arctan 1(ππdx x x .3.{}=⎰-222,1max dx x .4.设)(x f 是连续函数,且⎰+=1)(2)(dt t f x x f ,则=)(x f .二、选择题(单选):⎰>=aa dx x f x I 023)0()(,则I 为:(A)⎰20)(a dx x xf ;(B) ⎰adx x xf 0)(; (C) ⎰20)(21a dx x xf ; (D) ⎰a dx x xf 0)(21.答:( )三、试解下列各题: 1.⎰+21ln 1e xx dx.2.)0(0222⎰>-a a dx x a x .3.设⎩⎨⎧≥<+=-0,0,1)(2x e x x x f x ,求⎰-31)2(dx x f .五、计算下列定积分:44文档来源为:从网络收集整理.word 版本可编辑.1.⎰e xdx x 2ln .2.⎰20cos πxdx e x .六、已知1)(=πf ,)(x f 二阶连续可微.且3sin )]()([0=''+⎰πxdx x f x f ,求)0(f .第四节 反常积分一、填空题: 1.=⎰∞+12ln dx x x. 2.=-⎰121)1(arcsin dx x x x .二、选择题(单选): 1.若⎰∞+adx x f )(及⎰∞+adx x g )(均发散,则dx x g x f a⎰∞++)]()([一定:(A)收敛; (B)发散; (C)敛散性不能确定.答:( )2.若⎰∞-a dx x f )(发散,⎰∞+adx x f )(发散,则⎰∞+∞-dx x f )(一定:(A)收敛; (B)发散; (C)敛散性不能确定. 答:( )三、判别下列各反常积分的敛散性,如果收敛,则计算反常积分的值: 1.⎰-202)1(x dx.2.⎰∞++0)1(1dx xx .四、利用递推公式计算反常积分⎰∞+-=dx e x I x n n (n 为自然数).第五章自测题一、填空题(每小题5分,共20分):1.a ,b 为正常数,且1sin 1lim20=+-⎰→x x dt ta t x bx ,则=a ,=b . 2.=-⎰201dx x .45文档来源为:从网络收集整理.word 版本可编辑.3.=+⎰-ππdx xxx 21cos . 4.=⎰→xdt t x x 020cos lim.二、选择题(单选)(每小题5分,共10分): 1.⎰-x dt t dxd sin 021等于: (A) x cos ; (B) x x cos cos ; (C) x 2cos -; (D) x cos .答:( )2.设)(x f 连续,则⎰+ba dy y x f dxd )(等于: (A)⎰+'bady y x f )(;(B) )()(a x f b x f +-+;(C) )(a x f +;(D) )(b x f +.答:( )三、试解下列各题(每小题10分,共40分): 1.⎰-21224dx x x . 2.设⎪⎪⎩⎪⎪⎨⎧<+≥+=0,110,11)(x e x xx f x,求⎰-20)1(dx x f .3.设⎪⎪⎩⎪⎪⎨⎧≤≤<=πππx x x x f 2,02,cos )(,求dt t f x F ⎰-=ππ)()(在],[ππ-上的表达式.4.求位于曲线21xy =)1(≥x 的下方,x 轴上方的图形的面积. 四、试解下列各题(每小题15分,共30分): 1.设)(x f 在],[b a 上连续,证明⎰⎰-+-=badx x a b a f a b dx x f 1])([)()(.2.证明:⎰⎰-=aaadx x dx x 022)(2)(ϕϕ,其中)(u ϕ为连续函数.。

高等数学定积分提高习题

高等数学定积分提高习题

例1 求33322321lim(2)n n n n n →∞+++.分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限.解 将区间[0,1]n 等分,则每个小区间长为1i x n∆=,然后把2111n n n =⋅的一个因子1n 乘入和式中各项.于是将所求极限转化为求定积分.即33322321lim(2)n n n n n →∞+++=333112lim ()n n n n nn →∞+++=13034xdx =⎰.例2 2202x x dx -⎰=_________.解法1 由定积分的几何意义知,2202x x dx -⎰等于上半圆周22(1)1x y -+= (0y ≥)与x 轴所围成的图形的面积.故2202x x dx -⎰=2π. 解法2 本题也可直接用换元法求解.令1x -=sin t (22t ππ-≤≤),则222x x dx -⎰=2221sin cos t tdt ππ--⎰=2221sin cos t tdt π-⎰=2202cos tdt π⎰=2π 例3 比较12x e dx ⎰,212x e dx ⎰,12(1)x dx +⎰.分析 对于定积分的大小比较,可以先算出定积分的值再比较大小,而在无法求出积分值时则只能利用定积分的性质通过比较被积函数之间的大小来确定积分值的大小.解法1 在[1,2]上,有2x x e e ≤.而令()(1)x f x e x =-+,则()1x f x e '=-.当0x >时,()0f x '>,()f x 在(0,)+∞上单调递增,从而()(0)f x f >,可知在[1,2]上,有1x e x >+.又1221()()f x dx f x dx =-⎰⎰,从而有2111222(1)x x x dx e dx e dx +>>⎰⎰⎰.解法2 在[1,2]上,有2xx e e ≤.由泰勒中值定理212!xe e x x ξ=++得1x e x >+.注意到1221()()f x dx f x dx =-⎰⎰.因此2111222(1)x x x dx e dx e dx +>>⎰⎰⎰.例4 估计定积分22xxe dx -⎰的值.分析 要估计定积分的值, 关键在于确定被积函数在积分区间上的最大值与最小值. 解 设 2()xxf x e -=, 因为 2()(21)xxf x e x -'=-, 令()0f x '=,求得驻点12x =, 而0(0)1f e ==, 2(2)f e =, 141()2f e -=,故124(),[0,2]ef x e x -≤≤∈,从而21224022xxee dx e --≤≤⎰,所以21024222x xe edx e ---≤≤-⎰.例5 设()f x ,()g x 在[,]a b 上连续,且()0g x ≥,()0f x >.求lim ()()bn an g x f x dx →∞⎰.解 由于()f x 在[,]a b 上连续,则()f x 在[,]a b 上有最大值M 和最小值m .由()0f x >知0M >,0m >.又()0g x ≥,则()b nam g x dx ⎰()()b n ag x f x dx ≤⎰()bn aM g x dx ≤⎰.由于lim lim 1n n n n m M →∞→∞==,故lim ()()b n an g x f x dx →∞⎰=()bag x dx ⎰.例6求sin lim n pnn xdx x+→∞⎰, ,p n 为自然数. 分析 这类问题如果先求积分然后再求极限往往很困难,解决此类问题的常用方法是利用积分中值定理与夹逼准则.解法1 利用积分中值定理 设 sin ()xf x x=, 显然()f x 在[,]n n p +上连续, 由积分中值定理得 sin sin n p n x dx p x ξξ+=⋅⎰, [,]n n p ξ∈+,当n →∞时, ξ→∞, 而sin 1ξ≤, 故sin sin lim lim 0n pnn x dx p xξξξ+→∞→∞=⋅=⎰.解法2 利用积分不等式 因为sin sin 1ln n pn p n p nn n x x n pdx dx dx x x x n++++≤≤=⎰⎰⎰,而limln0n n pn→∞+=,所以 sin lim 0n pnn xdx x+→∞=⎰.例7 求10lim 1nn x dx x→∞+⎰.解法1 由积分中值定理()()()()bbaaf xg x dx f g x dx ξ=⎰⎰可知101nx dx x +⎰=111n x dx ξ+⎰,01ξ≤≤.又11lim lim01n n n x dx n →∞→∞==+⎰且11121ξ≤≤+, 故10lim 01n n x dx x→∞=+⎰. 解法2 因为01x ≤≤,故有01nn x x x≤≤+. 于是可得110001nn x dx x dx x ≤≤+⎰⎰.又由于110()1n x dx n n =→→∞+⎰. 因此10lim 1nn x dx x→∞+⎰=0. 例8 设函数()f x 在[0,1]上连续,在(0,1)内可导,且3414()(0)f x dx f =⎰.证明在(0,1)内存在一点c ,使()0f c '=.分析 由条件和结论容易想到应用罗尔定理,只需再找出条件()(0)f f ξ=即可. 证明 由题设()f x 在[0,1]上连续,由积分中值定理,可得3413(0)4()4()(1)()4f f x dx f f ξξ==-=⎰,其中3[,1][0,1]4ξ∈⊂.于是由罗尔定理,存在(0,)(0,1)c ξ∈⊂,使得()0f c '=.证毕.例9 (1)若22()x t xf x e dt -=⎰,则()f x '=___;(2)若0()()xf x xf t dt =⎰,求()f x '=___.分析 这是求变限函数导数的问题,利用下面的公式即可()()()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-⎰.解 (1)()f x '=422x x xe e ---;(2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()xf x x f t dt =⎰,则可得()f x '=0()()xf t dt xf x +⎰.例10 设()f x 连续,且31()x f t dt x -=⎰,则(26)f =_________.解 对等式310()x f t dt x -=⎰两边关于x 求导得32(1)31f x x -⋅=,故321(1)3f x x -=,令3126x -=得3x =,所以1(26)27f =. 例11 函数11()(3)(0)x F x dt x t=->⎰的单调递减开区间为_________.解 1()3F x x '=-,令()0F x '<得13x>,解之得109x <<,即1(0,)9为所求. 例12 求0()(1)arctan xf x t tdt =-⎰的极值点.解 由题意先求驻点.于是()f x '=(1)arctan x x -.令()f x '=0,得1x =,0x =.列表如下:故1x =为()f x 的极大值点,0x =为极小值点.例13 已知两曲线()y f x =与()y g x =在点(0,0)处的切线相同,其中2arcsin 0()x t g x e dt -=⎰,[1,1]x ∈-,试求该切线的方程并求极限3lim ()n nf n→∞.分析 两曲线()y f x =与()y g x =在点(0,0)处的切线相同,隐含条件(0)(0)f g =,(0)(0)f g ''=.解 由已知条件得20(0)(0)0t f g e dt -===⎰,且由两曲线在(0,0)处切线斜率相同知2(arcsin )2(0)(0)11x x e f g x-=''===-.故所求切线方程为y x =.而3()(0)3lim ()lim33(0)330n n f f n nf f n n→∞→∞-'=⋅==-. x(,0)-∞ 0 (0,1)1(1,)+∞()f x '- 0+-例14 求 22000sin lim(sin )x x xtdtt t t dt→-⎰⎰;分析 该极限属于型未定式,可用洛必达法则. 解 22000sin lim (sin )x x xtdtt t t dt→-⎰⎰=2202(sin )lim (1)(sin )x x x x x x →-⋅⋅-=220()(2)lim sin x x x x →-⋅-=304(2)lim 1cos x x x →-⋅-=2012(2)lim sin x x x→-⋅=0.注 此处利用等价无穷小替换和多次应用洛必达法则.例15 试求正数a 与b ,使等式2201lim1sin x x t dt x b x a t→=-+⎰成立. 分析 易见该极限属于型的未定式,可用洛必达法则. 解 20201lim sin x x t dt x b x a t→-+⎰=220lim 1cos x x a x b x →+-=22001lim lim 1cos x x x b x a x →→⋅-+201lim 11cos x x b x a→==-, 由此可知必有0lim(1cos )0x b x →-=,得1b =.又由2012lim 11cos x x x a a→==-, 得4a =.即4a =,1b =为所求.例16 设sin 20()sin x f x t dt =⎰,34()g x x x =+,则当0x →时,()f x 是()g x 的( ).A .等价无穷小.B .同阶但非等价的无穷小.C .高阶无穷小.D .低阶无穷小.解法1 由于 22300()sin(sin )cos lim lim ()34x x f x x xg x x x →→⋅=+2200cos sin(sin )lim lim34x x x x x x →→=⋅+ 22011lim 33x x x →==. 故()f x 是()g x 同阶但非等价的无穷小.选B .解法2 将2sin t 展成t 的幂级数,再逐项积分,得到sin 223370111()[()]sin sin 3!342x f x t t dt x x =-+=-+⎰,则344340001111sin (sin )sin ()1342342lim lim lim ()13x x x x x x f x g x x x x→→→-+-+===++.例17 证明:若函数()f x 在区间[,]a b 上连续且单调增加,则有()baxf x dx ⎰()2baa b f x dx +≥⎰. 证法1 令()F x =()()2x xaaa x tf t dt f t dt +-⎰⎰,当[,]t a x ∈时,()()f t f x ≤,则 ()F x '=1()()()22x a a x xf x f t dt f x +--⎰=1()()22xa x a f x f t dt --⎰ ≥1()()22x a x a f x f x dt --⎰=()()22x a x af x f x ---0=. 故()F x 单调增加.即 ()()F x F a ≥,又()0F a =,所以()0F x ≥,其中[,]x a b ∈. 从而()F b =()()2bba aa b xf x dx f x dx +-⎰⎰0≥.证毕. 证法2 由于()f x 单调增加,有()[()()]22a b a bx f x f ++--0≥,从而 ()[()()]22baa b a bx f x f dx ++--⎰0≥. 即()()2baa b x f x dx +-⎰()()22b a a b a b x f dx ++≥-⎰=()()22b a a b a bf x dx ++-⎰=0.故()baxf x dx ⎰()2baa b f x dx +≥⎰. 例18 计算21||x dx -⎰.分析 被积函数含有绝对值符号,应先去掉绝对值符号然后再积分.解 21||x dx -⎰=0210()x dx xdx --+⎰⎰=220210[][]22x x --+=52.注 在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如 33222111[]6dx x x --=-=⎰,则是错误的.错误的原因则是由于被积函数21x 在0x =处间断且在被积区间内无界.例19 计算220max{,}x x dx ⎰.分析 被积函数在积分区间上实际是分段函数212()01x x f x x x ⎧<≤=⎨≤≤⎩. 解 23212221201011717max{,}[][]23236x x x x dx xdx x dx =+=+=+=⎰⎰⎰例20 设()f x 是连续函数,且10()3()f x x f t dt =+⎰,则()________f x =. 分析 本题只需要注意到定积分()ba f x dx ⎰是常数(,ab 为常数).解 因()f x 连续,()f x 必可积,从而1()f t dt ⎰是常数,记1()f t dt a =⎰,则()3f x x a =+,且11(3)()x a dx f t dt a +==⎰⎰.所以2101[3]2x ax a +=,即132a a +=, 从而14a =-,所以 3()4f x x =-.例21 设23, 01()52,12x x f x x x ⎧≤<=⎨-≤≤⎩,0()()x F x f t dt =⎰,02x ≤≤,求()F x , 并讨论()F x 的连续性.分析 由于()f x 是分段函数, 故对()F x 也要分段讨论. 解 (1)求()F x 的表达式.()F x 的定义域为[0,2].当[0,1]x ∈时,[0,][0,1]x ⊂, 因此23300()()3[]xxxF x f t dt t dt t x ====⎰⎰.当(1,2]x ∈时,[0,][0,1][1,]x x =, 因此, 则1201()3(52)xF x t dt t dt =+-⎰⎰=31201[][5]xt t t +-=235x x -+-,故32, 01()35,12x x F x x x x ⎧≤<⎪=⎨-+-≤≤⎪⎩. (2) ()F x 在[0,1)及(1,2]上连续, 在1x =处,由于211lim ()lim(35)1x x F x x x ++→→=-+-=, 311lim ()lim 1x x F x x --→→==, (1)1F =. 因此, ()F x 在1x =处连续, 从而()F x 在[0,2]上连续.错误解答 (1)求()F x 的表达式, 当[0,1)x ∈时,23300()()3[]xxxF x f t dt t dt t x ====⎰⎰.当[1,2]x ∈时,有0()()xF x f t dt ==⎰0(52)xt dt -⎰=25x x -.故由上可知32, 01()5,12x x F x x x x ⎧≤<⎪=⎨-≤≤⎪⎩. (2) ()F x 在[0,1)及(1,2]上连续, 在1x =处,由于211lim ()lim(5)4x x F x x x ++→→=-=, 311lim ()lim 1x x F x x --→→==, (1)1F =.因此, ()F x 在1x =处不连续, 从而()F x 在[0,2]上不连续.错解分析 上述解法虽然注意到了()f x 是分段函数,但(1)中的解法是错误的,因 为当[1,2]x ∈时,0()()xF x f t dt =⎰中的积分变量t 的取值范围是[0,2],()f t 是分段函数,101()()()()x xF x f t dt f t dt f t dt ==+⎰⎰⎰才正确.例22 计算2112211x x dx x-++-⎰.分析 由于积分区间关于原点对称,因此首先应考虑被积函数的奇偶性. 解 2112211x x dx x-++-⎰=211112221111x x dx dx x x--++-+-⎰⎰.由于22211x x+-是偶函数,而211x x+-是奇函数,有112011xdx x-=+-⎰, 于是2112211x xdx x -++-⎰=2102411x dx x +-⎰=22120(11)4x x dx x--⎰=11200441dx x dx --⎰⎰ 由定积分的几何意义可知12014x dx π-=⎰, 故211122444411x x dx dx xππ-+=-⋅=-+-⎰⎰.例23 计算3412ln (1ln )e edx x x x -⎰.分析 被积函数中含有1x及ln x ,考虑凑微分. 解3412ln (1ln )e e dx x x x -⎰=34(ln )ln (1ln )e ed x x x -⎰=34122(ln )ln 1(ln )e ed x x x -⎰=341222(ln )1(ln )e ed x x -⎰=3412[2arcsin(ln )]e e x =6π. 例24 计算40sin 1sin xdx xπ+⎰.解40s i n 1s i n x dx x π+⎰=420sin (1sin )1sin x x dx xπ--⎰=244200sin tan cos x dx xdx x ππ-⎰⎰ =244200cos (sec 1)cos d xx dx xππ---⎰⎰ =44001[][tan ]cos x x x ππ--=224π-+. 注 此题为三角有理式积分的类型,也可用万能代换公式来求解,请读者不妨一试.例25 计算2202ax ax x dx -⎰,其中0a >.解2202ax ax x dx -⎰=2220()ax a x a dx --⎰,令sin x a a t -=,则2202ax ax x dx -⎰=3222(1sin )cosat tdt ππ-+⎰=32202cos 0atdt π+⎰=32a π.注 若定积分中的被积函数含有22a x -,一般令sin x a t =或cos x a t =. 例26 计算022adxx a x+-⎰,其中0a >.解法1 令sin x a t =,则22adx x a x +-⎰2cos sin cos tdt t tπ=+⎰201(sin cos )(cos sin )2sin cos t t t t dt t tπ++-=+⎰ 201(sin cos )[1]2sin cos t t dt t tπ'+=++⎰ []201ln |sin cos |2t t t π=++=4π.解法2 令sin x a t =,则22adx x a x +-⎰=2cos sin cos tdt t tπ+⎰.又令2t u π=-,则有20cos sin cos t dt t tπ+⎰=20sin sin cos udu u u π+⎰.所以,22adxx a x +-⎰=22001sin cos []2sin cos sin cos t t dt dt t tt t ππ+++⎰⎰=2012dt π⎰=4π. 注 如果先计算不定积分22dx x a x +-⎰,再利用牛顿-莱布尼兹公式求解,则比较复杂,由此可看出定积分与不定积分的差别之一.例27 计算ln 513x x xe e dx e -+⎰. 分析 被积函数中含有根式,不易直接求原函数,考虑作适当变换去掉根式. 解 设1x u e =-,2ln(1)x u =+,221udx du u =+,则ln 513x x x e e dx e -+⎰=22220(1)241u u u du u u +⋅=++⎰22222200442244u u du du u u +-=++⎰⎰2221284du du u =-=+⎰⎰4π-. 例28 计算220()xd tf x t dt dx -⎰,其中()f x 连续. 分析 要求积分上限函数的导数,但被积函数中含有x ,因此不能直接求导,必须先换元使被积函数中不含x ,然后再求导.解 由于220()xtf x t dt -⎰=22201()2xf x t dt -⎰. 故令22x t u -=,当0t =时2u x =;当t x =时0u =,而2dt du =-,所以220()x tf x t dt -⎰=201()()2x f u du -⎰=201()2x f u du ⎰, 故220()x d tf x t dt dx -⎰=201[()]2x d f u du dx ⎰=21()22f x x ⋅=2()xf x . 错误解答220()xd tf x t dt dx -⎰22()(0)xf x x xf =-=. 错解分析 这里错误地使用了变限函数的求导公式,公式()()()xad x f t dt f x dx 'Φ==⎰中要求被积函数()f t 中不含有变限函数的自变量x ,而22()f x t -含有x ,因此不能直接求导,而应先换元.例29 计算30sin x xdx π⎰.分析 被积函数中出现幂函数与三角函数乘积的情形,通常采用分部积分法.解30s i n x x d x π⎰30(c o s )x d x π=-⎰33[(c o s )](c o s)x x x d x ππ=⋅---⎰ 30cos 6xdx ππ=-+⎰326π=-. 例30 计算12ln(1)(3)x dx x +-⎰. 分析 被积函数中出现对数函数的情形,可考虑采用分部积分法.解 120ln(1)(3)x dx x +-⎰=101ln(1)()3x d x +-⎰=1100111[ln(1)]3(3)(1)x dx x x x +-⋅--+⎰ =101111ln 2()2413dx x x-++-⎰11ln 2ln324=-.例31 计算20sin x e xdx π⎰.分析 被积函数中出现指数函数与三角函数乘积的情形通常要多次利用分部积分法.解 由于20sin xe xdx π⎰20sin xxde π=⎰220[sin ]cos xx e x e xdx ππ=-⎰220cos x e e xdx ππ=-⎰, (1)而20cos xe xdx π⎰20cos xxde π=⎰2200[cos ](sin )xx e x e x dx ππ=-⋅-⎰20sin 1x e xdx π=-⎰, (2)将(2)式代入(1)式可得2sin xe xdx π⎰220[sin 1]x e e xdx ππ=--⎰,故20sin xe xdx π⎰21(1)2e π=+.例32 计算10arcsin x xdx ⎰.分析 被积函数中出现反三角函数与幂函数乘积的情形,通常用分部积分法.解 10arcsin x xdx ⎰210arcsin ()2x xd =⎰221100[arcsin ](arcsin )22x x x d x =⋅-⎰ 21021421x dx x π=--⎰. (1) 令sin x t =,则2121x dx x-⎰2202sin sin 1sin t d t tπ=-⎰220sin cos cos ttdt tπ=⋅⎰220sin tdt π=⎰201cos 22t dt π-==⎰20sin 2[]24t t π-4π=. (2) 将(2)式代入(1)式中得1arcsin x xdx =⎰8π. 例33 设()f x 在[0,]π上具有二阶连续导数,()3f π'=且0[()()]cos 2f x f x xdx π''+=⎰,求(0)f '.分析 被积函数中含有抽象函数的导数形式,可考虑用分部积分法求解. 解 由于0[()()]cos f x f x xdx π''+⎰0()sin cos ()f x d x xdf x ππ'=+⎰⎰[]000{()sin ()sin }{[()cos ]()sin }f x x f x xdx f x x f x xdx ππππ'''=-++⎰⎰()(0)2f f π''=--=.故 (0)f '=2()235f π'--=--=-. 例34(97研) 设函数()f x 连续,1()()x f xt dt ϕ=⎰,且0()limx f x A x→=(A 为常数), 求()x ϕ'并讨论()x ϕ'在0x =处的连续性.分析 求()x ϕ'不能直接求,因为10()f xt dt ⎰中含有()x ϕ的自变量x ,需要通过换元将x从被积函数中分离出来,然后利用积分上限函数的求导法则,求出()x ϕ',最后用函数连续的定义来判定()x ϕ'在0x =处的连续性.解 由0()limx f x A x→=知0lim ()0x f x →=,而()f x 连续,所以(0)0f =,(0)0ϕ=.当0x ≠时,令u xt =,0t =,0u =;1t =,u x =.1dt du x=,则()()xf u du x xϕ=⎰,从而2()()()(0)xxf x f u dux x xϕ-'=≠⎰.又因为02()()(0)()limlimlim22xx x x f u du x f x A x x x ϕϕ→→→-===-⎰,即(0)ϕ'=2A.所以 ()x ϕ'=02()(),0,02x xf x f u du x x Ax ⎧-⎪≠⎪⎨⎪=⎪⎩⎰. 由于02200()()()()lim ()limlimlim xxx x x x xf x f u duf u du f x x xx x ϕ→→→→-'==-⎰⎰=(0)2A ϕ'=.从而知()x ϕ'在0x =处连续.注 这是一道综合考查定积分换元法、对积分上限函数求导、按定义求导数、讨论函数在一点的连续性等知识点的综合题.而有些读者在做题过程中常会犯如下两种错误:(1)直接求出2()()()xxf x f u dux xϕ-'=⎰,而没有利用定义去求(0)ϕ',就得到结论(0)ϕ'不存在或(0)ϕ'无定义,从而得出()x ϕ'在0x =处不连续的结论.(2)在求0lim ()x x ϕ→'时,不是去拆成两项求极限,而是立即用洛必达法则,从而导致()()()1lim ()lim ().22x x xf x f x f x x f x x ϕ→→'+-''==又由0()limx f x A x→=用洛必达法则得到0lim ()x f x →'=A ,出现该错误的原因是由于使用洛必达法则需要有条件:()f x 在0x =的邻域内可导.但题设中仅有()f x 连续的条件,因此上面出现的0lim ()x f x →'是否存在是不能确定的.例35(00研) 设函数()f x 在[0,]π上连续,且()0f x dx π=⎰,0()cos 0f x xdx π=⎰.试证在(0,)π内至少存在两个不同的点12,ξξ使得12()()0f f ξξ==.分析 本题有两种证法:一是运用罗尔定理,需要构造函数0()()xF x f t dt =⎰,找出()F x的三个零点,由已知条件易知(0)()0F F π==,0x =,x π=为()F x 的两个零点,第三个零点的存在性是本题的难点.另一种方法是利用函数的单调性,用反证法证明()f x 在(0,)π之间存在两个零点.证法1 令0()(),0xF x f t dt x π=≤≤⎰,则有(0)0,()0F F π==.又00()cos cos ()[cos ()]()sin f x xdx xdF x xF x F x xdx ππππ==+⎰⎰⎰()sin 0F x xdx π==⎰,由积分中值定理知,必有(0,)ξπ∈,使得()sin F x xdx π⎰=()sin (0)F ξξπ⋅-.故()sin 0F ξξ=.又当(0,),sin 0ξπξ∈≠,故必有()0F ξ=.于是在区间[0,],[,]ξξπ上对()F x 分别应用罗尔定理,知至少存在1(0,)ξξ∈,2(,)ξξπ∈,使得12()()0F F ξξ''==,即12()()0f f ξξ==.证法2 由已知条件0()0f x dx π=⎰及积分中值定理知必有10()()(0)0f x dx f πξπ=-=⎰,1(0,)ξπ∈,则有1()0f ξ=.若在(0,)π内,()0f x =仅有一个根1x ξ=,由0()0f x dx π=⎰知()f x 在1(0,)ξ与1(,)ξπ内异号,不妨设在1(0,)ξ内()0f x >,在1(,)ξπ内()0f x <,由()cos 0f x xdx π=⎰,0()0f x dx π=⎰,以及cos x 在[0,]π内单调减,可知:100()(cos cos )f x x dx πξ=-⎰=11110()(cos cos )()(cos cos )f x x dx f x x dx ξπξξξ-+-⎰⎰0>.由此得出矛盾.故()0f x =至少还有另一个实根2ξ,12ξξ≠且2(0,)ξπ∈使得12()()0.f f ξξ==例36 计算2043dxx x +∞++⎰.分析 该积分是无穷限的的反常积分,用定义来计算. 解2043dx x x +∞++⎰=20lim 43t t dx x x →+∞++⎰=0111lim ()213t t dx x x →+∞-++⎰ =011lim [ln ]23t t x x →+∞++=111lim (ln ln )233t t t →+∞+-+ =ln 32. 例37 计算322(1)2dx x x x+∞--⎰.解 322(1)2dx x x x+∞--⎰223223sec tan 1sec sec tan (1)(1)1dxx d x x ππθθθθθθ+∞=-=---⎰⎰233cos 12d ππθθ==-⎰. 例38 计算42(2)(4)dx x x --⎰.分析 该积分为无界函数的反常积分,且有两个瑕点,于是由定义,当且仅当32(2)(4)dxx x --⎰和43(2)(4)dx x x --⎰均收敛时,原反常积分才是收敛的.解 由于32(2)(4)dx x x --⎰=32lim (2)(4)aa dx x x +→--⎰=322(3)lim 1(3)aa d x x +→---⎰=32lim[arcsin(3)]a a x +→-=2π.43(2)(4)dx x x --⎰=34lim (2)(4)bb dx x x -→--⎰=324(3)lim 1(3)bb d x x -→---⎰=34lim[arcsin(3)]b b x -→-=2π. 所以42(2)(4)dx x x --⎰22πππ=+=.例39 计算05(1)dx x x +∞+⎰.分析 此题为混合型反常积分,积分上限为+∞,下限0为被积函数的瑕点. 解 令x t =,则有5(1)dx x x +∞+⎰=50222(1)tdt t t +∞+⎰=50222(1)dt t +∞+⎰,再令tan t θ=,于是可得5022(1)dt t +∞+⎰=25022tan (tan 1)d πθθ+⎰=2250sec sec d πθθθ⎰=230sec d πθθ⎰ =32cos d πθθ⎰=220(1sin )cos d πθθθ-⎰=220(1sin )sin d πθθ-⎰=3/21[sin sin ]3πθθ-=23. 例40 计算214211x dx x -++⎰. 解 由于221114222222111()11112()d x xx x dx dx x x x x x ---+-+==+++-⎰⎰⎰,可令1t x x=-,则当2x =-时,22t =-;当0x -→时,t →+∞;当0x +→时,t →-∞;当1x =时,0t =;故有210142202211()()11112()2()d x d x x x x dx x x x x x----+=+++-+-⎰⎰⎰02222()22d t dt t t +∞--∞=+++⎰⎰21(arctan )22π=+ . 注 有些反常积分通过换元可以变成非反常积分,如例32、例37、例39;而有些非反常积分通过换元却会变成反常积分,如例40,因此在对积分换元时一定要注意此类情形.例41 求由曲线12y x =,3y x =,2y =,1y =所围成的图形的面积.分析 若选x 为积分变量,需将图形分割成三部分去求,如图5-1所示,此做法留给读者去完成.下面选取以y 为积分变量.解 选取y 为积分变量,其变化范围为[1,2]y ∈,则面积元素为dA =1|2|3y y dy -=1(2)3y y dy -.于是所求面积为211(2)3A y y dy =-⎰=52.例42 抛物线22y x =把圆228x y +=分成两部分,求这两部分面积之比.解 抛物线22y x =与圆228x y +=的交点分别为(2,2)与(2,2)-,如图所示5-2所示,抛物线将圆分成两个部分1A ,2A ,记它们的面积分别为1S ,2S ,则有图5-21S =2222(8)2y y dy ---⎰=24488cos 3d ππθθ--⎰=423π+,218S A π=-=463π-,于是12S S =423463ππ+-=3292ππ+-.例43 求心形线1cos ρθ=+与圆3cos ρθ=所围公共部分的面积.分析 心形线1cos ρθ=+与圆3cos ρθ=的图形如图5-3所示.由图形的对称性,只需计算上半部分的面积即可.解 求得心形线1cos ρθ=+与圆3cos ρθ=的交点为(,)ρθ=3(,)23π±,由图形的对称性得心形线1cos ρθ=+与圆3cos ρθ=所围公共部分的面积为图5-3A =223203112[(1cos )(3cos )]22d d πππθθθθ++⎰⎰=54π. 3πθ=3cos ρθ=3211-xoy121-2A 1A 12(2,2)-oxy22y x=228x y +=2-1-121-2-2x y =1y =3y x=o 1-3-321211-2-xy2y =图5-1342-1cos ρθ=+例44 求曲线ln y x =在区间(2,6)内的一条切线,使得该切线与直线2x =,6x =和曲线ln y x =所围成平面图形的面积最小(如图5-4所示).分析 要求平面图形的面积的最小值,必须先求出面积的表达式.解 设所求切线与曲线ln y x =相切于点(,ln )c c ,则切线方程为1ln ()y c x c c-=-.又切线与直线2x =,6x =和曲线ln y x =所围成的平面图形的面积为图5-4A =621[()ln ln ]x c c x dx c -+-⎰=44(1)4ln 46ln 62ln 2c c-++-+.由于dA dc =2164c c-+=24(4)c c --, 令0dA dc =,解得驻点4c =.当4c <时0dAdc<,而当4c >时0dA dc >.故当4c =时,A 取得极小值.由于驻点唯一.故当4c =时,A 取得最小值.此时切线方程为:11ln 44y x =-+. 例45 求圆域222()x y b a +-≤(其中b a >)绕x 轴旋转而成的立体的体积.解 如图5-5所示,选取x 为积分变量,得上半圆周的方程为222y b a x =+-,下半圆周的方程为221y b a x =--.图5-5则体积元素为dV =2221()y y dx ππ-=224b a x dx π-.于是所求旋转体的体积为V =224aaba x dx π--⎰=228ab a x dx π-⎰=284a b ππ⋅=222a b π.注 可考虑选取y 为积分变量,请读者自行完成.例46(03研) 过坐标原点作曲线ln y x =的切线,该切线与曲线ln y x =及x 轴围成平面图形D .(1)求D 的面积A ;(2)求D 绕直线x e =旋转一周所得旋转体的体积V . 分析 先求出切点坐标及切线方程,再用定积分求面积A ,旋转体积可用大的立体体积减去小的立体体积进行图5-6ln y x=ln y x=y xo12311y xe=(0,)b o222()(0)x y b a b a +-=>>xy1xo y23121-45673ln y x=2x =6x =(,ln )c c计算,如图5-6所示.解 (1)设切点横坐标为0x ,则曲线ln y x =在点00(,ln )x x 处的切线方程是0001ln ()y x x x x =+-. 由该切线过原点知0ln 10x -=,从而0x e =,所以该切线的方程是1y x e=.从而D 的面积10()12y eA e ey dy =-=-⎰. (2)切线1y x e =与x 轴及直线x e =围成的三角形绕直线x e =旋转所得的旋转体积为2113V e π=,曲线ln y x =与x 轴及直线x e =围成的图形绕直线x e =旋转所得的旋转体积为1222011()(2)22y V e e dy e e ππ=-=-+-⎰.因此,所求体积为212(5123)6V V V e e π=-=-+.例47 有一立体以抛物线22y x =与直线2x =所围成的图形为底,而垂直于抛物线的轴的截面都是等边三角形,如图5-7所示.求其体积.解 选x 为积分变量且[0,2]x ∈.过x 轴上坐标为x 的点作垂直于x 轴的平面,与立体相截的截面为等边三角形,其底边长为22x ,得等边三角形的面积为图5-7()A x =23(22)4x =23x . 于是所求体积为 V =2()A x dx ⎰=223xdx ⎰=43.例48(03研) 某建筑工程打地基时,需用汽锤将桩打进土层,汽锤每次击打,都将克服土层对桩的阻力而作功,设土层对桩的阻力的大小与桩被打进地下的深度成正比(比例系数为k ,0k >),汽锤第一次击打进地下a (m ),根据设计方案,要求汽锤每次击打桩时所作的功与前一次击打时所作的功之比为常数r (01r <<).问:(1)汽锤打桩3次后,可将桩打进地下多深?(2)若击打次数不限,汽锤至多能将桩打进地下多深?(注:m 表示长度单位米) 分析 本题属于变力作功问题,可用定积分来求.解 (1)设第n 次击打后,桩被打进地下n x ,第n 次击打时,汽锤所作的功为n W (1n =,2,).由题设,当桩被打进地下的深度为x 时,土层对桩的阻力的大小为kx ,所以xyzo22y x=2x =12211022x k k W kxdx x a ===⎰,2122222211()()22x x k k W kxdx x x x a ==-=-⎰.由21W rW =得22221x x ra -=,即 222(1)x r a =+,3222223323()[(1)]22x x k kW kxdx x x x r a ==-=-+⎰.由2321W rW r W == 得22223(1)x r a r a -+=,即 2223(1)x r r a =++.从而汽锤击打3次后,可将桩打进地下231x a r r =++(m ).(2)问题是要求lim n n x →∞,为此先用归纳法证明:11n n x a r r +=+++.假设11n n x r r a -=+++,则12211()2n nx n n n x k W kxdx x x +++==-⎰2121[(1...)]2n n kx r r a -+=-+++.由2111...n n n n W rW r W r W +-====,得21221(1...)n n n x r r a r a -+-+++=.从而11n n x r r a +=+++.于是111lim lim 11n n n n r a x a r r++→∞→∞-==--.若不限打击次数,汽锤至多能将桩打进地下()1a m r-.例49 有一等腰梯形水闸.上底为6米,下底为2米,高为10米.试求当水面与上底相接时闸门所受的水压力.解 建立如图5-8所示的坐标系,选取x 为积分变量.则过点(0,3)A ,(10,1)B 的直线方程为135y x =-+.于是闸门上对应小区间[,]x x dx +的窄条所承受的水压力为2dF xy gdxρ=.故闸门所受水压力为F =10012(3)5g x x dx ρ-+⎰=5003g ρ,其中ρ为水密度,g 为重力加速度.图5-8o xyx dx+x(0,3)A (10,1)B。

高中数学定积分和微积分练习题突破

高中数学定积分和微积分练习题突破

A 组 基础对点练1.⎠⎛01e x d x 的值等于( )A .eB .1-eC .e -1D.12(e -1) 解析:⎠⎛01e x d x =e x |10=e 1-e 0=e -1.答案:C2.定积分⎠⎛01(2x +e x )d x 的值为( ) A .e +2 B .e +1 C .eD .e -1解析:⎠⎛01(2x +e x )d x =(x 2+e x )⎪⎪⎪1=(1+e )-(0+e 0)=e ,因此选C. 答案:C3.已知二次函数y =f (x )的图象如图所示,则它与x 轴所围图形的面积为( ) A.2π5 B.43 C.32D.π2解析:由题中图象易知f (x )=-x 2+1,则所求面积为 2⎠⎛01(-x 2+1)d x =2⎝⎛⎭⎫-x 33+x ⎪⎪⎪10=43.答案:B4.直线l 过抛物线C :x 2=4y 的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于( )A.43 B .2 C.83D.1623解析:由题意知抛物线的焦点坐标为(0,1),故直线l 的方程为y =1,该直线与抛物线在第一象限的交点坐标为(2,1),根据对称性和定积分的几何意义可得所求的面积是2⎠⎛02⎝⎛⎭⎫1-x 24d x =2⎝⎛⎭⎫x -x 312⎪⎪⎪20=83.答案:C5.(2018·保定模拟)从空中自由下落的一物体,在第一秒末恰经过电视塔顶,在第二秒末物体落地,已知自由落体的运动速度为v =gt (g 为常数),则电视塔高为( )A.12g B .g C.32g D .2g解析:由题意知电视塔高为:⎠⎛12gt d t =12gt 2|21=2g -12g =32g .答案:C6.(2018·长沙模拟)若⎠⎛01(x 2+mx )d x =0,则实数m 的值为( )A .-13B .-23C .-1D .-2解析:由题意知⎠⎛01(x 2+mx )d x =⎝⎛⎭⎫x 33+mx 22|10=13+m 2=0,得m =-23. 答案:B7.一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v (t )=7-3t +251+t(t 的单位:s ,v 的单位:m/s)行驶至停止.在此期间汽车继续行驶的距离(单位:m)是( )A .1+25ln 5B .8+25ln113C .4+25ln 5D .4+50ln 2解析:令v (t )=7-3t +251+t =0,则t =4(舍去负值).汽车刹车的距离是⎠⎛04⎝⎛⎭⎫7-3t +251+t d t=⎣⎡⎦⎤7t -32t 2+25ln (1+t )⎪⎪⎪40=4+25ln 5. 答案:C8.如图,函数y =-x 2+2x +1与y =1相交形成一个闭合图形(图中的阴影部分),则该闭合图形的面积是( )A .1 B.43 C. 3D .2解析:由⎩⎪⎨⎪⎧y =-x 2+2x +1,y =1,得x 1=0,x 2=2.所以S =⎠⎛02(-x 2+2x +1-1)d x =⎠⎛02(-x 2+2x )d x =⎝⎛⎭⎫-x 33+x 2|20=-83+4=43. 答案:B9.(2018·厦门模拟)定积分|x 2-2x |d x =( )A .5B .6C .7D .8解析:|x 2-2x |d x =(x 2-2x )d x +⎠⎛02(2x -x 2)d x =⎝⎛⎭⎫x 33-x 2|0-2+⎝⎛⎭⎫x 2-x 33|20=8. 答案:D10.(2018·衡阳模拟)如图,阴影部分的面积是( )A .32B .16 C.323D.83解析:由题意得,阴影部分的面积S =(3-x 2-2x )d x =⎝⎛⎭⎫-13x 3-x 2+3x | 1-3=323. 答案:C11.设抛物线C :y =x 2与直线l :y =1围成的封闭图形为P ,则图形P 的面积S 等于( ) A .1 B.13 C.23D.43解析:由⎩⎪⎨⎪⎧y =x 2,y =1,得x =±1.如图,由对称性可知,S =2()1×1-⎠⎛01x 2d x =2⎝⎛⎭⎪⎫1×1-13x 3⎪⎪⎪10=43,选D.答案:D12.(2018·山东名校联考)由曲线y =x ,直线y =x -2及y 轴所围成的图形的面积为( )A.103 B .4 C.163D .6解析:如图,阴影部分面积即为所求,求得曲线y =x 与直线y =x -2的交点为A (4,2),∴所求阴影部分面积 S 阴=⎠⎛04(x -x +2)d x=⎪⎪⎪4=163.答案:C13.⎠⎛03(x 2+1)d x =________.解析:⎠⎛03(x 2+1)d x =⎝⎛⎭⎫13x 3+x ⎪⎪⎪30=13×33+3=12. 答案:1214.若⎠⎛0Tx 2d x =9,则常数T 的值为________. 解析:∵⎠⎛0T x 2d x =13T 3=9,T >0,∴T =3.答案:315.曲线y =x 2与直线y =x 所围成的封闭图形的面积为________.解析:曲线y =x 2与直线y =x 所围成的图形如图所示. 面积S =⎠⎛01(x -x 2)d x=⎝⎛⎭⎫12x 2-13x 3⎪⎪⎪10=16. 答案:1616.汽车以72 km /h 的速度行驶,由于遇到紧急情况而刹车,汽车以等减速度a =4 m/s 2刹车,则汽车从开始刹车到停止走的距离为__________ m.解析:先求从刹车到停车所用的时间t , 当t =0时,v 0=72 km /h =20 m/s ,刹车后,汽车减速行驶,速度为v (t )=v 0-at =20-4t . 令v (t )=0,可得t =5 s ,所以汽车从刹车到停车,所走过的路程为: ⎠⎛05(20-4t )d t =(20t -2t 2)|50=50(m). 即汽车从开始刹车到停止,共走了50 m. 答案:50B 组 能力提升练1.(2018·东北师大附中模拟)定积分⎠⎛12x 2+1x d x 的值为( ) A.32+ln 2 B.34 C .3+ln 2 D.12解析:⎠⎛121+x 2x d x =⎠⎛12⎝⎛⎭⎫1x +x d x =⎠⎛121x d x +⎠⎛12x d x =ln x ⎪⎪⎪ 21+12x 2⎪⎪⎪21=ln 2-ln 1+12×22-12×12=32+ln 2.故选A.答案:A2.设k 是一个正整数,(1+x k )k 的展开式中第四项的系数为116,记函数y =x 2与y =kx的图象所围成的阴影部分的面积为S ,任取x ∈[0,4],y ∈[0,16],则点(x ,y )恰好落在阴影区域内的概率为( )A.1796 B.532 C.16D.748解析:由题意得C 3k 1k 3=116,解得k =4.阴影部分的面积S =⎠⎛04(4x -x 2)d x =(2x 2-13x 3)| 40=323,点(x ,y )所围成的区域面积为S ′=4×16=64,所以所求概率P =S S ′=16,故选C. 答案:C3. 如图所示,在边长为1的正方形OABC 中任取一点P ,则点P 恰好取自阴影部分的概率为( )A.14B.1567解析:阴影部分的面积为⎠⎛01(x -x )d x =⎪⎪⎪10=16,故所求的概率P =阴影部分的面积正方形OABC 的面积=16,故选C.答案:C4.(2018·咸阳模拟)曲线y =2x 与直线y =x -1及x =4所围成的封闭图形的面积为( )A .2ln 2B .2-ln 2C .4-ln 2D .4-2ln 2解析:由曲线y =2x 与直线y =x -1联立,解得x =-1或x =2,如图所示,故所求图形的面积S =⎠⎛24⎝⎛⎭⎫x -1-2x d x =⎝⎛⎭⎫12x 2-x -2ln x |42=4-2ln 2.答案:D5.一物体在力F (x )=⎩⎪⎨⎪⎧10 ,0≤x ≤2,3x +4,x >2,(单位:N)的作用下沿与力F (x )相同的方向运动了4米,则力F (x )所做的功为( )A .44 JB .46 JC .48 JD .50 J解析:力F (x )所做的功为⎠⎛0210d x +⎠⎛24(3x +4)d x =20+26=46(J).答案:B6.(2018·贵州七校联考)设实数a ,b 均为区间[0,1]内的随机数,则关于x 的不等式bx 2+ax +14<0有实数解的概率为( )A.12B.1633解析:当b =0时,不等式要有实数解必有a ≠0,此时点(a ,b )构成的图形为直线;当b ≠0时,不等式bx 2+ax +14<0有实数解,则需满足a 2-b >0,即a 2>b ,满足此条件时对应的图形的面积为⎠⎛01a 2da =13a 3| 10=13,而在区间[0,1]内产生的两个随机数a ,b 对应的图形面积为1,所以不等式bx 2+ax +14<0有实数解的概率P =131=13,故选C.答案:C7.(2018·湖南四校联考)已知S 1=⎠⎛12x d x ,S 2=⎠⎛12e x d x ,S 3=⎠⎛12x 2d x ,则S 1,S 2,S 3的大小关系为( )A .S 1<S 2<S 3B .S 1<S 3<S 2C .S 3<S 2<S 1D .S 2<S 3<S 1解析:∵S 1=⎠⎛12x d x =x 22|21=2-12=32, S 2=⎠⎛12e x d x =e x |21=e 2-e =e (e -1),S 3=⎠⎛12x 2d x =x 33|21=83-13=73, ∴S 1<S 3<S 2,故选B. 答案:B8.(2018·江西二校联考)等比数列{a n }中,a 3=9,前3项和为S 3=3⎠⎛03x 2d x ,则公比q的值是( )A .1B .-12C .1或-12D .-1或-12解析:∵⎠⎛03x 2d x =13x 3|30=9,∴S 3=3×9=27.∴⎩⎪⎨⎪⎧a 3=a 1q 2=9,S 3=a 1+a 1q +a 1q 2=27, 解得q =1或q =-12.答案:C9.如图,曲线y =sin x ,y =cos x 和直线x =0,x =π2所围成的阴影部分平面区域的面积为( )A .(sin x -cos x )d xB .2(sin x -cos x )d xC .(cos x -sin x )d xD .2(cos x -sin x )d x解析:曲线y =sin x ,y =cos x 的交点为⎝⎛⎭⎫π4,22,由图象的对称性可知阴影部分面积为(cos x -sin x )d x ,所以本题的正确选项为D.答案:D10.若f (x )=⎩⎪⎨⎪⎧f (x -4),x >1,e x +⎠⎛121t d t ,x ≤1,则f (2 016)=( ) A .0 B .ln 2 C .1+e 2D .1+ln 2解析:当x >1时,f (x )=f (x -4),∴f (x )在(-3,+∞)上是周期为4的周期函数,f (2 016)=f (504×4+0)=f (0)=e 0+⎠⎛121td t =e 0+ln t |21=1+ln 2,故选D.答案:D11.设函数f (x )=ax 2+b (a ≠0),若⎠⎛02f (x )d x =2f (x 0),x 0>0,则x 0=( )A.33 B.233 C.32D .3解析:∵函数f (x )=ax 2+b (a ≠0),⎠⎛02f (x )d x =2f (x 0),∴⎠⎛02(ax 2+b )d x =⎝⎛⎭⎫a 3x 3+bx |20=83a +2b ,2f (x 0)=2ax 20+2b ,∴83a =2ax 20, ∴x 0=233,故选B.答案:B12.⎠⎛02(x -1)d x =________.解析:⎠⎛02(x -1)d x =⎝⎛⎭⎫12x 2-x ⎪⎪⎪20=12×22-2=0.答案:013.正方形的四个顶点A (-1,-1),B (1,-1),C (1,1),D (-1,1)分别在抛物线y =-x 2和y =x 2上,如图所示,若将一个质点随机投入正方形ABCD 中,则质点落在图中阴影区域的概率是________.解析:由几何概型的概率计算公式可知,所求概率答案:2314.由曲线y =2-x 2,直线y =x 及x 轴所围成的封闭图形(图中的阴影部分)的面积是________.解析:把阴影部分分成两部分求面积.S =S 1+S 2=(2-x 2)d x +⎠⎛01(2-x 2-x )d x=⎝⎛⎭⎫2x -x 33⎪⎪⎪-2+⎝⎛⎭⎫2x -x 33-x 22⎪⎪⎪1=22-(2)33+2-13-12=423+76.答案:423+7615.(2018·泉州模拟)⎠⎛01⎝⎛⎭⎫1-x 2+12x dx =__________. 解析:⎠⎛01⎝⎛⎭⎫1-x 2+12x d x =⎠⎛011-x 2d x +⎠⎛0112x d x ,⎠⎛0112x d x =14,⎠⎛011-x 2d x 表示四分之一单位圆的面积,为π4,所以结果是π+14.答案:π+14。

定积分解析几何微分方程提高训练题

定积分解析几何微分方程提高训练题

积分,解析几何,微分方程练习题一、填空题:x 2J.设f (x)连续,且f f (t)dt =x ,则f ⑺= _____________,01设 f(x)是连续函数,且 f(x) =x +2 J 0f(t)dt ,贝y f(x) =x1函数F(X)= L (2 -丁)dt(x A0)的单调减少区间为 ________V td 02——f 2x cost dt =_ dx 'Xdx J : sin(x -t)dt =dx = 'exln 2x仙 E-xS —(9) (10) < -4y (11) 设y =ex(C 1Sinx +C 2COSx)(C 1,C 2为任意常数)为某二阶常系数线性齐次微分方程的解,则该方程为 ________________ .X = —t + 2过点M (1,2, —1)且与直线<y =3t —4垂直的平面方程是Z =t -1于L 2的平面方程是设一平面经过原点及点 (6, -3,2),且与平面 4x -y + 2z = 8垂直,则此平面方程(8) 由曲线y =In X 与两直线y =e +1 -x 及y = 0所围成的平面图形的面积是y 2y' + 2y =e x 的通解为 =e 2x 的通解为 ______________微分方程 (12) 微分方程 yy" + y'2=0满足初始条件y xd=1,y 〕x 出专的特解是 (13) 微分方程 y ‘ +y tanx =cosx 的通解为 y = (14) 微分方程(15) (16)已知两条直线的方程是L -TFXT 心十“子'则过L 1且平行(17)X =1一 X +1 V 中2与两直线<y = T +t 及 ----- 一 -----I z = 2 +t都平行且过原点的平面方程为1(18) 设(a 咒b ) C =2,则[(a +b )x(b+ C )(” C + a )=(19)X为 ________ . 二、选择题:(1) (A)(B) (C) 设f(x)是连续函数, 当f (x)是奇函数时, 当f(x)是偶函数时, 当f(x)是周期函数时,(D) 当f(x)是单调增函数时, S3 (A) (C)(A) (C) ⑷(A)(C)(A)设f(x)为已知连续函数,F(x)是f(X)的原函数,则【】F (x)必是偶函数;F(x)必是奇函数; F(x)必是周期函数; F(x)必是单调增函数.X=t 『f(tx)dx ,其中t :>0,s 》0,贝y I 的值【】 (B)依赖于S 、t 和X ; (D)依赖于s ,不依赖于t o依赖于s 和t ; 依赖于t、X ,不依赖于s ; sinx 2 3 4 设 f(x) = L sin tdt,g(x)=x +x ,则当 X T 0 时,f(x)是 g(x)的【】等价无穷小; (B)同阶但非等价无穷小 高阶无穷小;(D)低阶无穷小.双纽线(x 2+y 2)2=x 2-y 2所围成的区域面积可用定积分表示为 【】n2; 02COS 2 日d 日;nJ 02Jcos2 日d & ;若连续函数f (x)满足关系式f(X)=n(B) f2cos2Td 日;1匸2(D) - f 2(cos2日)d 0 .2 *■ 02xtf f (-)d^ln2,则f (X)等于【】• 02 (C) e X +1 n2 ; e xln2 ; (B) e 2xln2 ; si nx COS 4xdx,N = f 2n (sin 3x + cos x)dx, P = J 2n(x 2sin 3x -cos 4x)dx"2 "2n设M 飞1仪2(A) N <P cM ;(B)(7)设f(X)有连续的导数,(x)与x '"是同阶无穷小,则 (A) 1;(B) (D) e 2x+ln2. n M <P <N ; (C) N cM <P ; (D) P <M <N .f (0) =0,厂(0) H0 , F(x) = J :(x 2-t 2)f(t)dt ,且当 X T 0时,k 等于2;(D) 4.b(8) 设在区间[a,b]上 f(X)>0,f'(X)c0,f "(X)A0,令S^ J f (x )dx , S2=f(b)(b-a),a= 2[f(a)+ f(b)](b-a)则(A) S 1 ■<$2 VS 3 ;(B )(C ) S 3 <S 1 <S 2 ;(D )(9) 设 F(X)= J'esintsintdt ,则 F (x)(C) 3;(A )为正常数;(B )为负常数;(C ) S 2 V S j V S 3 ; S 2 <S 3 cS j .恒为零;(D )不为常数.(10) 设 f (x)连续,则J :tf(X 2—t 2)dt =【】 dx2 2xf(x ) ; (B ) -xf(x );2 (C ) 2xf (x );2(D) -2xf(x ).(11) 点X 0处【】 (A)取得极大值;(B)取得极小值; (C)某邻域内单调增加;(D)某邻域内单调减少。

专升本高数定积分练习题

专升本高数定积分练习题

专升本高数定积分练习题### 专升本高数定积分练习题#### 一、基础题1. 计算定积分 \(\int_{0}^{1} x^2 dx\)。

2. 计算定积分 \(\int_{1}^{2} \frac{1}{x} dx\)。

3. 计算定积分 \(\int_{-2}^{2} x dx\)。

4. 计算定积分 \(\int_{0}^{\pi/2} \sin x dx\)。

#### 二、提高题5. 计算定积分 \(\int_{0}^{1} e^x dx\)。

6. 计算定积分 \(\int_{-1}^{1} \cos x dx\)。

7. 计算定积分 \(\int_{0}^{1} \ln x dx\)。

8. 计算定积分 \(\int_{0}^{\pi} \tan x dx\)。

#### 三、应用题9. 计算定积分 \(\int_{0}^{a} \frac{1}{\sqrt{a^2 - x^2}} dx\),其中 \(a > 0\)。

10. 计算定积分 \(\int_{0}^{\pi/2} \sin^2 x dx\)。

#### 四、挑战题11. 计算定积分 \(\int_{0}^{1} x^3 \ln x dx\)。

12. 计算定积分 \(\int_{0}^{1} \frac{\sin x}{x} dx\)。

#### 答案解析1. \(\int_{0}^{1} x^2 dx = \left[\frac{1}{3}x^3\right]_{0}^{1} = \frac{1}{3}\)2. \(\int_{1}^{2} \frac{1}{x} dx = [\ln x]_{1}^{2} = \ln 2 -\ln 1 = \ln 2\)3. \(\int_{-2}^{2} x dx = \left[\frac{1}{2}x^2\right]_{-2}^{2} = 2 - (-2) = 4\)4. \(\int_{0}^{\pi/2} \sin x dx = [-\cos x]_{0}^{\pi/2} = -\cos(\pi/2) + \cos(0) = 1\)5. \(\int_{0}^{1} e^x dx = [e^x]_{0}^{1} = e - 1\)6. \(\int_{-1}^{1} \cos x dx = [\sin x]_{-1}^{1} = \sin(1) -\sin(-1) = 2\sin(1)\)7. \(\int_{0}^{1} \ln x dx = \left[x\ln x - x\right]_{0}^{1}= (1\ln 1 - 1) - (0\ln 0 - 0) = -1\)8. \(\int_{0}^{\pi} \tan x dx\) 此积分发散,因为 \(\tan x\)在 \(x = \frac{\pi}{2}\) 处无界。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例1 求3321lim)n n n →∞+.分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限.解 将区间[0,1]n 等分,则每个小区间长为1i x n∆=,然后把2111n n n =⋅的一个因子1n 乘入和式中各项.于是将所求极限转化为求定积分.即3321lim)n n n →∞+=31lim )n n n n →∞+=34=⎰.例2 0⎰=_________.解法1 由定积分的几何意义知,0⎰等于上半圆周22(1)1x y -+= (0y ≥)与x 轴所围成的图形的面积.故0⎰=2π. 解法2 本题也可直接用换元法求解.令1x -=sin t (22t ππ-≤≤),则⎰=22tdt ππ-⎰=2tdt =2202cos tdt π⎰=2π 例3 比较12x e dx ⎰,212x e dx ⎰,12(1)x dx +⎰.分析 对于定积分的大小比较,可以先算出定积分的值再比较大小,而在无法求出积分值时则只能利用定积分的性质通过比较被积函数之间的大小来确定积分值的大小.解法1 在[1,2]上,有2x x e e ≤.而令()(1)x f x e x =-+,则()1x f x e '=-.当0x >时,()0f x '>,()f x 在(0,)+∞上单调递增,从而()(0)f x f >,可知在[1,2]上,有1x e x >+.又1221()()f x dx f x dx =-⎰⎰,从而有2111222(1)x x x dx e dx e dx +>>⎰⎰⎰.解法2 在[1,2]上,有2xx e e ≤.由泰勒中值定理212!xe e x x ξ=++得1x e x >+.注意到1221()()f x dx f x dx =-⎰⎰.因此2111222(1)x x x dx e dx e dx +>>⎰⎰⎰.例4 估计定积分22xxe dx -⎰的值.分析 要估计定积分的值, 关键在于确定被积函数在积分区间上的最大值与最小值. 解 设 2()xxf x e -=, 因为 2()(21)xxf x e x -'=-, 令()0f x '=,求得驻点12x =, 而0(0)1f e ==, 2(2)f e =, 141()2f e -=,故124(),[0,2]ef x e x -≤≤∈,从而2122422xxee dx e --≤≤⎰,所以21024222x xe edx e ---≤≤-⎰.例5 设()f x ,()g x 在[,]a b 上连续,且()0g x ≥,()0f x >.求lim (ban g x →∞⎰.解 由于()f x 在[,]a b 上连续,则()f x 在[,]a b 上有最大值M 和最小值m .由()0f x >知0M >,0m >.又()0g x ≥,则()b ag x dx (b ag x ≤⎰()bag x dx ≤.由于1n n ==,故lim (b an g x →∞⎰=()bag x dx ⎰.例6求sin lim n pnn xdx x+→∞⎰, ,p n 为自然数. 分析 这类问题如果先求积分然后再求极限往往很困难,解决此类问题的常用方法是利用积分中值定理与夹逼准则.解法1 利用积分中值定理 设 sin ()xf x x=, 显然()f x 在[,]n n p +上连续, 由积分中值定理得 sin sin n p n x dx p x ξξ+=⋅⎰, [,]n n p ξ∈+, 当n →∞时, ξ→∞, 而sin 1ξ≤, 故sin sin lim lim 0n pnn x dx p xξξξ+→∞→∞=⋅=⎰.解法2 利用积分不等式 因为sin sin 1lnn pn p n p nn n x x n pdx dx dx x x x n++++≤≤=⎰⎰⎰, 而limln0n n pn→∞+=,所以 sin lim 0n pnn xdx x+→∞=⎰.例7 求10lim 1nn x dx x→∞+⎰.解法1 由积分中值定理()()()()bbaaf xg x dx f g x dx ξ=⎰⎰可知101n x dx x +⎰=111n x dx ξ+⎰,01ξ≤≤.又11lim lim01n n n x dx n →∞→∞==+⎰且11121ξ≤≤+, 故10lim 01n n x dx x→∞=+⎰. 解法2 因为01x ≤≤,故有01nn x x x≤≤+. 于是可得110001nn x dx x dx x ≤≤+⎰⎰.又由于110()1n x dx n n =→→∞+⎰. 因此10lim 1nn x dx x→∞+⎰=0. 例8 设函数()f x 在[0,1]上连续,在(0,1)内可导,且3414()(0)f x dx f =⎰.证明在(0,1)内存在一点c ,使()0f c '=.分析 由条件和结论容易想到应用罗尔定理,只需再找出条件()(0)f f ξ=即可. 证明 由题设()f x 在[0,1]上连续,由积分中值定理,可得3413(0)4()4()(1)()4f f x dx f f ξξ==-=⎰,其中3[,1][0,1]4ξ∈⊂.于是由罗尔定理,存在(0,)(0,1)c ξ∈⊂,使得()0f c '=.证毕.例9 (1)若22()x t xf x e dt -=⎰,则()f x '=___;(2)若0()()xf x xf t dt =⎰,求()f x '=___.分析 这是求变限函数导数的问题,利用下面的公式即可()()()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-⎰.解 (1)()f x '=422x x xe e ---;(2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()xf x xf t dt =⎰,则可得()f x '=0()()xf t dt xf x +⎰.例10 设()f x 连续,且31()x f t dt x -=⎰,则(26)f =_________.解 对等式310()x f t dt x -=⎰两边关于x 求导得32(1)31f x x -⋅=,故321(1)3f x x -=,令3126x -=得3x =,所以1(26)27f =. 例11函数1()(3(0)x F x dt x =>⎰的单调递减开区间为_________.解()3F x '=()0F x '<3>,解之得109x <<,即1(0,)9为所求.例12 求0()(1)arctan xf x t tdt =-⎰的极值点.解 由题意先求驻点.于是()f x '=(1)arctan x x -.令()f x '=0,得1x =,0x =.列表故1x =为()f x 的极大值点,0x =为极小值点.例13 已知两曲线()y f x =与()y g x =在点(0,0)处的切线相同,其中2arcsin 0()xt g x e dt -=⎰,[1,1]x ∈-,试求该切线的方程并求极限3lim ()n nf n→∞.分析 两曲线()y f x =与()y g x =在点(0,0)处的切线相同,隐含条件(0)(0)f g =,(0)(0)f g ''=.解 由已知条件得2(0)(0)0t f g e dt -===⎰,且由两曲线在(0,0)处切线斜率相同知(0)(0)1f g =''===.故所求切线方程为y x =.而3()(0)3lim ()lim33(0)330n n f f n nf f n n→∞→∞-'=⋅==-.例14 求 22000sin lim(sin )x x xtdtt t t dt→-⎰⎰;分析 该极限属于型未定式,可用洛必达法则. 解 22000sin lim (sin )x x xtdtt t t dt→-⎰⎰=2202(sin )lim (1)(sin )x x x x x x →-⋅⋅-=220()(2)lim sin x x x x →-⋅-=304(2)lim 1cos x x x→-⋅-=2012(2)lim sin x x x→-⋅=0.注 此处利用等价无穷小替换和多次应用洛必达法则.例15 试求正数a 与b,使等式201lim1sin x x x b x →=-⎰成立. 分析 易见该极限属于型的未定式,可用洛必达法则. 解2001lim sin x x x b x →-⎰=20x →=20lim 1cos x x x b x →→-2011cos x x b x →==-,由此可知必有0lim(1cos )0x b x →-=,得1b =.又由2011cos x x x →==-, 得4a =.即4a =,1b =为所求.例16 设sin 20()sin x f x t dt =⎰,34()g x x x =+,则当0x →时,()f x 是()g x 的( ).A .等价无穷小.B .同阶但非等价的无穷小.C .高阶无穷小.D .低阶无穷小.解法1 由于 22300()sin(sin )cos lim lim ()34x x f x x xg x x x→→⋅=+ 2200cos sin(sin )lim lim34x x x x x x →→=⋅+ 22011lim 33x x x →==. 故()f x 是()g x 同阶但非等价的无穷小.选B .解法2 将2sin t 展成t 的幂级数,再逐项积分,得到sin 223370111()[()]sin sin 3!342x f x t t dt x x =-+=-+⎰,则344340001111sin (sin )sin ()1342342lim lim lim ()13x x x x x x f x g x x x x→→→-+-+===++.例17 证明:若函数()f x 在区间[,]a b 上连续且单调增加,则有()baxf x dx ⎰()2baa b f x dx +≥⎰.证法1 令()F x =()()2x xaaa x tf t dt f t dt +-⎰⎰,当[,]t a x ∈时,()()f t f x ≤,则 ()F x '=1()()()22x a a x xf x f t dt f x +--⎰=1()()22xa x a f x f t dt --⎰ ≥1()()22x a x a f x f x dt --⎰=()()22x a x af x f x ---0=. 故()F x 单调增加.即 ()()F x F a ≥,又()0F a =,所以()0F x ≥,其中[,]x a b ∈. 从而()F b =()()2bba aa b xf x dx f x dx +-⎰⎰0≥.证毕. 证法2 由于()f x 单调增加,有()[()()]22a b a bx f x f ++--0≥,从而 ()[()()]22baa b a bx f x f dx ++--⎰0≥. 即()()2baa b x f x dx +-⎰()()22b a a b a b x f dx ++≥-⎰=()()22b a a b a bf x dx ++-⎰=0.故()baxf x dx ⎰()2baa b f x dx +≥⎰. 例18 计算21||x dx -⎰.分析 被积函数含有绝对值符号,应先去掉绝对值符号然后再积分.解 21||x dx -⎰=0210()x dx xdx --+⎰⎰=220210[][]22x x --+=52.注 在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如33222111[]6dx x x --=-=⎰,则是错误的.错误的原因则是由于被积函数21x 在0x =处间断且在被积区间内无界.例19 计算220max{,}x x dx ⎰.分析 被积函数在积分区间上实际是分段函数212()01x x f x x x ⎧<≤=⎨≤≤⎩.解 23212221201011717max{,}[][]23236x x x x dx xdx x dx =+=+=+=⎰⎰⎰例20 设()f x 是连续函数,且10()3()f x x f t dt =+⎰,则()________f x =. 分析 本题只需要注意到定积分()ba f x dx ⎰是常数(,ab 为常数).解 因()f x 连续,()f x 必可积,从而10()f t dt ⎰是常数,记1()f t dt a =⎰,则()3f x x a =+,且11(3)()x a dx f t dt a +==⎰⎰.所以2101[3]2x ax a +=,即132a a +=, 从而14a =-,所以 3()4f x x =-.例21 设23, 01()52,12x x f x x x ⎧≤<=⎨-≤≤⎩,0()()x F x f t dt =⎰,02x ≤≤,求()F x , 并讨论()F x 的连续性.分析 由于()f x 是分段函数, 故对()F x 也要分段讨论. 解 (1)求()F x 的表达式.()F x 的定义域为[0,2].当[0,1]x ∈时,[0,][0,1]x ⊂, 因此23300()()3[]xxxF x f t dt t dt t x ====⎰⎰.当(1,2]x ∈时,[0,][0,1][1,]x x =, 因此, 则1201()3(52)xF x t dt t dt =+-⎰⎰=31201[][5]x t t t +-=235x x -+-,故32, 01()35,12x x F x x x x ⎧≤<⎪=⎨-+-≤≤⎪⎩. (2) ()F x 在[0,1)及(1,2]上连续, 在1x =处,由于211lim ()lim(35)1x x F x x x ++→→=-+-=, 311lim ()lim 1x x F x x --→→==, (1)1F =. 因此, ()F x 在1x =处连续, 从而()F x 在[0,2]上连续.错误解答 (1)求()F x 的表达式, 当[0,1)x ∈时,23300()()3[]xxxF x f t dt t dt t x ====⎰⎰.当[1,2]x ∈时,有()()xF x f t dt ==⎰0(52)xt dt -⎰=25x x -.故由上可知32, 01()5,12x x F x x x x ⎧≤<⎪=⎨-≤≤⎪⎩. (2) ()F x 在[0,1)及(1,2]上连续, 在1x =处,由于211lim ()lim(5)4x x F x x x ++→→=-=, 311lim ()lim 1x x F x x --→→==, (1)1F =.因此, ()F x 在1x =处不连续, 从而()F x 在[0,2]上不连续.错解分析 上述解法虽然注意到了()f x 是分段函数,但(1)中的解法是错误的,因 为当[1,2]x ∈时,0()()xF x f t dt =⎰中的积分变量t 的取值范围是[0,2],()f t 是分段函数,101()()()()x xF x f t dt f t dt f t dt ==+⎰⎰⎰才正确.例22 计算21-⎰.分析 由于积分区间关于原点对称,因此首先应考虑被积函数的奇偶性. 解 21-⎰=211--+⎰⎰2是偶函数,而是奇函数,有10-=⎰, 于是21-⎰=214⎰=04⎰=1044dx -⎰⎰由定积分的几何意义可知4π=⎰, 故2114444dx ππ-=-⋅=-⎰⎰.例23 计算3412e e⎰.分析 被积函数中含有1x及ln x ,考虑凑微分.解3412e e ⎰=34e 3412e e⎰=⎰=3412e e =6π. 例24 计算4sin 1sin xdx xπ+⎰.解 40sin 1sin x dx x π+⎰=420sin (1sin )1sin x x dx xπ--⎰=244200sin tan cos xdx xdx x ππ-⎰⎰ =244200cos (sec 1)cos d xx dx xππ---⎰⎰=44001[][tan ]cos x x x ππ--=24π-+ 注 此题为三角有理式积分的类型,也可用万能代换公式来求解,请读者不妨一试.例25 计算20a⎰,其中0a >.解20a⎰=20a⎰,令sin x a a t -=,则2a⎰=3222(1sin )cosat tdt ππ-+⎰=32202cos 0atdt π+⎰=32a π.注 ,一般令sin x a t =或cos x a t =. 例26 计算a⎰,其中0a >.解法1 令sin x a t =,则a⎰2cos sin cos tdt t tπ=+⎰201(sin cos )(cos sin )2sin cos t t t t dt t t π++-=+⎰ 201(sin cos )[1]2sin cos t t dt t tπ'+=++⎰[]201ln |sin cos |2t t t π=++=4π. 解法2 令sin x a t =,则a⎰=2cos sin cos tdt t tπ+⎰.又令2t u π=-,则有20cos sin cos t dt t tπ+⎰=20sin sin cos udu u u π+⎰.所以,a⎰=22001sin cos []2sin cos sin cos t t dt dt t tt t ππ+++⎰⎰=2012dt π⎰=4π.注 如果先计算不定积分,再利用牛顿-莱布尼兹公式求解,则比较复杂,由此可看出定积分与不定积分的差别之一.例27 计算ln 0⎰. 分析 被积函数中含有根式,不易直接求原函数,考虑作适当变换去掉根式.解 设u =2ln(1)x u =+,221udx du u =+,则ln 0⎰=22220(1)241u u u du u u +⋅=++⎰22222200442244u u du du u u +-=++⎰⎰2221284du du u =-=+⎰⎰4π-. 例28 计算220()xd tf x t dt dx -⎰,其中()f x 连续. 分析 要求积分上限函数的导数,但被积函数中含有x ,因此不能直接求导,必须先换元使被积函数中不含x ,然后再求导.解 由于220()xtf x t dt -⎰=22201()2xf x t dt -⎰. 故令22x t u -=,当0t =时2u x =;当t x =时0u =,而2dt du =-,所以220()x tf x t dt -⎰=201()()2x f u du -⎰=201()2x f u du ⎰, 故220()x d tf x t dt dx -⎰=201[()]2x d f u du dx ⎰=21()22f x x⋅=2()xf x . 错误解答220()x d tf x t dt dx -⎰22()(0)xf x x xf =-=. 错解分析 这里错误地使用了变限函数的求导公式,公式()()()xad x f t dt f x dx 'Φ==⎰中要求被积函数()f t 中不含有变限函数的自变量x ,而22()f x t -含有x ,因此不能直接求导,而应先换元.例29 计算30sin x xdx π⎰.分析 被积函数中出现幂函数与三角函数乘积的情形,通常采用分部积分法.解30sin x xdx π⎰30(cos )xd x π=-⎰330[(cos )](cos )x x x dx ππ=⋅---⎰30cos 6xdx ππ=-+⎰6π=-. 例30 计算120ln(1)(3)x dx x +-⎰.分析 被积函数中出现对数函数的情形,可考虑采用分部积分法.解 120ln(1)(3)x dx x +-⎰=101ln(1)()3x d x +-⎰=1100111[ln(1)]3(3)(1)x dx x x x +-⋅--+⎰ =101111ln 2()2413dx x x-++-⎰11ln 2ln324=-.例31 计算20sin x e xdx π⎰.分析 被积函数中出现指数函数与三角函数乘积的情形通常要多次利用分部积分法.解 由于20sin xe xdx π⎰20sin xxde π=⎰220[sin ]cos xx e x e xdx ππ=-⎰220cos x e e xdx ππ=-⎰, (1)而20cos xe xdx π⎰20cos xxde π=⎰2200[cos ](sin )xx e x e x dx ππ=-⋅-⎰20sin 1x e xdx π=-⎰, (2)将(2)式代入(1)式可得20sin xe xdx π⎰220[sin 1]x e e xdx ππ=--⎰,故20sin xe xdx π⎰21(1)2e π=+.例32 计算10arcsin x xdx ⎰.分析 被积函数中出现反三角函数与幂函数乘积的情形,通常用分部积分法.解 10arcsin x xdx ⎰210arcsin ()2x xd =⎰221100[arcsin ](arcsin )22x x x d x =⋅-⎰21142π=-⎰. (1) 令sin x t =,则21⎰20sin t π=⎰220sin cos cos ttdt tπ=⋅⎰220sin tdt π=⎰ 201cos22t dt π-==⎰20sin 2[]24t t π-4π=. (2)将(2)式代入(1)式中得1arcsin x xdx =⎰8π. 例33 设()f x 在[0,]π上具有二阶连续导数,()3f π'=且0[()()]cos 2f x f x xdx π''+=⎰,求(0)f '.分析 被积函数中含有抽象函数的导数形式,可考虑用分部积分法求解. 解 由于0[()()]cos f x f x xdx π''+⎰0()sin cos ()f x d x xdf x ππ'=+⎰⎰[]000{()sin ()sin }{[()cos ]()sin }f x x f x xdx f x x f x xdx ππππ'''=-++⎰⎰()(0)2f f π''=--=.故 (0)f '=2()235f π'--=--=-. 例34(97研) 设函数()f x 连续,1()()x f xt dt ϕ=⎰,且0()limx f x A x→=(A 为常数), 求()x ϕ'并讨论()x ϕ'在0x =处的连续性.分析 求()x ϕ'不能直接求,因为10()f xt dt ⎰中含有()x ϕ的自变量x ,需要通过换元将x从被积函数中分离出来,然后利用积分上限函数的求导法则,求出()x ϕ',最后用函数连续的定义来判定()x ϕ'在0x =处的连续性.解 由0()limx f x A x→=知0lim ()0x f x →=,而()f x 连续,所以(0)0f =,(0)0ϕ=.当0x ≠时,令u xt =,0t =,0u =;1t =,u x =.1dt du x=,则()()xf u du x xϕ=⎰,从而2()()()(0)xxf x f u dux x xϕ-'=≠⎰.又因为02()()(0)()limlimlim22xx x x f u du x f x A x x x ϕϕ→→→-===-⎰,即(0)ϕ'=2A.所以 ()x ϕ'=02()(),0,02x xf x f u du x x Ax ⎧-⎪≠⎪⎨⎪=⎪⎩⎰. 由于02200()()()()lim ()limlimlim xxx x x x xf x f u duf u du f x x xx x ϕ→→→→-'==-⎰⎰=(0)2A ϕ'=.从而知()x ϕ'在0x =处连续.注 这是一道综合考查定积分换元法、对积分上限函数求导、按定义求导数、讨论函数在一点的连续性等知识点的综合题.而有些读者在做题过程中常会犯如下两种错误:(1)直接求出2()()()xxf x f u dux xϕ-'=⎰,而没有利用定义去求(0)ϕ',就得到结论(0)ϕ'不存在或(0)ϕ'无定义,从而得出()x ϕ'在0x =处不连续的结论.(2)在求0lim ()x x ϕ→'时,不是去拆成两项求极限,而是立即用洛必达法则,从而导致()()()1lim ()lim ().22x x xf x f x f x x f x x ϕ→→'+-''==又由0()limx f x A x→=用洛必达法则得到0lim ()x f x →'=A ,出现该错误的原因是由于使用洛必达法则需要有条件:()f x 在0x =的邻域内可导.但题设中仅有()f x 连续的条件,因此上面出现的0lim ()x f x →'是否存在是不能确定的.例35(00研) 设函数()f x 在[0,]π上连续,且()0f x dx π=⎰,0()cos 0f x xdx π=⎰.试证在(0,)π内至少存在两个不同的点12,ξξ使得12()()0f f ξξ==.分析 本题有两种证法:一是运用罗尔定理,需要构造函数0()()xF x f t dt =⎰,找出()F x的三个零点,由已知条件易知(0)()0F F π==,0x =,x π=为()F x 的两个零点,第三个零点的存在性是本题的难点.另一种方法是利用函数的单调性,用反证法证明()f x 在(0,)π之间存在两个零点.证法1 令0()(),0xF x f t dt x π=≤≤⎰,则有(0)0,()0F F π==.又00()cos cos ()[cos ()]()sin f x xdx xdF x xF x F x xdx ππππ==+⎰⎰⎰()sin 0F x xdx π==⎰,由积分中值定理知,必有(0,)ξπ∈,使得()sin F x xdx π⎰=()sin (0)F ξξπ⋅-.故()sin 0F ξξ=.又当(0,),sin 0ξπξ∈≠,故必有()0F ξ=.于是在区间[0,],[,]ξξπ上对()F x 分别应用罗尔定理,知至少存在1(0,)ξξ∈,2(,)ξξπ∈,使得12()()0F F ξξ''==,即12()()0f f ξξ==.证法2 由已知条件0()0f x dx π=⎰及积分中值定理知必有10()()(0)0f x dx f πξπ=-=⎰,1(0,)ξπ∈,则有1()0f ξ=.若在(0,)π内,()0f x =仅有一个根1x ξ=,由0()0f x dx π=⎰知()f x 在1(0,)ξ与1(,)ξπ内异号,不妨设在1(0,)ξ内()0f x >,在1(,)ξπ内()0f x <,由()cos 0f x xdx π=⎰,0()0f x dx π=⎰,以及cos x 在[0,]π内单调减,可知:100()(cos cos )f x x dx πξ=-⎰=11110()(cos cos )()(cos cos )f x x dx f x x dx ξπξξξ-+-⎰⎰0>.由此得出矛盾.故()0f x =至少还有另一个实根2ξ,12ξξ≠且2(0,)ξπ∈使得12()()0.f f ξξ==例36 计算2043dxx x +∞++⎰.分析 该积分是无穷限的的反常积分,用定义来计算.解2043dx x x +∞++⎰=20lim 43t t dx x x →+∞++⎰=0111lim ()213t t dx x x →+∞-++⎰ =011lim [ln ]23t t x x →+∞++=111lim (ln ln )233t t t →+∞+-+ =ln 32. 例37计算3+∞⎰.解3+∞⎰2233sec tan sec tan d ππθθθθθ+∞=⎰⎰23cos 1d ππθθ==-⎰. 例38计算42⎰.分析 该积分为无界函数的反常积分,且有两个瑕点,于是由定义,当且仅当32⎰和43⎰均收敛时,原反常积分才是收敛的.解 由于32⎰32lim aa +→⎰=32lim aa +→⎰=32lim[arcsin(3)]a a x +→-=2π.43⎰=34lim bb -→⎰=34lim bb -→⎰=34lim[arcsin(3)]b b x -→-=2π. 所以42⎰22πππ=+=.例39计算0+∞⎰.分析 此题为混合型反常积分,积分上限为+∞,下限0为被积函数的瑕点. 解t ,则有+∞⎰=50222(1)tdt t t +∞+⎰=50222(1)dt t +∞+⎰,再令tan t θ=,于是可得5022(1)dt t +∞+⎰=25022tan (tan 1)d πθθ+⎰=2250sec sec d πθθθ⎰=230sec d πθθ⎰ =32cos d πθθ⎰=220(1sin )cos d πθθθ-⎰=220(1sin )sin d πθθ-⎰=3/21[sin sin ]3πθθ-=23. 例40计算21⎰. 解 由于221112111()d x x x +-==⎰⎰⎰,可令1t x x=-,则当x =t =;当0x -→时,t →+∞;当0x +→时,t →-∞;当1x =时,0t =;故有21010211()()12()d x d x x x x x--=++-⎰⎰⎰022dt t +∞-∞=++⎰⎰21(arctan )22π=+ . 注 有些反常积分通过换元可以变成非反常积分,如例32、例37、例39;而有些非反常积分通过换元却会变成反常积分,如例40,因此在对积分换元时一定要注意此类情形.例41 求由曲线12y x =,3y x =,2y =,1y =所围成的图形的面积.分析 若选x 为积分变量,需将图形分割成三部分去求,如图5-1所示,此做法留给读者去完成.下面选取以y 为积分变量.解 选取y 为积分变量,其变化范围为[1,2]y ∈,则面积元素为dA =1|2|3y y dy -=1(2)3y y dy -.于是所求面积为211(2)3A y y dy =-⎰=52.例42 抛物线22y x =把圆228x y +=分成两部分,求这两部分面积之比.解 抛物线22y x =与圆228x y +=的交点分别为(2,2)与(2,2)-,如图所示5-2所示,抛物线将圆分成两个部分1A ,2A ,记它们的面积分别为1S ,2S ,则有图5-21S =2222(8)2y y dy ---⎰=24488cos 3d ππθθ--⎰=423π+,218S A π=-=463π-,于是12S S =423463ππ+-=3292ππ+-. 例43 求心形线1cos ρθ=+与圆3cos ρθ=所围公共部分的面积.分析 心形线1cos ρθ=+与圆3cos ρθ=的图形如图5-3所示.由图形的对称性,只需计算上半部分的面积即可.解 求得心形线1cos ρθ=+与圆3cos ρθ=的交点为(,)ρθ=3(,)23π±,由图形的对称性得心形线1cos ρθ=+与圆3cos ρθ=所围公共部分的面积为图5-3A =223203112[(1cos )(3cos )]22d d πππθθθθ++⎰⎰=54π. 3πθ=3cos ρθ=3211-xoy121-2A 1A 12(2,2)-oxy22y x=228x y +=2-1-121-2-2x y =1y =3y x =o 1-3-321211-2-xy2y =图5-1342-1cos ρθ=+例44 求曲线ln y x =在区间(2,6)内的一条切线,使得该切线与直线2x =,6x =和曲线ln y x =所围成平面图形的面积最小(如图5-4所示).分析 要求平面图形的面积的最小值,必须先求出面积的表达式.解 设所求切线与曲线ln y x =相切于点(,ln )c c ,则切线方程为1ln ()y c x c c-=-.又切线与直线2x =,6x =和曲线ln y x =所围成的平面图形的面积为图5-4A =621[()ln ln ]x c c x dx c -+-⎰=44(1)4ln 46ln 62ln 2c c-++-+.由于dA dc =2164c c -+=24(4)c c--, 令0dA dc =,解得驻点4c =.当4c <时0dAdc<,而当4c >时0dA dc >.故当4c =时,A 取得极小值.由于驻点唯一.故当4c =时,A 取得最小值.此时切线方程为:11ln 44y x =-+. 例45 求圆域222()x y b a +-≤(其中b a >)绕x 轴旋转而成的立体的体积.解 如图5-5所示,选取x 为积分变量,得上半圆周的方程为222y b a x =+-,下半圆周的方程为221y b a x =--.图5-5则体积元素为dV =2221()y y dx ππ-=224b a x dx π-.于是所求旋转体的体积为 V =224aab a x dx π--⎰=228ab a x dx π-⎰=284a b ππ⋅=222a b π.注 可考虑选取y 为积分变量,请读者自行完成.例46(03研) 过坐标原点作曲线ln y x =的切线,该切线与曲线ln y x =及x 轴围成平面图形D .(1)求D 的面积A ;(2)求D 绕直线x e =旋转一周所得旋转体的体积V . 分析 先求出切点坐标及切线方程,再用定积分求面积A ,旋转体积可用大的立体体积减去小的立体体积进行图5-6ln y x=ln y x=y xo12311y xe=(0,)b o()(0)x y b a b a +-=>>xy1xo y23121-45673ln y x=2x =6x =(,ln )c c计算,如图5-6所示.解 (1)设切点横坐标为0x ,则曲线ln y x =在点00(,ln )x x 处的切线方程是0001ln ()y x x x x =+-. 由该切线过原点知0ln 10x -=,从而0x e =,所以该切线的方程是1y x e=.从而D 的面积10()12y eA e ey dy =-=-⎰. (2)切线1y x e =与x 轴及直线x e =围成的三角形绕直线x e =旋转所得的旋转体积为2113V e π=,曲线ln y x =与x 轴及直线x e =围成的图形绕直线x e =旋转所得的旋转体积为1222011()(2)22y V e e dy e e ππ=-=-+-⎰.因此,所求体积为212(5123)6V V V e e π=-=-+.例47 有一立体以抛物线22y x =与直线2x =所围成的图形为底,而垂直于抛物线的轴的截面都是等边三角形,如图5-7所示.求其体积.解 选x 为积分变量且[0,2]x ∈.过x 轴上坐标为x 的点作垂直于x 轴的平面,与立体相截的截面为等边三角形,其底边长为得等边三角形的面积为图5-7()A x 2=. 于是所求体积为 V =2()A x dx ⎰=2⎰=例48(03研) 某建筑工程打地基时,需用汽锤将桩打进土层,汽锤每次击打,都将克服土层对桩的阻力而作功,设土层对桩的阻力的大小与桩被打进地下的深度成正比(比例系数为k ,0k >),汽锤第一次击打进地下a (m ),根据设计方案,要求汽锤每次击打桩时所作的功与前一次击打时所作的功之比为常数r (01r <<).问:(1)汽锤打桩3次后,可将桩打进地下多深?(2)若击打次数不限,汽锤至多能将桩打进地下多深?(注:m 表示长度单位米) 分析 本题属于变力作功问题,可用定积分来求.解 (1)设第n 次击打后,桩被打进地下n x ,第n 次击打时,汽锤所作的功为n W (1n =,2,).由题设,当桩被打进地下的深度为x 时,土层对桩的阻力的大小为kx ,所以12211022x k k W kxdx x a ===⎰,2122222211()()22x x k k W kxdx x x x a ==-=-⎰.由21W rW =得22221x x ra -=,即 222(1)x r a =+,3222223323()[(1)]22x x k kW kxdx x x x r a ==-=-+⎰.由2321W rW r W == 得22223(1)x r a r a -+=,即 2223(1)x r r a =++.从而汽锤击打3次后,可将桩打进地下3x =m ).(2)问题是要求lim n n x →∞,为此先用归纳法证明:1n n x r +=++.假设1n n x r a -=++,则12211()2n nx n n n x k W kxdx x x +++==-⎰2121[(1...)]2n n kx r r a -+=-+++.由2111...n n n n W rW r W r W +-====,得21221(1...)n n n x r r a r a -+-+++=.从而1n n x r a+=++.于是1lim n n n x +→∞==. ()m .例49 有一等腰梯形水闸.上底为6米,下底为2米,高为10米.试求当水面与上底相接时闸门所受的水压力.解 建立如图5-8所示的坐标系,选取x 为积分变量.则过点(0,3)A ,(10,1)B 的直线方程为135y x =-+.于是闸门上对应小区间[,]x x dx +的窄条所承受的水压力为2dF xy gdxρ=.故闸门所受水压力为F =10012(3)5g x x dx ρ-+⎰=5003g ρ,其中ρ为水密度,g 为重力加速度.图5-8。

相关文档
最新文档