《高等数学》不定积分课后习题详解Word版
高等数学 第四章不定积分课后习题详解.doc
第4章不定积分内容概要课后习题全解习题4-11.求下列不定积分:知识点:直接积分法的练习——求不定积分的基本方法。
思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!★(1)思路: 被积函数52x -=,由积分表中的公式(2)可解。
解:532223x dx x C --==-+⎰★(2)dx-⎰ 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。
解:1141113332223()24dx x x dx x dx x dx x x C --=-=-=-+⎰⎰⎰⎰ ★(3)22x x dx +⎰()思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。
解:2232122ln 23x x x x dx dx x dx x C +=+=++⎰⎰⎰()★(4)3)x dx -思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。
解:3153222223)325x dx x dx x dx x x C -=-=-+⎰⎰⎰ ★★(5)4223311x x dx x +++⎰思路:观察到422223311311x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。
解:42232233113arctan 11x x dx x dx dx x x C x x ++=+=++++⎰⎰⎰ ★★(6)221x dx x +⎰思路:注意到222221111111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。
解:2221arctan .11x dx dx dx x x C x x =-=-+++⎰⎰⎰ 注:容易看出(5)(6)两题的解题思路是一致的。
一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。
★(7)x dx x x x⎰34134(-+-)2 思路:分项积分。
(WORD)-高等数学课后习题(完整版)及答案
高等数学课后习题(完整版)及答案高等数学课后答案习题1 11设A ( 5) (5 ) B [10 3)写出A BA B A\B及A\(A\B)的表达式解 A B ( 3) (5 )A B [105)A\B ( 10) (5 )A\(A\B) [105)2设A、B是任意两个集合证明对偶律 (A B)C AC BC 证明因为x (A B)C x A B x A或x B x AC或x BC x ACBC所以 (A B)C AC BC3设映射f X Y A X B X 证明(1)f(A B) f(A) f(B)(2)f(A B) f(A) f(B)证明因为y f(A B) x A B使f(x) y(因为x A或x B) y f(A)或y f(B)y f(A) f(B)所以 f(A B) f(A) f(B)(2)因为y f(A B) x A B使f(x) y (因为x A且x B) y f(A)且y f(B) y f(A) f(B)所以 f(A B) f(A) f(B)4设映射f X Y若存在一个映射g Y X使g f IXf g IY其中IX、IY分别是X、Y上的恒等映射即对于每一个x X有IX x x 对于每一个y Y有IY y y证明 f是双射且g是f的逆映射 g f 1证明因为对于任意的y Y有x g(y) X且f(x) f[g(y)] Iy y y即Y中任意元素都是X中某元素的像所以f为X到Y的满射又因为对于任意的x1 x2必有f(x1) f(x2)否则若f(x1) f(x2) g[ f(x1)] g[f(x2)] x1 x2因此f既是单射又是满射即f是双射对于映射g Y X因为对每个y Y有g(y) x X且满足f(x) f[g(y)] Iy y y按逆映射的定义 g是f的逆映射5设映射f X Y A X 证明(1)f 1(f(A)) A(2)当f是单射时有f 1(f(A)) A证明 (1)因为x A f(x) y f(A) f 1(y) x f 1(f(A))所以 f 1(f(A)) A(2)由(1)知f 1(f(A)) A另一方面对于任意的x f 1(f(A)) 存在y f(A)使f1(y) x f(x) y 因为y f(A)且f是单射所以x A这就证明了f 1(f(A)) A因此f 1(f(A)) A6求下列函数的自然定义域(1)y x233 解由3x2 0得x 2函数的定义域为[2, )(2)y 1 1x2解由1x2 0得x 1函数的定义域为( 1) (11) (1 )(3)y 1x x2解由x 0且1x2 0得函数的定义域D [1 0) (0 1](4)y 14x2解由4x2 0得 |x| 2函数的定义域为(2 2)(5)y sinx解由x 0得函数的定义D [0 )(6) y tan(x1)2 解由x1 (k 0 1 2 )得函数的定义域为x k 1 (k 0 1 2 2)(7) y arcsin(x3)解由|x3| 1得函数的定义域D [2 4](8)y x1 x解由3x 0且x 0得函数的定义域D ( 0) (0 3)(9) y ln(x1)解由x1 0得函数的定义域D (1 )(10)y ex解由x 0得函数的定义域D ( 0) (0 )7下列各题中函数f(x)和g(x)是否相同?为什么?(1)f(x) lg x2 g(x) 2lg x(2) f(x) x g(x) x2(3)f(x) x4x3g(x) xx1(4)f(x) 1 g(x) sec2x tan2x解 (1)不同因为定义域不同(2)不同因为对应法则不同 x 0时 g(x) x(3)相同因为定义域、对应法则均相相同(4)不同因为定义域不同8 |sinx| |x|3设 (x) |x| 0 3 求 ( ) ( ) ( ) (2)并作出函数y (x)644的图形) |sin | 解 ( ) |sin | 1 (446622) |sin( )| (442 (2) 09试证下列函数在指定区间内的单调性(1)y x ( 1) 1x(2)y x ln x (0 )证明 (1)对于任意的x1 x2 ( 1)有1x1 0 1x2 0因为当x1 x2时y1y2 xxx x 0 1x11x2(1x1)(1x2) 所以函数y x在区间( 1)内是单调增加的 1x(2)对于任意的x1 x2 (0 )当x1 x2时有y1y2 (x1lnx1)(x2lnx2) (x1x2)lnx 0 x2所以函数y x ln x在区间(0 )内是单调增加的10设 f(x)为定义在(l l)内的奇函数若f(x)在(0 l)内单调增加证明f(x)在(l 0)内也单调增加证明对于x1 x2 (l 0)且x1 x2有x1x2 (0 l)且x1 x2因为f(x)在(0 l)内单调增加且为奇函数所以f(x2) f(x1)f(x2) f(x1) f(x2) f(x1)这就证明了对于x1 x2 (l 0)有f(x1) f(x2)所以f(x)在(l 0)内也单调增加11设下面所考虑的函数都是定义在对称区间(l l)上的证明(1)两个偶函数的和是偶函数两个奇函数的和是奇函数(2)两个偶函数的乘积是偶函数两个奇函数的乘积是偶函数偶函数与奇函数的乘积是奇函数证明 (1)设F(x) f(x)g(x)如果f(x)和g(x)都是偶函数则F(x) f(x)g(x) f(x)g(x) F(x)所以F(x)为偶函数即两个偶函数的和是偶函数如果f(x)和g(x)都是奇函数则F(x) f(x)g(x) f(x)g(x) F(x)所以F(x)为奇函数即两个奇函数的和是奇函数(2)设F(x) f(x) g(x)如果f(x)和g(x)都是偶函数则F(x) f(x) g(x) f(x) g(x) F(x)所以F(x)为偶函数即两个偶函数的积是偶函数如果f(x)和g(x)都是奇函数则F(x) f(x) g(x) [f(x)][g(x)] f(x) g(x) F(x)所以F(x)为偶函数即两个奇函数的积是偶函数如果f(x)是偶函数而g(x)是奇函数则F(x) f(x) g(x) f(x)[g(x)] f(x) g(x) F(x)所以F(x)为奇函数即偶函数与奇函数的积是奇函数12下列函数中哪些是偶函数哪些是奇函数哪些既非奇函数又非偶函数?(1)y x2(1x2)(2)y 3x2x3(3)y 1x2 1x2(4)y x(x1)(x1)(5)y sin x cos x1(6)y ax a x2解 (1)因为f(x) (x)2[1(x)2] x2(1x2) f(x)所以f(x)是偶函数(2)由f(x) 3(x)2(x)3 3x2x3可见f(x)既非奇函数又非偶函数(3)因为1(x)21x2f(x) f(x) 221x1x所以f(x)是偶函数(4)因为f(x) (x)(x1)(x1) x(x1)(x1) f(x)所以f(x)是奇函数(5)由f(x) sin(x)cos(x)1 sin x cos x1可见f(x)既非奇函数又非偶函数(6)因为(x)(x)xxa aa af(x) f(x) 22所以f(x)是偶函数13下列各函数中哪些是周期函数?对于周期函数指出其周期(1)y cos(x2)解是周期函数周期为l 2(2)y cos 4x解是周期函数周期为l 2(3)y 1sin x解是周期函数周期为l 2(4)y xcos x解不是周期函数(5)y sin2x解是周期函数周期为l14求下列函数的反函数(1)y x1解由y x1得x y31所以y x1的反函数为y x31(2)y 1x 1x解由y 1x得x 1y所以y 1x的反函数为y 1x1x1y1x1x(3)y ax b(ad bc 0) cx d解由y ax b得x dy b所以y ax b的反函数为y dx b cx dcy acx dcx a(4) y 2sin3xyarcsin所以y 2sin3x的反函数为y 1arcsinx解由y 2sin 3x 得x 13232(5) y 1ln(x2)x2(6)y 2 1 解由y 1ln(x2)得x ey12所以y 1ln(x2)的反函数为y ex122xx y 所以的反函数为y log2211x 解 y2xy x log由得21y2 115设函数f(x)在数集X上有定义试证 函数f(x)在X上有界的充分必要条件是它在X上既有上界又有下界证明先证必要性设函数f(x)在X上有界则存在正数M使|f(x)| M即M f(x) M这就证明了f(x)在X上有下界M和上界M再证充分性设函数f(x)在X上有下界K1和上界K2即K1 f(x) K2 取M max{|K1| |K2|}则M K1 f(x)K2 M即 |f(x)| M这就证明了f(x)在X上有界16在下列各题中求由所给函数复合而成的函数并求这函数分别对应于给定自变量值x1和x2的函数值(1) y u2 u sin x解 y sin2x x1 6x2 33y1 sin2 12 1y2 sin2 ()2 324624x1 x2 84 (2) y sin u u 2x解 y sin2x(3)y解 y1 sin(2 ) sin y2 sin(2 sin 1 842422u 1x x1 1 x2 2 y x2 y1 12 y2 22(4) y eu u x2 x1 0 x2 1解 y ex2 y1 e0 1 y2 e1 e 22(5) y u2 u ex x1 1 x2 1解 y e2x y1 e2 1 e2 y2 e2 (1) e217设f(x)的定义域D [0 1]求下列各函数的定义域(1) f(x2)解由0 x2 1得|x| 1所以函数f(x2)的定义域为[1 1](2) f(sinx)解由0 sin x 1得2n x (2n1) (n 0 1 2 )所以函数f(sin x)的定义域为[2n (2n1) ] (n 0 1 2 )(3) f(x a)(a>0)解由0 x a 1得a x 1a所以函数f(x a)的定义域为[a 1a](4) f(x a)f(x a)(a 0)22 解由0 x a 1且0 x a 1得 当0 a 1时 a x 1a 当a 1时无解因此当0 a 1时函数的定义域为[a 1a]当a 1时函数无意义2218设的图形解 |x| 1 1 x f(x) 0 |x| 1 g(x) e |x| 1 1 求f[g(x)]和g[f(x)]并作出这两个函数 1 |ex| 1 f[g(x)] 0|ex| 11 |ex| 1 即 1 x 0 f[g(x)] 0 x 0 1 x 0e1 |x| 1 g[f(x)] ef(x) e0 |x| 1e 1 |x| 1 e |x| 1 |x| 1即g[f(x)] 11 |x| 1 e19已知水渠的横断面为等腰梯形斜角 40 (图137)当过水断面ABCD的面积为定值S0周L(L AB BC CD)与水的函数关系式并指明其图137解 AB DC hsin40 0cot40 h所以又从1h[BC(BC2cot40 h)] S0得BC Sh时求湿深h之间定义域 2S2cos40L h hsin40自变量h的取值范围应由不等式组h 0确定定义域为0 h 0cot40S0 cot40 h 0 h20收敛音机每台售价为90元成本为60元厂方为鼓励销售商大量采购决定凡是订购量超过100台以上的每多订购1台售价就降低1分但最低价为每台75元(1)将每台的实际售价p表示为订购量x的函数(2)将厂方所获的利润P表示成订购量x的函数(3)某一商行订购了1000台厂方可获利润多少?解 (1)当0 x 100时 p 90令001(x0100) 9075得x0 1600因此当x 1600时p 75当100 x 1600时p 90(x100) 001 910 01x综合上述结果得到0 x 100 90 p 910.01x 100 x 1600 75 x 1600 30x 0 x 1002100 x 1600 (2)P (p60)x 31x0.01x 15x x 1600(3) P 31 1000001 10002 21000(元)习题1 21观察一般项xn如下的数列{xn}的变化趋势写出它们的极限 (1)xn 1 2n解当n 时(2)xn (1)n1 n1 0 0 xn 1limn 22 解当n 时(3)xn 2 12 nxn (1)n1 0 lim(1)n1 0 n nn解当n 时(4)xn n1 n1xn 21 2 lim(21) 2 n nn2解当n 时(5) xn n(1)n xn n1 12 0 limn1 1n n1n1n 1解当n 时 xn n(1)n没有极限2 cos设数列{xn}的一般项xn nx ? 求出N使当n N时 xn问nlim n与其极限之差的绝对值小于正数 当 0001时求出数N解limx 0n n要使|x n0| 只要1 也就是n 1取n|cos|1 0 |xn0| nnN [1]则n N有|xn0|当 0001时 N [1] 10003根据数列极限的定义证明1 0 (1)nlim 2n分析要使|120| 12 只须n2 1即nnn1nn证明因为 0N [3n1 3 (2)nlim1]1 0当n N时有|120| 所以nlim 2分析2n12n13| 1 1要使|3 2n122(2n1)4n4只须证明因为 0N [1]当n N (3)nlim 分析 n2a2 1 n1 即n 14 4n3n1 3时有|3n13| 所以nlim 2n122n12只须2an222222a a naa要使|1| 22nnn a n)n2aN []证明因为 022n alim 1 n n当n N时有|n2a21|n所以(4)nlim0. 999 9 1n个分析要使|099 91|110n 1只须1 10即n 1lg1证明因为 0N [1lg1]当n N时有|099 91| 所以n n个lim0.999 9 1|u| |a|并举例说明 如果数列{|xn|}有极限但数证明nlimn4limu an n列{xn}未必有极限u a所以 0N N当n N时有|un a| 从而证明因为nlim n||un||a|| |un a||un| |a|这就证明了nlim|(1)n| 1但lim(1)n 数列{|xn|}有极限但数列{xn}未必有极限例如nlimn不存在y 0证明 5设数列{xn}有界又nlim nn limxnyn 0证明因为数列{xn}有界所以存在M使n Z有|xn| Myn 0所以 0N N当n N时有|yn| 从而当n N时又nlim M有xy 0所以nlim nn|xnyn0| |xnyn| M|yn| M M6对于数列{xn}若x2k1 a(k ) x2k a(k )证明 xn a(n )证明因为x2k1 a(k ) x2k a(k )所以 0K1当2k1 2K11时有| x2k1a| K2当2k 2K2时有|x2k a| 取N max{2K11 2K2}只要n N就有|xn a| 因此xn a (n )习题1 31根据函数极限的定义证明(3x1) 8 (1)limx 3分析因为|(3x1)8| |3x9| 3|x3|所以要使|(3x1)8| 只须|x3| 1 3 证明因为 0 1 当0 |x3| 时有 3|(3x1)8|(3x1) 8所以limx 3(5x2) 12 (2)limx 2分析因为|(5x2)12| |5x10| 5|x2|所以要使|(5x2)12| 只须|x2| 1 5 证明因为 0 1 当0 |x2| 时有 5|(5x2)12|(5x2) 12所以limx 22x4 4(3)xlim 2x 2分析因为x24(4) x24x4 |x2| |x(2)| x2x 2所以要使x24(4) x2只须|x(2)| 证明因为 0 当0 |x(2)| 时有x24(4) x2x24 4lim所以x 2x2314x(4)lim 2 2x1x分析因为所以要使14x32 |12x2| 2|x(1)| 2x1214x32 2x1只须|x(1)| 1 2222 证明因为 0 1 当0 |x(1)| 时有 14x32 2x1 314x所以lim 2 2x1x 22根据函数极限的定义证明1x (1)xlim 1 22x3分析因为所以要使1x31 1x3x3 1 2x322x32|x|3 1x312x2只须1 2|x|即|x| 1证明因为 0X 1当|x| X时有 1x312x3231x 1所以xlim3 2x2sinx 0 (2)xlim x 分析因为所以要使证明sinx0 |sinx| 1 xxxsinx0 只须1 即x 12x x因为 0X 1当x X时有 2sinx0 xsinx 0所以xlim x 3当x 2时 y x2 4问 等于多少使当|x2|< 时 |y4|<0001?解由于当x 2时 |x2| 0故可设|x2| 1即1 x 3要使|x24| |x2||x2| 5|x2| 0001只要|x2| 0.001 0.0002 5取 00002则当0 |x2| 时就有|x24| 0 0014当x 时解要使y x21 1 x32问X等于多少使当|x| X时|y1| 001? 只要|x| 43 0.01x211 4 0.01x23x23故X5证明函数f(x) |x|当x 0时极限为零证明因为|f(x)0| ||x|0| |x| |x0|所以要使|f(x)0| 只须|x|因为对 0 使当0 |x0| 时有|f(x)0| ||x|0||x| 0所以limx 06求f(x) x, x (x) |x|当xx 0时的左﹑右极限并说明它们在x 0时的极限是否存在证明因为lim f(x) lim x lim1 1x 0x 0xx 0lim f(x) lim x lim1 1 x 0x 0xx 0x 0limf(x) lim f(x) x 0f(x)存在所以极限limx 0因为|x| lim x 1 x 0x 0xx 0x|x|x 1lim (x) lim limx 0x 0xx 0xlim (x) limx 0 lim (x) lim (x) x 0(x)不存在所以极限limx 07证明 若x 及x 时函数f(x)的极限都存在且都等于Af(x) A则xlimf(x) A证明因为xlim x limf(x) A所以 >0X1 0使当x X1时有|f(x)A|X2 0使当x X2时有|f(x)A|f(x) A取X max{X1 X2}则当|x| X时有|f(x)A| 即xlim8根据极限的定义证明 函数f(x)当x x0 时极限存在的充分必要条件是左极限、右极限各自存在并且相等证明先证明必要性设f(x) A(x x0)则 >0 0使当0<|x x0|< 时有|f(x)A|<因此当x0 <x<x0和x0<x<x0 时都有|f(x)A|<这说明f(x)当x x0时左右极限都存在并且都等于A再证明充分性设f(x00) f(x00) A则 >01>0使当x0 1<x<x0时有| f(x)A<2>0使当x0<x<x0+ 2时有| f(x)A|<取 min{ 1 2}则当0<|x x0|< 时有x0 1<x<x0及x0<x<x0+ 2 从而有| f(x)A|<即f(x) A(x x0)9试给出x 时函数极限的局部有界性的定理并加以证明解 x 时函数极限的局部有界性的定理 如果f(x)当x 时的极限存在则存在X 0及M 0使当|x| X时 |f(x)| M证明设f(x) A(x )则对于 1X 0当|x| X时有|f(x)A| 1所以|f(x)| |f(x)A A| |f(x)A||A| 1|A|这就是说存在X 0及M 0使当|x| X时 |f(x)| M其中M 1|A|习题1 41两个无穷小的商是否一定是无穷小?举例说明之解不一定(x)2 例如当x 0时 (x) 2x (x) 3x都是无穷小但limx 0(x)3 (x)不 (x)是无穷小2根据定义证明2x9(1)y x当x 3时为无穷小; 3(2)y xsin1当x 0时为无穷小x2x9 |x3|时|y| x 3 证明 (1)当x 3有因为 0当0 |x3| 时2|y| x9 |x3| x 32x9所以当x 3时y x为无穷小 3(2)当x 0时|y| |x||sin1| |x0|因为 0 x|y| |x||sin1| |x0| x所以当x 0时y xsin1为无穷小 x当0 |x0| 时有3根据定义证明 函数y 12x为当x 0时的无穷大问x应满足什x么条件能使|y| 104?证明分析|y||x| 1 M212x 21 12 xx|x|2 M即要使|y| M只须|1x|证明因为M 0所以当取1使当0 |x0| 时有12x M xM2x 0时函数y 12x是无穷大 xM 104则 41当0 |x0| 41时|y| 104 10210 2 4求下列极限并说明理由2x1; (1)limx x21x(2)limx 01xxxxx1x2 1所以lim x 01x2x1 2解 (1)因为2x1 21而当x 时1是无穷小所以limx x (2)因为11x2 1x(x 1)而当x 0时x为无穷小5根据函数极限或无穷大定义填写下表解6函数y xcos x在( )内是否有界?这个函数是否为当x 时的无穷大?为什么?解函数y xcos x在( )内无界这是因为M 0在( )内总能找到这样的x使得|y(x)| M例如y(2k ) 2k cos2k 2k (k 0 1 2 )当k充分大时就有| y(2k )| M当x 时函数y xcos x不是无穷大这是因为M 0找不到这样一个时刻N使对一切大于N的x都有|y(x)| M例如y(2k (2k )cos(2k ) 0(k 0 1 2 ) 2222 对任何大的N当k充分大时总有x 2k N但|y(x)| 0 M7证明 函数y 1sin1在区间(0 1]上无界但这函数不是当x 0+时xx的无穷大证明函数y 1sin1在区间(0 1]上无界这是因为 xx M 0在(0 1]中总可以找到点xk使y(xk) M例如当xk2k 1(k 0 1 2 )2时有y(xk) 2k2当k充分大时 y(xk) M当x 0+ 时函数y 1sin1不是无穷大这是因为 xxM 0对所有的 0总可以找到这样的点xk使0 xk但y(xk) M例如可取xk 12k(k 0 1 2 )当k充分大时 xk 但y(xk) 2k sin2k 0 M习题1 51计算下列极限2xlim5 (1)x 2x3x25 225 9lim解 x 2x3232x(2)3 x x 1解 2()23x3 0 2x x1() 12 x (3)limx 12x1 2x 1解2(x1)2x2x1x1 0 0lim lim limx 1x 1(x1)(x1)x 1x12x2 14x32x2xlim(4)x 02 3x2x3224x2x x4x2x1 1 lim解lim x 03x2xx 03x22 (x h)2x2lim(5)h 0h222(x h)2x2x2hx h xlim lim lim(2x h) 2x解h 0h 0h 0hh(6)xlim(211) xx21lim1 2解xlim(211 2lim x xx xxx2x1(7)xlim 2x2x 1 解 1 121 limlimx 1 2x 2x x1x 22xx2(8)xlim解或 x2x 42x3x12xx 0lim42(分子次数低于分母次数x x3x1112x lim23 0lim4x2 x x3x1x 1xx2极限为零) x6x8 (9)limx 4x5x 4解 2(x2)(x4)limx26x8 lim limx2 42 2x 4x5x4x 4(x1)(x4)x 4x1413(10)xlim(11)(21) 2xx1) lim(21 1 2 2解xlim(11)(21 lim(1 xx2x xx x2(11)nlim(111 1) 242n1(1)n 1lim(111 1) lim 2 n n 2421 2n 解 123 (n1) (12)nlim(n1)n123 (n1) 1limn1 1解nlim lim n 2n n2nn(n1)(n2)(n3)(13)nlim5n(n1)(n2)(n3)1 (分子与分母的次数相同解nlim 55n3极限为最高次项系数之比)或(n1)(n2)(n3)11)(1213 1 lim(1 3n n 5nnn55n(14)lim(1 33 x 11x1xlim解2131x x3 lim(1x)(x2)lim() limx 11x1x3x 1(1x)(x 1(1x)(1x x2)1x x2) limx 21 x 11x x2计算下列极限32x2x(1)x lim 2(x2)2解 (x2)20lim 0因为x 2x2x162x所以limx 22x2 (x2)23 x (2)xlim 2x 1解 2xlim x 2x1(因为分子次数高于分母次数)(2x3x1) (3)xlim解 x lim(2x3x1) (因为分子次数高于分母次数)3计算下列极限(1)limx2sin1 x 0x2解 limx2sin1 0(当x 0时 x是无穷小而sin1是有界变量)x 0xxarctanx (2)xlim xarctanx lim1 arctanx 0(当x 时 1是无穷小解xlim x xxx而arctan x是有界变量)4证明本节定理3中的(2)习题1 51计算下列极限2xlim5 (1)x 2x322x52lim 5 9解 x 2x32 3 2x(2)23 x x 1解 2()23x3 0 x x21()2 12 x (3)limx 12x1 2x 1解2(x1)2x2x1x1 0 0lim lim limx 1x 1(x1)(x1)x 1x12x 1 324x2x x(4)limx 03x22x4x32x2x lim4x22x1 1解 limx 03x22xx 03x22 (x h)2x2lim(5)h 0h222(x h)2x2x2hx h xlim lim lim(2x h) 2x解h 0h 0h 0hh(6)xlim(211) xx21lim1 2解xlim(211 2lim x xx x2xx2(7)xlim解x21 22x x1112x1lim2 lim 1x 2x x1x 222xx x2x x x43x212x x 0解xlim(分子次数低于分母次数 x3x1(8)lim极限为零)或112x lim 0lim4x2 x x3x1x 21124xx2 x6x8 (9)limx 42x5x 4解 2(x2)(x4)xlim26x8 lim limx2 42 2x 4x5x4x 4(x1)(x4)x 4x1413(10)xlim(11)(21) 2xx1) lim(21 1 2 2解xlim(11)(21 lim(1 xx2x xx x2(11)nlim(111 1) 242n1(1)n 1lim(111 1) lim 2 nn n 2421 2n 解 123 (n1) (12)nlim 2(n1)n123 (n1) 1limn1 1解nlim lim n 2n n2n2n2(n1)(n2)(n3)(13)nlim3 5n(n1)(n2)(n3)1 (分子与分母的次数相同解nlim 55n3极限为最高次项系数之比)或(n1)(n2)(n3)11)(1213 1 lim(1 n 5n nnn55n3(14)lim(1 33 x 11x1xlim解2131x x3 lim(1x)(x2)lim() limx 11x1xx 1(1x)(x 1(1x)(1x x)1x x) limx 22 1 x 11x x2计算下列极限 32x2xlim(1)x 2(x2)2解 (x2)20lim3 0因为x 2x2x21632x2x 所以limx 2(x2)2 x2lim(2)x 2x1 x2 解 xlim 2x1(因为分子次数高于分母次数)(2x3x1) (3)xlim解 x lim(2x3x1) (因为分子次数高于分母次数)3计算下列极限(1)limx2sin1 x 0x2解 limx2sin1 0(当x 0时 x是无穷小而sin1是有界变量)x 0xxarctan x (2)xlim xarctanx lim1 arctanx 0(当x 时1是无穷小解 xlim x xxx而arctan x是有界变量)4证明本节定理3中的(2)习题 171当x 0时 2x x2 与x2x3相比哪一个是高阶无穷小?解232x xx x lim 0因为limx 02x xx 02x所以当x 0时 x2x3是高阶无穷小即x2x3 o(2x x2)2当x 1时无穷小1x和(1)1x3 (2)1(1x2)是否同阶?是否等2价?解 3(1x)(1x x2)1x lim lim(1x x2) 3 (1)因为limx 11xx 1x 11x所以当x 1时 1x和1x3是同阶的无穷小但不是等价无穷小1(1x2) 1lim(1x) 1 (2)因为limx 11x2x 1所以当x 1时 1x和1(1x2)是同阶的无穷小而且是等价无穷小 23证明 当x 0时有(1) arctan x~x2x(2)secx1~2arctanx lim 证明 (1)因为limx 0y 0xy 1(提示 tany令y arctan x则当x 0时y 0)所以当x 0时 arctanx~x2sin2x2sinxsecx1 2lim1cosx lim lim(2 1 (2)因为limx 02x 0x2cosxx 0x 0x2x2222xsecx1~ 2 所以当x 0时4利用等价无穷小的性质求下列极限tan3x (1)limx 02xsin(xn)(2)limx 0(sinx)m(n m为正整数)tanx sinx (3)limx 0sinx(4)limx 0sinx tanx 2(x1sinx1)tan3x lim3x 3解 (1)limx 0x 02x2x21 n mn sin(xn)x 0 n m lim(2)limx 0(sinx)mx 0xm n m1x2sinx(11)tanx sinx lim lim1cosx lim2 1(3)lim332x 0x 0x 0cosxsinxx 0xcosx2sinxsinx(4)因为sinx tanx tanx(cosx1) 2tanxsin2x~2x x)2 1x3(x 0) 222所以x21 x21x2(x 0) ~1x2)2x213sinx~sinx~x(x 0) sinx1sinx1 1x3sinx tanxlim lim 3x 0(x21sinx1)x 02x x35证明无穷小的等价关系具有下列性质(1) ~ (自反性)(2) 若 ~ 则 ~ (对称性)(3)若 ~ ~ 则 ~ (传递性)证明 (1)lim 1所以 ~1从而lim 1因此 ~ (2) 若 ~ 则lim(3) 若 ~ ~习题18 lim lim lim 1 因此 ~1研究下列函数的连续性并画出函数的图形(1) x2 0 x 1 f(x) 2x 1 x 2解已知多项式函数是连续函数所以函数f(x)在[0 1)和(1 2]内是连续的在x 1处因为f(1) 1并且x 12f(x) lim(2x) 1 limf(x) limx 1lim x 1x 1x 1f(x) 1从而函数f(x)在x 1处是连续的所以limx 1综上所述,函数f(x)在[0 2]上是连续函数x 1 x 1 (2)f(x) 1 |x| 1解只需考察函数在x 1和x 1处的连续性在x 1处因为f(1) 1并且x 1limf(x) lim1 1 f(1) x 1x 1 x 1limf(x) lim x 1 f(1)所以函数在x 1处间断但右连续在x 1处因为f(1) 1并且x 1limf(x) lim x 1 f(1) limf(x) lim1 1 f(1) x 1x 1x 1所以函数在x 1处连续综合上述讨论函数在( 1)和(1 )内连续在x 1处间断但右连续2下列函数在指出的点处间断说明这些间断点属于哪一类如果是可去间断点则补充或改变函数的定义使它连续2x(1)y 21 x 1 x 2 x3x 2解 2(x1)(x1)xy 21 x3x2(x2)(x1)因为函数在x 2和x 1处无定义所以x 2和x 1是函数的间断点2xlimy lim21 因为x 2x 2x3x2所以x 2是函数的第二类间断点(x1)y lim 2所以x 1是函数的第一类间断点并且是可去因为limx 1x 1(x2)间断点在x 1处令y 2则函数在x 1处成为连续的(2)y x x k x k tanx2(k 0 1 2 )2 解函数在点x k (k Z)和x k (k Z)处无定义因而这些点都是函数的间断点因xlim k x (k 0) tanxx 1 tanxlimx k 故x k (k 0)是第二类间断点2 因为limx 0x 0(k Z) tanx所以x 0和x k (k Z) 是第一2类间断点且是可去间断点令y|x 0 1则函数在x 0处成为连续的令x k 时 y 0则函数在x k 处成为连续的2(3)y cos21 x 0 x2xx 解因为函数y cos21在x 0处无定义所以x 0是函数y cos21的间断点又因为limcos21不存在所以x 0是函数的第二类间断点x 0xx 1 x 1 (4)y 3 x x 1 x 1解因为xlim1f(x) lim(x1) 0limf(x) lim(3x) 2x 1x 1x 1所以x 1是函数的第一类不可去间断点 3讨论函数解2n1xf(x) limx的连续性 n 1x2n若有间断点判别其类型x |x| 12n 1xf(x) limx 0 |x| 1 n 1x2nx |x| 1f(x) lim(x) 1 lim f(x) lim x 1x 1x 1x 1lim 在分段点x 1处因为x1所以x 1为函数的第一类不可去间断点在分段点x 1处因为xlim 1f(x) lim x 1 limf(x) lim(x) 1x 1x 1x 1所以x 1为函数的第一类不可去间断点4证明 若函数f(x)在点x0连续且f(x0) 0则存在x0的某一邻域U(x0)当x U(x0)时 f(x) 0证明不妨设f(x0)>0因为f(x)在x0连续所以xlimx的局部保号性定理存在x0的某一去心邻域U(x0)f(x) f(x0) 0由极限f(x)>0使当x U(x0)时从而当x U(x0)时 f(x)>0这就是说则存在x0的某一邻域U(x0)当x U(x0)时 f(x) 05试分别举出具有以下性质的函数f(x)的例子 (1)x 0 12无穷间断点1 n 1 是2nf(x)的所有间断点且它们都是解函数f(x) csc( x)csc 在点x 0 1 2 x 1 n 1 处是间断2n的且这些点是函数的无穷间断点(2)f(x)在R上处处不连续但|f(x)|在R上处处连续1 x Q 解函数f(x) 1 x Q在R上处处不连续但|f(x)| 1在R上处处连续(3)f(x)在R上处处有定义但仅在一点连续x x Q 解函数f(x) 在R上处处有定义它只在x 0处连续x x Q习题191求函数f(x) xlimf(x) x 233x2x3的连续区间 2x x6f(x)并求极限limx 0x 3limf(x)及33x2x3 (x3)(x1)(x1)f(x) x(x3)(x2)x x 6 解函数在( )内除点x 2和x 3外是连续的所以函数f(x)的连续区间为( 3)、(3 2)、(2 )在函数的连续点x 0处 limf(x) f(0) 1 x 02在函数的间断点x 2和x 3处limf(x) limx 2(x1)(x1)(x3)(x1)(x1) 8limf(x) limx 3x 3x 2x25(x3)(x2) 2设函数f(x)与g(x)在点x0连续证明函数(x) max{f(x) g(x)} (x) min{f(x) g(x)} 在点x0也连续证明已知xlim x可以验证(x) 1[f(x)g(x)|f(x)g(x)| ]因此2 (x) 1[f(x)g(x)|f(x)g(x)| ]2 (x0) 1[f(x0)g(x0)|f(x0)g(x0)| ]2 (x0) 1[f(x0)g(x0)|f(x0)g(x0)| ] 20f(x) f(x0)limg(x) g(x0) x x0因为lim (x) lim1[f(x)g(x)|f(x)g(x)| ]x x0x x02 1[limf(x)limg(x)|limf(x)limg(x)| ]x x0x x0x x02x x01[f(x0)g(x0)|f(x0)g(x0)| ] (x0) 2所以 (x)在点x0也连续同理可证明 (x)在点x0也连续3求下列极限(1)limx 0x 4x22x5 (sin2x)3 (2)limln(2cos2x) (3)limx 6(4)limx 0x11 xx4x (5)limx 1x 1(6)xlimsinx sina ax a(7)xlim(x2x x2x)解 (1)因为函数f(x) x 0x22x5是初等函数f(x)在点x 0有定义所以 limx22x5 f(0) 22 054 (2)因为函数f(x) (sin 2x)3是初等函数 f(x)在点x 有定义所以lim(sin2x)3 f( (sin2 3 1 44x 46 (3)因为函数f(x) ln(2cos2x)是初等函数 f(x)在点x 有定义所以limln(2cos2x) f( ) ln(2cos2 0 66x(4)limx 0x11 lim(x11)(x11) limxx 0x 0x(x11xx(x11) )11 111112 limx 0(5)limx 1x4x lim(x4xx4x)x 1x1(x1x4x) lim444x4 lim 2x 1x4xx 1(x1x4x) 142cosx asinx alimsinx sina lim(6)x ax ax ax asinx a cosa a 1 cosalimcosx a limx a2x a2222(x2x x2x)(x2x x2x)(x x x x) lim(7)xlim 22 x (x x x x)lim2x2 lim 1 x (x2x x2x)x (11)xx4求下列极限(1)xlim(2)limlnsinx x 0x1ex(11)2 (3)xlim x2x(13tan2x)cotx (4)limx 0x13x( (5)xlim 6x(6)limx 0tanx sinxx sin2x xlime e1lim1x 解 (1) (2) (3) x e0 1 limlnsinx ln(limsinx) ln1 0x 0x 0xxx1lim(1 2x x limx 11x2(1)x e 12(4)lim(13tan2x)cotx limx 02x 0 1(13tan2x)3tan2x3 e3x13x 3 (5)(6x) (16x)36x2因为3(1)3 e lim3 x1 3 xlim x 6x26x23x2 e2所以xlim 6x(tanx sinx)(sin2x1)tanx sinx lim(6)lim22x 0x 0x sinx xx(sinx1)(tanx sinx)2xtanx 2sin(ta nx sinx sinx1) lim limx 0xsin2x(tanx sinx)x 0xsinx22x (x21 limx 02x应当如何选择数a使得f(x)成为在( 5设函数 ex x 0f(x) a x x 0)内的连续函数?解要使函数f(x)在( )内连续只须f(x)在x 0处连续即只须 x 0limf(x) limf(x) f(0) a x 0x 0 x 0f(x) limex 1因为xlim 0x 0limf(x) lim(a x) a所以只须取a 1习题1101证明方程x53x 1至少有一个根介于1和2之间证明设f(x) x53x1则f(x)是闭区间[1 2]上的连续函数因为f(1) 3 f(2) 25 f(1)f(2) 0所以由零点定理在(1 2)内至少有一点(1 2)使f( ) 0即x 是方程x53x 1的介于1和2之间的根因此方程x53x 1至少有一个根介于1和2之间2证明方程x asinx b其中a 0 b 0至少有一个正根并且它不超过a b证明设f(x) asin x b x则f(x)是[0 a b]上的连续函数f(0) b f(a b) a sin (a b)b(a b) a[sin(a b)1] 0若f(a b) 0则说明x a b就是方程x asinx b的一个不超过a b的根若f(a b) 0则f(0)f(a b) 0由零点定理至少存在一点(0 a b)使f( ) 0这说明x 也是方程x=asinx b的一个不超过a b的根总之方程x asinx b至少有一个正根并且它不超过a b 3设函数f(x)对于闭区间[a b]上的任意两点x、y恒有|f(x)f(y)| L|x y|其中L为正常数且f(a) f(b) 0证明 至少有一点 (a b)使得f( ) 0证明设x0为(a b)内任意一点因为所以 0 lim|f(x)f(x0)| limL|x x0| 0 x x0x x0x x0 lim|f(x)f(x0)| 0即 x x0limf(x) f(x0)因此f(x)在(a b)内连续同理可证f(x)在点a处左连续在点b处右连续所以f(x)在[a b]上连续因为f(x)在[a b]上连续且f(a) f(b) 0由零点定理至少有一点 (a b)使得f( ) 04若f(x)在[a b]上连续 a x1 x2 xn b则在[x1 xn]上至少有一点 使f( ) f(x1)f(x2) f(xn) n证明显然f(x)在[x1 xn]上也连续设M和m分别是f(x)在[x1 xn]上的最大值和最小值因为xi [x1 xn](1 i n)所以有m f(xi) M从而有n m f(x1)f(x2) f(xn) n M m f(x1)f(x2)f(xn) Mn由介值定理推论在[x1 xn]上至少有一点 使f( ) f(x)f(x) f(x) nf(x)存在则f(x)必在( 5证明 若f(x)在( )内连续且xlim)内有界f(x) A则对于给定的 0存在X 0只要|x| X就有证明令xlim|f(x)A| 即A f(x) A又由于f(x)在闭区间[X X]上连续根据有界性定理存在M 0使|f(x)| M x [X X]取N max{M |A | |A |}则|f(x)| N x ()即f(x)在( )内有界6在什么条件下 (a b)内的连续函数f(x)为一致连续?总习题一1在“充分”、“必要”和“充分必要”三者中选择一个正确的填入下列空格内(1)数列{xn}有界是数列{xn}收敛的________条件数列{xn}收敛是数列{xn}有界的________的条件(2)f(x)在x0的某一去心邻域内有界是xlim xx x00f(x)存在的________条件 limf(x)存在是f(x)在x0的某一去心邻域内有界的________条件0 (3) f(x)在x0的某一去心邻域内无界是xlim xx x0f(x) 的________条件 limf(x) 是f(x)在x0的某一去心邻域内无界的________条件(4)f(x)当x x0时的右极限f(x0)及左极限f(x0)都存在且相等是x x0limf(x)存在的________条件解 (1) 必要充分(2) 必要充分(3) 必要充分(4) 充分必要2选择以下题中给出的四个结论中一个正确的结论设f(x) 2x3x2则当x 0时有( )(A)f(x)与x是等价无穷小 (B)f(x)与x同阶但非等价无穷小(C)f(x)是比x高阶的无穷小 (D)f(x)是比x低阶的无穷小解xxxxf(x)232213 lim lim lim 1 因为limx 0xx 0x 0xx 0xxxxt ln3limu ln2ln3 ln2lim(令21 t 31 u)t 0ln(1t)u 0ln(1u)所以f(x)与x同阶但非等价无穷小故应选B3设f(x)的定义域是[0 1]求下列函数的定义域(1) f(ex)(2) f(ln x)(3) f(arctan x)(4) f(cos x)解 (1)由0 ex 1得x 0即函数f(ex)的定义域为( 0](2) 由0 ln x 1得1 x e 即函数f(ln x)的定义域为[1 e](3) 由0 arctan x 1得0 x tan 1即函数f(arctan x)的定义域为[0 tan 1](4) 由0 cos x 1得2n x 2n (n 0 1 2) 22即函数f(cos x)的定义域为[2n , n ] (n 0 12 ) 224设x 0 0 0 x 0 f(x) g(x) 2x x 0x x 0求f[f(x)] g[g(x)] f[g(x)] g[f(x)]0 x 0 解因为f(x) 0所以f[f(x)] f(x) x x 0因为g(x) 0所以g[g(x)] 0因为g(x) 0所以f[g(x)] 00 x 0 因为f(x) 0所以g[f(x)] f 2(x) 2 x x 05利用y sin x的图形作出下列函数的图形(1)y |sin x|(2)y sin|x|(3)y 2sinx 26把半径为R的一圆形铁片自中心处剪去中心角为 的一扇形后围成一无底圆锥试将这圆锥的体积表为 的函数解设围成的圆锥的底半径为r高为h依题意有R(2 ) 2 r222r R(2 ) 22R2(2 )24 h R r R R2 4 2圆锥的体积为V 13 R2(2 )2 24 R2R324 2(2 )2 4 a2 (0 2 )7根据函数极限的定义证明limx2x 6x 3x3 5证明对于任意给定的 0要使|x2x 6x35| 只需|x3| 取当0 |x3| 时就有|x3| 即|x2x65| 所以limx2x 6x3x 3x3 58求下列极限(1)limx2x 1x 1(x1)2(2)xlim x(x21x)(3)3xlim (2x2x1x1(4)limtanx sinxx 0x3(5)limxxx 0(a b cx3)(a 0 b 0 c 0)(6)lim(sinx)tanx x 2解 (1)因为lim(x1)2所以limx2x 1x 1x2x1 0 x 1(x1)(2)xlim x(x21x) x(x21x)(x21x)xlim (x21 x) x1xlim x21x xlim 1112x2x322x1x1() lim(1 lim(1)22(3)xlim 2x1x x 2x12x 1222(1)(1 2 xlim 2x12x 122(1) lim(1) e xlim x 2x12x 1sinx(11)sinx(1cosx)tanx sinx lim lim(4)limx 0x 0x 0x3x3x3cosxsinx 2sin2x2x (x)2lim 1 limx 0x 02x3cosxx3(提示 用等价无穷小换)(a (5)limx 0x b3x cx)x lim(1a b c。
不定积分例题及答案理工类吴赣昌(可编辑修改word版)
第4章不定积分内容概要课后习题全解习题4-11.求下列不定积分:知识点:直接积分法的练习——求不定积分的基本方法。
思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!★(1)思路: 被积函数52x-=,由积分表中的公式(2)可解。
解:532223x dx x C --==-+⎰★(2)dx-⎰思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。
解:1141113332223()24dx x x dx x dx x dx x x C --=-=-=-+⎰⎰⎰⎰★(3)22xx dx +⎰()思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。
解:2232122ln 23x xxx dx dx x dx x C +=+=++⎰⎰⎰()★(4)3)x dx -思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。
解:3153222223)325x dx x dx x dx x x C -=-=-+⎰⎰⎰★★(5)4223311x x dx x +++⎰思路:观察到422223311311x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。
解:42232233113arctan 11x x dx x dx dx x x C x x ++=+=++++⎰⎰⎰ ★★(6)221x dx x +⎰思路:注意到222221111111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。
解:2221arctan .11x dx dx dx x x C x x =-=-+++⎰⎰⎰注:容易看出(5)(6)两题的解题思路是一致的。
一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。
★(7)x dx x x x⎰34134(-+-)2 思路:分项积分。
解:3411342x dx xdx dx x dx x dx x x x x --=-+-⎰⎰⎰⎰⎰34134(-+-)2 223134ln ||.423x x x x C --=--++ ★(8)23(1dx x -+⎰思路:分项积分。
《高等数学》不定积分课后习题详解
《高等数学》不定积分课后习题详解 篇一:高等数学第四章不定积分习题 第四章不 定 积 分 4 – 1 不定积分的概念与性质 一.填空题 1.若在区间上 F?(x)?f(x),则 F(x)叫做 f(x)在该区间上的一个 f(x)的 所有原函数叫做 f(x) 在该区间上的__________。
2.F(x)是 f(x)的一个原函数,则 y=F(x)的图形为?(x)的一条_________. 3.因为 d(arcsinx)? 1?x2 dx ,所以 arcsinx 是______的一个原函数。
4.若曲线 y=?(x)上点(x,y)的切线斜率与 x 成正比例,并且通过点 A(1,6)和 B(2,-9),则该曲线 方程为__________ 。
二.是非判断题 1. 若 f?x?的某个原函数为常数,则 f?x??0.[ ] 2. 一切初等函数在其定义区间上都有原 函数.[ ] 3. 3 ??f?x?dx???f??x?dx.[ ] ? 4. 若 f?x?在某一区间内不连续,则在这个区间内 f?x?必无原函数. [ ] 5.y?ln?ax?与 y?lnx 是同一函数的原函数.[ ] 三.单项选择题 1.c 为任意常数,且 F'(x)=f(x),下式成立的有 。
(A)?F'(x)dx?f(x)+c;(B)?f(x)dx=F(x)+c; (C)?F(x)dx?F'(x)+c;(D) ?f'(x)dx=F(x)+c. 2. F(x)和 G(x)是函数 f(x)的任意两个原函数,f(x)?0,则下式成立的有 。
(A)F(x)=cG(x); (B)F(x)= G(x)+c;(C)F(x)+G(x)=c;(D) F(x)?G(x)=c.3.下列各式中是 f(x)?sin|x|的原函数。
(A) y??cos|x| ;(B) y=-|cosx|;(c)y=? ?cosx,x?0,cosx?2,x?0; (D) y=? ?cosx?c1,x?0,cosx?c2,x?0. c1、c2 任意常数。
高等数学第四章不定积分习题课
xdx
de x
或 exdx d(ex 1) ,然后进行计算。 另外,由于
f
(x)
1 1 ex
中含有
1
e x,不能直接计算,可以考虑
换元 t ex 或 t 1 ex,然后再进行计算。
解法1:因为
1
ex
1 e x e x (1 e x )
所以
1
ex
二、基本计算方法
1.直接积分法 首先要对被积函数进行恒等变形,然后利用不定
积分的基本性质和基本积分表求出不定积分。
2.第一类换元法(凑微分法): 设 F(u) f (u) ,则
f ((x))(x)dx f ((x))d(x) F((x)) C
3.第二类换元法(变量置换法):
2
2
注意 运算中综合使用不同方法往往更有效.]。
【例12】 求不定积分
I
arcsin
x dx
x
分析:由于被积函数中含有根式 x ,所以首先要令
t x 把根式去掉,然后选择合适的方法计算。
另外,观察被积表达式的特点,由于
arcsin xdx arcsin x( dx ) 2arcsin xd( x )
2 dx 1 u2 du
2u sin x 1 u2
1 u2 cos x 1 u2
从而
2u 1 u2 2
R(sin x,cos x)dx
R( 1
u2
,
1
u2
)
1
u2
du
☆ 在具体计算不定积分的过程中,不是一种方法就可
以解决,要熟练掌握几种积分法并融会贯通,综合应用。
高等数学课后习题答案--第四章不定积分
第四章不定积分典型例题解析例1 求下列不定积分.(1)2dxx x ⎰. (2)3(1)(1)x x dx +-⎰.分析利用幂函数的积分公式111n n x dx x C n +=++⎰求积分时,应当先将被积函数中幂函数写成负指数幂或分数指数幂的形式.解(1)5322512252121()3dx x dx x C x C x x--+-==+=-++-⎰⎰. (2)35312222323122(1)(1)(1)353x x dx x x x dx x x x x C +-=+--=+--+⎰⎰.例2求21()x dx x+⎰. 分析 将被积函数的平方展开,可化为幂函数的和.解 122211()(2)x dx x x dx x x+=++⎰⎰12212x dx x dx dx x =++⎰⎰⎰ 32314ln 33x x x C =+++. 例3求下列不定积分.(1)2523x xxe dx ⋅-⋅⎰.(2)4223311x x dx x +++⎰.分析 (1)将被积函数拆开,用指数函数的积分公式;(2)分子分母都含有偶数次幂,将其化成一个多项式和一个真分式的和,然后即可用公式.解(1)22()5()2522332()5()3331ln 3ln 2ln 3x xxxx x x e e e dx dx dx C ⋅⋅⋅-⋅=-=-+--⎰⎰⎰. (2)42232233113arctan 11x x dx x dx dx x x C x x ++=+=++++⎰⎰⎰. 例4求下列不定积分.(1)24221(1)x x dx x x +++⎰. (2)421x dx x+⎰. (3)221(1)dx x x +⎰. 分析根据被积函数分子、分母的特点,利用常用的恒等变形,例如:分解因式、直接拆项、“加零”拆项、指数公式和三角公式等等,将被积函数分解成几项之和即可求解.解 (1)242222111(1)(1)1x x dx dx x x x x ++=+-++⎰⎰ 22111dx dx dx x x =+-+⎰⎰⎰1arctan x x C x=--+. (2)4422(1)111x x dx dx x x-+=++⎰⎰ 222(1)(1)11x x dx x -++=+⎰221(1)1x dx dx x =-++⎰⎰C x x x ++-=arctan 313. (3)22222211(1)(1)x x dx dx x x x x +-=++⎰⎰22111dx dx x x =-+⎰⎰1arctan x C x=--+.例5 求下列不定积分. (1)11cos2dx x +⎰. (2)cos2cos sin xdx x x-⎰.(3)2cot xdx ⎰. (4)22cos2sin cos xdx x x⎰.分析 当被积函数是三角函数时,常利用一些三角恒等式,将其向基本积分公式表中有的形式转化,这就要求读者要牢记基本积分公式表.解 (1)2111tan 1cos22cos 2dx dx x C x x ==++⎰⎰.(2)22cos2cos sin cos sin cos sin x x xdx dx x x x x-=--⎰⎰(cos sin )sin cos x x dx x x C =+=-+⎰.(3)22cot (csc 1)cot xdx x dx x x C =-=--+⎰⎰. (4)222222cos2cos sin sin cos sin cos x x xdx dx x x x x-=⎰⎰ 2211sin cos dx dx x x=-⎰⎰ 22csc sec xdx xdx =-⎰⎰cot tan x x C =--+.例6 求下列不定积分.(1)99(79)x dx -⎰. (2)12()nx ax b dx +⎰.(0a ≠) (3)232(cos )x dx x ⎰. (4)(1)x x +.(5)1sin(ln )x dx x ⎰. (6)211cos()dx x x⎰.(7)2cos sin 6sin 12xdx x x -+⎰. (8).(9). (10)2. (11)322(arctan )1x x dx x ++⎰.分析 这些积分都没有现成的公式可套用,需要用第一类换元积分法. 解 (1)999910011(79)(79)(79)(79)7700x dx x d x x C -=--=-+⎰⎰. (2)112221()()()2n nx ax b dx ax b d ax b a+=++⎰⎰12()2(1)n n n ax b C a n +=+++. (3)232(cos )x dx x ⎰333211tan 3(cos )3dx x C x ==+⎰.(4)2C ==.(5)1sin(ln )x dx x⎰sin(ln )(ln )cos(ln )x d x x C ==-+⎰.(6)211cos dx x x ⎰111cos ()sin d C x x x=-=-+⎰. (7)2cos sin 6sin 12xdxx x -+⎰2(sin 3)(sin 3)3d x C x -==+-+⎰. (8)(tan )arcsin(tan )x x C ==+.(9)12[1(cot )](cot )x d x =-+⎰12cot (cot )cot d x x d x =--⎰⎰ 322cot (cot )3x x C =--+.(10)2231arcsin (arcsin )(arcsin )3xd x x C ==+⎰.(11)322(arctan )1x x dx x ++⎰3222(arctan )11x x dx dx x x =+++⎰⎰ 32221(1)(arctan )(arctan )21d x x d x x +=++⎰⎰ 52212ln(1)(arctan )25x x C =+++.注 用第一类换元积分法(凑微分法)求不定积分,一般并无规律可循,主要依靠经验的积累.而任何一个微分运算公式都可以作为凑微分的运算途径.因此需要牢记基本积分公式,这样凑微分才会有目标.下面给出常见的12种凑微分的积分类型.(1)11()()()(0)n n n n f ax b x dx f ax b d ax b a na-+=++≠⎰⎰; (2)1()()ln x x x xf a a dx f a daa =⎰⎰; (3)(sin )cos (sin )(sin )f x xdx f x d x =⎰⎰;适用于求形如21sin cos m n x xdx +⎰的积分,(,m n 是自然数).(4)(cos )sin (cos )(cos )f x xdx f x d x =-⎰⎰;适用于求形如21sin cos m n x xdx -⎰的积分,(,m n 是自然数).(5)2(tan )sec (tan )(tan )f x xdx f x d x =⎰⎰; 适用于求形如2tan sec m n x xdx ⎰的积分,(,m n 是自然数).(6)2(cot )csc (cot )(cot )f x xdx f x d x =-⎰⎰;适用于求形如是2cot csc m n x xdx ⎰的积分,(,m n 是自然数).(7)1(ln )(ln )ln f x dx f x d x x=⎰⎰;(8)21(arcsin )(arcsin )(arcsin )1f x dx f x d x x =-⎰⎰;(9)21(arccos )(arccos )(arccos )1f x dx f x d x x =--⎰⎰;(10)2(arctan )(arctan )(arctan )1f x dx f x d x x =+⎰⎰;(11)2(cot )(cot )(cot )1f arc x dx f arc x d arc x x =-+⎰⎰; (12)()1(())()()f x dx d f x f x f x '=⎰⎰; 例7 求下列函数的不定积分: (1)3cos xdx ⎰.(2)4sin xdx ⎰. (3)sin7cos(3)4x x dx π-⎰.(4)6csc xdx ⎰. (5)34sin cos x xdx ⎰.(6)35sec tan x xdx ⎰.分析 在运用第一类换元法求以三角函数为被积函数的积分时,主要思路就是利用三角恒等式把被积函数化为熟知的积分,通常会用到同角的三角恒等式、倍角、半角公式、积化和差公式等.解(1)被积函数是奇次幂,从被积函数中分离出cos x ,并与dx 凑成微分(sin )d x ,再利用三角恒等式22sin cos 1x x +=,然后即可积分.322coscos (sin )(1sin )(sin )xdx xd x x d x ==-⎰⎰⎰2sin sin sin d x xd x =-⎰⎰31sin sin 3x x C =-+.(2)被积函数是偶次幂,基本方法是利用三角恒等式21cos2sin 2xx -=,降低被积函数的幂次.421cos2sin ()2x xdx dx -=⎰⎰311(cos2cos4)828x x dx =-+⎰311sin 2sin 48432x x x C =-++. (3)利用积化和差公式将被积函数化为代数和的形式.1sin7cos(3)[sin(4)sin(10)]4244x x dx x x dx πππ-=++-⎰⎰ 11sin(4)(4)sin(10)(10)8442044x d x x d x ππππ=+++--⎰⎰ 11cos(4)cos(10)84204x x C ππ=-+--+. (4)利用三角恒等式22csc 1cot x x =+及2csc (cot )xdx d x =-.622222csc (csc )csc (1cot )(cot )xdx x xdx x d x ==-+⎰⎰⎰24(12cot cot )cot x x d x =-++⎰3521cot cot cot 35x x x C =---+.(5)因为322sin sin (sin )sin (cos )xdx x xdx xd x ==-,所以3424sincos sin cos (cos )x xdx x xd x =-⎰⎰24(1cos )cos (cos )x xd x =--⎰46cos (cos )cos (cos )xd x xd x =-+⎰⎰5711cos cos 57x x C =-++. (6)由于sec tan (sec )x xdx d x =,所以3524sectan sec tan (sec )x xdx x xd x =⎰⎰222sec (sec 1)(sec )x x d x =-⎰642(sec 2sec sec )(sec )x x x d x =-+⎰ 753121sec sec sec 753x x x C =-++.注利用上述方法类似可求下列积分3sinxdx ⎰、2cos xdx ⎰、cos3cos2x xdx ⎰、6sec xdx ⎰、25sin cos x xdx ⎰,请读者自行完成.例8求下列不定积分:(1)x xdx e e -+⎰.(2)x x dx e e --⎰.(3)11x dx e +⎰. 分析 可充分利用凑微分公式:x x e dx de =;或者换元,令x u e =.解(1)x x dx e e-+⎰221arctan ()1()1x x x x x e dx de e C e e ===+++⎰⎰. (2)解法1 x x dx e e--⎰221()1()1x x x x e dx de e e ==--⎰⎰, 然后用公式2211ln 2x adx C x a a x a-=+-+⎰,则x x dx e e --⎰11ln 21x x e C e -=++.解法2x x dx e e --⎰21111()()1211x xx x x de de e e e ==---+⎰⎰ 1(1)(1)()211x x x x d e d e e e -+=--+⎰⎰ 11ln 21x x e C e -=++. (3)解法1 11x dx e+⎰1(1)11x x xx xe e e dx dx e e +-==-++⎰⎰ 1(1)1xxdx d e e =-++⎰⎰ln(1)x x e C =-++.解法211xdx e+⎰(1)ln(1)11x x x x x e d e dx e C e e -----+==-=-++++⎰⎰. 解法3 令x u e =,x du e dx =,则有11x dx e +⎰1111()ln()111udu du C u u u u u=⋅=-=++++⎰⎰ ln()ln(1)1xx xe C e C e-=+=-+++. 注在计算不定积分时,用不同的方法计算的结果形式可能不一样,但本质相同.验证积分结果是否正确,只要对积分的结果求导数,若其导数等于被积函数则积分的结果是正确的.例9求下列不定积分:(1)ln tan sin cos xdx x x⎰.(2)arctan (1)x x x +.分析 在这类复杂的不定积分的求解过程中需要逐步凑微分. 解 (1)2ln tan ln tan sin cos tan cos x xdx dx x x x x=⎰⎰ln tan (tan )ln tan (ln tan )tan x d x xd x x ==⎰⎰21ln (tan )2x C =+. (2)2arctan arctan 2(1)1()x x dx d x x x x =++⎰⎰22arctan (arctan )(arctan )xd x x C ==+⎰. 例10 求21arctan1x dx x +⎰.分析 若将积分变形为1arctan (arctan )d x x ⎰,则无法积分,但如果考虑到凑出1x,将被积函数变形为221arctan 111()x x x⋅+,再将21x 与dx 结合凑成1()d x -,则问题即可解决. 解2222111arctanarctan arctan11()1111()1()x x x dx dx d x x x x x=⋅=-+++⎰⎰⎰11arctan (arctan )d x x =-⎰211(arctan )2C x=-+.例11求21ln (ln )xdx x x +⎰. 分析 仔细观察被积函数的分子与分母的形式,可知(ln )1ln x x x '=+.解221ln 11(ln )(ln )(ln )ln x dx d x x C x x x x x x+==-+⎰⎰. 例12(04研) 已知()x x f e xe -'=,且(1)0f =,则()_________f x =. 分析 先求()f x ',再求()f x . 解令x e t =,即ln x t =,从而ln ()tf t t'=.故 2ln 1()ln (ln )ln 2x f x dx xd x x C x ===+⎰⎰, 由(1)0f =,得0C =,所以21()ln 2f x x =.例13求sin 22sin dxx x+⎰.分析 被积函数为三角函数,可考虑用三角恒等式,也可利用万能公式代换.解法1sin 22sin dx x x +⎰3122sin (cos 1)4sin cos 22x d dx x x x x ⎛⎫ ⎪⎝⎭==+⎰⎰22tan 1tan 1122tan 442tan cos tan222x x d x d x x x ⎛⎫+ ⎪⎛⎫⎝⎭== ⎪⎝⎭⎰⎰ 211tan ln tan 8242x xC =++. 解法2令cos t x =,则 sin 22sin dxx x +⎰2sin 2sin (cos 1)2sin (1cos )dx xdx x x x x ==++⎰⎰212(1)(1)dt t t =--+⎰21112811(1)dt t t t ⎛⎫=-++ ⎪-++⎝⎭⎰12(ln |1|ln |1|)81t t C t =--++++ 111ln(1cos )ln(1cos )884(1cos )x x C x =--++++. 解法3令tan 2x t =,则22sin 1t x t =+,221cos 1t x t -=+,221dx dt t =+,则 sin 22sin dx x x +⎰21111ln ||484t dt t t C t ⎛⎫=+=++ ⎪⎝⎭⎰ 211tan ln |tan |8242x xC =++.例14 求11dx x ++⎰.分析 被积函数含有根式,一般先设法去掉根号,这是第二类换元法最常用的手段之一. 解 设1x t +=,即21x t =-,2dx tdt =,则212(1)1111t dt dt t t x ==-++++⎰⎰⎰22ln 1t t C =-++212ln(11)x x C =+-+++例15 求455x x-+-⎰.分析 被积函数中有开不同次的根式,为了同时去掉根号,选取根指数的最小公倍数.解45x t -=,34dx t dt =-,则24414(1)1155dxt dt t dt t t x x-==--+++-+-⎰⎰⎰ 214(ln 1)2t t t C =--+++4414[55ln(15)]2x x x C =----++-+. 例16 243(1)(1)dxx x +-⎰解 令311x t x -=+,即3211x t =--,2326(1)t dx dt t =-,则 243(1)(1)dxx x +-⎰23322332164(1)1(1)(1)1dx t dt t t x tx t x ==⋅--⋅--+⎰⎰132313131()2221x dt C C t t x +==-⋅+=-+-⎰. 例17求224x x dx -⎰.分析被积函数中含有根式24x -,可用三角代换2sin x t =消去根式. 解 设242cos (0)2x t t π-=<<,2cos dx tdt =,则222244sin 2cos 2cos 4sin 2x x dx t t tdt t dt -=⋅⋅=⋅⎰⎰⎰12(1cos4)2sin 42t dt t t C =-=-+⎰222sin cos (12sin )t t t t C =--+2212arcsin 4(1)222x x x x C =---+.注1 对于三角代换,在结果化为原积分变量的函数时,常常借助于直角三角形.注2 在不定积分计算中,为了简便起见,一般遇到平方根时总取算术根,而省略负平方根情况的讨论.对三角代换,只要把角限制在0到2π,则不论什么三角函数都取正值,避免了正负号的讨论.例18 求221(1)dx x +⎰. 分析虽然被积函数中没有根式,但不能分解因式,而且分母中含有平方和,因此可以考虑利用三角代换,将原积分转换为三角函数的积分.解 设tan x t =,2sec dx tdt =,()2241sec x t +=,则222241sec cos (1)sec t dx dt tdt x t ==+⎰⎰⎰111(1cos2)sin 2224t dt t t C =+=++⎰ 21arctan 22(1)xx C x =+++. 例19求22x a dx x-⎰. 分析 被积函数中含有二次根式22x a -,但不能用凑微分法, 故作代换sec x a t =, 将被积函数化成三角有理式.解 令sec x a t =,sec tan dx a t tdt =⋅,则22x a dx x -⎰22tan sec tan tan (sec 1)sec a t a t tdt a tdt a t dt a t=⋅⋅==-⎰⎰⎰ (tan )a t t C =-+22(arccos )x a aa C a x-=-+.例20求248x dx x x ++⎰.解 由于2248(2)4x x x ++=++,故可设22tan x t +=,22sec dx tdt =,22(2tan 2)2sec 2sec tan 2sec 2sec 48xt t dx dt t tdt tdt t x x -⋅==-++⎰⎰⎰⎰12sec 2ln sec tan t t t C =-++22482ln(248)x x x x x C =+++++++.()12ln 2C C =+注 2ax bx c ++ 由 22222224()0244()024b ac b a x a a a ax bx c b b ac a x a a a ⎧-++>⎪⎪++⎨-⎪--++<⎪⎩可作适当的三角代换, 使其有理化.例21 求23(24)x x -+.解23(24)x x -+322[3(1)]dx x =+-⎰,令13x t -=,则322321sec 11cos sin 3sec 33[3(1)]dxt dt tdt t C t x ===++-⎰⎰⎰21324x C x x -=+-+. 故 23(24)dx x x -+⎰21324x C x x -=+-+.例22求421(1)dx x x +⎰.分析当有理函数的分母中的多项式的次数大于分子多项式的次数时,可尝试用倒代换.解 令1x t=,21dx dt t =-,于是421(1)dx x x +⎰44221111t t dt dt t t --+==-++⎰⎰221(1)1t dt dt t =---+⎰⎰31arctan 3t t t C =--+3111arctan 3C x x x=--+. 注有时无理函数的不定积分当分母次数较高时,也可尝试采用倒代换,请看下例. 例23 求22a x dx -. 解 设1x t=,2dtdx t =-,则2222241()dt a a xt t t -⋅--=1222(1)a t t dt =--⎰.当0x >时,1222222221(1)(1)2a x dx a t d a t a-=---⎰ 32222(1)3a t C a -=-+322223()3a x C a x -=-+.当0x <时,有相同的结果.故22a xdx-322223()3a x C a x -=-+.注1第二类换元法是通过恰当的变换,将原积分化为关于新变量的函数的积分,从而达到化难为易的效果,与第一类换元法的区别在于视新变量为自变量,而不是中间变量.使用第二类换元法的关键是根据被积函数的特点寻找一个适当的变量代换.注2 用第二类换元积分法求不定积分,应注意三个问题: (1)用于代换的表达式在对应的区间内单调可导,且导数不为零. (2)换元后的被积函数的原函数存在. (3)求出原函数后一定要将变量回代.注3 常用的代换有:根式代换、三角代换与倒代换.根式代换和三角代换常用于消去被积函数中的根号,使其有理化,这种代换使用广泛.而倒代换的目的是消去或降低被积函数分母中的因子的幂.注4 常用第二类换元法积分的类型: (1)(,),n n f x ax b dx t ax b +=+⎰令. (2)(,),nnax b ax bf x dx t cx d cx d++=++⎰令. (3)222(,)f x a b x dx -⎰,可令sin a x t b =或cos ax t b =. (4)222(,)f x a b x dx +⎰,可令tan a x t b =或ax sht b =.(5)222(,)f x b x a dx -⎰,可令sec a x t b =或ax cht b=.(6)当被积函数含有22(40)px qx r q pr ++-<时,利用配方与代换可化为以上(3),(4),(5)三种情形之一.(7)当被积函数分母中含有x 的高次幂时,可用倒代换1x t=.例24求下列不定积分:(1)3x xe dx -⎰.(2)2sin 4x xdx ⎰.(3)2ln x xdx ⎰.(4)arcsin xdx ⎰. (5)arctan x xdx ⎰.(6)sin ax e bxdx ⎰22(0)a b +≠.分析上述积分中的被积函数是反三角函数、对数函数、幂函数、指数函数、三角函数中的某两类函数的乘积,适合用分部积分法.解(1)3x xe dx -⎰33333111()33339xx x x x x x xd e e e dx e e C -----=-=-+=--+⎰⎰. (2)2sin 4x xdx ⎰2211(cos4)cos4cos4442x x d x x x xdx =-=-+⎰⎰22111cos4(sin 4)cos4sin 4sin 448488x x x xd x x x x xdx =-+=-+-⎰⎰211cos4sin 4cos44832x x x x x C =-+++.(3)2ln x xdx ⎰3333211ln ()ln ln 33339x x x xd x x x dx x C ==-=-+⎰⎰.(4)解法1 arcsin xdx ⎰22arcsin arcsin 11x x dx x x x C x =-=+-+-⎰.解法2 令arcsin t x =,即sin x t =,则arcsin (sin )sin sin sin cos xdx td t t t tdt t t t C ==-=++⎰⎰⎰2arcsin 1x x x C =+-+(5)解法1 arctan x xdx ⎰222211arctan arctan 2221x x xdx x dx x ==-+⎰⎰2211arctan (1)221x x dx x =--+⎰ 21arctan arctan 222x x x x C =-++. 解法221arctan arctan (1)2x xdx xd x =+⎰⎰ 22111arctan arctan 2222x x xx dx x C ++=-=-+⎰.(6)解法1sin axe bxdx ⎰11sin ()sin cos axax ax b bxd e e bx e bxdx a a a ==-⎰⎰ 21sin cos ()ax ax be bx bxd e a a=-⎰2221sin cos sin ax ax axb b e bx e xbx e bxdx a a a=--⎰ 从而21221(1)sin sin cos ax ax ax b be bxdx e bx e bx C a a a+=-+⎰,则221sin (sin cos )ax axe bxdx e a bx b bx C a b =-++⎰.解法21sin cos axaxe bxdx e d bx b =-⎰⎰,然后用分部积分,余下的解答请读者自行完成. 注在用分部积分法求()f x dx ⎰时关键是将被积表达式()f x dx 适当分成u 和dv 两部分.根据分部积分公式udv uv vdu =-⎰⎰,只有当等式右端的vdu 比左端的udv 更容易积出时才有意义,即选取u 和dv 要注意如下原则:(1)v 要容易求;(2)vdu ⎰要比udv ⎰容易积出. 例25求cos ln(cot )x x dx ⎰.分析 被积函数为三角函数与对数函数的乘积, 可采用分部积分法. 解cos ln(cot )ln(cot )(sin )x x dx x d x =⎰⎰21sin ln(cot )sin (csc )cot x x x x dx x=⋅-⋅⋅-⎰ sin ln(cot )sec x x xdx =⋅+⎰ sin ln(cot )ln sec tan x x x x C =+++例26求2ln(1)x x dx ++⎰.分析 被积函数可以看成是多项式函数与对数函数的乘积,可采用分部积分法.解 2222112ln(1)ln(1)(1)211xx x dx x x x x dx x x x++=++-⋅⋅+⋅+++⎰⎰22ln(1)1x x x x dx x=++-+⎰122221ln(1)(1)(1)2x x x x d x -=++-++⎰22ln(1)1x x x x C =++-++.例27求1x xxe dx e -⎰.分析 可利用凑微分公式x x e dx de =,然后用分部积分;另外考虑到被积函数中含有根式,也可用根式代换.解法11x x dx e -⎰2(1)1x x x xd e e ==--⎰⎰211x x x e e dx ⎡⎤=---⎣⎦⎰, 令1x t e =-,则2ln(1)x t =+,221tdtdx t=+,则 212122(arctan )1xt dte dx t t C t -==-++⎰⎰,故1x x dx e -⎰()21212arctan 1x x x x e e e Cz =---+-+21414arctan 1x x x x e e e C =---+-+.解法21x e tz -=,则1xx xe dx e -⎰22222ln(1)2ln(1)41t t dt t t dt t =+=+-+⎰⎰ 22ln(1)44arctan t t t t C =+-++21414arctan 1x x x x e e e C =---+-+.注求不定积分时,有时往往需要几种方法结合使用,才能得到结果. 例28(01研) 求2arctan xxe dx e⎰. 分析 被积函数是指数函数和反三角函数的乘积,可考虑用分部积分法. 解法12arctan x xe dx e ⎰222211arctan ()arctan 22(1)x x x x xx x de e d e e e e e --⎡⎤=-=--⎢⎥+⎣⎦⎰⎰ 21arctan arctan 2x x x xe e e e C --⎡⎤=-+++⎣⎦. 解法2 先换元,令x e t =,再用分部积分法,请读者自行完成余下的解答.例29 求3csc xdx ⎰.分析 被积函数含有三角函数的奇次幂,往往可分解成奇次幂和偶次幂的乘积,然后凑微分,再用分部积分法.解32csc csc (csc )csc (cot )xdx x x dx xd x ==-⎰⎰⎰ 2csc cot cot csc x x x xdx =--⋅⎰ 3csc cot csc csc x x xdx xdx =--+⎰⎰ 3csc cot csc ln csc cot x x xdx x x =--+-⎰,从而31csc (csc cot ln csc cot )2xdx x x x x C =---+⎰. 注用分部积分法求不定积分时,有时会出现与原来相同的积分,即出现循环的情况,这时只需要移项即可得到结果. 例30求下列不定积分:(1)22221(1)x x x e dx x ---⎰. (2)2ln 1(ln )x dx x -⎰. 解(1)2222222112(1)1(1)xx xx x xdx e dx e dx e x x x --=----⎰⎰⎰ 221()11x x e dx e d x x =+--⎰⎰ 22221111x x x x e e e e dx dx C x x x x =+-=+----⎰⎰.(2)22ln 111(ln )ln (ln )x dx dx dx x x x -=-⎰⎰⎰ 221ln (ln )(ln )x x dx dx x x x x =+-⎰⎰ ln xC x=+. 注将原积分拆项后,对其中一项分部积分以抵消另一项,或对拆开的两项各自分部积分后以抵消未积出的部分,这也是求不定积分常用的技巧之一.例31 求sin(ln )x dx ⎰.分析 这是适合用分部积分法的积分类型,连续分部积分,直到出现循环为止. 解法1 利用分部积分公式,则有1sin(ln )sin(ln )cos(ln )x dx x x x x dx x=-⋅⎰⎰ sin(ln )cos(ln )x x x dx =-⎰sin(ln )cos(ln )sin(ln )x x x x x dx =--⎰,所以1sin(ln )[sin(ln )cos(ln )]2x dx x x x C =-+⎰. 解法2 令 ln x t =,t dx e dt =,则sin(ln )x dx ⎰=sin sin sin sin cos sin t t t t t te tdt e t e tdt e t e t e tdt =-=--⎰⎰⎰,所以11sin(ln )(sin cos )[sin(ln )cos(ln )]22t tx dx e t e t C x x x C =-+=-+⎰. 例32 求ln n n I xdx =⎰,其中n 为自然数. 分析 这是适合用分部积分法的积分类型. 解11ln ln ln ln n n n n n n I xdx x x n xdx x x nI --==-=-⎰⎰,即1ln n n n I x x nI -=-为所求递推公式.而1ln ln ln I xdx x x dx x x x C ==-=-+⎰⎰.注1 在反复使用分部积分法的过程中,不要对调u 和v 两个函数的“地位”,否则不仅不会产生循环,反而会一来一往,恢复原状,毫无所得.注2 分部积分法常见的三种作用: (1)逐步化简积分形式; (2)产生循环;(3)建立递推公式.例33求积分24411(21)(23)(25)x x dx x x x +--+-⎰.分析 计算有理函数的积分可分为两步进行,第一步:用待定系数法或赋值法将有理分式化为部分分式之和;第二步:对各部分分式分别进行积分.解 用待定系数法将24411(21)(23)(25)x x x x x +--+-化为部分分式之和.设24411(21)(23)(25)212325x x A B Cx x x x x x +-=++-+--+-, 用(21)(23)(25)x x x -+-乘上式的两端得24411(23)(25)(21)(25)(21)(23)x x A x x B x x C x x +-=+-+--+-+,两端都是二次多项式,它们同次幂的系数相等,即131155311A B C A B C A B C ++=⎧⎪--+=⎨⎪-+-=-⎩, 这是关于A ,B ,C 的线性方程组,解之得12A =,14B =-,34C =.由于用待定系数法求A ,B ,C 的值计算量大,且易出错,下面用赋值法求A ,B ,C .因为等式24411(23)(25)(21)(25)(21)(23)x x A x x B x x C x x +-=+-+--+-+是恒等式,故可赋予x 为任何值.令 12x =,可得12A =.同样,令32x =-得14B =-,令52x =,得34C =,于是 24411(21)(23)(25)x x dx x x x +--+-⎰111131221423425dx dx dx x x x =-+-+-⎰⎰⎰ 113ln 21ln 23ln 25488x x x C =--++-+ 231(21)(25)ln 823x x C x --=++. 例34 求321452dx x x x +++⎰.解 32452x x x +++是三次多项式,分解因式 32322452()3()2(1)x x x x x x x x +++=+++++22(1)(32)(1)(2)x x x x x =+++=++设221(1)(2)21(1)A B Cx x x x x =+++++++,即2()(23)(22)1A B x A B C x A B C +++++++=,从而0230221A B A B C A B C +=⎧⎪++=⎨⎪++=⎩, 解得1A =,1B =-,1C =,因此3221111()45221(1)dx dx x x x x x x -=++++++++⎰⎰ 211121(1)dx dx dx x x x =-++++⎰⎰⎰ 1ln 2ln 11x x C x =+-+-++. 例35求22(1)(1)dxx x x +++⎰.解因为222211(1)(1)11x x x x x x x x -+=+++++++,所以22221()(1)(1)11dx x x dx x x x x x x -+=+++++++⎰⎰222221(1)1(1)1212121d x d x x dxx x x x x +++=-+++++++⎰⎰⎰ 2221()1112ln(1)ln(1)13222()24d x x x x x +=-+++++++⎰ 2211321ln arctan 2133x x C x x ++=-++++.例36求2425454x x dx x x ++++⎰.解设24222545414x x Ax B Cx D x x x x ++++=+++++,则有 23254()()(4)4x x A C x B D x A C x B D ++=+++++++,比较两边同次幂的系数,解得53A =,1B =,53C =-,0D =,从而 24222541535543134x x x xdx dx dx x x x x +++=-++++⎰⎰⎰2222255151ln arctan 3134164x x x dx dx dx x C x x x x +=-+=++++++⎰⎰⎰. 例37 求322456x x dx x x +++⎰.分析 322456x x x x +++是假分式,先化为多项式与真分式之和,再将真分式分解成部分分式之和.解 由于32224615656x x x x x x x x +-=--++++ 98132x x x =--+++,则 322498(1)5632x x dx x dx x x x x +=--+++++⎰⎰219ln 38ln 22x x x x C =--++++. 例38 求5632x dxx x --⎰.解 令3u x =,23du x dx =,则533636321()123232x dx x d x udux x x x u u ==------⎰⎰⎰ 1112()3(1)(2)912u du du u u u u ==++-+-⎰⎰332121ln 1ln 2ln (1)(2)999u u C x x C =++-+=+-+. 例39 求2100(1)x dx x -⎰. 分析 被积函数2100(1)x x -是有理真分式,若按有理函数的积分法来处理,那么要确定1A ,2A ,…,100A ,比较麻烦.根据被积函数的特点:分母是x 的一次因式,但幂次较高,而分子是x 的二次幂,可以考虑用下列几种方法求解.解法1 令1x t -=,dx dt =-,则222100100100(1)21(1)x t t t dx dt dt x t t --+=-=--⎰⎰⎰98991002t dt t dt t dt ---=-+-⎰⎰⎰9798991112979899t t t C ---=-⋅++ 979899111(1)(1)(1)974999x x x C ---=---+-+. 解法222100100(1)1(1)(1)x x dx dx x x -+=--⎰⎰9910011(1)(1)x dx dx x x +=-+--⎰⎰ 99100(1)21(1)(1)x dx dx x x --=+--⎰⎰ 98991001112(1)(1)(1)dx dx dx x x x =-+---⎰⎰⎰ 979899111(1)(1)(1)974999x x x C ---=---+-+. 解法3 用分部积分法.22991001[(1)](1)99x dx x d x x -=--⎰⎰29999299(1)99(1)x x dx x x =---⎰2989921[(1)]99(1)9998x xd x x -=---⎰ 299989821[]99(1)9998(1)98(1)x x dx x x x =-----⎰ 299989712199(1)9949(1)999897(1)x x C x x x =-⋅-⋅+--⋅-. 注 形如()()P x Q x 的(()P x 与()Q x 均为多项式)有理函数的积分关键是将有理真分式分解成部分分式之和,而部分分式都有具体的积分方法,对于假分式则要化为真分式与多项式之和.例40 求13221dx x x ++-⎰. 分析 这是无理函数的积分,先要去掉根号化为有理函数的积分,分子分母有理化是常用去根号的方法之一.解132213221(3221)(3221)x x dx dx x x x x x x +--=++-++-+--⎰⎰112211(32)(21)44x dx x dx =+--⎰⎰ 332211(32)(21)1212x x C =+--+. 例41 求a xdx a x+-⎰. 解法12222221a x a x xdx dx a dx dx a x a x a x a x++==+----⎰⎰⎰⎰ 1222222211()()2a dx a x d a x a x -=----⎰⎰ 22arcsin xa a x C a=--+.解法2 令 a xt a x+=-,余下的请读者自行完成. 例42求154sin 2dx x+⎰.分析被积函数是三角有理函数,可用万能公式将它化为有理函数. 解令tan t x =,211dx dt t=+,则 21154sin 2585dx dt x t t =+++⎰⎰54332543311()3()1d t t =+++⎰154arctan()333t C =++154arctan(tan )333x C =++. 注虽然万能代换公式总能求出积分,但对于具体的三角有理函数的积分不一定是最简便的方法.通常要根据被积函数的特点,采用三角公式简化积分.例43求1sin cos dxx x++⎰.解法1令tan 2xu =,则2222211211sin cos 1111dx u du du u u x x u u u +==-+++++++⎰⎰⎰ln 1tan 2x C =++.解法21sin cos dxx x ++⎰22122sin cos 2cos cos (1tan )22222dx dx x x x x x ==++⎰⎰ 2()(tan )22cos (1tan )1tan222x x d d x x x==++⎰⎰ ln 1tan2xC =++. 注 可化为有理函数的积分主要要求熟练掌握如下两类: 第一类是三角有理函数的积分,即可用万能代换tan2xu =将其化为u 的有理函数的积分. 第二类是被积函数的分子或分母中带有根式而不易积出的不定积分.对于这类不定积分,可采用适当的变量代换去掉根号,将被积函数化为有理函数的积分.常用的变量代换及适用题型可参考前面介绍过的第二类换元法.例44 求2max{,1}x dx ⎰.分析 被积函数2max{,1}x 实际上是一个分段连续函数,它的原函数()F x 必定为连续函数,可先分别求出各区间段上的不定积分, 再由原函数的连续性确定各积分常数之间的关系.解 由于221,()max{,1}1,1x x f x x x >⎧==⎨≤⎩,设()F x 为()f x 的原函数,则312331,13(),11,13x C x F x x C x x x C ⎧+⎪<-⎪=+≤⎨⎪>⎪+⎩,其中1C ,2C ,3C 均为常数,由于()F x 连续,所以121(1)(1)13F C F C -+-=-+=-=-,231(1)1(1)3F C F C -+=+==+,于是1223C C =-+,3223C C =+,记 2C C =,则32312,133max{,1},112,133x C x x dx x C x x x C⎧-+⎪<-⎪=+≤⎨⎪>⎪++⎩⎰. 注对于一些被积函数中含有绝对值符号的不定积分问题,也可以仿照上述方法处理. 例45 求x e dx -⎰. 解 当0x ≥时,1xx xe dx e dx e C ---==-+⎰⎰. 当0x <时,2xx x edx e dx e C -==+⎰⎰.因为函数x e -的原函数在(,)-∞+∞上每一点都连续,所以120lim()lim()x xx x e C e C +--→→-+=+, 即1211C C -+=+,122C C =+,记 2C C =,则2,0,0xxxe C x e dx x e C --⎧-++≥⎪=⎨<+⎪⎩⎰. 错误解答 当0x ≥时,1xx x edx e dx e C ---==-+⎰⎰.当0x <时,2xx x edx e dx e C -==+⎰⎰.故12,0,0xxxe C x e dx e C x --⎧-+≥⎪=⎨+<⎪⎩⎰. 错解分析 函数的不定积分中只能含有一个任意常数,这里出现了两个,所以是错误的.事实上,被积函数x e -在(,)-∞+∞上连续,故在(,)-∞+∞上有原函数,且原函数在(,)-∞+∞上每一点可导,从而连续.可据此求出任意常数1C 与2C 的关系,使x e -的不定积分中只含有一个任意常数.注 分段函数的原函数的求法:第一步,判断分段函数是否有原函数.如果分段函数的分界点是函数的第一类间断点, 那么在包含该点的区间内,原函数不存在.如果分界点是函数的连续点,那么在包含该点的区间内原函数存在.第二步,若分段函数有原函数,先求出函数在各分段相应区间内的原函数,再根据原函数连续的要求,确定各段上的积分常数,以及各段上积分常数之间的关系.例46 求下列不定积分:(1)sin 1cos x x dx x ++⎰.(2)3sin 2cos sin cos xx x xe dx x-⎰.(3)cot 1sin xdx x+⎰.(4)3sin cos dxx x⎰. 解(1)注意到sin (1cos )xdx d x =-+及2211(tan )1cos 2cos 2xxdx dx d x ==+,可将原来的积分拆为两项,然后积分,即sin sin 1cos 1cos 1cos x x x xdx dx dx x x x +=++++⎰⎰⎰1(tan )(1cos )21cos x xd d x x =-++⎰⎰tan tan ln(1cos )22x xx dx x =--+⎰1tan 2ln cos ln(1cos )22x xx x C =+-++21tan2ln cos ln(2cos )222x x xx C =+-+ 1tan (ln 2)2x x CC C =+=-.(2)被积函数较为复杂,直接凑微分或分部积分都比较困难,不妨将其拆为两项后再观察.3sin sin sin 2cos sin cos tan sec cos xx x x x xedx e x xdx e x xdx x-=-⎰⎰⎰ sin sin ()(sec )x x xd e e d x =-⎰⎰sin sin sin sin sec x x x x xe e dx e x e dx =--+⎰⎰ sin (sec )x e x x C =-+.(3)cot cos 1(sin )1sin sin (1sin )sin (1sin )x x dx dx d x x x x x x ==+++⎰⎰⎰11(sin )(sin )sin 1sin d x d x x x =-+⎰⎰ sin ln 1sin x C x=++.(4)当分母是sin cos m n x x 的形式时,常将分子的1改写成22sin cos x x +,然后拆项,使分母中sin x 和cos x 的幂次逐步降低直到可利用基本积分公式为止.33cos sin cos sin cos sin dx dx xdx x x x x x =+⎰⎰⎰3sin 2csc2sin d xxdx x =+⎰⎰21ln csc2cot 22sin x x C x=--+.注将被积函数拆项,把积分变为几个较简单的积分,是求不定积分常用的技巧之一.例47 求223(1)x dx x -⎰.解 考虑第二类换元积分法与分部积分法,令sin x t =,则222353235sin tan sec (sec sec )(1)cos x t dx dt t tdt t t dt x t ===--⎰⎰⎰⎰, 而53323secsec (tan )sec tan 3tan sec tdt td t t t t tdt ==-⎰⎰⎰ 353sec tan 3(sec sec )t t t t dt =--⎰.故53313sec sec tan sec 44tdt t t tdt =+⎰⎰. 又32secsec (tan )sec tan tan sec tdt td t t t t tdt ==-⎰⎰⎰ 3sec tan (sec sec )t t t t dt =--⎰,从而3111sec sec tan ln sec tan 22tdt t t t t C =+++⎰, 所以223(1)x dx x -⎰3311sec tan sec 44t t tdt =-⎰3111sec tan sec tan ln sec tan 488t t t t t t C =--++ 32211ln 8(1)161x x xC x x++=-+--.例48 求7cos 3sin 5cos 2sin x xdx x x-+⎰.解因为(5cos 2sin )2cos 5sin x x x x '+=-,所以可设7cos 3sin (5cos 2sin )(5cos 2sin )x x A x x B x x '-=+++,即7cos 3sin (5cos 2sin )(2cos 5sin )x x A x x B x x -=++-,比较系数得527253A B A B +=⎧⎨-=-⎩, 解之得1A =,1B =,故7cos 3sin 5cos 2sin x x dx x x -+⎰(5cos 2sin )(5cos 2sin )5cos 2sin x x x x dx x x'+++=+⎰ (5cos 2sin )5cos 2sin d x x dx x x+=++⎰⎰ln 5cos 2sin x x x C =+++.例49 设()F x 是()f x 的原函数,且当0x ≥时有2()()sin 2f x F x x ⋅=,又(0)1F =,()0F x ≥,求()f x .分析 利用原函数的定义,结合已知条件先求出()F x ,然后求其导数即为所求.解 因为()()F x f x '=,所以2()()sin 2F x F x x '=,两边积分得2()()sin2F x F x dx xdx '=⎰⎰,即211()sin 4228x F x x C =-+, 由(0)1F =得12C =,所以 1()sin 414F x x x =-+从而()()12sin 414f x F x x x '==-+21sin 414x x =-+.。
高等数学 不定积分例题、思路和答案(超全)
第4章不定积分内容概要课后习题全解习题4-11.求下列不定积分:知识点:直接积分法的练习——求不定积分的基本方法。
思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!★(1)思路: 被积函数52x-=,由积分表中的公式(2)可解。
解:532223x dx x C--==-+⎰★(2)思路:解:★(3)思路:解:★(4)思路:解:★★思路:解:42232233113arctan11x xdx x dx dx x x C x x++=+=++ ++⎰⎰⎰★★(6)221xdxx+⎰思路:注意到222221111111x xx x x+-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。
解:2221arctan .11x dx dx dx x x C x x=-=-+++⎰⎰⎰ 注:容易看出(5)(6)两题的解题思路是一致的。
一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。
★(7)x dx x x x⎰34134(-+-2 思路:分项积分。
解:3411x dx --134(-+-) ★(8)思路:解:★★思路:解:★★思路:解:★(11)1x e -⎰ 解:21(1)(1)(1).11x x x x x x x e e e dx dx e dx e x C e e --+==+=++--⎰⎰⎰ ★★(12)3x x e dx ⎰思路:初中数学中有同底数幂的乘法: 指数不变,底数相乘。
显然33x x x e e =()。
解:333.ln(3)x x x xe e dx e dx C e ==+⎰⎰()() ★★(13)2cot xdx ⎰思路:应用三角恒等式“22cotcsc 1x x =-”。
解:22cot (csc 1)cot xdx x dx x x C =-=--+⎰⎰★★(14)2352x xx dx ⋅-⋅⎰思路:解:★★思路:解:★★思路:解:★(17)思路:解:★(18)22cos 2cos sin x dx x x ⋅⎰ 思路:同上题方法,应用“22cos 2cos sin x x x =-”,分项积分。
《高等数学》不定积分课后习题详解
《高等数学》不定积分课后习题详解各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢篇一:高等数学第四章不定积分习题第四章不定积分4 – 1不定积分的概念与性质一.填空题1.若在区间上F?(x)?f(x),则F(x)叫做f(x)在该区间上的一个f(x)的所有原函数叫做f(x)在该区间上的__________。
2.F(x)是f(x)的一个原函数,则y=F(x)的图形为?(x)的一条_________. 3.因为d(arcsinx)?1?x2dx,所以arcsinx是______的一个原函数。
4.若曲线y=?(x)上点(x,y)的切线斜率与x成正比例,并且通过点A(1,6)和B(2,-9),则该曲线方程为__________ 。
二.是非判断题1.若f?x?的某个原函数为常数,则f?x??0. [ ] 2.一切初等函数在其定义区间上都有原函数. [ ] 3.3??f?x?dx???f??x?dx. [ ]?4.若f?x?在某一区间内不连续,则在这个区间内f?x?必无原函数. [ ] ?ln?ax?与y?lnx是同一函数的原函数. [ ] 三.单项选择题1.c为任意常数,且F’(x)=f(x),下式成立的有。
(A)?F’(x)dx?f(x)+c;(B)?f(x)dx=F(x)+c;(C)?F(x)dx?F’(x)+c;(D) ?f’(x)dx=F(x) +c.2. F(x)和G(x)是函数f(x)的任意两个原函数,f(x)?0,则下式成立的有。
(A)F(x)=cG(x); (B)F(x)= G(x)+c;(C)F(x)+G(x)=c; (D) F(x)?G(x)=c. 3.下列各式中是f(x)?sin|x|的原函数。
(A) y??cos|x| ; (B) y=-|cosx|;(c)y=??cosx,x?0,cosx?2,x?0;(D) y=??cosx?c1,x?0,cosx?c2,x?0.c1、c2任意常数。
(整理)§4不定积分习题与答案.
3、 (1) ln csct cot t c
( 2) 2( x cos x sin x ) c
x2 4
2
( 3) 2(tan
arccos ) c
2
x
a2
x
(4) (arcsin
2
a
x a2
a2
x2)
c
x
(5)
c
1 x2
(6) 2x ln(1 2x) c
精品文档
精品文档
1 (7) (arcsin x ln x
(3) ln x 1 ln( x 2 1) c 2
(4) ln x
1 ln x 1
1 ln( x2
1)
1 arctanx
c
2
4
2
1 x2 1
3
2x 1
(5) 2 ln x2 x 1
arctan 3
3
c
1、 设曲线 y
(B)
f ( x) ,由导数的几何意义: y
11 , dx
ln x
c ,点 (e2 ,3) 代入即可。
1) (3 2x) 3dx
dx
2)
3 2 3x
3) sin t dt t
精品文档
dx
4)
x ln xln(ln x)
精品文档
5)
dx
cos x sin x
7) x cos(x2 ) dx
dx
6)
ex e x 8) 3 x3 dx
1 x4
9)
sin x
3
dx
cos x
10)
1 x dx
9 4x2
dx
x2 )
c
3
(完整版)不定积分例题及答案理工类吴赣昌(可编辑修改word版)
第 4 章不定积分知识点:直接积分法的练习——求不定积分的基本方法。
思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!d ⎡⎰ ⎤ ⎡⎰ ⎤ 性质 1: f (x )dx = f (x ) 或 d f (x )dx = f (x )dx ;dx ⎣⎦⎣⎦性质 2: ⎰ F '(x )dx = F (x ) + C 或⎰ dF (x ) = F (x ) + C ; 性质 3:⎰[f (x ) ± g (x )]dx =⎰ f (x )dx ± ⎰ g (x )dx ,,为非零常数。
设 f (u ) 的 原函数为 F (u ) , u =(x ) 可导,则有换元公式:⎰ f ((x ))'(x )dx = ⎰ f ((x ))d(x ) = F ((x )) + C设 x =(t ) 单调、可导且导数不为零, f [(t )]'(t ) 有原函数 F (t ) ,则⎰ f (x )dx = ⎰ f ((t ))'(t )dt = F (t ) + C = F (-1(x )) + Cx 2 xx 2x⎰ x1 ★(1)⎰思路: 被积函数1 = x- 5 2,由积分表中的公式(2)可解。
解 :⎰dx= ⎰ x 1- 52 2dx = - 3 - 3 x 2+ C★(2) ⎰( -dx x思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。
11-11- 1 3 41解: ⎰ ( 3 x - )dx = ⎰ (x 3 - x 2 )dx = ⎰ x 3dx - ⎰ x 2dx = x 3 - 2x 2 + C 4★(3) ⎰(2x+ x 2)dx思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。
x2x22x1 3解: ⎰(2 + x )dx = ⎰ 2 dx + x dx = + x + Cln 2 3★(4)⎰x (x - 3)dx思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。
高等数学-不定积分习题讲解
2
x a sin t
cos t dt sin t cos t
1 cos t sin t cos t sin t dt 2 sin t cos t
1 cos t sin t 1 1 [ dt dt ] [ dt d sin t cos t ] 2 sin t cos t 2 sin t cos t 1 [t ln sin t cos t ] C 2
2
或
u 1 x2 2 1 1 99 100 du 98 ( x 1)100 dx x 1 u u100 d u 1 u u u
(12)
x
dx a x
2
dx a2 x2
a 0
dx x a x
2 2
x
第四章
1.求下列不定积分 ( 1) I
5 x2 d x 3 8 3 x d x x3 C 3x 8
不定积分
§1 不定积分概念
( 2) I
5 x x 3e x x 2 1 x d x x 2 d x e d x x d x x3
2 3 x 2 e x ln x C 3
1 2 x x C1 2 故 f x dx x2 1 C 1 2
x 1 x 1
2.一曲线通过点 e 2 ,3 ,且在曲线上任一点 处的切线斜率等于该点的横坐标倒数,求曲 线方程。 解:设曲线是由函数 y f x 决定,由题意得 f x
dx
1 da sec t a tan t
sec tdt
1 cos t 1 dt dt d sin t cos t cos 2 t 1 sin 2 t
大学笔记—高等数学-不定积分例题、思路和答案(超全65页)
第4章不定积分内容概要名称主要内容不定积分的概念设,,若存在函数,使得对任意均有()f x x I∈()F x x I∈()()F x f x'=或,则称为的一个原函数。
()()dF x f x dx=()F x()f x的全部原函数称为在区间上的不定积分,记为()f x()f x I()()f x dx F x C=+⎰注:(1)若连续,则必可积;(2)若均为的原函数,则()f x(),()F xG x()f x。
故不定积分的表达式不唯一。
()()F xG x C=+性质性质1:或;()()df x dx f xdx⎡⎤=⎣⎦⎰()()d f x dx f x dx⎡⎤=⎣⎦⎰性质2:或;()()F x dx F x C'=+⎰()()dF x F x C=+⎰性质3:,为非零常数。
[()()]()()f xg x dx f x dx g x dxαβαβ±=±⎰⎰⎰,αβ第一换元积分法(凑微分法)设的原函数为,可导,则有换元公式:()f u()F u()u xϕ=(())()(())()(())f x x dx f x d x F x Cϕϕϕϕϕ'==+⎰⎰第二类换元积分法设单调、可导且导数不为零,有原函数,()x tϕ=[()]()f t tϕϕ'()F t则1()(())()()(())f x dx f t t dt F t C F x Cϕϕϕ-'==+=+⎰⎰分部积分法()()()()()()()()u x v x dx u x dv x u x v x v x du x'==-⎰⎰⎰不定积分计算方法有理函数积分若有理函数为假分式,则先将其变为多项式和真分式的和;对真分式的处理按情况确定。
本章的地位与作用在下一章定积分中由微积分基本公式可知---求定积分的问题,实质上是求被积函数的原函数问题;后继课程无论是二重积分、三重积分、曲线积分还是曲面积分,最终的解决都归结为对定积分的求解;而求解微分方程更是直接归结为求不定积分。
第五章不定积分习题课参考答案
① f ( x, n ax b ) dx ,令 t n ax b ;② f ( x, a 2 x 2 )dx ,令 x a sin t ; ③ f ( x, a 2 x 2 )dx ,令 x a tan t ;④ f ( x, x 2 a 2 )dx ,令 x a sect ;
例6 求下列不定积分:
108896097.doc
-2-
①
xdx ; 1 x2
②
1 1 sin dx ; 2 x x
③
dx x 1 ln 2 x
;
凑微分求不定积分,必须牢记基本积分公式类型,这样就不会被复杂的式子所迷 惑,同时为提高凑微分技巧,应熟悉常见的微分公式. 常用的凑微分积分类型: 1 f (ax n b)d (ax n b) ; ① f (ax n b) x n 1 dx an ② f (sin x) cos xdx f (sin x)d sin x ; ③ f (tan x) sec 2 xdx f (tan x)d tan x ;
0 1
解: 由已知 x 2 x 为 f ( x) 的导函数,即 x2 x f ( x) 所以, xf ( x)dx x( x 2 x)dx ( x 3 x 2 )dx
0 0 0 1 1 1
1 4 1 3 x x C 4 3
例3 求下列不定积分: ①
x 2 x sin 2 x sin 2 x x 2 x sin 2 x cos 2 x dx C 4 4 4 4 4 8
例14 求下列不定积分:
xdx ① 3 ; x 3x 2 2x 3 dx ; ② 2 x x5
x4 1 dx . ③ 6 x 1
《高等数学》不定积分课后习题详解
《高等数学》不定积分课后习题详解篇一:高等数学第四章不定积分习题第四章不定积分4 – 1不定积分的概念与性质一.填空题1.若在区间上F?(x)?f(x),则F(x)叫做f(x)在该区间上的一个f(x)的所有原函数叫做f(x)在该区间上的__________。
2.F(x)是f(x)的一个原函数,则y=F(x)的图形为?(x)的一条_________. 3.因为d(arcsinx)?1?x2dx,所以arcsinx是______的一个原函数。
4.若曲线y=?(x)上点(x,y)的切线斜率与x成正比例,并且通过点A(1,6)和B(2,-9),则该曲线方程为__________ 。
二.是非判断题1.若f?x?的某个原函数为常数,则f?x??0. [ ] 2.一切初等函数在其定义区间上都有原函数. [ ] 3.3??f?x?dxf??x?dx. [ ]?4.若f?x?在某一区间内不连续,则在这个区间内f?x?必无原函数. [ ] ?ln?ax?与y?lnx是同一函数的原函数. [ ] 三.单项选择题1.c为任意常数,且F’(x)=f(x),下式成立的有。
(A)?F’(x)dx?f(x)+c;(B)?f(x)dx=F(x)+c;(C)?F(x)dx?F’(x)+c;(D) ?f’(x)dx=F(x)+c.2. F(x)和G(x)是函数f(x)的任意两个原函数,f(x)?0,则下式成立的有。
(A)F(x)=cG(x); (B)F(x)= G(x)+c;(C)F(x)+G(x)=c;(D) F(x)?G(x)=c. 3.下列各式中是f(x)?sin|x|的原函数。
(A) y??cos|x| ; (B) y=-|cosx|;(c)y=??cosx,x?0,cosx?2,x?0;(D) y=??cosx?c1,x?0,cosx?c2,x?0.c1、c2任意常数。
?(x)?f(x),f(x) 为可导函数,且f(0)=1,又F(x)?xf(x)?x2,则f(x)=______.(A) ?2x?1 (B)?x?1 (C)?2x?1(D)?x?1 5.设f?(sin2x)?cos2x,则f(x)=________.1(A)sinx?sin2x?c; (B)x?1x2?c; (C)sin2x?1sin4x?c;(D)x2?1x4?c;2222226.设a是正数,函数f(x)?ax,?(x)?axlogae,则______.(A)f(x)是?(x)的导数; (B)?(x)是f(x)的导数;(C)f(x)是?(x)的原函数;(D)?(x)是f(x)的不定积分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不定积分内容概要课后习题全解习题4-11.求下列不定积分:知识点:直接积分法的练习——求不定积分的基本方法。
思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!★(1)思路: 被积函数52x-=,由积分表中的公式(2)可解。
解:532223xdx x C--==-+⎰★(2)dx-⎰思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。
解:1141113332223()24dx x x dx x dx x dx x x C---=-=-=-+⎰⎰⎰⎰★(3)22x x dx+⎰()思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。
解:2232122ln23xx xx dx dx x dx x C+=+=++⎰⎰⎰()★(4)3)x dx-思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。
解:3153222223)325x dx x dx x dx x x C-=-=-+⎰⎰★★(5)4223311x x dx x +++⎰ 思路:观察到422223311311x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。
解:42232233113arctan 11x x dx x dx dx x x C x x++=+=++++⎰⎰⎰ ★★(6)221x dx x+⎰ 思路:注意到222221111111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。
解:2221arctan .11x dx dx dx x x C x x=-=-+++⎰⎰⎰ 注:容易看出(5)(6)两题的解题思路是一致的。
一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。
★(7)x dx x x x⎰34134(-+-)2 思路:分项积分。
解:3411342x dx xdx dx x dx x dx x x x x --=-+-⎰⎰⎰⎰⎰34134(-+-)2 223134ln ||.423x x x x C --=--++ ★(8)23(1dx x -+⎰ 思路:分项积分。
解:2231(323arctan 2arcsin .11dx dx x x C x x -=-=-+++⎰⎰★★(9)思路=11172488x x ++==,直接积分。
解:715888.15x dx x C ==+⎰ ★★(10)221(1)dx x x +⎰思路:裂项分项积分。
解:222222111111()arctan .(1)11dx dx dx dx x C x x x x x x x=-=-=--++++⎰⎰⎰⎰ ★(11)211x x e dx e --⎰ 解:21(1)(1)(1).11x x x x x x x e e e dx dx e dx e x C e e --+==+=++--⎰⎰⎰ ★★(12)3x x e dx ⎰思路:初中数学中有同底数幂的乘法: 指数不变,底数相乘。
显然33x x x e e =()。
解:333.ln(3)x x x xe e dx e dx C e ==+⎰⎰()() ★★(13)2cot xdx ⎰思路:应用三角恒等式“22cot csc 1x x =-”。
解:22cot (csc 1)cot xdx x dx x x C =-=--+⎰⎰★★(14)23523x xxdx ⋅-⋅⎰ 思路:被积函数 235222533x x x x ⋅-⋅=-(),积分没困难。
解:2()2352232525.33ln 2ln 3x x xx x dx dx x C ⋅-⋅=-=-+-⎰⎰(()) ★★(15)2cos 2x dx ⎰ 思路:若被积函数为弦函数的偶次方时,一般地先降幂,再积分。
解:21cos 11cos sin .2222x x d dx x x C +==++⎰⎰ ★★(16)11cos 2dx x+⎰ 思路:应用弦函数的升降幂公式,先升幂再积分。
解:221111sec tan .1cos 2222cos dx dx xdx x C x x===++⎰⎰⎰ ★(17)cos 2cos sin x dx x x -⎰ 思路:不难,关键知道“22cos 2cos sin (cos sin )(cos sin )x x x x x x x =-=+-”。
解:cos 2(cos sin )sin cos .cos sin x dx x x dx x x C x x=+=-+-⎰⎰ ★(18)22cos 2cos sin x dx x x ⋅⎰ 思路:同上题方法,应用“22cos 2cos sin x x x =-”,分项积分。
解:22222222cos 2cos sin 11cos sin cos sin sin cos x x x dx dx dx x x xx x x x -==-⋅⋅⎰⎰⎰⎰22csc sec cot tan .xdx xdx x x C =-=--+⎰⎰★★(19)dx +⎰思路:注意到被积函数==,应用公式(5)即可。
解:22arcsin .dx x C +==+⎰ ★★(20)21cos 1cos 2x dx x++⎰ 思路:注意到被积函数 22221cos 1cos 11sec 1cos 2222cos x x x x x++==++,则积分易得。
解:221cos 11tan sec .1cos 2222x x x dx xdx dx C x ++=+=++⎰⎰⎰ ★2、设()arccos xf x dx x C =+⎰,求()f x 。
知识点:考查不定积分(原函数)与被积函数的关系。
思路分析:直接利用不定积分的性质1:[()]()d f x dx f x dx =⎰即可。
解:等式两边对x 求导数得:()()xf x f x =∴=★3、设()f x 的导函数为sin x ,求()f x 的原函数全体。
知识点:仍为考查不定积分(原函数)与被积函数的关系。
思路分析:连续两次求不定积分即可。
解:由题意可知,1()sin cos f x xdx x C ==-+⎰所以()f x 的原函数全体为:112cos sin x C dx x C x C -+=-++⎰()。
★4、证明函数21,2x x e e shx 和x e chx 都是s x e chx hx -的原函数 知识点:考查原函数(不定积分)与被积函数的关系。
思路分析:只需验证即可。
解:2x x e e chx shx =-,而22[][][]x x x x d d d e e shx e chx e dx dx dx===1()2 ★5、一曲线通过点2(,3)e ,且在任意点处的切线的斜率都等于该点的横坐标的倒数,求此曲线的方程。
知识点:属于第12章最简单的一阶线性微分方程的初值问题,实质仍为考查原函数(不定积分)与被积函数的关系。
思路分析:求得曲线方程的一般式,然后将点的坐标带入方程确定具体的方程即可。
解:设曲线方程为()y f x =,由题意可知:1[()]d f x dx x=,()ln ||f x x C ∴=+; 又点2(,3)e 在曲线上,适合方程,有23ln(),1e C C =+∴=,所以曲线的方程为()ln || 1.f x x =+★★6、一物体由静止开始运动,经t 秒后的速度是23(/)t m s ,问:(1)在3秒后物体离开出发点的距离是多少? (2) 物体走完360米需要多少时间?知识点:属于最简单的一阶线性微分方程的初值问题,实质仍为考查原函数(不定积分)与被积函数的关系。
思路分析:求得物体的位移方程的一般式,然后将条件带入方程即可。
解:设物体的位移方程为:()y f t =, 则由速度和位移的关系可得:23[()]3()f t t f t t C =⇒=+d dt, 又因为物体是由静止开始运动的,3(0)0,0,()f C f t t ∴=∴=∴=。
(1) 3秒后物体离开出发点的距离为:3(3)327f ==米;(2)令3360t t =⇒=习题4-2★1、填空是下列等式成立。
知识点:练习简单的凑微分。
思路分析:根据微分运算凑齐系数即可。
解:234111(1)(73);(2)(1);(3)(32);7212dx d x xdx d x x dx d x =-=--=-2222111(4)();(5)(5ln ||);(6)(35ln ||);255112(tan 2);(9)(arctan 3).23cos 219x x dx dx e dx d e d x d x x x dx dx d d x d x x x ===--===+ 2、求下列不定积分。
知识点:(凑微分)第一换元积分法的练习。
思路分析:审题看看是否需要凑微分。
直白的讲,凑微分其实就是看看积分表达式中,有没有成块的形式作为一个整体变量,这种能够马上观察出来的功夫来自对微积分基本公式的熟练掌握。
此外第二类换元法中的倒代换法对特定的题目也非常有效,这在课外例题中专门介绍!★(1)3t e dt ⎰思路:凑微分。
解:33311(3)33t t t e dt e d t e C ==+⎰⎰ ★(2)3(35)x dx -⎰思路:凑微分。
解:33411(35)(35)(35)(35)520x dx x x x C -=---=--+⎰⎰d ★(3)132dx x-⎰ 思路:凑微分。
解:1111(32)ln |32|.322322dx d x x C x x =--=--+--⎰⎰ ★(4)思路:凑微分。
解:1233111(53)(53)(53)(53).332x x d x x C -=--=---=--+⎰ ★(5)(sin )xb ax e dx -⎰思路:凑微分。
解:11(sin )sin ()()cos x x x b b b x ax e dx axd ax b e d ax be C a b a -=-=--+⎰⎰⎰★★(6)思路:如果你能看到td d =,凑出d 易解。
解:2C==⎰★(7)102tan sec x xdx ⎰思路:凑微分。
解:10210111tan sec tan (tan )tan .11x xdx xd x x C ==+⎰⎰ ★★(8)ln ln ln dx x x x ⎰ 思路:连续三次应用公式(3)凑微分即可。
解:(ln ||)(ln |ln |)ln |ln ln |ln ln ln ln ln ln ln ln dx d x d x x C x x x x x x===+⎰⎰⎰★★(9)⎰思路:是什么,是什么呢?就是度! 解:tantan ln |C ==-+⎰⎰★★(10)sin cos dxx x⎰思路:凑微分。