平行四边形——常用模型(二) 平行线、角平分线和等腰三角形.doc

合集下载

初中数学几何模型

初中数学几何模型

全等变换平移:平行等线段(平行四边形)对称:角平分线或垂直或半角旋转:相邻等线段绕公共顶点旋转对称全等模型:说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。

两边进行边或者角的等量代换,产生联系。

垂直也可以做为轴进行对称全等。

对称半角模型说明:上图依次是°、°、°、°及有一个角是°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。

旋转全等模型半角:有一个角含角及相邻线段自旋转:有一对相邻等线段,需要构造旋转全等共旋转:有两对相邻等线段,直接寻找旋转全等中点旋转:倍长中点相关线段转换成旋转全等问题旋转半角模型说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。

自旋转模型构造方法:遇度旋度,造等边三角形遇度旋度,造等腰直角遇等腰旋顶点,造旋转全等遇中点旋度,造中心对称说明:IS 8模型变形BEFcEB说明:说明:nnnnnnnnnnnnnnnnnnnnnnn nnnnn口叩皿皿皿皿皿中点模型 边构诗中{fflt 逢阳点闵iS 中幽城 几何最值模型 VH *h 轴对称模型 对称最值 线mi 差模型 fflftffw 同侧"异侧两蜒段之利罐短视它 同侧、异删芮线投之羞媪小槐型 四边形周怏垠小根地 三角形眉长 必小檢哩三线穀之和 她知爬制过桥模取旋转最值说明:找到与所要求最值相关成三角形的两个定长线段,定长线段的和为最大值,定长线段的差为最小值。

简拼模型三角形j四边形E 面积等分说明:说明:3045602说明:ACOCOAA 模型一:手拉手模型-旋转型全等<2)等濮的AA Mfr=血°拟述°均为等媵直甬M 册A 结险(DA (UCtAO^l>j 超乙他»③。

E 平分£忖了儿(1)―况> Sfr :LDW 牛底皿力能转至右囲检置A 皓论:> 右图中①bOCWMe\QAC AOSD 』 >⑨延氏M 交购于点G 必肖5氏-LBOA⑵特燥惜况>条件m 3MB ,厶伽■剜,将AXD 龍讳至右團位蛊a gife :右gcp fflAfJCD^iOJ^AC?JCiM£33②延长M 交加于点瓦愁有3EC -LUGA f BD 000B (5)-—--——=—-=tan ZlfX D®ACOCOA 3f^SDLAC.灘接也JC >临加*†g ・a+o>s ⑥矢"訐c&J 冊哒相垂直的四嬷)<3)任翦腰三角晤†辭,。

模型平行线角平分线等腰三角形三者知二推一

模型平行线角平分线等腰三角形三者知二推一

模型“平行线”、“角平分线”、“等腰三角形”三者知二推一【几何模型】“角平分线”、“平行线”、“等腰三角形”三者知其二必推出其一。

初中数学学习难在几何题没有思路当然了,有了思路就感觉简单了,那么为什么没有思路?关键是没有掌握几何证明题的本质,他是一个推理过程,就是具备什么条件,一定会具有一个结论。

往往对推理过程不熟练,思考不到条件下结论存在性,挖空心思也写不出步骤。

这就需要训练做题,思考总结出具备什么条件会有什么结论,做题时直奔主题,不用再思考了,日积月累,书到渠成,再解决几何问题就不难了。

在△ABC中,∠BAC=α[定值],BC=a[定值],可得“定弦定角”模型,找隐圆;【例题】:挖掘定角与定线背景内涵,思考最值问题第25题初审可知第三问考查定角定中线模型(附尺规作图)及解法;联想到定角定高模型(参考题:2020年沈河一模第25题);最后小编原创题考查定角定角平分线。

【思维教练3】—“知识储备”前文已更新:倍长中线,构造“定弦定角”模型,找到隐圆求解。

亦可构造等边三角形转化线段,得:“共顶点的两个等边三角形”;其中,方法二:根据“垂线段最短”得:CK≤CG,则CK的最大值为2√(3),CM+CN=EF+EN=FN;【你看出思路了吗】小编原创试题“考查定角定角平分线”,1.如图,点A、B、C、D在⊙O上,AD平分∠BAC.若∠B O C=120°,则∠C AD的度数为.2.如图,AD是△ABC的外接圆⊙O的直径.若∠BCA=50°,则∠AD B的度数为.3.已知圆锥的底面半径为1cm,高为cm,则它的侧面展开图的面积为cm².4.如图,AB是半圆O的直径.弦CD∥AB,CD=8,AB=10,则CD与AB之间的距离为.5.如图,在⊙O中,点A在弧BC上.若∠B O C=100°,则∠BA C的度数为.▱ABCD的6.如图,若用半径为8,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面圆半径是.7.如图,已知锐角△ABC内外接于半径为2的⊙O.若OD⊥BC于点D,∠BAC=60°,则OD=.8.如图,AD是△ABC的外接圆⊙O的直径.若∠BAD=40°,则∠AC B的度数为.9.已知圆锥的母线长为3,底面圆半径为1,则该圆锥的侧面展开图的面积为.10.已知圆锥的底面圆半径为3,侧面面积为12,则该圆锥的母线长为.11.在⊙O中,若弦BC垂直平分半径O A,则弦BC所对的圆周角等于.12.如图,已知AB是⊙O的直径.P A切⊙O于点A,线段P O交⊙O于点C,连接BC.若∠P=36°,则∠B=.13.用一个圆心角为90°,半径为20 cm的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面圆半径是.14.已知圆锥的底面圆半径为2.5,母线长为9,则该圆锥的侧面展开图的圆心角度数为.15.如图,在边长为2的正方形ABCD中,对角线AC的中点为点O,分别以点A、C为圆心,以AO的长为半径画弧,分别与正方形ABCD的边相交,则图中阴影部分的面积为.(结果保留)16.如图,在△A BC中,∠C=90°,AC=4,BC=3.若以A C所在直线为轴,把△A BC旋转一周,得到一个圆锥,则这个圆锥的侧面面积是.17.如图,在△A BC中,若∠A CB=45°,A B=6.则△A BC的面面积的最大值是.18.如图,在扇形△AO B中,OA=O B=2,∠AO B=90°,点C为弧A B上一点.∠AO C=30°,连接BC,过点C作OA的垂线交OA于点D,则图中阴影部分的面积为.19.如图,点A、B、C、D为一个正多边形的顶点,点O为正多边形的中心,若∠AD B=18°,则这个正多边形的边数为.20.如图,在半径为6的⊙O中.若∠AO B=60°,则图中阴影部分的面积为.21.用一个圆心角为120°,半径为4的扇形制作一个圆锥的侧面(接缝忽略不计),则此圆锥的底面圆半径是.3一.圆典型基本模型图模型1图形:⑴如图,A B是⊙O的直径,点C、E是⊙O上的两点.基本结论有:①A C平分∠B AE是;②A D⊥CD;③CD是⊙O的切线;三个论断,知二推一.⑵⑶⑷⑸⑹④⑤⑥如图,A B是⊙O的直径,点C、E是⊙O上的两点.20.如图,在半径为6的⊙O中.若∠AO B=60°,则图中阴影部分的面积为.接圆的直径.若∠BCA=50°,则∠AD B的度数为.∠A BACDB O=90°,2.如图,在每个小正方形边长为1的网格中,△ABC的顶点A、B、C均在格点上,AB与网格交于点D.AD的长为;OP.AB2A2B,A′B′OP.AB2A2B,A′B′OP.AB2A2B,A′B′(2)点P是边AC上一点,当△APD∽△ABC时,仅用无刻度的直尺确定点P的位置,简单说明作图方法(不要求证明).≌≌≌1.如图,在每个小正方形的边长为1的网格中,点O、点A在格点上,⊙O的半径为3,点B、点C在⊙O上.½∥⅓⅔¼°²³ⁿ∵∴⑥⑦½∥⅓⅔¼°²³ⁿ∵∴⑥⑦½∥⅓⅔¼°²³ⁿ∵∴⑥⑦´'´'´'(1)若∠⊥CAO=90°,ADAC的长为;①②③B.②④①②③B.②④(2)若∠BAO=60°,仅用无刻度的直尺确定点B的位置,简单说明作图方法.⊙O上.2.如图,在每个小正方形边长为1的网格中,△ABC的顶点A、B、C均在格点上,AB与格交于点D.(2)点P是边AC上一点,当△APD∽△ABC时,仅用无刻度的直尺确定点P的位置,简单说明作图方法(不要求证明).过点O作OQ∥AP交BM于点Q,过点P作PE⊥AB于点C,交QO的延长线于点E,连接PQ,OP.AB2A2B,BD=n•BF,沿A→B→C→D→A方向运动到点A 处停止.过点O作OQ∥AP交BM于点Q,过点P作PE⊥AB∏于点C,交QO的延长线于点E,连接PQ,cm BD=n•BF,沿A→B→C→①②⑤①②⑤①②⑤精选试题解析(1)。

角平分线等腰三角形平行线课件

角平分线等腰三角形平行线课件

02
等腰三角形的基本性质
等腰三角形的定义
等腰三角形是两边相等的三角形。 等腰三角形两底角相等。
等腰三角形的高、中线、角平分线三线合一。
等腰三角形的性质
两个底角相等,且每个底角的大 小为(180° - 顶角度数)/ 2。
顶角与底角的大小关系为:顶角 > 底角。
等腰三角形的中线、高线和角平 分线三线合一。
等腰三角形的判定
如果一个三角形有两边相等,则它是 等腰三角形。
如果一个三角形的中线、高线和角平 分线三线合一,则它是等腰三角形。
如果一个三角形有两个底角相等,则 它是等腰三角形。
03
平行线的基本性质
平行线的定义
平行线的定义
在同一平面内,两条永不相交的直线称为平行线。
平行线的表示方法
用符号“//”表示两条直线平行。
判定2
内错角相等则两直线平行 。如果∠3=∠4,则 AB//CD。
判定3
同旁内角互补则两直线平 行。如果∠5+∠6=180°, 则AB//CD。
04
角平分线等腰三角形和平行线的综合应 用
角平分线与等腰三角形的综合应用
总结词
利用角平分线性质和等腰三角形性质,解决几何问题。
详细描述
在几何问题中,常常需要综合运用角平分线性质和等腰三角形性质。角平分线性质指出,角平分线将相对边分成 两段相等的线段,而等腰三角形性质则说明等腰三角形两底角相等且对应的两腰相等。通过结合这两个性质,可 以解决一些复杂的几何问题,例如求角度、证明线段相等或进
性质1
同位角相等。当两条直线 被第三条直线所截,同位 角相等,即∠1=∠2。
性质2
内错角相等。当两条直线 被第三条直线所截,内错 角相等,即∠3=∠4。

初中数学三角形全等常用几何模型及构造方法大全初二

初中数学三角形全等常用几何模型及构造方法大全初二

初二数学三角形全等常用几何模型及构造方法大全掌握它轻松搞定全等题!全等是初中数学中非常重要的内容,一般会在压轴题中进行考察,而掌握几何模型能够为考试节省不少时间,这次整理了常用的各大模型,一定要认真掌握~全等变换类型:(一)平移全等:平行等线段(平行四边形)(二)对称全等模型:角平分线或垂直或半角1:角平分线模型;2:对称半角模型;(三)旋转全等模型:相邻等线段绕公共顶点旋转1.旋转半角模型2.自旋转模型3.共旋转模型4.中点旋转如图,在△ABC的边上取两点D、E,且BD=CE,求证:AB+AC>AD+AE分析:将△ACE平移使EC与BD重合。

B\D,上方交点,左右两个三角形,两边和大于第三边!1:角平分线模型:说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。

两边进行边或者角的等量代换,产生联系。

垂直也可以做为轴进行对称全等。

2:对称半角模型说明:上图依次是45°、30°、 45+ °、对称(翻折)15°+30°直角三角形对称(翻折) 30+60+90直角三角形对称(翻折)翻折成正方形或者等腰直角三角形、等边三角形、对称全等。

1.半角:有一个角含1/2角及相邻线段2.自旋转:有一对相邻等线段,需要构造旋转全等3.共旋转:有两对相邻等线段,直接寻找旋转全等(共顶点)4.中点旋转:倍长中点相关线段转换成旋转全等问题(专题七)1、旋转半角模型说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。

2、自旋转模型构造方法:遇60度旋60度,造等边三角形遇90度旋90度,造等腰直角遇等腰旋顶点,造旋转全等遇中点旋180度,造中心对称3、共旋转模型说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。

通过“8”字模型可以证明。

(接上------共旋转模型)模型变形说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形混用。

(完整版)初中数学——最全:初中数学几何模型.docx

(完整版)初中数学——最全:初中数学几何模型.docx

最全:初中数学几何模型几何是初中数学中非常重要的内容,一般会在压轴题中进行考察,而掌握几何模型能够为考试节省不少时间,小编整理了常用的各大模型,一定要认真掌握哦~全等变换平移:平行等线段(平行四边形)对称:角平分线或垂直或半角旋转:相邻等线段绕公共顶点旋转对称全等模型说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。

两边进行边或者角的等量代换,产生联系。

垂直也可以做为轴进行对称全等。

对称半角模型说明:上图依次是 45°、30°、22.5°、15°及有一个角是 30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。

旋转全等模型半角:有一个角含1/2 角及相邻线段自旋转:有一对相邻等线段,需要构造旋转全等共旋转:有两对相邻等线段,直接寻找旋转全等中点旋转:倍长中点相关线段转换成旋转全等问题旋转半角模型说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。

自旋转模型构造方法:遇 60 度旋 60 度,造等边三角形;遇90度旋90度,造等腰直角遇等腰旋顶点,造旋转全等;遇中点旋180 度,造中心对称共旋转模型说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。

通过“8”字模型可以证明。

模型变形说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形的混用。

当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。

中点旋转:说明:两个正方形、两个等腰直角三角形或者一个正方形一个等腰直角三角形及两个图形顶点连线的中点,证明另外两个顶点与中点所成图形为等腰直角三角形。

证明方法是倍长所要证等腰直角三角形的一直角边,转化成要证明的等腰直角三角形和已知的等腰直角三角形(或者正方形)公旋转顶点,通过证明旋转全等三角形证明倍长后的大三角形为等腰直角三角形从而得证。

解读初中数学复习中的平行四边形与三角形

解读初中数学复习中的平行四边形与三角形

解读初中数学复习中的平行四边形与三角形初中数学复习中的平行四边形与三角形数学是一门重要的学科,也是学生们在学业上常常遇到的难点之一。

在初中数学中,平行四边形与三角形是较为基础但却非常关键的概念。

本文将解读初中数学复习中的平行四边形与三角形,并提供一些解题方法和技巧。

一、平行四边形平行四边形是指具有两组对边分别平行的四边形。

在复习中,我们常常遇到求解平行四边形的性质和计算面积的问题。

1. 平行四边形的性质在平行四边形中,有以下性质:(1)对边平行:平行四边形的两组对边分别平行。

(2)对角线重合:平行四边形的对角线相交于一点,并且该点与四个顶点的连线都相等。

(3)相邻角互补:平行四边形的相邻两个内角互补,即它们的和等于180°。

(4)对边等长:平行四边形的对边长度相等。

2. 计算平行四边形的面积计算平行四边形的面积可以使用以下公式:面积 = 底边长度 ×高其中,底边长度是任意一条对边的长度,高是垂直于底边的距离。

通过这个公式,我们可以快速计算平行四边形的面积。

二、三角形三角形是数学中的一个基础几何图形,复习中我们常常遇到求解三角形的性质、周长和面积的问题。

1. 三角形的性质在三角形中,有以下性质:(1)角的性质:三角形的三个角的度数之和等于180°。

(2)边的性质:三角形的任意两边之和大于第三边,任意两边之差小于第三边。

(3)高的性质:三角形的高是从一个顶点到底边的垂直线段。

(4)中位线的性质:三角形的中位线是连接一个顶点与对边中点的线段,三条中位线交于一点。

(5)角平分线的性质:三角形的角平分线是从一个顶点到对边的平分角的线段,三条角平分线交于一点。

2. 计算三角形的周长和面积计算三角形的周长可以直接将三条边的长度相加。

计算三角形的面积有多种方法,其中常用的方法是海伦公式和高度×底边剖分法。

海伦公式:设三角形的三边长分别为a、b、c,半周长为p,则三角形的面积S 可以使用以下公式计算:S = √[p(p-a)(p-b)(p-c)]其中,p = (a+b+c)/2。

七年级数学培优-平行线四大模型2

七年级数学培优-平行线四大模型2

平行线四大模型平行线的判定与性质l、平行线的判定根据平行线的定义,如果平面内的两条直线不相交,就可以判断这两条直线平行,但是,由于直线无限延伸,检验它们是否相交有困难,所以难以直接根据定义来判断两条直线是否平行,这就需要更简单易行的判定方法来判定两直线平行.判定方法l:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称:同位角相等,两直线平行.判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简称:内错角相等,两直线平行,判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简称:同旁内角互补,两直线平行,如上图:假设∠1=∠2,那么AB∥CD〔同位角相等,两直线平行〕;假设∠1=∠3,那么AB∥CD〔内错角相等,两直线平行〕;假设∠1+ ∠4= 180°,那么AB∥CD〔同旁内角互补,两直线平行〕.另有平行公理推论也能证明两直线平行:平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.2、平行线的性质利用同位角相等,或者内错角相等,或者同旁内角互补,可以判定两条直线平行.反过来,如果两条直线平行,当它们被第三条直线所截,得到的同位角、内错角、同旁内角也有相应的数量关系,这就是平行线的性质.性质1:两条平行线被第三条直线所截,同位角相等.简称:两直线平行,同位角相等性质2:两条平行线被第三条直线所截,内错角相等.简称:两直线平行,内错角相等性质3:两条平行线被第三条直线所截,同旁内角互补.简称:两直线平行,同旁内角互补本讲进阶平行线四大模型模型一“铅笔〞模型点P在EF右侧,在AB、CD内部“铅笔〞模型结论1:假设AB∥CD,那么∠P+∠AEP+∠PFC=3 60°;结论2:假设∠P+∠AEP+∠PFC= 360°,那么AB∥CD.模型二“猪蹄〞模型〔M模型〕点P在EF左侧,在AB、CD内部“猪蹄〞模型结论1:假设AB∥CD,那么∠P=∠AEP+∠CFP;结论2:假设∠P=∠AEP+∠CFP,那么AB∥CD.模型三“臭脚〞模型点P在EF右侧,在AB、CD外部“臭脚〞模型结论1:假设AB∥CD,那么∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP;结论2:假设∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP,那么AB∥CD.模型四“骨折〞模型·点P在EF左侧,在AB、CD外部“骨折〞模型结论1:假设AB∥CD,那么∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP;结论2:假设∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP,那么AB∥CD.稳固练习平行线四大模型证明(1)AE // CF ,求证∠P +∠AEP +∠PFC = 360°.(2)∠P=∠AEP+∠CFP,求证AE∥CF.〔3〕AE∥CF,求证∠P=∠AEP-∠CFP.(4)∠P= ∠CFP -∠AEP,求证AE //CF.模块一平行线四大模型应用例1(1)如图,a∥b,M、N分别在a、b上,P为两平行线间一点,那么∠l+∠2+∠3= .(2)如图,AB∥CD,且∠A=25°,∠C=45°,那么∠E的度数是.(3)如图,AB∥DE,∠ABC=80°,∠CDE =140°,那么∠BCD= .(4) 如图,射线AC∥BD,∠A= 70°,∠B= 40°,那么∠P= .练(1)如下图,AB∥CD,∠E=37°,∠C= 20°,那么∠EAB的度数为.(2) 如图,AB∥CD,∠B=30°,∠O=∠C.那么∠C= .例2如图,AB ∥DE ,BF 、 DF 分别平分∠ABC 、∠CDE ,求∠C 、 ∠F 的关系.练如图,AB ∥DE ,∠FBC =n 1∠ABF ,∠FDC =n1∠FDE . (1)假设n =2,直接写出∠C 、∠F 的关系 ; (2)假设n =3,试探宄∠C 、∠F 的关系;(3)直接写出∠C 、∠F 的关系 〔用含n 的等式表示〕.例3如图,AB ∥CD ,BE 平分∠ABC ,DE 平分∠ADC .求证:∠E = 2 (∠A +∠C ) .练如图,己知AB ∥DE ,BF 、DF 分别平分∠ABC 、∠CDE ,求∠C 、∠F 的关系.例4如图,∠3==∠1+∠2,求证:∠A+∠B+∠C+∠D= 180°.练〔武昌七校2021 -2021 七下期中〕如图,AB⊥BC,AE平分∠BAD交BC于E,AE⊥DE,∠l+∠2= 90°,M、N分别是BA、CD的延长线上的点,∠EAM和∠EDN的平分线相交于点F那么∠F的度数为〔〕.A. 120°B. 135°C. 145°D. 150°模块二平行线四大模型构造例5如图,直线AB∥CD,∠EF A= 30°,∠FGH= 90°,∠HMN=30°,∠CNP= 50°,那么∠GHM= .练如图,直线AB∥CD,∠EFG =100°,∠FGH =140°,那么∠AEF+ ∠CHG= .例6 ∠B =25°,∠BCD=45°,∠CDE =30°,∠E=l0°,求证:AB∥EF.练AB∥EF,求∠l-∠2+∠3+∠4的度数.(1)如图(l),MA1∥NA n,探索∠A1、∠A2、…、∠A n,∠B1、∠B2…∠B n-1之间的关系.(2)如图(2),己知MA1∥NA4,探索∠A1、∠A2、∠A3、∠A4,∠B1、∠B2之间的关系.(3)如图(3),MA1∥NA n,探索∠A1、∠A2、…、∠A n之间的关系.如下图,两直线AB∥CD平行,求∠1+∠2+∠3+∠4+∠5+∠6.。

最全:初中数学几何模型(附打印版)

最全:初中数学几何模型(附打印版)

最全:初中数学几何模型(附打印版)几何是初中数学中非常重要的内容,一般会在压轴题中进行考察,而掌握几何模型能够为考试节省不少时间,小编整理了常用的各大模型,一定要认真掌握哦~全等变换平移:平行等线段(平行四边形)对称:角平分线或垂直或半角旋转:相邻等线段绕公共顶点旋转对称全等模型说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。

两边进行边或者角的等量代换,产生联系。

垂直也可以做为轴进行对称全等。

对称半角模型说明:上图依次是45°、30°、22.5°、15°及有一个角是30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。

旋转全等模型半角:有一个角含1/2角及相邻线段自旋转:有一对相邻等线段,需要构造旋转全等共旋转:有两对相邻等线段,直接寻找旋转全等中点旋转:倍长中点相关线段转换成旋转全等问题旋转半角模型说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。

自旋转模型构造方法:遇60度旋60度,造等边三角形遇90度旋90度,造等腰直角遇等腰旋顶点,造旋转全等遇中点旋180度,造中心对称共旋转模型说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。

通过“8”字模型可以证明。

模型变形说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形的混用。

当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。

中点旋转:说明:两个正方形、两个等腰直角三角形或者一个正方形一个等腰直角三角形及两个图形顶点连线的中点,证明另外两个顶点与中点所成图形为等腰直角三角形。

证明方法是倍长所要证等腰直角三角形的一直角边,转化成要证明的等腰直角三角形和已知的等腰直角三角形(或者正方形)公旋转顶点,通过证明旋转全等三角形证明倍长后的大三角形为等腰直角三角形从而得证。

平行线角平分线等腰三角形

平行线角平分线等腰三角形



D C
AE
B
1、平行线+角平分线
等腰三角形
2、注意考虑可能的多种情况
3、如图3,在□ABCD中,E、F分别是AB,CD上的点,
且AE=CF,已知DE=3cm,则BF= cm。
D
F
C
A
E
B
A:证明全等三角形 B:证明平行四边形
4、如图4,在□ABCD的对角线AC,BD相交于
点O,且点E、F、G、H分别是OA、OB、OC、
点B的坐标为(2,-3),连接OB,若过点B作直线BD∥x轴,
在BD上取一点C使得BC=OA,连接OC、AB、AC,则AB与OC的关系

。点C的坐标为

C
C
D
8、如图,AB、CD交于点O,AC∥DB,AO=BO,
E、F分别为OC、OD的中点,连接AF、BE,
求证:AF∥BE。
C A
E
F D
O B
小结一下:证明线段平行可以通过证明角相等, 也可以证明线段所在的四边形是一个平行四边形
9、如图,在四边形ABCD中,AD∥BC,BC=6, AD=10,P、Q分别从A、C出发,P以每秒1的 速度由A向D运动,Q以每秒2的速度由C向B运动, 几秒后四边形ABQP是平行四边形?
P
P
A
D
B
C
QQ
那你知道几秒之后PQCD为平行四边形吗?
10、在△ABC中,AE=BF,FH∥EG∥AC。
求证:EG+FH=AC
OD的中点。求证:四边形EFGH是平行四边形。
A
D
E
H
O
F
G
B
C
1、中位线定理的应用 2、平行四边形判定方法的灵活运用及选择

中考数学常见几何模型角平分线的基本模型(二)非全等类

中考数学常见几何模型角平分线的基本模型(二)非全等类

专题08 角平分线的重要模型(二)非全等类角平分线在中考数学中都占据着重要的地位,角平分线常作为压轴题中的常考知识点,需要掌握其各大模型及相应的辅助线作法,且辅助线是大部分学生学习几何内容中的弱点,,本专题就角平分线的非全等类模型作相应的总结,需学生反复掌握。

模型1.双角平分线模型(导角模型) 【模型解读】双角平分线模型(导角模型)指的是当三角形的内角(外角)的平分线相交时,可以导出平分线的夹角的度数。

【模型图示】条件:BD ,CD 是角平分线.结论:1902BDC A∠=︒+∠1902BDC A ∠=︒-∠12BDC A ∠=∠ 1.(2022·广东·九年级专题练习)BP 是∠ABC 的平分线,CP 是∠ACB 的邻补角的平分线,∠ABP =20°,∠ACP =50°,则∠P =( )4231AFCB4321DAA.30°B.40°C.50°D.60°【答案】A【分析】据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠P 的度数.【详解】∠BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∠∠ABP=∠CBP=20°,∠ACP=∠MCP=50°,∠∠PCM是△BCP的外角,∠∠P=∠PCM−∠CBP=50°−20°=30°,故选:A.【点睛】本题考查三角形外角性质以及角平分线的定义,解题时注意:一个三角形的外角等于与它不相邻的两个内角的和.2.(2022·山东·济南中考模拟)如图1,在△ABC中,∠BAC的平分线AD与∠BCA的平分线CE交于点O.∠ABC;(1)求证:∠AOC=90°+12(2)当∠ABC=90°时,且AO=3OD(如图2),判断线段AE,CD,AC之间的数量关系,并加以证明.∠MK=ML,角与第三个内角的数量关系”进行了探究.(1)如图1,在△ABC中,∠ABC与∠ACB的平分线交于点P,∠A=64°,则∠BPC=;(2)如图2,△ABC的内角∠ACB的平分线与△ABC的外角∠ABD的平分线交于点E.其中∠A=α,求∠BEC.(用α表示∠BEC);(3)如图3,∠CBM、∠BCN为△ABC的外角,∠CBM、∠BCN的平分线交于点Q,请你写出∠BQC 与∠A的数量关系,并说明理由.(4)如图4,△ABC外角∠CBM、∠BCN的平分线交于点Q,∠A=64°,∠CBQ,∠BCQ的平分线交于点P,则∠BPC=°,延长BC至点E,∠ECQ的平分线与BP的延长线相交于点R,则∠R=°.【分析】(1)根据三角形的内角和角平分线的定义;(2)根据三角形的一个外角等于与它不相邻的两个内角的和,用∠A与∠1表示出∠2,再利用∠E与∠1表示出∠2,于是得到结论;(3)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出∠EBC与∠ECB,然后再根据三角形的内角和定理列式整理即可得解;(4)结合(1)(2)(3)的解析即可求得.【解答】解:(1)∵PB、PC分别平分∠ABC和∠ACB,∴∠PBC=12∠ABC,∠PCB=12∠ACB(角平分线的性质),∴∠BPC+∠PBC+∠PCB=180°(三角形内角和定理),∴∠BPC=180°﹣(∠PBC+∠PCB)=180°﹣(12∠ABC+12∠ACB)=180°−12(∠ABC+∠ACB)=180°−12(180°﹣∠A)=180°﹣90°+12∠A=90°+12∠A=90°+12×64°=122°.故答案为:122°;(2)∵BE是∠ABD的平分线,CE是∠ACB的平分线,∴∠ECB=12∠ACB,∠ECD=12∠ABD.∵∠ABD是△ABC的外角,∠EBD是△BCE的外角,∴∠ABD=∠A+∠ACB,∠EBD=∠ECB+∠BEC,∴∠EBD=12∠ABD=12(∠A+∠ACB)=∠BEC+∠ECB,即12∠A+∠ECB=∠ECB+∠BEC,∴∠BEC=12∠A=12α;(3)结论∠BQC=90°−12∠A.∵∠CBM与∠BCN是△ABC的外角,∴∠CBM=∠A+∠ACB,∠BCN=∠A+∠ABC,∵BQ,CQ分别是∠ABC与∠ACB外角的平分线,∴∠QBC=12(∠A+∠ACB),∠QCB=12(∠A+∠ABC).∵∠QBC+∠QCB+∠BQC=180°,∴∠BQC=180°﹣∠QBC﹣∠EQB=180°−12(∠A+∠ACB)−12(∠A+∠ABC),=180°−12∠A−12(∠A+∠ABC+∠ACB)=180°−12∠A﹣90°=90°−12∠A;(4)由(3)可知,∠BQC=90°−12∠A=90°−12×64°=58°,由(1)可知∠BPC=90°+12∠BQC=90°+12×58°=119°;由(2)可知,∠R=12∠BQC=29°故答案为119,29.【点评】本题考查了三角形的外角性质与内角和定理,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.4.(2022·辽宁沈阳·九年级期中)阅读下面的材料,并解决问题(1)已知在∠ABC中,∠A=60°,图1-3的∠ABC的内角平分线或外角平分线交于点O,请直接写出下列角度的度数,如图1,∠O=;如图2,∠O=;如图3,∠O=;∠A(2)如图4,点O是∠ABC的两条内角平分线的交点,求证:∠O=90°+12(3)如图5,在∠ABC中,∠ABC的三等分线分别与∠ACB的平分线交于点O1O2,若∠1=115°,∠2=135°,求∠A的度数.模型2.角平分线加平行线等腰现(角平分线+平行线)【模型解读】1)过角平分线上一点作角的一边的平行线,构造等腰三角形;2)有角平分线时,过角一边上的点作角平分线的平行线,交角的另一边的直线于一点,也可构造等腰三角形。

(word完整版)初中数学——最全:初中数学几何模型

(word完整版)初中数学——最全:初中数学几何模型

最全:初中数学几何模型几何是初中数学中非常重要的内容,一般会在压轴题中进行考察,而掌握几何模型能够为考试节省不少时间,小编整理了常用的各大模型,一定要认真掌握哦~全等变换平移:平行等线段(平行四边形)对称:角平分线或垂直或半角旋转:相邻等线段绕公共顶点旋转对称全等模型说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。

两边进行边或者角的等量代换,产生联系。

垂直也可以做为轴进行对称全等。

对称半角模型说明:上图依次是45°、30°、22.5°、15°及有一个角是30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。

旋转全等模型半角:有一个角含1/2角及相邻线段自旋转:有一对相邻等线段,需要构造旋转全等共旋转:有两对相邻等线段,直接寻找旋转全等中点旋转:倍长中点相关线段转换成旋转全等问题旋转半角模型说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。

自旋转模型构造方法:遇60度旋60度,造等边三角形;遇90度旋90度,造等腰直角遇等腰旋顶点,造旋转全等;遇中点旋180度,造中心对称共旋转模型说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。

通过“8”字模型可以证明。

模型变形说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形的混用。

当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。

中点旋转:说明:两个正方形、两个等腰直角三角形或者一个正方形一个等腰直角三角形及两个图形顶点连线的中点,证明另外两个顶点与中点所成图形为等腰直角三角形。

证明方法是倍长所要证等腰直角三角形的一直角边,转化成要证明的等腰直角三角形和已知的等腰直角三角形(或者正方形)公旋转顶点,通过证明旋转全等三角形证明倍长后的大三角形为等腰直角三角形从而得证。

等腰三角形及平行四边形的性质定理和判定定理及其证明

等腰三角形及平行四边形的性质定理和判定定理及其证明

等腰三角形及平行四边形的性质定理和判定定理及其证明一、一周知识概述1、等腰三角形的性质定理等腰三角形的两个底角相等(简写为“等边对等角”).2、等腰三角形性质定理的推论推论1:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(简称“三线合一”).推论2:等边三角形的各角都相等,并且每一个角都等于60°.3、等腰三角形的判定定理两个角相等的三角形是等腰三角形.4、等腰三角形判定定理的推论推论1:三个角都相等的三角形是等边三角形.推论2:有一个角等于60°的等腰三角形是等边三角形.5、直角三角形的性质定理在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.6、平行四边形的性质定理定理1:平行四边形的对边相等.定理2、平行四边形的对角相等.定理3、平行四边形的对角线互相平分.7、平行四边形的判定定理定理1:一组对边平行且相等的四边形是平行四边形.定理2:两组对边分别相等的四边形是平行四边形.定理3:对角线互相平分的四边形是平行四边形.定理4:两组对角分别相等的四边形是平行四边形.8、三角形中位线的性质定理三角形的中位线平行于第三边,并且等于它的一半.二、重难点知识1、要说明一个命题的正确性,需用已学过的公理或定理进行证明,命题证明的步骤:先画图,写出已知、求证,给出严格的证明.2、等腰三角形的性质定理和判定定理及其应用、平行四边形的性质定理和判定定理及其应用是重点也是难点.三、典型例题讲解例1、如图所示,在△ABC中,∠ABC,∠ACB的平分线交于点F,过点F作DE∥BC 交AB于D,交AC于E.求证:BD+EC=DE.分析:因为DE=DF+FE,即结论为BD+EC=DF+FE,分别证明BD=DF,CE=FE即可,于是运用“在同一个三角形中,等角对等边”,易证结论成立.证明:∵DE∥BC(已知),∴∠3=∠2(两直线平行,内错角相等).又∵BF平分∠ABC,∴∠1=∠2.∴∠1=∠3.∴DB=DF(等角对等边).同理可证EF=CE.∴BD+EC=DF+EF,即BD+EC=DE.小结:过一个角的平分线上的一点作一边的平行线与另一边相交,所构成的三角形是一个等腰三角形,这是一个常见的构图,应熟练掌握.例2、数学课堂上,老师布置了一道几何证明题,让大家讨论它的证明方法,通过大家的激烈讨论,有几位同学说出了他们的思路,并添加了辅助线,你能根据他们的辅助线的作法写出证明过程吗?如图,已知△ABC中AB=AC,F在AC上,在BA延长线上取AE=AF.求证:EF ⊥BC.解:首先,小明根据等腰三角形这一已知条件,结合等腰三角形的性质,想到了过A作AG⊥BC于G这一条辅助线,如图.证明1:过A作AG⊥BC于G.∵AB=AC,∴∠3=∠4.又∵AE=AF,∴∠1=∠E.又∵∠3+∠4=∠1+∠E,∴∠3=∠E,∴AG//EF,∴EF⊥BC.接着小亮根据题设AE=AF,结合等腰三角形的性质作出过A作AH⊥EF于H这条辅助线,如图.证明2:过A作AH⊥EF于H.∵AE=AF,∴∠EAH=∠FAH.又∵∠AB=AC,∴∠B=∠C.又∵∠EAH+∠FAH=∠B+∠C,∴∠EAH=∠B,∴AH//BC,∴EF⊥BC.小彬也作出了一条辅助线,过C作MC⊥BC交BA的延长线于M,如图.证明3:过C作MC⊥BC交BA的延长线于M,则∠1+∠2=90°.∵AE=AF,∴∠AEF=∠AFE,∴∠EAF=180°-2∠AFE.又∵AB=AC,∴∠B=∠1.又∵∠EAF=∠B+∠1,∴∠EAF=2∠1,∴2∠1=180°-2∠AFE,∴∠1+∠AFE=90°,∴∠2=∠AFE,∴DE//MC,∴EF⊥BC.小颖的作法是:过E作EN⊥EF交CA的延长线于N,如图.证明4:过E作EN⊥EF交CA的延长线于N,则∠1+∠2=90°.∵AE=AF,∴∠2=∠AFE,∴∠EAF=180°-2∠2.又∵AB=AC,∴∠B=∠C,∴∠EAF=∠B+∠C=2∠B,∴2∠B=180°-2∠2,∴∠B+∠2=90°,∴∠1=∠B,∴EN//BC,∴EF⊥BC.小虎的作法是:过E点作EP//AC交BC的延长线于P,如图.证明5:过E作EP//AC交BC的延长线于P,则∠AFE=∠2,∠3=∠P.又∵AE=AF,∴∠1=∠AFE,∴∠1=∠2.又∵AB=AC,∴∠B=∠3,∴∠B=∠P,∴EB=EP,∴EF⊥BC.大家都在激烈地讨论着如何作出辅助线时,小红突然站起来说,不作辅助线也可以证明,你说是吗?(如图).证明6:∵AE=AF,∴∠1=∠E.又∵∠2=∠1+∠E,∴∠2=2∠E.又∵AB=AC,∴∠B=∠C,∴∠2=180°-2∠B,∴2∠E=180°-2∠B,即∠E+∠B=90°,∴∠3=180°-90°=90°,∴EF⊥BC.小结:本题证法中运用了等腰三角形的性质定理及其推论、三角形内角和定理、三角形外角的性质等知识,要注意灵活运用与牢固掌握相结合.例3、如图,在△ABC中,AB=AC=CB,AE=CD,AD、BE相交于P,BQ⊥AD于Q.求证:BP=2PQ。

人教版数学八年级下册平行四边形的性质角平分线模型

人教版数学八年级下册平行四边形的性质角平分线模型

应用练习
应用练习
应用练习
A.1cm
B.2cm
C. 3cm
D.4cm
例题讲解
例题解析
[解答]
证明:∵四边形ABCD是平行四边形, ∴AB=CD,AD//BC, ∴∠AEB=∠EBC, ∵BE平分∠ABC, ∴∠ABE=∠EBC, ∴∠ABE=∠AEB, ∴AB=AE, 同理DF=DC, ∴AE=DF, ∴AE+EF=DF+EF, ∴AF=DE.
应用练习
应用练习

应用练习
跟踪练习
跟踪练习
跟踪练习
2cm C. 1cm B. 即∠ABE=∠CBE, ∴AB=CD,AD//BC, 平行+ 平分
等腰必出行 4 C. 4cm B. 4 C. 即∠ABE=∠CBE, ∴BC=BE+CE=4+6=10, ∵∠ABC的平分线交AD于点E, ∴BC=BE+CE=4+6=10, 1、能够描述并呈现出平行线、角平分线、等腰三角形三者之间的关系——角平分线模型 ∴∠DEC=∠CDE, ∴∠ABE=∠AEB, 解:∵四边形ABCD是平行四边形, 5 D. 2cm C. 解:已知平行四边形ABCD,DE平分∠ADC, —角平分线模型 ∴AB=CD=5,BC=AD=9,AB//CD, 即∠ABE=∠CBE, 解:∵四边形ABCD是平行四边形, 解:已知平行四边形ABCD,DE平分∠ADC,
平行四边形的性质之
—角平分线模型
思维导图
1cm B. 1、能够描述并呈现出平行线、角平分线、等腰三角形三者之间的关系——角平分线模型 2cm C. ∴AB=CD=5,BC=AD=9,AB//CD, 4 C. 解:∵四边形ABCD是平行四边形, 1、能够描述并呈现出平行线、角平分线、等腰三角形三者之间的关系——角平分线模型 平行+ 平分

初中数学几何模型

初中数学几何模型

全等变换平移:平行等线段(平行四边形)对称:角平分线或垂直或半角旋转:相邻等线段绕公共顶点旋转对称全等模型:说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。

两边进行边或者角的等量代换,产生联系.垂直也可以做为轴进行对称全等。

对称半角模型说明:上图依次是45°、30°、22。

5°、15°及有一个角是30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。

旋转全等模型半角:有一个角含1/2角及相邻线段自旋转:有一对相邻等线段,需要构造旋转全等共旋转:有两对相邻等线段,直接寻找旋转全等中点旋转:倍长中点相关线段转换成旋转全等问题旋转半角模型说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。

自旋转模型构造方法:遇60度旋60度,造等边三角形遇90度旋90度,造等腰直角遇等腰旋顶点,造旋转全等遇中点旋180度,造中心对称共旋转模型说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。

通过“8”字模型可以证明.模型变形说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形的混用.当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。

中点旋转:说明:两个正方形、两个等腰直角三角形或者一个正方形一个等腰直角三角形及两个图形顶点连线的中点,证明另外两个顶点与中点所成图形为等腰直角三角形.证明方法是倍长所要证等腰直角三角形的一直角边,转化成要证明的等腰直角三角形和已知的等腰直角三角形(或者正方形)公旋转顶点,通过证明旋转全等三角形证明倍长后的大三角形为等腰直角三角形从而得证。

几何最值模型对称最值(两点间线段最短)对称最值(点到直线垂线段最短)说明:通过对称进行等量代换,转换成两点间距离及点到直线距离.旋转最值(共线有最值)说明:找到与所要求最值相关成三角形的两个定长线段,定长线段的和为最大值,定长线段的差为最小值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行四边形——常用模型(二)平行线、角平分线和等腰三角形
“三兄弟”——平行线、角平分线和等腰三角形经常会在平行四边形这一章进行运用,是必须要熟练掌握的模型,作为组合类辅助线,看见其二,还要想到构造另外一个,考察最多的是平行线+角平分线,延长法构造等腰三角形.
下面让我们一起来研究下:
一、平行线+角平分线
如图,AD∥BC,AE平分∠BAD,则AB=BE.
∵AD∥BC
∴∠EAD=∠BEA
∵AE平分∠BAD
∴∠BAE=∠EAD
∴∠BAE=∠BEA
∴AB=BE
二、角平分线+等腰三角形
如图,AE平分∠BAD,AB=BE,则AD∥BC.
∵AE平分∠BAD
∴∠BAE=∠EAD
∵AB=BE
∴∠BEA=∠BAE
∴∠BEA=∠EAD
∴AD∥BC
三、平行线+等腰三角形
如图,AD∥BC,AB=BE,则AE平分∠BAD.
∵AD∥BC
∴∠BEA=∠EAD
∵AB=BE
∴∠BAE=∠BEA
∴∠BAE=∠EAD
∴AE平分∠BAD
四、平行线+角平分线(辅助线)
延长法(延长角平分线)构造等腰三角形
如图,AB∥CD,CE平分∠ACD,则
延长CE交AB于点F,
易得:△ACF是等腰三角形.
结语:
平行线,角平分线,等腰三角形就像三兄弟,他们形影不离,题目中出现其中二个,要想到另外一个,如果没有,可以通过添加辅助线得到另外一个。

只有熟练掌握了,我们才能提高做题效率。

练习:。

相关文档
最新文档