基本不等式练习题及答案.doc

合集下载

基本不等式练习题(基础、经典、好用)

基本不等式练习题(基础、经典、好用)

基本不等式一、选择题1.若函数f(x)=x+1x-2(x>2)在x=a处取最小值,则a=()A.1+ 2 B.1+ 3 C.3 D.42.下列不等式:①a2+1>2a;②a+bab≤2;③x2+1x2+1≥1,其中正确的个数是()A.0 B.1 C.2 D.33.(2013·潮州模拟)已知a>0,b>0,则1a+1b+2ab的最小值是()A.2 B.2 2 C.4 D.54.(2012·湖北高考)设a,b,c均大于0,则“abc=1”是“1a+1b+1c≤a+b+c”的()A.充分条件不必要条件B.必要条件不充分条件C.充分必要条件D.既不充分也不必要的条件5.已知x>0,y>0,x+2y+2xy=8,则x+2y的最小值是()A.3 B.4 C.92 D.112二、填空题6.(2013·深圳调研)已知a,b∈R,且ab=50,则|a+2b|的最小值是________.7.已知log2a+log2b≥1,则3a+9b的最小值为________.8.某公司一年需购买某种货物200吨,平均分成若干次进行购买,每次购买的运费为2万元,一年的总存储费用数值(单位:万元)恰好为每次的购买吨数数值,要使一年的总运费与总存储费用之和最小,则每次购买该种货物的吨数是________.三、解答题9.已知x>0,y>0,且2x+8y-xy=0,求:(1)xy的最小值;(2)x+y的最小值.10.已知a>0,b>0,c>0,且a+b+c=1,求证:1a+1b+1c≥9.11. 某种商品原来每件售价为25元,年销售量8万件.(1)据市场调查,若价格每提高1元,销售量将相应减少2 000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?(2)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到x 元.公司拟投入16(x 2-600)万元作为技改费用,投入50万元作为固定宣传费用,投入15x 万元作为浮动宣传费用.试问:当该商品明年的销售量a 至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.解析及答案一、选择题1.【解析】 ∵x >2,∴x -2>0,∴f (x )=x +1x -2=(x -2)+1x -2+2≥2 (x -2)·1x -2+2=4, 当且仅当x -2=1x -2(x >2),即x =3时等号成立, ∴a =3.【答案】 C2.【解析】 ①②不正确,③正确,x 2+1x 2+1=(x 2+1)+1x 2+1-1≥2-1=1. 【答案】 B 3.【解析】 1a +1b +2ab ≥21ab +2ab ≥441ab ·ab =4. 当⎩⎪⎨⎪⎧a =b ,1ab=ab ,即a =b =1时,等号成立, 因此1a +1b +2ab 的最小值为4.【答案】 C4.【解析】 1a +1b +1c =bc +ca +ab abc ,当abc =1时, ∴bc +ca +ab abc≤12[(b +c )+(c +a )+(a +b )] =a +b +c .故abc =1⇒1a +1b +1c≤a +b +c . 反过来,取a =b =1,c =4有1a +1b +1c≤a +b +c ,但abc ≠1, ∴“abc =1”是“1a +1b +1c ≤a +b +c ”的充分不必要条件. 【答案】 A5.【解析】 ∵x +2y +2xy =8,∴y =8-x 2x +2>0, ∴0<x <8,∴x +2y =x +2·8-x 2x +2=(x +1)+9x +1-2≥2 (x +1)·9x +1-2=4, 当且仅当x +1=9x +1时“=”成立,此时x =2,y =1. 【答案】 B二、填空题 6.【解析】 因为|a +2b |=(a +2b )2=a 2+4b 2+4ab ≥8ab =20,当且仅当a 2=4b 2时取等号,所以|a +2b |的最小值是20.【答案】 207.【解析】 由log 2a +log 2b ≥1得log 2(ab )≥1,即ab ≥2,∴3a +9b =3a +32b ≥2×3a +2b2(当且仅当3a =32b ,即a =2b 时“=”号成立). 又∵a +2b ≥22ab ≥4(当且仅当a =2b 时“=”成立),∴3a +9b ≥2×32=18.故当a =2b 时,3a +9b 有最小值18.【答案】 18 8.【解析】 设每次购买该种货物x 吨,则需要购买200x 次,则一年的总运费为200x ×2=400x ,一年的总存储费用为x ,所以一年的总运费与总存储费用为400x +x ≥2400x ·x =40,当且仅当400x =x ,即x =20时等号成立. 故要使一年的总运费与总存储费用之和最小,每次应购买该种货物20吨.【答案】 20三、解答题9.【解】 ∵x >0,y >0,2x +8y -xy =0,(1)xy =2x +8y ≥216xy ,∴xy ≥8,∴xy ≥64.故xy 的最小值为64.(2)由2x +8y =xy ,得:2y +8x =1,∴x +y =(x +y )·1=(x +y )(2y +8x )=10+2x y +8y x ≥10+8=18.故x +y 的最小值为18.10.【证明】 1a +1b +1c =a +b +c a +a +b +c b +a +b +c c=3+(b a +a b )+(c a +a c )+(c b +b c )≥3+2 b a ·a b +2 c a ·a c +2 c b ·b c=3+2+2+2=9当且仅当a =b =c =13时取等号,∴1a +1b +1c ≥9.11.【解】 (1)设每件定价为x 元,依题意得(8-x -251×0.2)x ≥25×8,整理得x 2-65x +1 000≤0,解得25≤x ≤40.∴要使销售的总收入不低于原收入,每件定价最多为40元.(2)依题意,不等式ax ≥25×8+50+16(x 2-600)+15x 有解,等价于x >25时,a ≥150x +16x +15有解,∵150x+16x≥2150x·16x=10(当且仅当x=30时,等号成立),∴a≥10.2.∴当该商品明年的销售量a至少应达到10.2万件时,才可能使明年的销售收入不低于原收入与总投入之和,此时该商品的每件定价为30元.。

基本不等式练习题 含答案

基本不等式练习题 含答案

试卷第1页,总1页基本不等式1、若,则的最大值为( )ABC .2D 2、已知)A .5B .4 C .8D .6 3、设x>0 ) A .最大值1 B .最小值1 C .最大值5 D .最小值4、已知 ()D.55、,则的最大值为_______.6、设________. 7、若、为正实数,且,则的最小值为__________.8、设_____. 9、已知正数满足,则的最小值为______.10、某新建居民小区欲建一面积为1600平方米的矩形绿地,在绿地四周铺设人行道,设计要求绿地长边外人行道宽1米,短边人行道宽4米,如图所示。

怎样设计绿地的长和宽,才能使人行道的占地面积最小?并求出最小值。

023x <<(32)x x -2x >5-0,0,2,a b a b >>+=ab 1x >a b 3a b ab ++=ab 0x >,a b 4a b ab +=+a b答案第1页,总1页 参考答案1、【答案】D2、【答案】D3、【答案】A4、【答案】C5、【答案】36、7、【答案】8、9、【答案】9.10、【答案】长.宽.最小面积 试题分析:根据题意求出人行横道的面积表达式,结合基本不等式即可求解.【详解】设矩形绿地的长为米,宽为米,则平方米所以人行横道的面积(即人行道面积等于外围矩形面积减去内部矩形面积) 即当且仅当,即时等号成立 故当绿地的长为,宽为时,才能使人行道的占地面积最小,最小值为【点睛】本题主要考查了利用基本不等式解决实际问题,要注意基本不等式成立的条件,考查了学生分析和解决问题的能力,属于中档题.980m 20m 2336m a b 1600ab =()()821600S a b =++-2816S a b =++28a b =80,20a m b m ==80m 20m 2336m。

基本不等式练习题(带答案)

基本不等式练习题(带答案)

《基本不等式》同步测试一、选择题,本大题共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 若a ∈R ,下列不等式恒成立的是 ( )A .21a a +>B .2111a <+ C .296a a +> D .2lg(1)lg |2|a a +>2. 若0a b <<且1a b +=,则下列四个数中最大的是 ( )A.12B.22a b + C.2ab D.a3. 设x >0,则133y x x=--的最大值为 ( )A.3 B.3- C.3- D.-14. 设,,5,33x y x y x y ∈+=+R 且则的最小值是( )A. 10B.C.D. 5. 若x , y 是正数,且141x y+=,则xy 有 ( ) A.最大值16 B.最小值116 C.最小值16 D.最大值1166. 若a , b , c ∈R ,且ab +bc +ca =1, 则下列不等式成立的是 ( )A .2222a b c ++≥B .2()3a b c ++≥C .111abc++≥ D .a b c ++≤7. 若x >0, y >0,且x +y ≤4,则下列不等式中恒成立的是 ( )A .114x y ≤+B .111x y +≥ C 2 D .11xy ≥8. a ,b 是正数,则2,2a baba b++三个数的大小顺序是 ( )A.22a b ab a b ++ 22a b aba b+≤+C.22ab a b a b ++ D.22ab a ba b +≤≤+ 9. 某产品的产量第一年的增长率为p ,第二年的增长率为q ,设这两年平均增长率为x ,则有( )A.2p q x += B.2p q x +< C.2p q x +≤ D.2p qx +≥ 10. 下列函数中,最小值为4的是 ( )A.4y x x =+B.4sin sin y x x=+ (0)x π<<C.e 4e x x y -=+ D.3log 4log 3x y x =+二、填空题, 本大题共4小题,每小题3分,满分12分,把正确的答案写在题中横线上.11. 函数y =的最大值为 .12. 建造一个容积为18m 3, 深为2m 的长方形无盖水池,如果池底和池壁每m 2 的造价为200元和150元,那么池的最低造价为 元.13. 若直角三角形斜边长是1,则其内切圆半径的最大值是 . 14. 若x , y 为非零实数,代数式22228()15x y x yy x y x+-++的最小值为 .三、解答题, 本大题共4小题,每小题12分,共48分,解答应写出必要的文字说明、证明过程和演算步骤.15. 已知:2222,(,0)x y a m n b a b +=+=>, 求mx +ny 的最大值.16. 设a , b , c (0,),∈+∞且a +b +c =1,求证:111(1)(1)(1)8.a b c ---≥17. 已知正数a , b 满足a +b =1(1)求ab 的取值范围;(2)求1ab ab+的最小值.18. 是否存在常数c ,使得不等式2222x y x yc x y x y x y x y+≤≤+++++对任意正数x , y 恒成立?试证明你的结论.《基本不等式》综合检测一、选择题二.填空题11.12 12.3600 13. 14.对 三、解答题15 16. 略 17. (1)10,4⎛⎤⎥⎝⎦(2)174 18.存在,23c =。

高中试卷-2.2 基本不等式 练习(1)(含答案)

高中试卷-2.2 基本不等式 练习(1)(含答案)

第二章 一元二次函数、方程和不等式2.2等式性质与不等式性质(共2课时)(第1课时)一、选择题1.(2019·内蒙古集宁一中高一期末)下列不等式一定成立的是( )A .a b2B .a b 2≤C .x +1x ≥2D .x 2+1x 2≥2【答案】D【解析】当a ,b ,x 都为负数时,A,C 选项不正确.当a ,b 为正数时,B 选项不正确.根据基本不等式,有x 2+1x 2≥=2,故选D.2.(2019山东师范大学附中高一期中)已知x >0,函数9y x x=+的最小值是( )A .2B .4C .6D .8【答案】C【解析】∵x >0,∴函数96y x x =+³=,当且仅当x=3时取等号,∴y 的最小值是6.故选:C .3.(2019广东高一期末)若正实数a ,b 满足a +b =1,则下列说法正确的是( )A .ab 有最小值14BC .1a +1b 有最小值4D .a 2+b 2【答案】C【解析】∵a >0,b >0,且a +b =1;∴1=a +b ≥∴ab ≤14;∴ab 有最大值14,∴选项A 错误;=a +b =1+1+=2,∴B 项错误.1a+1b ==1ab ≥4,∴1a +1b 有最小值4,∴C 正确;a 2+b 2=(a +b )2―2ab =1―2ab ≥1―2×14=12,∴a 2+b 2的最小值是12,不是∴D 错误.4.(2019·柳州市第二中学高一期末)若x >―5,则x +4x 5的最小值为( )A .-1B .3C .-3D .1【解析】x +4x5=x +5+4x 5―5≥2×2―5=―1,当且仅当x =―3时等号成立,故选A.5.(2019吉林高一月考)若()12f x x x =+- (2)x >在x n =处取得最小值,则n =( )A .52B .3C .72D .4【答案】B 【解析】:当且仅当时,等号成立;所以,故选B.6.(2019·广西桂林中学高一期中)已知5x 2³,则f(x)= 24524x x x -+-有A .最大值B .最小值C .最大值1D .最小值1【答案】D【解析】()()()2211112122222x f x x x x -+éù==-+³=ê--ëû当122x x -=-即3x =或1(舍去)时, ()f x 取得最小值1二、填空题7.(2019·宁夏银川一中高一期末)当1x £-时,1()1f x x x =++的最大值为__________.【答案】-3.【解析】当1x £-时,()11[(1)111f x x x x x =+=--+--++又1(1)21x x -+-³+,()11[(1)1311f x x x x x =+=--+--£-++,故答案为:-38.(2019·上海市北虹高级中学高一期末)若0m >,0n >,1m n +=,且41m n+的最小值是___.【答案】9【解析】∵0m >,0n >,1m n +=,4()5414519n m m n m n m n m n æö\+=++=+++=ç÷èø…,当且仅当12,33n m == 时“=”成立,故答案为9.9.(2019·浙江高一期末)已知0a >,0b >,若不等式212ma b a b+³+恒成立,则m 的最大值为【答案】9.【解析】由212m a b a b +³+得()212m a b a b æö£++ç÷èø恒成立,而()212225a b a b a b b a æö++=++ç÷èø5549³+=+=,故9m £,所以m 的最大值为9.10.(2019·浙江高一月考)设函数24()(2)(0)f x x x x x=-++>.若()4f x =,则x =________.【答案】2【解析】因为2(2)0y x =-³,当2x =时,取最小值;又0x >时,44y x x=+³=,当且仅当06(,),即2x =时,取最小值;所以当且仅当2x =时,24()(2)f x x x x=-++取最小值(2)4f =.即()4f x =时,2x =.故答案为2三、解答题11.(2016·江苏高一期中)已知a >0,b >0,且4a +b =1,求ab 的最大值;(2)若正数x ,y 满足x +3y =5xy ,求3x +4y 的最小值;(3)已知x <54,求f (x )=4x -2+145x -的最大值;【答案】(1)的最大值;(2)的最小值为5;(3)函数的最大值为【解析】(1),当且仅当,时取等号,故的最大值为(2),当且仅当即时取等号(3)当且仅当,即时,上式成立,故当时,函数的最大值为.12.(2019·福建高一期中)设0,0,1a b a b >>+= 求证:1118a b ab++³ 【答案】可以运用多种方法。

不等式题目及答案

不等式题目及答案

不等式题目及答案【篇一:基本不等式练习题及答案】教a版教材习题改编)函数y=x+xx>0)的值域为( ).a.(-∞,-2]∪[2,+∞)c.[2,+∞)b.(0,+∞) d.(2,+∞)a+b12.下列不等式:①a2+1>2a;②2;③x2+≥1,其中正确的个数是 x+1ab( ).a.0b.1c.2d.33.若a>0,b>0,且a+2b-2=0,则ab的最大值为( ).1a.2b.1 c.2 d.4a.1+2b.1+3c.3d.4t2-4t+15.已知t>0,则函数y=的最小值为________. t考向一利用基本不等式求最值11【例1】?(1)已知x>0,y>0,且2x+y=1,则x+y的最小值为________;(2)当x>0时,则f(x)=2x________. x+1【训练1】 (1)已知x>1,则f(x)=x+1的最小值为________. x-12(2)已知0<x<5y=2x-5x2的最大值为________.(3)若x,y∈(0,+∞)且2x+8y-xy=0,则x+y的最小值为________.考向二利用基本不等式证明不等式bccaab【例2】?已知a>0,b>0,c>0,求证:abca+b+c..【训练2】已知a>0,b>0,c>0,且a+b+c=1.111求证:a+b+c≥9.考向三利用基本不等式解决恒成立问题________.考向三利用基本不等式解实际问题【例3】?某单位建造一间地面面积为12 m2的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x不得超过5 m.房屋正面的造价为400元/m2,房屋侧面的造价为150元/m2,屋顶和地面的造价费用合计为5 800元,如果墙高为3 m,且不计房屋背面的费用.当侧面的长度为多少时,总造价最低?(1)求出f(n)的表达式;(2)求从今年算起第几年利润最高?最高利润为多少万元?双基自测d.(2,+∞)答案 c2.解析①②不正确,③正确,x2+112(x+1)+1≥2-1=1.答案 b x+1x+11的最小值是( ). a?a-b?13.解析∵a>0,b>0,a+2b=2,∴a+2b=2≥2ab,即ab≤2答案 a4.解析当x>2时,x-2>0,f(x)=(x-2)+=3,即a=3.答案 ct2-4t+115.解析∵t>0,∴y==t+tt-4≥2-4=-2,当且仅当t=1时取等号.答案-2【例1】解析 (1)∵x>0,y>0,且2x+y=1,112x+y2x+yy2xy2x∴x+y=x+y=3+x+y3+22.当且仅当xy 时,取等号.(2)∵x>0,∴f(x)=2x221=1≤2=1,当且仅当x=x,即x=1时取等号.答x+1x+x案 (1)3+22 (2)1【训练1】.解析 (1)∵x>1,∴f(x)=(x-1)+1+1≥2+1=3 当且仅当xx-11?5x+2-5x?2=1,∴y≤,当且仅当5x=2-5x,-5x>0,∴5x(2-5x)≤?52??1128即x=5时,ymax=5.(3)由2x+8y-xy =0,得2x+8y=xy,∴y+x=1,4yx当且仅当xyx=2y时取等号,又2x+8y-xy=0,∴x=12,y =6,∴当x=12,y=6时,x+y取最小值18.1答案 (1)3 (2)5(3)18bcca【例2】证明∵a>0,b>0,c>0,∴a+b≥2bcabcaab=2b;acb+c≥2 bccabcab=2c;aba+c≥2caab?bccaab?+c≥2(abc=2a.以上三式相加得:2?ab?bccaab+b+c),即abca+b+c.【训练2】111a+b+ca+b+c证明∵a>0,b>0,c>0,且a+b+c=1,∴a+b+c=aba+b+cbcacab?ba?ca?cb?a+b+?ac+?bc 3+3+caabbcc??????1≥3+2+2+2=9,当且仅当a=b=c=3时,取等号.xx解析若对任意x>0≤a恒成立,只需求得y=的最大值即x+3x +1x+3x+1可,因为x>0,所以y=x=x+3x+1111x=1时115x+x32 xx ?1??1?取等号,所以a的取值范围是?5,+∞?答案 ?5? ????【训练3】解析由x>0,y>0,xy=x+2y≥2 2xy,得xy≥8,于是由m-2≤xy恒成立,得m-2≤8,m≤10,故m的最大值为10.答案 1016当且仅当x=x,即x=4时取等号.故当侧面的长度为4米时,总造价最低.【训练3】解 (1)第n次投入后,产量为(10+n)万件,销售价格为100元,固定成本为80元,科技成本投入为100n万元.所以,年利润为f(n)=(10+n+180?80??*100-100-?-100n(n∈n).(2)由(1)知f(n)=(10+n)?-100n n)?n+1?n+1???9?9n+1+≤520(万元).当且仅当n+1==1 000-80?, n+1??n +1即n=8时,利润最高,最高利润为520万元.所以,从今年算起第8年利润最高,最高利润为520万元.【示例】.正解∵a>0,b>0,且a+b=1,12?12b2a∴a+b=?a+b(a+b)=1+2+ab3+2 ??b2aab3+22. a+b=1,??当且仅当?b2a??ab ?a=2-1,12即?时,ab3+22. ?b=2-22 11112【试一试】尝试解答] a+ab=a-ab+ab+ab+a(a-b)+a?a-b?a?a-b?11+ab+ab≥2 1a?a-b?2 1abab2+2=4.当且仅当a(a-a?a-b?a?a-b?b)=1a?a-b?且ab=1aba=2b时,等号成立.答案d【篇二:初中数学不等式试题及答案】t>a卷2?x7x??1的解集为_____________。

高中数学必修5基本不等式精选题目(附答案)

高中数学必修5基本不等式精选题目(附答案)

高中数学必修5基本不等式精选题目(附答案)1.重要不等式当a ,b 是任意实数时,有a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 2.基本不等式(1)有关概念:当a ,b 均为正数时,把a +b2叫做正数a ,b 的算术平均数,把ab 叫做正数a ,b 的几何平均数.(2)不等式:当a ,b 是任意正实数时,a ,b 的几何平均数不大于它们的算术平均数,即ab ≤a +b2,当且仅当a =b 时,等号成立.(3)变形:ab ≤⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22,a +b ≥2ab (其中a >0,b >0,当且仅当a=b 时等号成立).题型一:利用基本不等式比较大小1.已知m =a +1a -2(a >2),n =22-b 2(b ≠0),则m ,n 之间的大小关系是( ) A .m >n B .m <n C .m =nD .不确定2.若a >b >1,P =lg a ·lg b ,Q =12(lg a +lg b ),R =lg a +b 2,则P ,Q ,R 的大小关系是________.题型二:利用基本不等式证明不等式3.已知a ,b ,c 均为正实数, 求证:2b +3c -a a +a +3c -2b 2b +a +2b -3c3c ≥3.4.已知a ,b ,c 为正实数, 且a +b +c =1,求证:⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1≥8.题型三:利用基本不等式求最值5.已知lg a +lg b =2,求a +b 的最小值.6.已知x >0,y >0,且2x +3y =6,求xy 的最大值.7.已知x >0,y >0,1x +9y =1,求x +y 的最小值.8.已知a >0,b >0,2a +1b =16,若不等式2a +b ≥9m 恒成立,则m 的最大值为( )A .8B .7C .6D .5题型四:利用基本不等式解应用题9.某单位决定投资3 200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元,求:(1)仓库面积S 的最大允许值是多少?(2)为使S 达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?巩固练习:1.下列结论正确的是( ) A .当x >0且x ≠1时,lg x +1lg x ≥2 B .当x >0时,x +1x≥2 C .当x ≥2时,x +1x 的最小值为2 D .当0<x ≤2时,x -1x 无最大值2.下列各式中,对任何实数x 都成立的一个式子是( ) A .lg(x 2+1)≥lg(2x ) B .x 2+1>2x C.1x 2+1≤1 D .x +1x ≥23.设a ,b 为正数,且a +b ≤4,则下列各式中正确的一个是( ) A.1a +1b <1 B.1a +1b ≥1 C.1a +1b <2D.1a +1b ≥24.四个不相等的正数a ,b ,c ,d 成等差数列,则( ) A.a +d2>bcB.a +d2<bcC.a+d2=bc D.a+d2≤bc5.若x>0,y>0,且2x+8y=1,则xy有()A.最大值64B.最小值1 64C.最小值12D.最小值646.若a>0,b>0,且1a+1b=ab,则a3+b3的最小值为________.7.(2017·江苏高考)某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是________.8.若对任意x>0,xx2+3x+1≤a恒成立,则a的取值范围是________.9.(1)已知x<3,求f(x)=4x-3+x的最大值;参考答案:1.解:因为a>2,所以a-2>0,又因为m=a+1a-2=(a-2)+1a-2+2,所以m≥2(a-2)·1a-2+2=4,由b≠0,得b2≠0,所以2-b2<2,n=22-b2<4,综上可知m>n.2.解:因为a>b>1,所以lg a>lg b>0,所以Q=12(lg a+lg b)>lg a·lg b=P;Q=12(lg a+lg b)=lg a+lg b=lg ab<lga+b2=R.所以P<Q<R.3.[证明]∵a,b,c均为正实数,∴2ba+a2b≥2(当且仅当a=2b时等号成立),3c a+a3c≥2(当且仅当a=3c时等号成立),3c 2b +2b3c ≥2(当且仅当2b =3c 时等号成立),将上述三式相加得⎝ ⎛⎭⎪⎫2b a +a 2b +⎝ ⎛⎭⎪⎫3c a +a 3c +⎝ ⎛⎭⎪⎫3c 2b +2b 3c ≥6(当且仅当a =2b =3c时等号成立),∴⎝ ⎛⎭⎪⎫2b a +a 2b -1+⎝ ⎛⎭⎪⎫3c a +a 3c -1+⎝ ⎛⎭⎪⎫3c 2b +2b 3c -1≥3(当且仅当a =2b =3c 时等号成立),即2b +3c -a a +a +3c -2b 2b +a +2b -3c 3c ≥3(当且仅当a =2b =3c 时等号成立).4.证明:因为a ,b ,c 为正实数,且a +b +c =1, 所以1a -1=1-a a =b +c a ≥2bc a . 同理,1b -1≥2ac b ,1c -1≥2abc . 上述三个不等式两边均为正,相乘得⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1≥2bc a ·2ac b ·2abc =8,当且仅当a =b =c =13时,取等号.5.解:由lg a +lg b =2可得lg ab =2, 即ab =100,且a >0,b >0,因此由基本不等式可得a +b ≥2ab =2100 =20, 当且仅当a =b =10时,a +b 取到最小值20. 6.解:∵x >0,y >0,2x +3y =6, ∴xy =16(2x ·3y )≤16·⎝⎛⎭⎪⎫2x +3y 22=16·⎝ ⎛⎭⎪⎫622=32,当且仅当2x =3y ,即x =32,y =1时,xy 取到最大值32. 7.解:∵1x +9y =1, ∴x +y =(x +y )·⎝ ⎛⎭⎪⎫1x +9y=1+9x y +y x +9=y x +9xy +10, 又∵x >0,y >0, ∴y x +9xy +10≥2y x ·9xy +10=16,当且仅当y x =9xy ,即y =3x 时,等号成立. 由⎩⎪⎨⎪⎧y =3x ,1x +9y=1,得⎩⎨⎧x =4,y =12,即当x =4,y =12时,x +y 取得最小值16.8.解析:选C 由已知,可得6⎝ ⎛⎭⎪⎫2a +1b =1,∴2a +b =6⎝ ⎛⎭⎪⎫2a +1b ·(2a +b )=6⎝ ⎛⎭⎪⎫5+2a b +2b a ≥6×(5+4)=54,当且仅当2a b =2b a 时等号成立,∴9m ≤54,即m ≤6,故选C.9.[解] (1)设铁栅长为x 米,一堵砖墙长为y 米,而顶部面积为S =xy ,依题意得,40x +2×45y +20xy =3 200,由基本不等式得3 200≥240x ×90y +20xy =120xy +20xy , =120S +20S .所以S +6S -160≤0,即(S -10)(S +16)≤0, 故S ≤10,从而S ≤100,所以S 的最大允许值是100平方米,(2)取得最大值的条件是40x =90y 且xy =100, 求得x =15,即铁栅的长是15米. 练习:1.解析:选B A 中,当0<x <1时,lg x <0,lg x +1lg x ≥2不成立;由基本不等式知B 正确;C 中,由对勾函数的单调性,知x +1x 的最小值为52;D 中,由函数f (x )=x -1x 在区间(0,2]上单调递增,知x -1x 的最大值为32,故选B.2.解析:选C 对于A ,当x ≤0时,无意义,故A 不恒成立;对于B ,当x =1时,x 2+1=2x ,故B 不成立;对于D ,当x <0时,不成立.对于C ,x 2+1≥1,∴1x 2+1≤1成立.故选C. 3.解析:选B 因为ab ≤⎝⎛⎭⎪⎫a +b 22≤⎝ ⎛⎭⎪⎫422=4,所以1a +1b ≥21ab ≥214=1.4.解析:选A 因为a ,b ,c ,d 成等差数列,则a +d =b +c ,又因为a ,b ,c ,d 均大于0且不相等,所以b +c >2bc ,故a +d2>bc .5.解析:选D 由题意xy =⎝ ⎛⎭⎪⎫2x +8y xy =2y +8x ≥22y ·8x =8xy ,∴xy ≥8,即xy 有最小值64,等号成立的条件是x =4,y =16.6.解析:∵a >0,b >0,∴ab =1a +1b ≥21ab ,即ab ≥2,当且仅当a =b =2时取等号,∴a 3+b 3≥2(ab )3≥223=42,当且仅当a =b =2时取等号,则a 3+b 3的最小值为4 2.7.解析:由题意,一年购买600x 次,则总运费与总存储费用之和为600x ×6+4x =4⎝ ⎛⎭⎪⎫900x +x ≥8900x ·x =240,当且仅当x =30时取等号,故总运费与总存储费用之和最小时x 的值是30.8.解析:因为x >0,所以x +1x ≥2.当且仅当x =1时取等号, 所以有xx 2+3x +1=1x +1x +3≤12+3=15, 即x x 2+3x +1的最大值为15,故a ≥15. 答案:⎣⎢⎡⎭⎪⎫15,+∞(2)已知x ,y 是正实数,且x +y =4,求1x +3y 的最小值. 9.解:(1)∵x <3, ∴x -3<0,∴f (x )=4x -3+x =4x -3+(x -3)+3 =-⎣⎢⎡⎦⎥⎤43-x +(3-x )+3≤-243-x·(3-x )+3=-1, 当且仅当43-x=3-x , 即x =1时取等号, ∴f (x )的最大值为-1. (2)∵x ,y 是正实数,∴(x +y )⎝ ⎛⎭⎪⎫1x +3y =4+⎝ ⎛⎭⎪⎫y x +3x y ≥4+2 3.当且仅当y x =3xy ,即x =2(3-1),y =2(3-3)时取“=”号. 又x +y =4, ∴1x +3y ≥1+32, 故1x +3y 的最小值为1+32.。

高考数学《基本不等式》真题练习含答案

高考数学《基本不等式》真题练习含答案

高考数学《基本不等式》真题练习含答案一、选择题1.函数y =2x +22x 的最小值为( )A .1B .2C .22D .4 答案:C解析:因为2x >0,所以y =2x +22x ≥22x ·22x =22 ,当且仅当2x =22x ,即x =12时取“=”.故选C.2.若a >0,b >0且2a +b =4,则1ab的最小值为( )A .2B .12C .4D .14答案:B解析:∵a >0,b >0,∴4=2a +b ≥22ab (当且仅当2a =b ,即:a =1,b =2时等号成立),∴0<ab ≤2,1ab ≥12 ,∴1ab 的最小值为12.3.下列结论正确的是( )A .当x >0且x ≠1时,lg x +1lg x≥2B .当x ∈⎝⎛⎦⎤0,π2 时,sin x +4sin x的最小值为4 C .当x >0时,x +1x ≥2D .当0<x ≤2时,x -1x无最大值答案:C解析:当x ∈(0,1)时,lg x <0,故A 不成立,对于B 中sin x +4sin x≥4,当且仅当sinx =2时等号成立,等号成立的条件不具备,故B 不正确;D 中y =x -1x在(0,2]上单调递增,故当x =2时,y 有最大值,故D 不正确;又x +1x ≥2x ·1x=2(当且仅当x =1x即x =1时等号成立).故C 正确. 4.下列不等式恒成立的是( )A .a 2+b 2≤2abB .a 2+b 2≥-2abC .a +b ≥2|ab |D .a +b ≥-2|ab | 答案:B解析:对于A ,C ,D ,当a =0,b =-1时,a 2+b 2>2ab ,a +b <2ab ,a +b <-2|ab | ,故A ,C ,D 错误;对于B ,因为a 2+b 2=|a |2+|b |2≥2|a |·|b |=2|ab |≥-2ab ,所以B 正确.故选B.5.若x >0,y >0,x +2y =1,则xy2x +y的最大值为( )A .14B .15C .19D .112答案:C解析:x +2y =1⇒y =1-x 2 ,则xy2x +y =x -x 23x +1 .∵x >0,y >0,x +2y =1,∴0<x <1.设3x +1=t (1<t <4),则x =t -13,原式=-t 2+5t -49t =59 -⎝⎛⎭⎫t 9+49t ≤59 -2481 =19 ,当且仅当t 9 =49t ,即t =2,x =13 ,y =13 时,取等号,则xy 2x +y 的最大值为19 ,故选C.6.已知a >0,b >0,c >0,且a 2+b 2+c 2=4,则ab +bc +ac 的最大值为( )A .8B .4C .2D .1 答案:B解析:∵a 2+b 2≥2ab ,a 2+c 2≥2ac ,b 2+c 2≥2bc ,∴2(a 2+b 2+c 2)≥2(ab +bc +ca ),∴ab +bc +ca ≤a 2+b 2+c 2=4.7.若直线x a +yb=1(a >0,b >0)过点(1,1),则a +b 的最小值等于( )A .2B .3C .4D .5 答案:C解析:因为直线x a +y b =1(a >0,b >0)过点(1,1),所以1a +1b=1.所以a +b =(a +b )·⎝⎛⎭⎫1a +1b =2+a b +b a ≥2+2a b ·b a =4,当且仅当a b =b a 即a =b =2时取“=”,故选C.8.若向量a =(x -1,2),b =(4,y ),a 与b 相互垂直,则9x +3y 的最小值为( ) A .12 B .2 C .3 D .6 答案:D解析:∵a ⊥b ,∴a ·b =(x -1,2)·(4,y )=4(x -1)+2y =0,即2x +y =2, ∴9x +3y =32x +3y ≥232x +y =232 =6,当且仅当2x =y =1时取等号,∴9x +3y 的最小值为6.9.用一段长8 cm 的铁丝围成一个矩形模型,则这个模型面积的最大值为( ) A .9 cm 2 B .16 cm 2 C .4 cm 2 D .5 cm 2 答案:C解析:设矩形模型的长和宽分别为x cm ,y cm ,则x >0,y >0,由题意可得2(x +y )=8,所以x +y =4,所以矩形模型的面积S =xy ≤(x +y )24 =424 =4(cm 2),当且仅当x =y =2时取等号,所以当矩形模型的长和宽都为2 cm 时,面积最大,为4 cm 2.故选C.二、填空题10.已知a ,b ∈R ,且a -3b +6=0,则2a +18b 的最小值为________.答案:14解析:∵a -3b +6=0,∴ a -3b =-6,∴ 2a +18b =2a +2-3b ≥22a ·2-3b =22a -3b=22-6 =14 .当且仅当2a =2-3b ,即a =-3,b =1时,2a +18b 取得最小值为14.11.已知函数f (x )=4x +ax(x >0,a >0)在x =3时取得最小值,则a =________.答案:36解析:∵x >0,a >0,∴4x +a x ≥24x ·ax=4 a ,当且仅当4x =a x ,即:x =a 2 时等号成立,由a2 =3,a =36.12.[2024·山东聊城一中高三测试]已知a >0,b >0,3a +b =2ab ,则a +b 的最小值为________.答案:2+3解析:由3a +b =2ab , 得32b +12a=1, ∴a +b =(a +b )⎝⎛⎭⎫32b +12a =2+b 2a +3a2b ≥2+2b 2a ·3a 2b =2+3 (当且仅当b 2a =3a2b即b =3 a 时等号成立).[能力提升]13.[2024·合肥一中高三测试]若a ,b 都是正数,则⎝⎛⎭⎫1+b a ⎝⎛⎭⎫1+4ab 的最小值为( ) A .7 B .8C .9D .10 答案:C解析:⎝⎛⎭⎫1+b a ⎝⎛⎭⎫1+4a b =5+b a +4ab≥5+2b a ·4a b =9(当且仅当b a =4ab即b =2a 时等号成立).14.(多选)已知a >0,b >0,且a +b =1,则( )A .a 2+b 2≥12B .2a -b >12C .log 2a +log 2b ≥-2D . a + b ≤2 答案:ABD解析:对于选项A ,∵a 2+b 2≥2ab ,∴2(a 2+b 2)≥a 2+b 2+2ab =(a +b )2=1,∴a 2+b 2≥12,正确;对于选项B ,易知0<a <1,0<b <1,∴-1<a -b <1,∴2a -b >2-1=12,正确;对于选项C ,令a =14 ,b =34 ,则log 214 +log 234 =-2+log 234 <-2,错误;对于选项D ,∵2 =2(a +b ) ,∴[2(a +b ) ]2-( a + b )2=a +b -2ab =( a - b )2≥0,∴ a + b ≤2 ,正确.故选ABD.15.(多选)已知a ,b ,c 为正实数,则( )A .若a >b ,则ab <a +c b +cB .若a +b =1,则b 2a +a 2b 的最小值为1C .若a >b >c ,则1a -b +1b -c ≥4a -cD .若a +b +c =3,则a 2+b 2+c 2的最小值为3 答案:BCD解析:因为a >b ,所以a b -a +c b +c =c (a -b )b (b +c ) >0,所以ab >a +c b +c ,选项A 不正确;因为a +b =1,所以b 2a +a 2b =⎝⎛⎭⎫b 2a +a +⎝⎛⎭⎫a 2b +b -(a +b )≥2b +2a -(a +b )=a +b =1,当且仅当a =b =12 时取等号,所以b 2a +a 2b的最小值为1,故选项B 正确;因为a >b >c ,所以a -b >0,b -c >0,a -c >0,所以(a -c )⎝ ⎛⎭⎪⎫1a -b +1b -c =[](a -b )+(b -c )⎝ ⎛⎭⎪⎫1a -b +1b -c =2+b -c a -b +a -b b -c≥2+2b -c a -b ·a -bb -c=4,当且仅当b -c =a -b 时取等号,所以1a -b +1b -c ≥4a -c,故选项C 正确;因为a 2+b 2+c 2=13 [(a 2+b 2+c 2)+(a 2+b 2)+(b 2+c 2)+(c 2+a 2)]≥13(a 2+b 2+c 2+2ab +2bc +2ca )=13 [(a +b )2+2(a +b )c +c 2]=13 (a +b +c )2=3,当且仅当a =b =c =1时等号成立,所以a 2+b 2+c 2的最小值为3,故选项D 正确.16.某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________.答案:30解析:一年的总运费为6×600x =3 600x(万元).一年的总存储费用为4x 万元. 总运费与总存储费用的和为⎝⎛⎭⎫3 600x +4x 万元.因为3 600x +4x ≥2 3 600x ·4x =240,当且仅当3 600x =4x ,即x =30时取得等号,所以当x =30时,一年的总运费与总存储费用之和最小.。

高考数学解不等式基本训练题及参考答案

高考数学解不等式基本训练题及参考答案

高考数学解不等式基本训练题及参考答案一、选择题(1)不等式6x 2+5x <4的解集为( ) A (-∞,-34)∪(21,+∞) B (- 34,21) C (- 21,43) D (-∞,-21)∪(34,+∞) (2)a >0,b >0,不等式a >x1>-b 的解集为( ) A -b 1 <x <0或0<x <a 1 B - a 1<x <b1 C x <-b 1或x >a 1 D - a 1<x <0或0<x <b 1 (3)不等式11+x (x -1)(x -2)2(x -3)<0的解集是( ) A (-1,1)∪(2,3) B (-∞,-1)∪(1,3)C (-∞,-1)∪(2,3)D R(4)若a >0,且不等式ax 2+bx +c <0无解,则左边的二次三项式的判别式()A Δ<0B Δ=0C Δ≤0D Δ>0(5)A={x |x 2+(p +2)x +1=0,x ∈R },且R *∩A=∅,则有( )A p >-2B p ≥0C -4<p <0D p >-4(6)θ在第二象限,cos θ=524+-m m ,sin θ=53-+m m ,则m 满足( ) A m <-5或m >3 B 3<m <9 C m =0或m =8 D m =8(7)已知不等式l o g a (x 2-x -2)>l o g a (-x 2+2x +3)在x =49时成立,则不等式的解集为 A {x |1<x <2} B {x |2<x <25} C {x |1<x <25} D {x |2<x <5} (8)设0<b <21,下列不等式恒成立的是( ) A b 3>b 21B l o g b (1-b )>1 C cos(1+b )>cos(1-b ) D (1-b )n <b n ,n ∈N (9)若不等式x 2-l o g a x <0在(0,21)内恒成立,则a 满足( ) A 16≤a <1 B 16<a <1 C 0<a ≤161 D 0<a <161 (10)不等式112+<-x x 的解集是( )A [0,1]B [0,+∞]C (1,+∞)D -1,1] (11)不等式112)21(--<x x 的解集是( ) A B (1,2) C (2,+∞) D (1,+∞) (12)不等式(x -1)2+x ≥0的解集是( ) A {x |x >1} B {x |x ≥1或x =-2} C {x |x ≥1} D {x |x ≥-2且x ≠1}(13)函数f (x )=822--x x 的定义域为A ,函数g(x )=a x --11的定义域为B ,则使A ∩B=∅,实数a 的取值范围是( ) A {a |-1<a <3} B {a |-2<a <4}C {a -2≤a ≤4}D {a |-1≤a ≤3}(14)关于x 的不等式22x a -<2x +a (a >0)的解集为( ) A (0,a ) B (0,a ] C ∞)∪(-∞,-54 a ) D ∅ 二.填空题(15)不等式1≤|x -2|≤7的解集是(16)不等式x1>a 的解集是 (17)不等式lg|x -4|<-1的解集是(18)不等式xb c -<a (a >0,b >0,c >0)的解集是 (19)若不等式43)1(22+++--x x a ax x <0的解为-1<x <5,则a = (20)不等式1lg -x <3-lg x 的解集是(21)函数f (x )=l o g 2(x 2-4),g(x )=2k x 2-(k <-1),则f (x )g(x )的定义域为 三、解答题(22)解下列不等式(1)(x +4)(x +5)2>(3x -2)(x +5)2;(2)1)3()4)(1(2+---x x x x ≤0;(3)45820422+-+-x x x x ≥3(23)设不等式(2x -1)>m (x 2-1)对满足|m |≤2的一切实数m 的值都成立,求x 的取值范围解不等式练习题参考答案:1.B 2.C 3.B 4.C 5.B 6.D 7.B8.C 9.A 10.A 11.D 12.B 13.D 14.B15.[-5,1]∪[3,9]16.a =0时x >0;a >0时,0<x <a 1;a <0时,x <a 1或x >0 17.{x |4<x <1041或1039<x <4} 18.{x |x <b 或x >b -ac } 19.4 20.10≤x <100 21.[2k -2)∪(2,+∞) 22.解:(1)当x ≠-5时,(x +5)2>0,两边同除以(x +5)2得x +4>3x -2, 即x <3且x ≠-5;∴x ∈(-∞,-5)∪(-5,3)(2)当x ≠4时,原不等式⇔(x -1)(x -3)(x +1)≤0(x ≠-1) ⇔1≤x ≤3或x <-1,当x =4时,显然左边=0,不等式成立故原不等式的解集为{x |1≤x ≤3或x <-1或x =4}(3)原不等式可化为451820422+-+-x x x x -3≥00456522≥+-+-⇔x x x x 0)4)(1()3)(2(≥----⇔x x x x ∴x ∈(-∞,1)∪[2,3]∪(4,+∞) 23.解:①若x 2-1=0,即x =±1,且2x -1>0,即x >21时,此时x =1,原不等式对|m |≤2恒成立;②若x 2-1>0,要使1122--x x >m ,对|m |≤2恒成立,只要1122--x x >2,即 ⎩⎨⎧->->-22120122x x x 得1<x 23 ③若x 2-1<0时,要使1122--x x <m ,对|m |≤2恒成立,只要1122--x x <-2,即 ⎩⎨⎧+->-<-22120122x x x 得271+-<x <1 综合①②③得,所求x 的范围为271+-<x 23。

基本不等式练习题

基本不等式练习题

基本不等式练习题一、选择题1. 若a、b均为正数,则下列不等式中正确的是()A. (a+b)/2 ≥ √(ab)B. (a+b)/2 ≤ √(ab)C. a^2 + b^2 ≥ 2abD. a^2 + b^2 ≤ 2ab2. 已知x > 0,则下列不等式中正确的是()A. x + 1/x ≥ 2B. x + 1/x ≤ 2C. x 1/x ≥ 0D. x 1/x ≤ 03. 若a、b、c均为正数,且a+b+c=1,则下列不等式中正确的是()A. a^2 + b^2 + c^2 ≥ 1/3B. a^2 + b^2 + c^2 ≤ 1/3C. a^3 + b^3 + c^3 ≥ 1/3D. a^3 + b^3 + c^3 ≤ 1/3二、填空题1. 若a、b均为正数,且a+b=1,则a^2 + b^2 的取值范围是______。

2. 已知x > 0,则x + 1/x 的最小值是______。

3. 若a、b、c均为正数,且a+b+c=abc,则a+b+c 的最小值是______。

三、解答题1. 设x、y均为正数,证明:x^2 + y^2 ≥ 2xy。

2. 已知a、b均为正数,且a+b=1,求证:(a^2 + b^2) / (a + b) ≥ 1/2。

3. 设x、y、z均为正数,证明:(x+y+z) / (1/x + 1/y + 1/z)≤ (x^2 + y^2 + z^2) / (x + y + z)。

4. 已知a、b、c均为正数,且a+b+c=3,求证:a^2 + b^2 + c^2 ≥ 3。

5. 设x、y均为实数,证明:(x+y)^2 ≤ 2(x^2 + y^2)。

四、应用题1. 在一个矩形中,长比宽大2厘米,如果矩形的周长不超过20厘米,求矩形面积的最大值。

2. 某企业生产两种产品A和B,生产每吨A产品可获利1000元,生产每吨B产品可获利1500元。

若企业每月的生产能力为生产A产品10吨和B产品8吨,且每月的总利润不少于12000元,求该企业每月生产A、B产品的最佳利润分配方案。

必修一 基本不等式练习(精选典题)含答案

必修一  基本不等式练习(精选典题)含答案

必修一基本不等式练习(精选典题)一.选择题(共19小题)1.已知正数x,y满足x+y=1,则的最小值为()A.5B.C.D.22.若关于x的不等式ax2+bx﹣1>0的解集是{x|1<x<2},则不等式bx2+ax﹣1<0的解集是()A.B.{x|x<﹣1或C.D.或x>1}3.若a,b∈R+,且a+b=1,则的最小值为()A.B.5C.D.254.若正数a,b满足:lga+lgb=lg(a+b),则的最小值为()A.16B.9C.4D.15.若a>0,b>0,ab=a+b+1,则a+2b的最小值为()A.3+3B.3﹣3C.3+D.76.下列说法正确的是()A.的最小值为2B.的最小值为4,x∈(0,π)C.x2+1的最小值为2xD.4x(1﹣x)的最大值为17.不等式的解集为()A.[0,1]B.(0,1]C.(﹣∞,0]∪[1,+∞)D.(﹣∞,0)∪[1,+∞)8.若a>0,b>0,且a+2b﹣4=0,则ab的最大值为()A.B.1C.2D.49.已知a<b,则的最小值为()A.3B.2C.4D.110.若a<b<0,则下列结论中不恒成立的是()A.|a|>|b|B.>C.a2+b2>2ab D.()2>12.若不等式x2+ax+1≥0对任意x∈R恒成立,则实数a的取值范围是()A.[2,+∞)B.(﹣∞,﹣2]C.[﹣2,2]D.(﹣∞,﹣2]∪[2,+∞)13.若m+n>0,则关于x的不等式(m﹣x)(n+x)>0的解集是()A.{x|﹣n<x<m}B.{x|x<﹣n或x>m}C.{x|﹣m<x<n}D.{x|x<﹣m或x>n} 14.关于x的方程x2﹣(a﹣1)x+4=0在区间[1,3]内有两个不等实根,则实数a的取值范围是()A.(4,5]B.[3,6]C.(5,]D.[)15.若不等式2x2+ax+2≥0对一切x∈(0,]恒成立,则a的最小值为()A.0B.﹣2C.﹣5D.﹣316.若关于x的不等式ax﹣1>0的解集是(1,+∞),则关于x的不等式(ax﹣1)(x+2)≥0的解集是()A.[﹣2,+∞)B.[﹣2,1]C.(﹣∞,﹣2)∪(1,+∞)D.(﹣∞,﹣2]∪[1,+∞)17.不等式ax2+bx+c>0的解集为(﹣4,1),则不等式b(x2+1)﹣a(x+3)+c>0的解集为()A.B.C.D.18.已知关于x的不等式ax2+x<0的解集中的整数恰有2个,则()A.<a≤B.≤a<C.<a≤或﹣≤a<﹣D.≤a<或﹣<a≤﹣19.若不等式(x﹣a)(1﹣x﹣a)<1对任意实数x成立,则()A.﹣1<a<1B.0<a<2C.D.二.解答题(共7小题)20.解下列不等式:(1)x4﹣x2﹣2≥0;(2).21.解关于x的不等式x2﹣(a+1)x+a≥0(a∈R).22.已知函数f(x)=ax2﹣(a2+1)x+a+b(a,b∈R).(Ⅰ)若f(x)≤0的解集为[﹣1,3],求a+b的值;(Ⅱ)若a∈[﹣1,0],b=0,求f(x)>0的解集.23.(1)已知a,b,c∈(0,+∞),且a+b+c=1,求证:;(2)解关于x的不等式:ax2﹣2≥2x﹣ax(a<0).24.若不等式ax2﹣bx+c>0的解集为{x|﹣3<x<2}.(1)求证:b+c=﹣7a;(2)求不等式cx2+bx+a<0的解集.25.已知函数f(x)=ax2﹣(2a+1)x+2.(1)当a=2时,解关于x的不等式f(x)≤0;(2)若a>0,解关于x的不等式f(x)≤0.26.已知关于x的不等式:x2﹣mx+m>0,其中m为参数.(1)若该不等式的解集为R,求m的取值范围;(2)当x>1时,该不等式恒成立,求m的取值范围.不等式练习参考答案一.选择题(共19小题)1.C;2.C;3.C;4.C;5.D;6.D;7.B;8.C;9.A;10.D;;12.C;13.A;14.C;15.C;16.D;17.B;18.B;19.D;二.解答题(共7小题)20.【解答】解:(1)将原不等式因式分解得(x2+1)(x2﹣2)≥0,∵x2+1>0,所以,x2﹣2≥0,解得x≤或x≥,因此,原不等式的解集为{x|x≤或x ≥};(2)由,得,化简得,等价于,解得x<﹣4或x≥﹣1,因此,原不等式的解集为{x|x<﹣4或x≥﹣1}.21.【解答】解:关于x的不等式x2﹣(a+1)x+a≥0化为(x﹣1)(x﹣a)≥0,不等式对应方程的实数根为a和1;当a>1时,不等式的解集为(﹣∞,1]∪[a,+∞);当a=1时,不等式的解集为R,当a<1时,不等式的解集为(﹣∞,a]∪[1,+∞).22.【解答】解:函数f(x)=ax2﹣(a2+1)x+a+b(a,b∈R).(Ⅰ)由f(x)≤0的解集为[﹣1,3],即方程ax2﹣(a2+1)x+a+b的两个根分别为﹣1,3.∴a>0∴,解得:a=1,b=﹣4.则a+b=﹣3.(Ⅱ)由b=0,可得f(x)=ax2﹣(a2+1)x+a=(ax﹣1)(x﹣a)∵a∈[﹣1,0],∴当a=0时,可得f(x)=﹣x,则f(x)>0,即﹣x>0,∴x<0∴解集为{x|x<0};∴当即a=﹣1时,f(x)>0,可得(x﹣a)2<0.此时无解;当a∈(﹣1,0)时,f(x)>0,即(ax ﹣1)(x﹣a)>0.∵∴解集为{x|<x<a};综上可得:当a∈(﹣1,0)时,不等式的解集为{x|<x<a};当a=﹣1时,不等式的无解;当a=0时,不等式的解集为{x|x<0}.23.【解答】解:(1)∵a+b+c=1,代入不等式的左端,∴====.∵a,b,c∈(0,+∞),∴.∴.∴(当且仅当时,等号成立).(2)原不等式可化为ax2+(a﹣2)x﹣2≥0,化简为(x+1)(ax﹣2)≥0.∵a<0,∴.1°当﹣2<a<0时,;2°当a=﹣2时,x=﹣1;3°当a<﹣2时,.综上所述,当﹣2<a<0时,解集为;当a=﹣2时,解集为{x|x=﹣1};当a<﹣2时,解集为.24.【解答】解:(1)证明:关于x的一元二次不等式ax2﹣bx+c>0的解集为{x|﹣3<x<2},∴a<0,且﹣3,2是一元二次方程ax2﹣bx+c=0的两个实数根,∴=﹣3+2=﹣1,=﹣3×2=﹣6;∴b=﹣a,c=﹣6a;∴b+c=﹣7a;(2)b=﹣a,c=﹣6a代入不等式cx2+bx+a <0,得﹣6ax2﹣ax+a<0,又a<0,则﹣6x2﹣x+1>0,化为6x2+x﹣1<0,解得﹣<x<;∴所求不等式的解集为{x|﹣<x<}.25.【解答】解:(1)当a=2时f(x)≤0可化为2x2﹣5x+2≤0,可得(2x﹣1)(x﹣2)≤0,解得,∴f(x)≤0的解集为;(2)不等式f(x)≤0可化为ax2﹣(2a+1)x+2≤0,a>0时,则不等式为a(x﹣)(x﹣2)≤0;①当时,有,解不等式得:;②当时,有,解不等式得:x=2;③当时,有,解不等式得:;综上:①时,不等式的解集为;②时,不等式的解集为{x|x=2};③时,不等式的解集为.26.【解答】解:(1)关于x的不等式x2﹣mx+m>0的解集为R,则△<0,即m2﹣4m<0;)解得0<m<4,∴m的取值范围是0<m<4;(2)当x>1时,关于x 的不等式x2﹣mx+m>0恒成立,等价于m<恒成立,设f(x)=,x>1;则f(x)=(x﹣1)++2≥2+2=4,当且仅当x=2时取“=”;∴m的取值范围是m<4.。

不等式练习题及答案解析

不等式练习题及答案解析

基本不等式练习题一、选择题1.下列各式,能用基本不等式直接求得最值的是( C )A .x +12xB .x 2-1+1x 2-1C .2x +2-x D .x (1-x )2.函数y =3x 2+6x 2+1的最小值是( D )A .32-3B .-3C .6 2D .62-3解析: y =3(x 2+2x 2+1)=3(x 2+1+2x 2+1-1)≥3(22-1)=62-3.3.已知m 、n ∈R ,mn =100,则m 2+n 2的最小值是( A )A .200B .100C .50D .20解析:选A.m 2+n 2≥2mn =200,当且仅当m =n 时等号成立. 4.给出下面四个推导过程:①∵a ,b ∈(0,+∞),∴b a +a b ≥2b a ·ab=2;②∵x ,y ∈(0,+∞),∴lg x +lg y ≥2lg x ·lg y ;③∵a ∈R ,a ≠0,∴4a +a ≥24a·a =4;w w w .x k b 1.c o m④∵x ,y ∈R ,,xy <0,∴x y +y x =-[(-x y )+(-y x )]≤-2(-x y )(-yx)=-2.其中正确的推导过程为( D )A .①②B .②③C .③④D .①④ 解析:选D.从基本不等式成立的条件考虑.①∵a ,b ∈(0,+∞),∴b a ,ab∈(0,+∞),符合基本不等式的条件,故①的推导过程正确;②虽然x ,y ∈(0,+∞),但当x ∈(0,1)时,lg x 是负数,y ∈(0,1)时,lg y 是负数,∴②的推导过程是错误的;③∵a ∈R ,不符合基本不等式的条件, ∴4a +a ≥24a·a =4是错误的; ④由xy <0得x y ,y x 均为负数,但在推导过程中将全体x y +y x 提出负号后,(-xy)均变为正数,符合基本不等式的条件,故④正确.5.已知a >0,b >0,则1a +1b+2ab 的最小值是( C )A .2B .2 2C .4D .5解析:选C.∵1a +1b +2ab ≥2ab +2ab ≥22×2=4.当且仅当⎩⎨⎧a =b ab =1时,等号成立,即a =b =1时,不等式取得最小值4.6.已知x 、y 均为正数,xy =8x +2y ,则xy 有( C )A .最大值64B .最大值164C .最小值64D .最小值164解析:选C.∵x 、y 均为正数,∴xy =8x +2y ≥28x ·2y =8xy ,当且仅当8x =2y 时等号成立.∴xy ≥64.7.若xy >0,则对 x y +yx说法正确的是( B )A .有最大值-2B .有最小值2C .无最大值和最小值D .无法确定8.设x ,y 满足x +y =40且x ,y 都是正整数,则xy 的最大值是( A )A .400B .100C .40D .20 9.在下列各函数中,最小值等于2的函数是( D ) A .y =x +1xB .y =cosx +1cosx ⎝ ⎛⎭⎪⎫0<x<π2C .y =x2+3x2+2D .24-+=x xee y [解析] x<0时,y =x +1x ≤-2,故A 错;∵0<x<π2,∴0<cosx<1,∴y =cosx +1cosx ≥2中等号不成立,故B 错;∵x2+2≥2,∴y =x2+2+1x2+2≥2中等号也取不到,故C 错∴选D.10.已知正项等比数列{an}满足:a 7=a 6+2a 5,若存在两项a m ,a n 使得nm a a =4 a 1,则1m+4n 的最小值为( A ) A.32B.53C.256D .不存在[解析] 由已知an>0,a7=a6+2a5,设{an}的公比为q ,则a6q =a6+2a6q ,∴q2-q -2=0,∵q>0,∴q =2,∵aman =4a1,∴a12·qm+n -2=16a12,∴m +n -2=4, ∴m +n =6,∴1m +4n =16(m +n)⎝ ⎛⎭⎪⎫1m +4n =16⎣⎢⎡⎦⎥⎤5+n m +4m n ≥16⎝ ⎛⎭⎪⎫5+2n m ·4m n =32, 等号在n m =4mn,即n =2m =4时成立.11. “a=14”是“对任意的正数x ,均有x +ax ≥1”的( A )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件[解析] ∵a =14,x>0时,x +ax ≥2x·a x =1,等号在x =12时成立, 又a =4时,x +a x =x +4x≥2x·4x =4也满足x +ax≥1,故选A. 12.设a ,b ∈R ,则“a+b =1”是“4ab≤1”的( A ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不是充分条件也不是必要条件[解析] a ,b 中有一个不是正数时,若a +b =1,显然有4ab≤1成立,a ,b 都是正数时,由1=a +b≥2ab 得4ab≤1成立,故a +b =1⇒4ab≤1,但当4ab≤1成立时,未必有a +b =1,如a =-5,b =1满足4ab≤1,但-5+1≠1,故选A.13.若a>0,b>0,a ,b 的等差中项是12,且α=a +1a ,β=b +1b ,则α+β的最小值为( D )A .2B .3C .4D .5[解析] ∵12为a 、b 的等差中项,∴a +b =12×2=1.a +1a +b +1b ⇒1+1a +1b =1+a +b ab =1+1ab, ∵ab ≤a +b 2,∴ab≤a +b 24=14.∴原式≥1+4.∴α+β的最小值为5.故选D.二、填空题1.函数y =x +1x +1(x ≥0)的最小值为____1____.2.若x >0,y >0,且x +4y =1,则xy 有最___大_____值,其值为___116_____.解析:1=x +4y ≥2x ·4y =4xy ,∴xy ≤116.3.(2010年高考山东卷)已知x ,y ∈R +,且满足x 3+y 4=1,则xy 的最大值为___3_____.解析:∵x >0,y >0且1=x 3+y 4≥2xy 12,∴xy ≤3.当且仅当x 3=y4时取等号.答案:34.已知x ≥2,则当x =_2___时,x +4x有最小值__4__.5.已知t>0,则函数y =t2-4t +1t 的最小值为__-2_____.[解析] y =t2-4t +1t =t +1t -4因为t>0,y =t +1t-4≥2t·1t -4=-2.,等号在t =1t,即t =1时成立.6.已知正数a ,b ,c 满足:a +2b +c =1则1a +1b +1c 的最小值为 [答案] [解析]1a +1b +1c =a +2b +c a +a +2b +c b +a +2b +c c =⎝ ⎛⎭⎪⎫2b a +a b +⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫c b +2b c +4≥22+2+22+4=6+42,等号在2b a =a b ,c a =a c ,c b =2b c 同时成立时成立,即a =c =2b =1-22时等号成立.7.已知x>0,y>0,lg2x +lg8y =lg2,则xy 的最大值是____112____.[解析] ∵lg2x +lg8y =lg2,∴2x·8y =2,即2x +3y =2,∴x +3y =1,∴xy =13x·(3y)≤13·⎝⎛⎭⎫x +3y 22=112,等号在x =3y ,即x =12,y =16时成立. 三、解答题1.已知f (x )=12x+4x .(1)当x >0时,求f (x )的最小值; (2)当x <0 时,求f (x )的最大值.解:(1)∵x >0,∴12x ,4x >0. ∴12x +4x ≥212x ·4x =8 3.当且仅当12x=4x ,即x =3时取最小值83,∴当x >0时,f (x )的最小值为8 3.(2)∵x <0,∴-x >0.则-f (x )=12-x +(-4x )≥212-x ·(-4x )=83,当且仅当12-x=-4x 时,即x =-3时取等号.∴当x <0时,f (x )的最大值为-8 3.2.(1)设x >-1,求函数y =x +4x +1+6的最小值;(2)求函数y =x 2+8x -1(x >1)的最值.解:(1)∵x >-1,∴x +1>0.∴y =x +4x +1+6=x +1+4x +1+5≥2 (x +1)·4x +1+5=9,当且仅当x +1=4x +1,即x =1时,取等号.∴x =1时,函数的最小值是9.(2)y =x 2+8x -1=x 2-1+9x -1=(x +1)+9x -1=(x -1)+9x -1+2.∵x >1,∴x -1>0.∴(x -1)+9x -1+2≥2(x -1)·9x -1+2=8.当且仅当x -1=9x -1,即x =4时等号成立,∴y 有最小值8.3.已知a ,b ,c ∈(0,+∞),且a +b +c =1,求证:(1a -1)·(1b -1)·(1c-1)≥8.证明:∵a ,b ,c ∈(0,+∞),a +b +c =1,∴1a -1=1-a a =b +c a =b a +c a ≥2bc a , 同理1b -1≥2ac b ,1c -1≥2ab c ,以上三个不等式两边分别相乘得 (1a -1)(1b -1)(1c-1)≥8. 当且仅当a =b =c 时取等号.4.某造纸厂拟建一座平面图形为矩形且面积为200平方米的二级污水处理池,池的深度一定,池的外圈周壁建造单价为每米400元,中间一条隔壁建造单价为每米100元,池底建造单价每平方米60元(池壁忽略不计).问:污水处理池的长设计为多少米时可使总价最低.解:设污水处理池的长为x 米,则宽为200x米.总造价f (x )=400×(2x +2×200x )+100×200x+60×200=800×(x +225x )+12000≥1600x ·225x+12000=36000(元)当且仅当x =225x(x >0),即x =15时等号成立.。

基本不等式练习题(带答案)

基本不等式练习题(带答案)

《基本不等式》同步测试一、选择题,本大题共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 若a ∈R ,下列不等式恒成立的是 ( )A .21a a +>B .2111a <+ C .296a a +> D .2lg(1)lg |2|a a +>2. 若0a b <<且1a b +=,则下列四个数中最大的是 ( )A.12B.22a b + C.2ab D.a3. 设x >0,则133y x x=--的最大值为 ( )A.3 B.3- C.3- D.-14. 设,,5,33x y x y x y ∈+=+R 且则的最小值是( )A. 10B.C.D. 5. 若x , y 是正数,且141x y+=,则xy 有 ( ) A.最大值16 B.最小值116 C.最小值16 D.最大值1166. 若a , b , c ∈R ,且ab +bc +ca =1, 则下列不等式成立的是 ( )A .2222a b c ++≥B .2()3a b c ++≥C .111abc++≥ D .a b c ++≤7. 若x >0, y >0,且x +y ≤4,则下列不等式中恒成立的是 ( )A .114x y ≤+B .111x y +≥ C 2≥ D .11xy ≥8. a ,b 是正数,则2,2a baba b++三个数的大小顺序是 ( )A.22a b ab a b ++ 22a b aba b+≤≤+C.22ab a b a b ++ D.22ab a ba b +≤+ 9. 某产品的产量第一年的增长率为p ,第二年的增长率为q ,设这两年平均增长率为x ,则有( )A.2p q x += B.2p q x +< C.2p q x +≤ D.2p qx +≥ 10. 下列函数中,最小值为4的是 ( )A.4y x x=+B.4sin sin y x x =+ (0)x π<<C.e 4e x x y -=+ D.3log 4log 3x y x =+二、填空题, 本大题共4小题,每小题3分,满分12分,把正确的答案写在题中横线上.11. 函数y =的最大值为 .12. 建造一个容积为18m 3, 深为2m 的长方形无盖水池,如果池底和池壁每m 2 的造价为200元和150元,那么池的最低造价为 元.13. 若直角三角形斜边长是1,则其内切圆半径的最大值是 . 14. 若x , y 为非零实数,代数式22228()15x y x yy x y x+-++的最小值为 .三、解答题, 本大题共4小题,每小题12分,共48分,解答应写出必要的文字说明、证明过程和演算步骤.15. 已知:2222,(,0)x y a m n b a b +=+=>, 求mx +ny 的最大值.16. 设a , b , c (0,),∈+∞且a +b +c =1,求证:111(1)(1)(1)8.a b c ---≥17. 已知正数a , b 满足a +b =1(1)求ab 的取值范围;(2)求1ab ab+的最小值.18. 是否存在常数c ,使得不等式2222x y x yc x y x y x y x y+≤≤+++++对任意正数x , y 恒成立?试证明你的结论.《基本不等式》综合检测一、选择题二.填空题11.12 12.3600 13. 14.对 三、解答题15 16. 略 17. (1)10,4⎛⎤⎥⎝⎦(2)174 18.存在,23c =。

基本不等式专题练习(含参考答案)

基本不等式专题练习(含参考答案)

数学 基本不等式[基础题组练]1.若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( ) A .a 2+b 2>2ab B .a +b ≥2ab C.1a +1b >2abD.b a +a b ≥22.若正实数x ,y 满足x +y =2,且1xy ≥M 恒成立,则M 的最大值为( )A .1B .2C .3D .43.设x >0,则函数y =x +22x +1-32的最小值为( )A .0 B.12 C .1D.32 4.已知x >0,y >0,且4x +y =xy ,则x +y 的最小值为( ) A .8 B .9 C .12D .165.已知x >0,y >0,2x +y =3,则xy 的最大值为________. 6.(2017·高考江苏卷)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________.7.函数y =x 2x +1(x >-1)的最小值为________.8.已知x >0,y >0,且2x +8y -xy =0,求 (1)xy 的最小值; (2)x +y 的最小值.[综合题组练]1.若a >0,b >0,a +b =1a +1b ,则3a +81b 的最小值为( ) A .6 B .9 C .18D .242.不等式x 2+x <a b +ba 对任意a ,b ∈(0,+∞)恒成立,则实数x 的取值范围是( )A .(-2,0)B .(-∞,-2)∪(1,+∞)C .(-2,1)D .(-∞,-4)∪(2,+∞)3.已知x >0,y >0,且2x +4y +xy =1,则x +2y 的最小值是________. 4.已知正实数a ,b 满足a +b =4,则1a +1+1b +3的最小值为________.【参考答案】[基础题组练]1.若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( ) A .a 2+b 2>2ab B .a +b ≥2ab C.1a +1b >2abD.b a +a b≥2 解析:选D.因为a 2+b 2-2ab =(a -b )2≥0,所以A 错误.对于B ,C ,当a <0,b <0时,明显错误.对于D ,因为ab >0, 所以b a +a b≥2b a ·ab=2. 2.(2019·安徽省六校联考)若正实数x ,y 满足x +y =2,且1xy ≥M 恒成立,则M 的最大值为( )A .1B .2C .3D .4解析:选A.因为正实数x ,y 满足x +y =2, 所以xy ≤(x +y )24=224=1,所以1xy ≥1;又1xy≥M 恒成立, 所以M ≤1,即M 的最大值为1.3.设x >0,则函数y =x +22x +1-32的最小值为( )A .0 B.12 C .1D.32解析:选A.y =x +22x +1-32=⎝⎛⎭⎫x +12+1x +12-2≥2⎝⎛⎭⎫x +12·1x +12-2=0,当且仅当x +12=1x +12,即x =12时等号成立.所以函数的最小值为0.故选A. 4.(2019·长春市质量检测(一))已知x >0,y >0,且4x +y =xy ,则x +y 的最小值为( ) A .8 B .9 C .12D .16解析:选B.由4x +y =xy 得4y +1x =1,则x +y =(x +y )⎝⎛⎭⎫4y +1x =4x y +y x +1+4≥24+5=9,当且仅当4x y =yx,即x =3,y =6时取“=”,故选B.5.已知x >0,y >0,2x +y =3,则xy 的最大值为________.解析:xy =2xy 2=12×2xy ≤12×⎝ ⎛⎭⎪⎫2x +y 22=98,当且仅当2x =y =32时取等号. 答案:986.(2017·高考江苏卷)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________.解析:一年购买600x 次,则总运费与总存储费用之和为600x ×6+4x =4⎝⎛⎭⎫900x +x ≥8900x·x =240,当且仅当x =30时取等号,故总运费与总存储费用之和最小时x 的值是30.答案:307.函数y =x 2x +1(x >-1)的最小值为________.解析:因为y =x 2-1+1x +1=x -1+1x +1=x +1+1x +1-2,x >-1,所以y ≥21-2=0,当且仅当x =0时,等号成立. 答案:08.已知x >0,y >0,且2x +8y -xy =0,求 (1)xy 的最小值; (2)x +y 的最小值. 解:(1)由2x +8y -xy =0, 得8x +2y =1, 又x >0,y >0, 则1=8x +2y ≥28x ·2y =8xy. 得xy ≥64,当且仅当x =16,y =4时,等号成立. 所以xy 的最小值为64.(2)由2x +8y -xy =0,得8x +2y =1,则x +y =⎝⎛⎭⎫8x +2y ·(x +y ) =10+2x y +8yx≥10+22x y ·8yx=18. 当且仅当x =12且y =6时等号成立, 所以x +y 的最小值为18.[综合题组练]1.若a >0,b >0,a +b =1a +1b ,则3a +81b 的最小值为( )A .6B .9C .18D .24解析:选C.因为a >0,b >0,a +b =1a +1b ,所以ab (a +b )=a +b >0,所以ab =1.则3a +81b ≥23a ·34b =23a +4b ≥232a ·4b=18,当且仅当a =4b =2时取等号.所以3a +81b 的最小值为18.故选C.2.不等式x 2+x <a b +ba 对任意a ,b ∈(0,+∞)恒成立,则实数x 的取值范围是( )A .(-2,0)B .(-∞,-2)∪(1,+∞)C .(-2,1)D .(-∞,-4)∪(2,+∞)解析:选C.根据题意,由于不等式x 2+x <a b +ba对任意a ,b ∈(0,+∞)恒成立,则x 2+x <⎝⎛⎭⎫a b +b a min ,因为a b +b a ≥2 a b ·ba=2,当且仅当a =b 时等号成立,所以x 2+x <2,求解此一元二次不等式可知-2<x <1,所以x 的取值范围是(-2,1).3.已知x >0,y >0,且2x +4y +xy =1,则x +2y 的最小值是________.解析:令t =x +2y ,则2x +4y +xy =1可化为1=2x +4y +xy ≤2(x +2y )+12⎝ ⎛⎭⎪⎫x +2y 22=2t+t 28.因为x >0,y >0,所以x +2y >0,即t >0,t 2+16t -8≥0,解得t ≥62-8.即x +2y 的最小值是62-8.答案:62-84.已知正实数a ,b 满足a +b =4,则1a +1+1b +3的最小值为________. 解析:因为a +b =4,所以a +1+b +3=8,所以1a +1+1b +3=18[(a +1)+(b +3)]⎝ ⎛⎭⎪⎫1a +1+1b +3=18⎝ ⎛⎭⎪⎫2+b +3a +1+a +1b +3≥18(2+2)=12,当且仅当a +1=b +3,即a =3,b =1时取等号,所以1a +1+1b +3的最小值为12.答案:12。

基本不等式练习题带答案

基本不等式练习题带答案
• a. 假设 a > b,则 ab > b^2(反面结论); • b. 根据已知条件,推导出 ab - b^2 = b(a - b) < 0(矛盾); • c. 否定反面结论,得出 a ≤ b,从而证明原命题成立。
06
基本不等式的扩展 知识
基本不等式的推广形式
单击此处添加标题
平方和与平方差形式:a²+b² ≥ 2ab 和 a²-b² ≥ 2ab
• 题目:已知 x > 0,y > 0,且 xy = 4,则下列结论正确的是 ( ) A. x + y ≥ 4 B. x + y ≤ 4 C. x + y ≥ 8 D. x + y ≤ 8 答案: A
• A. x + y ≥ 4 B. x + y ≤ 4 • C. x + y ≥ 8 D. x + y ≤ 8 • 答案:A
基本不等式的应用:在数学、物 理、工程等领域有广泛的应用, 用于解决最优化问题、估计值域 和解决一些数学竞赛问题等。
添加标题
添加标题
添加标题
添加标题
基本不等式的形式:常见的形式 有AM-GM不等式、CauchySchwarz不等式和Holder不等式 等。
基本不等式的证明方法:可以通 过代数、几何和概率统计等方法 证明基本不等式。
• 题目:若 a > b > c,且 a + b + c = 1,则下列结论正确的是 ( ) A. ac + bc ≥ ab B. ac + bc ≤ ab C. ac + bc > ab D. ac + bc < ab 答案:B
• A. ac + bc ≥ ab B. ac + bc ≤ ab • C. ac + bc > ab D. ac + bc < ab

基本不等式练习题及答案解析

基本不等式练习题及答案解析

1.若xy >0,则对x y +y x 说法正确的是()A .有最大值-2B .有最小值2C .无最大值和最小值D .无法确定2.设x ,y 满足x +y =40且x ,y 都是正整数,则xy 的最大值是()A .400B .100C .40D .203.已知x ≥2,则当x =____时,x +4x 有最小值____.4.已知f (x )=12x +4x .(1)当x >0时,求f (x )的最小值;(2)当x <0时,求f (x )的最大值.一、选择题1.下列各式,能用基本不等式直接求得最值的是()A .x +12x B .x 2-1+1x 2-1C .2x +2-xD .x (1-x )2.函数y =3x 2+6x 2+1的最小值是()A .32-3B .-3C .62D .62-33.已知m 、n ∈R ,mn =100,则m 2+n 2的最小值是()A .200B .100C .50D .204.给出下面四个推导过程:①∵a ,b ∈(0,+∞),∴b a +a b ≥2b a ·a b=2;②∵x ,y ∈(0,+∞),∴lg x +lg y ≥2lg x ·lg y ;③∵a ∈R ,a ≠0,∴4a +a ≥24a ·a =4;④∵x ,y ∈R ,,xy <0,∴x y +y x =-[(-x y )+(-y x )]≤-2?-x y ??-y x?=-2.其中正确的推导过程为()A .①②B .②③C .③④D .①④5.已知a >0,b >0,则1a +1b +2ab 的最小值是()A .2B .22C .4D .56.已知x 、y 均为正数,xy =8x +2y ,则xy 有()A .最大值64B .最大值164C .最小值64D .最小值164二、填空题7.函数y =x +1x +1(x ≥0)的最小值为________.8.若x >0,y >0,且x +4y =1,则xy 有最________值,其值为________.9.(2010年高考山东卷)已知x ,y ∈R +,且满足x 3+y 4=1,则xy 的最大值为________.三、解答题10.(1)设x >-1,求函数y =x +4x +1+6的最小值;(2)求函数y=x2+8x-1(x>1)的最值.11.已知a,b,c∈(0,+∞),且a+b+c=1,求证:(1a-1)·(1b-1)·(1c-1)≥8.12.某造纸厂拟建一座平面图形为矩形且面积为200平方米的二级污水处理池,池的深度一定,池的外圈周壁建造单价为每米400元,中间一条隔壁建造单价为每米100元,池底建造单价每平方米60元(池壁忽略不计).问:污水处理池的长设计为多少米时可使总价最低.答案:1.答案:B2.答案:A3.答案:244.解:(1)∵x >0,∴12x ,4x >0.∴12x +4x ≥212x ·4x =83.当且仅当12x=4x ,即x =3时取最小值83,∴当x >0时,f (x )的最小值为8 3.(2)∵x <0,∴-x >0.则-f (x )=12-x +(-4x )≥212-x ·?-4x ?=83,当且仅当12-x=-4x 时,即x =-3时取等号.∴当x <0时,f (x )的最大值为-8 3.一、选择题1.答案:C2.解析:选D.y =3(x 2+2x 2+1)=3(x 2+1+2x 2+1-1)≥3(22-1)=62-3.3.解析:选A.m 2+n 2≥2mn =200,当且仅当m =n 时等号成立.4.解析:选D.从基本不等式成立的条件考虑.①∵a ,b ∈(0,+∞),∴b a ,a b∈(0,+∞),符合基本不等式的条件,故①的推导过程正确;②虽然x ,y ∈(0,+∞),但当x ∈(0,1)时,lg x 是负数,y ∈(0,1)时,lg y 是负数,∴②的推导过程是错误的;③∵a ∈R ,不符合基本不等式的条件,∴4a +a ≥24a ·a =4是错误的;④由xy <0得x y ,y x 均为负数,但在推导过程中将全体x y +y x 提出负号后,(-x y)均变为正数,符合基本不等式的条件,故④正确.5.解析:选C.∵1a +1b +2ab ≥2ab +2ab ≥22×2=4.1时,等号成立,即a =b =1时,不等式取得最小值4.6.解析:选C.∵x 、y 均为正数,∴xy =8x +2y ≥28x ·2y =8xy ,当且仅当8x =2y 时等号成立.∴xy ≥64.二、填空题7.答案:18.解析:1=x +4y ≥2x ·4y =4xy ,∴xy ≤116.答案:大1169.解析:∵x >0,y >0且1=x 3+y 4≥2xy 12,∴xy ≤3.当且仅当x 3=y 4时取等号.答案:3三、解答题10.解:(1)∵x >-1,∴x +1>0.∴y =x +4x +1+6=x +1+4x +1+5≥2?x +1?·4x +1+5=9,当且仅当x +1=4x +1,即x =1时,取等号.∴x =1时,函数的最小值是9.(2)y =x 2+8x -1=x 2-1+9x -1=(x +1)+9x -1=(x -1)+9x -1+2.∵x >1,∴x -1>0.∴(x -1)+9x -1+2≥2?x -1?·9x -1+2=8.当且仅当x -1=9x -1,即x =4时等号成立,∴y 有最小值8.11.证明:∵a ,b ,c ∈(0,+∞),a +b +c =1,∴1a -1=1-a a =b +c a =b a +c a ≥2bc a ,同理1b -1≥2ac b ,1c -1≥2ab c,以上三个不等式两边分别相乘得(1a -1)(1b -1)(1c-1)≥8.当且仅当a =b =c 时取等号.12.解:设污水处理池的长为x 米,则宽为200x 米.总造价f (x )=400×(2x +2×200x )+100×200x +60×200=800×(x +225x )+12000≥1600x ·225x+12000=36000(元)当且仅当x =225x(x >0),即x =15时等号成立.。

(完整版)基本不等式练习题(带答案)

(完整版)基本不等式练习题(带答案)

A. 1 B. a2 b2 C.2ab D.a 2
3. 设 x>0,则 y 3 3x 1 的最大值为 x
( )
A.3 B. 3 3 2 C. 3 2 3 D.-1
4. 设 x, y R, 且x则 y 5, 3x 3y 的最小值是(
2
2
2
2
10. 下列函数中,最小值为 4 的是
( )
A. y x 4 x
B. y sin x 4 (0 x ) sin x
C. y ex 4ex
D. y log3 x 4 logx 3
11. 函数 y x 1 x2 的最大值为
.
The shortest way to do many things is
()
A. a2 b2 c2 2
B. (a b c)2 3
111 C. 2 3
abc
D. a b c 3
7. 若 x>0, y>0,且 x+y 4,则下列不等式中恒成立的是
()
A.
x
1
y
1 4
B. 1 1 1 xy
C. xy 2
D. 1 1 xy
8. a,b 是正数,则 a b , ab, 2ab 三个数的大小顺序是 ( )
12. 建造一个容积为 18m3, 深为 2m 的长方形无盖水池,如果池底和池壁每 m2 的造价为
200 元和 150 元,那么池的最低造价为
元.
13. 若直角三角形斜边长是 1,则其内切圆半径的最大值是
.
14.
若 x, y 为非x2
8( x y
y ) 15 的值恒为正,对吗?答 x
)
A. 10
B. 6 3

基本不等式练习题及答案

基本不等式练习题及答案

基本不等式练习题及答案1.函数y=x+x/(x>0)的值域是什么?正确答案:B.(0,+∞)解析:当x>0时,x/x=1,所以函数可以简化为y=2x。

因为x>0,所以函数的值域为(0,+∞)。

2.下列不等式中正确的个数是多少?正确答案:C.1解析:只有第一组不等式a^2+1>2a成立,其他两个不等式都不成立。

3.若a>0,b>0,且a+2b-2=0,则ab的最大值为多少?正确答案:B.1解析:将a+2b-2=0变形得到2b=2-a,所以b=1-a/2.因为a>0,所以1-a/2<1,所以b<1.所以ab的最大值为a(1-a/2)=a-a^2/2,当a=1时取得最大值为1/2.4.若函数f(x)=x+1/(x-2)在x=a处取最小值,则a等于多少?正确答案:C.3解析:f(x)可以写成x+1/(x-2)=x-2+3+1/(x-2),所以f(x)的最小值在x=3时取得,此时f(3)=3+1=4.5.已知t>0,则函数y=(t^2-4t+1)/t的最小值为多少?正确答案:1解析:将分子t^2-4t+1写成(t-2)^2-3,所以y=(t-2)^2/t-3/t。

因为t>0,所以y的最小值为3/t-(t-2)^2/t,当t=2时取得最小值1.某单位要建造一间背面靠墙的矩形小房,地面面积为12平方米,房子侧面的长度x不得超过5米。

房屋正面的造价为400元/平方米,房屋侧面的造价为150元/平方米,屋顶和地面的造价费用合计为5800元,墙高为3米,不计房屋背面的费用。

求侧面的长度为多少时,总造价最低。

去年,XXX年产量为10万件,每件产品的销售价格为100元,固定成本为80元。

今年起,工厂投入100万元科技成本,每年递增100万元科技成本,预计产量每年递增1万件。

每件水晶产品的固定成本g(n)与科技成本的投入次数n的关系是g(n)=80.若水晶产品的销售价格不变,求第n次投入后的年利润f(n)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

双基自测11.( 人教 A 版教材习题改编 ) 函数 y = x + x ( x >0) 的值域为 ( ) .A .( -∞,- 2] ∪[2 ,+∞ )B .(0 ,+∞)C .[2 ,+∞ )D .(2 ,+∞)2a ;② a +b2+ 2 1 ≥ ,其中正确的个数是.下列不等式:① a + >≤2;③x212x1ab+1() .A .0B .1C .2D .3.若 a > ,b > ,且 a + 2 b - = ,则 ab 的最大值为 ( ) .3 0 0 2 0B .1C .2D . 4.·重庆 若函数 f x = x + 1 x > 在 x = a 处取最小值,则 a =. 4 (2011 )( )x -2(2)()A .1+ 2 B.1+3 C .3 D .4.已知 t > ,则函数 y = t 2- t + 15 0 t 的最小值为 ________.考向一 利用基本不等式求最值1 1【例 1】?(1) 已知 x > 0, y > 0,且 2x +y =1,则 x +y 的最小值为 ________; x(2) 当 x >0 时,则 f ( x) =x 2+1的最大值为 ________.1【训练 1】 (1) 已知 x >1,则 f ( x) = x + x - 1的最小值为 ________. 已知 <x 2 x - x 2 的最大值为(2) < ,则 y =________.0 5 2 5(3) 若 x ,y ∈ (0 ,+∞ 且 2 x + y - xy = ,则 x + y 的最小值为 . ) 8 0________考向二 利用基本不等式证明不等式bc ca ab【例 2】?已知 a >0, b > 0, c > 0,求证: a + b + c ≥a +b +c..【训练 2】 已知 a >0,b >0,c >0,且 a + b +c =1.1 1 1求证: a +b +c ≥9.考向三 利用基本不等式解决恒成立问题x【例 3】?(2010 ·山东 ) 若对任意 x >0,x 2+ 3x +1≤a 恒成立,则 a 的取值范围是 ________.【训练 3】 (2011 ·宿州模拟 ) 已知 x > , y > , xy =x + y ,若 xy ≥ m - 2 恒成0 0 2 立,则实数 m 的最大值是 ________.考向三利用基本不等式解实际问题【例 3】?某单位建造一间地面面积为212 m 的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x 不得超过.房屋正面的造价为400 元2,房屋5 m/m侧面的造价为 150 元/m 2,屋顶和地面的造价费用合计为 5 800 元,如果墙高为 3m ,且不计房屋背面的费用.当侧面的长度为多少时,总造价最低?【训练 3】 (2011 ·广东六校第二次联考 ) 东海水晶制品厂去年的年产量为10 万件,每件水晶产品的销售价格为100 元,固定成本为 80 元.从今年起,工厂投入 100 万元科技成本. 并计划以后每年比上一年多投入 100 万元科技成本. 预计产量每年递增 1 万件,每件水晶产品的固定成本 g n 与科技成本的投入次数 n( )g n =80 . 若水晶产品的销售价格不变,第 n 次投入后的年利润为的关系是 ( )n +1f ( n) 万元.(1) 求出 f ( n) 的表达式;(2) 求从今年算起第几年利润最高?最高利润为多少万元?211 【试一试】 (2010 ·四川 ) 设 a >b >0,则 a +ab +aa -b 的最小值是 () .? ?A .1 B.2C .3D .4双基自测D .(2 ,+∞)答案C2.解析①②不正确,③正确,1 1x 2+ x 2 +1=( x 2+ 1) + x 2+1-1≥2- 1= 1. 答案B13.解析∵ a > 0,b >0,a +2b =2,∴ a +2b =2≥2 2ab ,即 ab ≤2. 答案 A.解析 当 x > 2 时,x - > ,f x = x - 2) + 1 + ≥ x - × 1 +4 2 0 ( ) ( x -22 2 ? 2? x - 212=4,当且仅当 x -2=x -2( x > 2) ,即 x =3 时取等号,即当 f ( x) 取得最小值时,x = ,即 a =3. 答案C3t 2- t +1 1.解析 ∵t > ,∴ y =4时取=1 5tt4242等号.答案- 2【例 1】解析(1) ∵x >0,y >0,且 2x + y = 1,1 1x +y 2 x + yyxyx∴ x + y = x + y = 3+ x + y ≥3+ 2 2. 当且仅当 x = y 时,取等号.x 2 2 1(2) ∵ ( 1 0 ) x + 1 1 2 1 xx + x案 (1)3+2 2 (2)11【训练 1】.解析(1) ∵x >1,∴f ( x) =( x -1) + x - 1+1≥2+ 1=3 当且仅当x = 时取等号. y = x - 2 - x 1 - x2 x 2 (2)x =x (2 = ·5x ·(2,∵ <x < ,∴2 5 5 ) 5 5 ) 0 5 5<- x > ,∴ x - x 5x +2-5x21 x = - x ,2,2≤=1,∴ y ≤ ,当且仅当5 0 5 (2 5 )255 2 5112 8即 x =5时, y max =5.(3)由 2x + 8y -xy =0,得 2x +8y = xy ,∴ y + x = 1,8 2 y x 4y x y x+y ≥10+2×2× ∴ x + y = ( x +y) x +y = 10+ x + y = 10+2 xx · y =18,y xx = yx + y - xy = ,∴ x = ,y = ,当且仅当 x =y ,即2 时取等号,又 2 80 12 6∴当 x =12,y = 6 时, x +y 取最小值 18.1答案(1)3 (2) 5(3)18【例 】证明 a > ,b > ,c > ,∴ bc cabc cabc ab ≥∵222 00 0 a bab2a cbc abca ab ca abbc ca ab a · c = 2b ; b + c ≥2b ·c = 2a. 以上三式相加得: 2a +b + cbc ca ab≥ 2( a +b +c) ,即 a + b + c ≥ a + b + c.【训练 2】证明 ∵ a > 0,b >0,c >0,且 a + b + c = 1,∴1+1+1=a +b +c + a + b + c + a b c a b a +b +cb c a c a bb ac ac bc=3+a +a +b +b +c +c =3+ a +b + a +c + b +c1≥3+ 2+ 2+ 2= 9,当且仅当 a =b =c =3时,取等号.解析若对任意 x > , 2 x ≤ a 恒成立,只需求得 y = 2 x 的最大值0 x +3x +1 x +3x + 1x111即可,因为 x >0,所以 y = x 2 +x +=1 ≤= ,当且仅当 x =131x +15x +3 2 x · x时取等号,所以 a 的取值范围是1,+∞ 答案 1,+∞55【训练 】解析由 x > ,y > ,xy =x +y ≥ 2 xy ,得 xy ≥ ,于是由 m - 3 0 0 2 2 82≤ xy m m m 的最大值为 10. 答案 10 恒成立,得 -2≤8, ≤10,故由题意可得,造价 y = 3(2 x × 12 400)900 x + 16 【例 .解 + × + = + 3 150 x 5 800 x5 800(0 < x ≤ 5) ,则 y = 900 x +16+ 5 800≥ ×2x × 16+ 5 800 =13 x 900 x000( 元) ,当且仅当 x = 16 4 米时,总造价最低.x ,即 x =4 时取等号.故当侧面的长度为【训练 】 解 (1) 第 n 次投入后,产量为 (10 n 万件,销售价格为 100 元, 3 + ) 固定成本为 80 元,科技成本投入为 n 万元.所以,年利润为 f n =(10 100 ( ) n +180- 100n( n ∈ N *) .(2) 由 (1) 知 f ( n) = (10 +n)100-80 + n) 100--n + 1n +1100nn + + 99= 1 000 - 801≤ 520(万元 ) .当且仅当 n + =,n +1n +1即 n =8 时,利润最高,最高利润为 520 万元.所以,从今年算起第 8 年利润最高,最高利润为 520 万元.【示例】.正解 ∵a >0,b >0,且 a +b =1,1 2 1 2b aba= +∴ + =+( a + b = + + +a ·ba ba b ) 1 2 a b ≥3+ 2322.a +b = ,a = - ,121 2当且仅当 b a即 3+2 2.时, + 的最小值为, b = - a b=2a b2211211 【试一试】尝试解答 ]a+ab +a a -b =a -ab +ab + ab +a a -b=a( a -b)????11 11 +a a -b + ab +ab ≥2 a?a -b?·a a -b +2 ab ·ab = 2+2=4. 当且仅 ? ? ? a a -b = 1 且 ab = 1 ,即 a = b 时,等号成立.答案 D 当 ( ) a?a -b? ab 2。

相关文档
最新文档