海藻酸钠接枝聚合物研究进展

海藻酸钠接枝聚合物研究进展
海藻酸钠接枝聚合物研究进展

海藻酸钠接枝聚合物研究进展

张连飞;宋淑亮;梁浩;吉爱国

【期刊名称】《中国生化药物杂志》

【年(卷),期】2009(030)004

【摘要】海藻酸钠作为药用辅料具有良好的生物相容性和生物降解性,且无毒、无免疫原性.海藻酸钠的结构特点是含有大量羧基和羟基,可以通过多种接枝反应如化学接枝、化学-酶法和紫外光接枝等对其进行改性.为更合理选择改性方法以便推进海藻酸钠接枝聚合物广泛的药学应用,此文对海藻酸钠与烷烃、环糊精、烯类、氨基酸类、醇类等的接枝反应及其改性聚合物应用进行了综述.

【总页数】4页(281-284)

【关键词】海藻酸钠;接枝;聚合物;递药系统

【作者】张连飞;宋淑亮;梁浩;吉爱国

【作者单位】山东大学,威海国际生物技术研发中心,山东,威海,264029;山东大学,威海国际生物技术研发中心,山东,威海,264029;山东大学,威海国际生物技术研发中心,山东,威海,264029;山东大学,威海国际生物技术研发中心,山东,威海,264029;山东大学,威海分校,海洋学院,山东,威海,264029;山东大学,药学院,山东,济南,250012

【正文语种】中文

【中图分类】TQ464.1

【相关文献】

1.马来酸酐接枝聚合物的制备及其应用研究进展 [J], 邹梦娇; 陈福林; 岑兰; 周彦豪

聚噻吩类导电聚合物的研究进展

聚噻吩类导电聚合物的研究进展 姓名:丁泽 班级:材化12-3 学号:1209020302

摘要 π-共轭聚合物被认为是很有发展前景的材料,因为它拥有独特的光电特性,可以被广泛的应用于太阳能电池(PSCs),电致变色器件,传感器,聚合物发光二极管(PLEDs)等各种领域。这些电活性与光活性聚合物通常是基于噻吩,吡咯,苯,芴或咔唑等芳环、芳杂环等单元的聚合物。在大量的电致变色材料中,噻吩类聚合物由于它们的高电子导电性和好的氧化还原特性,以及在可见与红外区域,快的响应时间,显著地稳定性和高的对比率而成为一类重要的电致变色共轭聚合物。更重要的是,通过聚合物链结构改动,噻吩类聚合物拥有容易的禁带可调性,可展示不同的电致变色特性。 关键词:π-共轭聚合物;电化学聚合;共聚;导电聚合物;

一、导电聚合物简介 1.1导电聚合物的分类 导电高分子材料包括结构型导电高分子材料和复合型导电高分子材料两大类型。 复合型导电高分子材料是将各种导电性物质以不同的方式和加工工艺(如分散聚合、层积复合、形成表面电膜等)填充到聚合物基体中而构成的。该类材料通常是填充高效导电粒子或导电纤维,较普及的是炭黑填充型和金属填充型。复合型导电高分子材料在技术上比结构型导电高分子材料具有更加成熟的优势。 结构型(又称作本征型)导电聚合物是指聚合物本身具有导电性或经掺杂处理后具有导电性的聚合物材料。这种高分子材料本身具有“固有”的导电性,由其结构提供载流子,一经掺杂,电导率可大幅度提高,甚至可达到金属的导电水平。如聚乙炔、聚吡咯、聚苯胺、聚噻吩、聚苯硫醚、聚对苯撑等均属于结构型导电高分子材料(如图1-1)[1]。结构型导电聚合物是目前导电聚合物研究领域的重点。

树形、超支化聚合物的研究进展

树形、超支化聚合物的研究进展 董璐斌 (天水师范学院化学系,甘肃天水,741000)摘要:随着社会的高度发展,对原材料的性能提出了越来越高的要求,也推动了新型高分子化合物和新材料的发展。树形、超支化聚合物由于其独特的分子结构和物理化学性质使之在众多领域有着广泛的用途。故本文对树形、超支化聚合物的应用研究进展进行综述。 关键词:树枝状聚合物;超支化聚合物;应用;进展 树形聚合物和超支化聚合物为高度支化的聚合物,性质的独特性,引起了众多领域科学家的广泛关注,在此主要介绍树形聚合物在超分子化学、生物医学、光化学与电化学、催化剂等领域的研究进展;超支化聚合物在热固性树脂增韧剂、染色助剂、缓释剂、超支化液晶、涂料及聚合物薄膜方面的应用研究进展。 一、树形聚合物的应用研究进展 1、超分子化学 由于树形聚合物的结构、尺寸、表面和内部的官能团种类及数目等分子参数都可以精确控制,使得其非常适合作为超分子体系的构筑单元和研究超分子体系的模型,因此,从树形聚合物的出现开始就在超分子领域引起了极大的兴趣。 Cardulls等合成了一种两亲的C60树枝状聚合物,并在空气-水界面上形成了单分子层的L2B膜。C60树枝状聚合物共轭体系是由富勒烯二酸合成的。这种膜有可能应用于光学技术或生物传感器领

域。 Crooks等用在金箔表面重复沉淀的方法,通过第四代的聚酰胺2胺树形聚合物(PAMAM)与马来酸酐-甲基乙烯基醚共聚物自组装成渗透选择性膜,该膜对外部刺激、pH值变化具有响应性。此膜作超分子“门”的功能是pH的函数:在低pH值时阴离子容易穿透而阳离子被排除在外;在高pH值时,结果相反。 2、生物和医学 树形聚合物的大小、内部空腔和表面管道决定了它可以作为蛋白质、酶和病毒理想的合成载体,再加上它们很容易进行官能化作用,树形聚合物在很多与生物和医学相关的领域都得到了应用。这些领域包括药物载体、基因载体、DNA生物传感器、硼中子俘获治疗试剂、核磁共振造影剂、免疫制剂等。 Roy和Zanini等在糖型树形聚合物方面进行了部分研究工作。他们合成的L2赖氨酸树形聚合物能有效的抑止红血球的凝聚。这一点已通过流感A病毒试验证实。 硼中子俘获治疗(BNCT)是一种最新治疗癌症的方法。在这种疗法中,低能中子与10B核子进行的核裂变反应所产生的能量及细胞毒素用来破坏恶性细胞。PAMAM树形聚合物(G2,G4)首先连接到异氰酸根络硼烷,再被接到单克隆抗体上,这样就具有了通过免疫结合来选择靶向肿瘤的能力。 树形聚合物在医学上的另一个重要应用是用作核磁共振造影剂(MRI)。它与螯合剂相连可对靶器官进行成像,以检查脑或器官血池

聚苯胺的制备与导电性的观察

实验七:聚苯胺的制备与导电性的观察 姓名:辛璐学号:PB09206226 日期2011年11月10日 目录 1.1前言﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍P2 2.1关键词﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ P2 3.1实验中的具体概念及部分产品的说明﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍P2 3.1.1.共轭聚合物﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ P2 3.1.2.化学氧化聚合﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ P2 3.1.3.电化学聚合﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ P2 4.1实验的具体说明﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ P2 4.1.1对于功能高分子材料的认识和发展过程﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍P2 4.1.2对于共轭化合物的具体说明﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ P2 4.1.2.1共聚化合物作为导电聚合物使用的普遍缺﹍﹍﹍﹍﹍﹍﹍﹍ P2 4.1.2.2聚苯胺具有的优点﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ P2 4.1.2.3聚苯胺的应用 4.1.3 :本实验制备原则的部分说明﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍P2 4.1.3.1化学氧化聚合的一些条件 4.1.3.2本反应采用的方式 4.1.3.3对于聚苯胺溶解性的部分说明 4.1.3.4对于聚苯胺导电性的影响因素﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍P3 5.1实验的仪器药品以及其物理常数﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ P3 5.1.1实验仪器 5.1.2实验药品 5.1.3物理常数 6.1实验的具体步骤﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ P4 6.1.1溶液聚合法 6.1.2乳液聚合法 7.1实验现象以及实验中出现现象及其本质的解释说明﹍﹍﹍﹍﹍﹍﹍﹍P5-P6 8.1 思考题与解答﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍P6 附录 9.1 对于部分相关药品及专业名词的查找﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍P7 9.1.1苯胺﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍P7-P8 9.1.2聚苯胺﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍p8 9.1.3十二烷基苯磺酸﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍P9 9.1.4 二甲苯﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍P10

凝胶的应用与研究进展

凝胶的应用与研究进展 班级:应用化学10-2 姓名:陈某某学号:1011####### 摘要:凝胶是一类具有广泛应用前景的高分子材料,本文主要叙述了智能纳米水凝胶的应用研究进展、等离子体在制备碳凝胶材料研究方面的应用及研究进展、气凝胶研究领域取得新进展的应用及研究进展,简要介绍了水凝胶在国内外研究状况,并对其发展趋势作了展望。 关键词:凝胶;气凝胶;应用;进展 一、智能纳米水凝胶的应用研究进展 智能纳米水凝胶最早报道于上世纪八十年代初,当时未受到特别的重视。近十年来随着纳米科技、生物医学和智能材料的发展,智能纳米水凝胶显示出了诱人的应用前景,因此受到国内外的高度关注。 水凝胶是一类具有亲水基团,能被水溶胀但不溶于水的具有三维网络结构的聚合物。它在水中能够吸收大量的水分显著溶胀,并在显著溶胀之后能够继续保持其原有结构而不被溶解。它能够感知外界刺激的微小变化,如温度、pH值、离子强度、电场、磁场等,并能够对刺激发生敏感性的响应,常通过体积的溶胀或收缩来实现。水凝胶的这一特点使它在生物医学领域、记忆元件开关、生物酶的固定、农业中的保水抗旱等方面有广泛的应用前景。 智能纳米水凝胶还有如下特点:(1)能分散在水介质中,形成稳定的胶体体系;(2)内部具有交联结构,稳定性比其它聚合物纳米粒子如聚合物胶束等的稳定性要高;(3)比表面积大,表面的功能基团可偶联有特定作用的组分;(4)含水量高,类似于生物组织,具有良好的生物相容性;(5)与其它纳米粒子一样,容易越过生物屏障;(6)由于智能水凝胶对外界刺激产生响应的速度与其尺寸大小成反比,因而智能纳米水凝胶对外界刺激产生响应的速度非常快。

有机导电聚合物研究进展a

有机导电聚合物研究进展 1 导电聚合物 各种人造聚合物俗称为塑料或化纤,天然聚合物主要有蛋白质和树脂等。上述有机固体通常是绝缘体,而增强它们的电导率是一个非常吸引人的研究领域。因为这类材料成本低廉、重量轻,更重要的是,可以把聚合物的可塑以及柔韧等优良机械特性与通常只有金属才具备的高电导特性结合在一起,从而将应用范围大大拓宽。 1977年,白川英树在一次聚乙炔合成的实验中,意外地加入了过多的催化剂(齐格勒—纳塔催化剂,以1963年诺贝尔化学奖得主Ziegler 和Natta命名,其作用是定向催化——用于严格控制聚合物的空间结构)。不料,在反应器中生成了一种光亮的反式聚乙炔薄膜。如果将薄膜暴露于卤族Br2或I2蒸汽,生成物的电导率可以提高1012倍[1],从此有机物不能导电的观念被打破。 2000 年度诺贝尔化学奖授予了三位致力于导电聚合物研究的科学家,他们是美国物理学家艾伦·黑格(Alan Heeger)、化学家艾伦·麦克迪尔米德(Alan MacDiarmid )和日本化学家白川英树(Hideki Shirakawa )。这是对导电聚合物研究的充分肯定。 导电聚合物根据材料的组成可以分成复合型导电聚合物材料和本征型导电聚合物材料两大类[2-4]。复合型导电聚合物材料是由普通高分子结构材料与金属或碳等导电材料,通过分散、层合、梯度复合、表面镀层等复合方式构成。其导电作用主要通过其中的导电材料来完成。本征型导电聚合物材料也被称为结构型导电聚合物材料,其高分子本身具备一定的导电能力,这种导电聚合物如果按其结构特征和导电机理还可以进一步分成:载流子为自由电子的电子导电型聚合物和载流子为能在聚合物分子间迁移的正负离子的离子导电型聚合物。 在电子导电聚合物的导电过程中,载流子在电场的作用下能够在聚合物内定向移动形成电流。电子导电聚合物的共同结构特征是分子内有大的线性共轭π电子体系,给自由电子提供了离域迁移条件,故又称为共轭聚合物。作为有机材料,聚合物是以分子形态存在的,其电子多为定域电子或具有有限离域能力的电子。π电子虽然具有离域能力,但它并不是自由电子。当有机化合物具有共轭结

超支化聚合物的研究进展

超支化聚合物的研究进展 李璇 化学与环境学院 1105班 111030210 摘要超支化聚合物由于具有高度支化三维球状结构以及众多的端基的独特结构特征,与传统的线型高分子在性能上有很大差异,因而引起科学家们高度关注。本文通过对其结构、合成及应用的介绍,旨在加深人们对该领域的了解,从而促进该领域的快速发展。 关键词树枝状分子;超支化聚合物;结构特征; Progress of Hyper-branched Polymers Li Xuan (College of Chemical and Environment Class 1105 No.111030210) Abstract Hyper-branched polymers due to the unique characteristics of the highly branched three-dimensional spherical structure and a large number of end group structure, has the very big difference performance with the traditional linear polymers, which attracted the attention of scientists. This paper describes the structure, synthesis and application of hyper-branched polymers, in order to deepen the understanding of the people in this field, thus contributing to the rapid developments in the field. Key Words Dendrimer,Hyper-branched polymer,Structural characteristic 在过去的很长一段时间,聚合物化学家们发现了一种由一系列支化单元组成的树状支化大分子--新的“树状分子”,它可分为树枝状大分子和超支化聚合物两大类。树状大分子的合成为了控制分子的尺寸和形状,通常需要多步反应。而超支化高分子因其分子结构而得名,它是一种经一步法合成得到的高度支化的聚 型单体分子间的缩聚合物[1]。早在1952年,Flory[2]就首先在理论上论述通过AB x 制备高度支化大分子超支化聚合物的可能性。但是,对于这种非结晶、无链缠绕的超支化聚合物,当时并未引起足够重视。直到90年代初,Kim等[3]制备了超支化的聚苯之后,人们才开始对它产生兴趣。 1 超支化聚合物简介 1.1 超支化聚合物支化度 超支化聚合物有三种不同的重复单元,即树状单元、线型单元和由未反应的B官能团所决定的的末端单元。1991年,Fr chet 把支化度作为描述超支化聚合物结构的一个因素, 如式1 所示: 支化度(DB)=(D+T)/(D+T+L)(1) 在这里,D 代表树状单元数, T 代表末端单元数,L 代表线型单元数。 Frey 基于反应过程, 将式1 修改成如式2 所示: (2) 这里,N 是分子数。因为式(2)中的N 可被忽略, 所以式(1)和(2)给出的DB 几乎相同。

SiO2气凝胶疏水改性方法研究进展

SiO 2气凝胶疏水改性方法研究进展1 刘明龙,杨德安 天津大学材料学院先进陶瓷与加工技术教育部重点实验室,天津 (300072) E-mail :m.dragonliu@https://www.360docs.net/doc/131788223.html, 摘 要:文章综述了对SiO2气凝胶进行疏水改性的技术的最新研究进展,介绍了溶剂置换-表面改性法,直接表面改性法和联合前驱体法三种改性方法的改性机制及各种常用的表面改性剂,并从所制得的最终样品的性能、成本、实用性等方面进行了比较,从而总结出一种较经济实用的制备方法。 关键词:SiO2气凝胶;纳米多孔材料;溶胶-凝胶;疏水型;绝热材料 1 本课题得到国家自然基金委重点基金项目(10232030),天津大学先进陶瓷与加工技术教育部重点实验室 (x06050)的资助。 SiO 2气凝胶是一种具有独特的纳米多孔网络结构的轻质材料,因其极低的折射率、热导率和介电常数,高的比表面积和对气体的选择透过等特性,而在绝热材料、隔音材料、过滤材料以及催化剂载体等众多领域有着广泛的应用前景,尤其在作为高性能绝热材料方面受到了普遍关注。由于通常方法制备出的SiO 2气凝胶内表面有大量的硅羟基存在,它们不仅会因缩聚而引起凝胶块体产生额外收缩,还能吸附空气中的水分而使气凝胶开裂破碎,严重影响了气凝胶的声、光、电、热、力学等性能,限制了它的应用场合。因此,只有设法对制备的气凝胶进行疏水改性,增加它在空气中的稳定性和使用寿命,另外,再配合一系列增强、增韧措施,以制成纳米多孔绝热复合材料,才能在保温工程中发挥出它的真正作用。 1. SiO 2气凝胶的疏水改性及原理 SiO 2气凝胶通常是由溶胶-凝胶法制备的,开始制得的醇凝胶固态骨架周围存在着大量溶剂(包括醇类、少量水和催化剂),要得到气凝胶,必须通过干燥以去掉其中的溶剂。然而,在溶剂干燥过程中,由于凝胶纳米孔内气-液界面间产生表面张力,导致邻近的Si-OH 基团发生缩聚反应,形成 Si-O-Si 键,从而产生了不可恢复的收缩;另外,这些Si-OH 基团还可以吸附空气中的水分,使表面张力增大,从而使气凝胶块体开裂破碎。有时,气凝胶内一些未完全反应的Si-OCH 3(或Si-OC 2H 5)基团随使用时间的延长,也会吸附空气中的水分,发生水解-缩聚反应。气凝胶表面这些基团的存在是导致气凝胶性能恶化的主要原因。 因此,要获得疏水型气凝胶,就必须采用一定的方法,将上面的亲水基团取代成疏水稳定的Si-R 基(R=CH 3,C 2H 5等)基团。这些基团的存在,一定程度上会限制气凝胶表面对水分的吸附,从而避免了在使用时性能的恶化。 2. SiO 2气凝胶疏水改性的方法 2.1 溶剂置换-表面改性法 用一定的疏水表面改性剂取代硅凝胶表面的亲水基团是最常用的一种方法。表面改性剂的种类很多,在实际工作中要根据不同的需要和材料的本身特性来确定。改性剂一般是由亲水基和憎水基组成,对于硅质气凝胶而言,其表面含有较多的Si-OH ,-OH 可以与OH, Cl, COOH, HNCO 等基团反应,从而使聚硅氧烷与有机聚合物(如聚酯,聚氨酯,换氧树脂等)得以通过Si-O 键连接,大大改善了有机聚合物的耐热、耐湿、抗水

导 电 聚 苯 胺 的 化 学 合 成 及 导 电 性 能

导电聚苯胺的化学合成及导电性能 魏渊石圆圆罗亚茹刘正伦 (广州大学化学化工学院化工系) 摘要导电聚苯胺是结构和性能最稳定的导电高分子材料, 有较广泛的应用前景。本实验用化学氧化合成方法,研究了氧化剂种类、用量以及介质酸的浓度等因素对苯胺聚合反应及产物性能的影响,并运用四探针法在电阻率测试仪上完成了PAn的电导率测试。 关键词导电聚苯胺,化学合成,掺杂,电导率 前言传统的有机化合物由于分子间的相互作用弱,一般皆认为是绝缘体。因而过去一直只注重高分子材料的力学性能和化学性能。20世纪50年代初人们发现有些有机物具有半导体性质;60年代末又发现了一些具有特殊晶体结构的电荷转移复合物;70年代初发现了具有一定的导电性的四硫富瓦烯一四睛代对苯醒二甲烷(TTF一TCNQ)。1977年人们发现:聚乙炔化学掺杂后电导率急剧增加,可以达到金属秘的导电性能。此后人们开始关注高分子材料的导电性,逐渐开发出各种导电性高分子材料,如聚乙炔、聚毗咯、聚噬吩和聚苯胺等。直到1984年聚苯胺才被MacDiarmid等人重新开发,他们在酸性条件下制备了高电导率的聚苯胺;1987年,日本桥石公司和精工电子公司联合制得了用聚苯胺为电极制成的钮扣式二次电池作为商品投向市场,使聚苯胺很快成为导电高分子中的研究热点[1]。 本实验采用盐酸进行掺杂,使苯胺氧化聚合为聚苯胺,而且就氧化剂的种类与用量、介质酸的浓度等因素对苯胺聚合产物的产率和导电性能的影响等进行了探究。 其聚合反应历程如0.1所示【2】

图0.1 Radical reaction course of PANI polymerization 聚合反应可以分为三步:链引发、链增长和链终止。首先,苯胺被慢速氧化形成阳离子自由基,苯胺阳离子自由基的形成是决定反应速率主要的一步。接着,这个自由基阳离子可能失去质子或电子,与苯胺单体结合生成一个苯胺的二聚体,这种结合主要是以头尾相连接的方式结合,二聚体一旦形成,就可以被氧化剂迅速的氧化成醒亚胺结构,这是因为它的氧化潜能低于苯胺的氧化潜能。二聚体的形成是反应的关键步骤,接着另一个苯胺单元可能亲核性的进攻被氧化的二聚体形成三聚体,这个过程就像形成的二聚体一样,不需要氧化两个苯胺分子随着氧化单元逐步加到二聚体上,所产生的齐聚物更易被氧化,更易于接受苯胺单体的亲核性进攻。链增长以头一尾结合的方式进行着,一旦这种结构的浓度足够大,它就可能被氧化,并与剩余的苯胺单体反应,直到高分子量的聚合物形成。在链增长阶段,放出大量的热,使反应发生自加速的现象而迅速进行,随后反应迅速进入链终止阶段。这个过程可能会因放热而难以控制,导致分子量分布加宽,聚合物缺陷增多,严重影响产物的电导率。由此可见,低温聚合有利于延缓终止的时间,使分子量较大、分子链较长,而较长的共轭有利于载流子的传输,从而具有较高的电导率。【3】 但本实验研究过程是在室温下进行。 1 实验部分 1.1 原料 过硫酸铵、盐酸等为分析纯试剂;苯胺、重铬酸钾等为化学纯试剂;其中苯胺在使用前蒸馏至完全无色;实验用水为去离子水。 1.2 实验仪器设备 SDY—型数字式电阻率测试仪,BS600L电子天平,DF一1型集热式磁力搅拌器,SHE 一D(III)循环水式真空泵,Z一88电热恒温真空干燥箱,三口烧瓶,冷凝装置,耐酸滤过漏斗,烧杯、容量瓶若干 1.3 聚苯胺(P An) 的合成

关于导电高分子材料的研究进展

湖北汽车工业学院 本科生课程论文 《新材料导论》 论文题目关于导电高分子材料的研究进展学生专业班级 学生姓名(学号) 指导教师(职称) 完成时间

关于导电高分子材料的研究进展 摘要:与传统导电材料相比较,导电高分子材料具有许多独特的性能。导电高聚物可用作雷达吸波材料、电磁屏蔽材料、抗静电材料等。介绍了导电高分子材料的概念、分类、导电机理及其应用领域,综述了近些年来国内外科研工作者对导电高聚物的研究进展状况并对其发展前景进行了展望。 关键词:导电高分子;功能材料;导电机理;应用;述评。 自从1976年美国宾夕法尼亚大学的化学家MacDiarmid领导的研究小组首次发现掺杂后的聚乙炔(Polyacetylene,简称PA)具有类似金属的导电性以后,人们对共轭聚合物的结构和认识不断深入和提高,新型交叉学科)))导电高分子领域诞生了。在随后的研究中科研工作者又逐步发现了聚吡咯、聚对苯撑、聚苯硫醚、聚噻吩、聚对苯撑乙烯撑、聚苯胺等导电高分子。导电高分子特殊的结构和优异的物理化学性能使它成为材料科学的研究热点,作为不可替代的新兴基础有机功能材料之一,导电高分子材料在能源、光电子器件、信息、传感器、分子导线和分子器件,以及电磁屏蔽、金属防腐和隐身技术上有着广泛、诱人的应用前景。到目前为止,导电高分子在分子设计和材料合成、掺杂方法和掺杂机理、可溶性和加工性、导电机理、光、电、磁等物理性能及相关机理以及技术上的应用探索都已取得重要的研究进展。本文介绍了导电高分子的结构特征、导电机理及其应用领域,综述了近些年来导电高分子材料研究领域的进展状况。 1 导电高分子材料的分类 高分子导电材料通常分为复合型和结构型两大类: ①复合型高分子导电材料。 由通用的高分子材料与各种导电性物质通过填充复合、表面复合或层积复合等方式而制得。主要品种有导电塑料、导电橡胶、导电纤维织物、导电涂料、导电胶粘剂以及透明导电薄膜等。其性能与导电填料的种类、用量、粒度和状态以及它们在高分子材料中的分散状态有很大的关系。常用的导电填料有炭黑、金属粉、金属箔片、金属纤维、碳纤维等。 ②结构型高分子导电材料。 是指高分子结构本身或经过掺杂之后具有导电功能的高分子材料。根据电导率的大小又可分为高分子半导体、高分子金属和高分子超导体。按照导电机理可分为电子导电高分子材料和离子导电高分子材料。电子导电高分子材料的结构特点是具有线型或面型大共轭体系,在热或光的作用下通过共轭π电子的活化而进行导电,电导率一般在半导

SiO2气凝胶复合材料的研究进展

综 述文章编号:1009-9441(2018)05-0005-06 SiO 2 气凝胶复合材料的研究进展① □□翟界秀,杨大令,韩俊南 (大连理工大学建设工程学部建筑材料研究所,辽宁大连 116024) 摘 要:介绍了国内外SiO 2 气凝胶复合材料的研究现状,并 对其未来发展方向进行了展望。 关键词:SiO 2 气凝胶;复合材料;纤维;聚合物 中图分类号:TB33;TQ427.2 文献标识码:A 引言 气凝胶是一种以空气为分散质,由纳米粒子或 者聚合物构建成骨架,具备纳米级独特三维网络结 构的材料[1]。1931年,KistlerSS通过溶胶-凝胶 法以硅酸钠为硅源制备出SiO 2 气凝胶,标志着气凝 胶的问世[2]。迄今为止,气凝胶材料已由最初的氧 化硅、氧化钛、氧化铝等简单的无机气凝,发展出有 机气凝胶以及炭气凝胶[1,3],得到了蓬勃的发展。 气凝胶微观结构呈链状或珍珠串状,这种独特 的结构使气凝胶具备独特的性能,如高比表面积、高 孔隙率[4]、低密度、低热导系数[5-6]、低声抗阻以及 强吸附性[7]。以SiO 2 气凝胶为例,其结构模型和宏 观形态如图1[8-9]所示,串珠般的三维网络结构使 其具备气凝胶众多优异的性能,在航空航天[10]、建 筑保温[11-12]、催化吸附[7,13]以及生物医药[14-15]等 众多领域被广泛应用,但是这种结构也使SiO 2 气凝 胶干燥易开裂、力学性能差、脆性高,这些不足限制 了SiO 2 气凝胶的推广与应用。 本文对目前国内外学者就SiO 2 气凝胶上述缺 陷的改进方法研究进展进行了综述,以期为相关从 业者提供参考。 1 SiO 2 气凝胶力学性能差的原因 目前SiO 2 气凝胶的制备通常采用溶胶-凝胶 法,整个过程主要分为三大阶段:凝胶制备阶段、凝 胶陈化阶段以及干燥阶段,得到的制品主要由纳米 级SiO 2粒子组成,每个阶段制备参数的选取均对气 凝胶的性能有重大的影响[9]。SiO 2 气凝胶力学性 能差,脆性较高,其原因主要有两个:一是构成其网 络结构的骨架较细,受力能力差;二是构成网络结构 的二级粒子之间的接触连接面积小,受到外力作用 时易断裂破碎[16-18] 。 (a)  结构模型 (b) 宏观形态 图1 SiO 2 气凝胶的结构模型和宏观形态 目前改善SiO 2 气凝胶材料力学性能的方法有 两种:一种是通过改变制备参数来增强纯SiO 2 气凝 胶骨架的强度;另一种是制备SiO 2 气凝胶复合材 料[19]。针对第一种方法,研究人员最早提出采用超 临界干燥法来解决纯SiO 2 气凝胶的干燥开裂问题, 但该方法成本高、危险性大;之后又提出了成本较 · 5 · 建材技术与应用 5/2018 ①基金项目:国家自然科学基金青年基金资助项目(51303018)。

分子自组装的研究进展

分子自组装技术的研究进展 摘要:分子自组装在生物工程、分子器件、以及纳米科技领域已经有很广泛的应用。在未来的几十年里,分子自组装装作为一种技术手段将会在新技术领域产生重大的影响。本文介绍了分子自组装技术的基本原理、影响因素、目前的研究进展以及应用,最后展望了自组装技术的前景。 关键词:分子自组装;应用 Advances in Molecule Self-assembly Technology Abstract: Molecule self-assembly technology has been widely applied in biotechnology, molecular device, and nanotechnology. As a fabrication tool, molecular self-assembly technology will become tremendously important in the coming decades. In this article, mechanism, influence factors, some research advances and application of molecule self-assembly technology are reviewed. At the end, we prospect the future of this technology. Keywords: Molecule self-assembly; application 自组装[1](self-assembly,简称SA)是组分自主构筑成团或结构物的过程,自组装过程能使无序状态转变成有序状态。自组装技术主要分为定向自组装(Directed self-assembly)和分子自组装(Molecular self-assembly)。 分子自组装是指基本结构单元(分子,纳米材料,微米或更大尺度的物质)自发形成有序结构的一种技术。在自组装的过程中,基本结构单元在基于非共价键的相互作用下自发的组织或聚集为一个稳定、具有一定规则几何外观的结构。通过分子自组装我们可以得到具有新奇的光、电、催化等功能和特性的自组装材料,特别是现在正在得到广泛关注的自组装材料在非线性光学器件、化学生物传感器[2]、信息存储材料以及生物大分子合成方面都有广泛的应用前景,受到研究者广泛的重视和研究。本文下面对分子自组装技术及研究进展进行综述。 1 分子自组装技术 分子自组装是指在热力学平衡条件下,分子与分子或分子中某一片段与另一片段之间利用分子识别,相互通过分子间大量弱的非共价键作用力,自发连接成具有特定排列顺序、结构稳定的分子聚集体的过程。这里的“弱非共价键作用力”

导电聚苯胺的研究进展

导电聚苯胺的研究进展 摘要:导电高分子的出现打破了聚合物仅为绝缘体的传统观念。在众多的导电高分子中,聚苯胺是目前研究进展最快的导电高分子之一。介绍了聚苯胺的结构,性质,合成和掺杂,改性,并对其应用前景作了展望。 关键词:导电高分子;聚苯胺;改性 2000年10月10日瑞典皇家科学院授予美国Alan MacDiamid和Alan Heeger 教授及日本Hideki Shirakawa 教授2000年诺贝尔化学奖,以表彰他们开创了新的研究领域——导电高聚物。导电高聚物的出现不仅打破了聚合物仅为绝缘体的传统观念,而且对高分子物理和高分子化学的理论研究也是一次划时代的事件,为功能材料开辟了一个极具应用前景的崭新领域。最早发现的本征导电高聚物是掺杂聚乙炔(PA),在随后的研究中科研工作者又相继开发了聚吡咯(PPy)、聚对苯(PPP)、聚噻吩(PTh)、聚对苯撑乙烯(PPv)、聚苯胺(PAn)等导电高分子。人们对聚乙炔的研究较早,也最为深入,但由于它的制备条件比较苛刻,且它的抗氧化能力和环境稳定性差,给它的实用化带来了极大困难。在众多导电高分子中,聚苯胺以其良好的热稳定性、化学稳定性和电化学可逆性,优良的电磁微波吸收性能,潜在的溶液和熔融加工性能,原料易得,合成方法简便,还有独特的掺杂现象等特性,成为现在研究进展最快的导电高分子材料之一。 1 聚苯胺的结构 聚苯胺是典型的导电聚合物,常温下一般呈不规则的粉末状态,具有较低的结晶度和分子取向度。与其它导电高聚物一样,它也是共轭高分子,在高分子主链上形成一个电子离域很大的p-π共轭。1987 年,MacDiarmid[1]提出了后来被广泛接受的苯式-醌式结构单元共存的模型,两种结构单元通过氧化还原反应相互转化。即本征态聚苯胺由还原单元: 和氧化单元: 构成,其结构为: 其中y值用于表征聚苯胺的氧化还原程度,不同的y 值对应于不同的结构、组分和颜色及电导率,完全还原型( y = 1) 和完全氧化型( y = 0) 都为绝缘体。在0 < y < 1 的任一状态都能通过质子酸掺杂,从绝缘体变为导体,仅当y = 0.5 时,其电导率为最大。y值大小受聚合时氧化剂种类、浓度等条件影响,与其它导电高聚物相比,聚苯胺的结构具有如下特点:

超分子聚合物_自组装的高分子

第24卷 第5期大学化学2009年10月  今日化学 超分子聚合物:自组装的高分子 阎云 (北京大学化学与分子工程学院 北京100871) 摘要 简单介绍基于氢键、主客体化学、以及金属配位作用形成超分子聚合物的研究进展,着 重概述了金属配位超分子聚合物的形成、特点及其与异电荷物质的静电自组装。 最近10年,超分子聚合物作为一种通过非共价键形成的自组装的高分子在高分子和小分子自组装领域备受瞩目。顾名思义,这类分子具有超分子和聚合物的双重特点。说它是超分子,是因为这类分子是由小分子单体通过氢键、主客体化学、配位键等非共价键连接而成的分子自组装结构;说它是高分子,是因为这样的自组装结构拥有数量众多的重复单元,就像由许多结构基元聚合而成的高分子一样。不同的是,传统的高分子一般是在引发剂存在下,在一定温度和压力下通过聚合反应形成的,其聚合物骨架是由共价键连接的单体形成的。而超分子聚合物多为具有双官能团的单体在合适的溶剂中通过分子自组装自发形成的,不需要任何引发剂。由非共价键首尾连接的小分子单体构成了聚合物骨架。超分子聚合物骨架中非共价键的存在,使得这类分子的聚合与解聚可以非常容易地发生,这赋予了这类物质独特的机械、电子以及光学性质。本文介绍氢键、主客体化学以及配位作用驱动的超分子聚合物的形成及特点,并着重介绍金属配位超分子聚合物,以及基于金属配位超分子聚合物的高级静电自组装。 1 氢键诱导的超分子聚合物———可自愈及修补的高分子 氢键诱导形成的超分子聚合物一般发生在两个能够形成多重氢键的分子体系。两个分子中至少有两对互为对方的质子给体和受体的官能团,每个官能团都能与对方分子的官能团形成多重氢键。超分子化学的开创者Lehn及其合作者[1]利用氢键形成的榫卯结构在具有双官能团的ADA2ADA型质子给体与DAD2DAD型质子受体的1:1混合体系中通过自组装形成6氢键连接的单体(A:Accep t or,质子受体;D:Doner,质子给体)(如图1A所示);这样的单体通过位于尾端的给2受体进一步进行自组装,最终形成高分子结构。其结构可用图1B表示。 可以想象,如果分子中含有多个ADA或DAD基团,就可以形成交联的网络状高分子。 此外,通过首尾交互形成的多重氢键也可以形成高分子状结构。Meijer等人[2]使用ADAD2DADA型单体四重氢键的协同与定向效应制备了聚合度很高的螺旋状超分子聚合物(图2)。当一个单体中含有3个这样的四重氢键结合单元时,形成的交联结构的超分子聚合物具有热塑性弹性体的性质,在90℃解体并熔化[3](图3),因此,这类超分子聚合物具有温度修补性。 更多的实例可参见综述文章[4]。值得关注的是,虽然这类具有温度修补性能的超分子聚

大分子自组装研究的进展

大分子自组装研究的进展 大分子自组装属于超分子化学与高分子化学的交叉研究领域,是研究高分子之间、高分子与小分子之间、高分子与纳米粒子之间或高分子与基底之间的相互作用,及其通过非共价键合而实现不同尺度上的规则结构的科学。自20世纪90年代起,大分子自组装就引起了国际学术界广泛的研究兴趣。除了嵌段共聚物外,人们陆续发现均聚物、齐聚物、离聚物、无规共聚物及接枝共聚物等都可作为“组装单元”,在一定条件下,通过各种弱相互作用(疏水、氢键、静电作用力等),自发形成形态多样的超分子有序结构。自组装体形成之后,通过化学修饰的方法,可使其形态“永久”保持。目前,大分子自组装已被视为构筑具有规则结构功能性纳米材料的主要途径之一生’〕作为一种“软物质”,高分子纳米材料具有广泛的潜在应用价值,比如可用作涂料、药物输送载体、纳米反应器、污水处理剂或作为合成规整结构纳米材料的模板等〔z.;l。获得大分子自组装体的常规途径是嵌段共聚物在选择性溶剂中胶束化,该过程的驱动力来自于某一链段的疏水性。近几年来,涌现出多种多样构建大分子自组装体的新途径,大大扩展了高分子胶束化的研究领域。 1超分子体系 20世纪30年代,德国Wolf等创造了“超分子’一词,用来描述分子缔合而形成的有序体系.1978年,法国fxhn等超越主客体化学的研究范畴,首次提出了“超分子化学’这一概念,他指出:“基于共价键存在着分子化学领域,基于分子组装体和分子间键而存在着超分子化学’,这无疑是一次重大的思想飞跃.此后经过近20多年的快速发展,超分子化学己远远超越了原来有机化学主客体体系的范畴,形成了自己的独特概念和体系:如分子识别、分子自组装、超分子器件、超分子材料等.在与生物、物理等其它学科的交义融合中,超分子化学己经发展成了超分子科学,被认为是21世纪新概念和高新技术的一个重要源头}s,e.以分子识别为基础、分子自组装为手段、组装体功能为口标的超分子科学体系研究的领域主要包括:超分子体系的反应J性、层状超分子自组装、界而超分子自组装、聚合物自组装、纳米超分子材料等.未来超分子体系的特征将体现为:信息性和程序性的统一,流动性和可逆性的统一,组合性和结构多样性的统一. 2分子自组装 分子自组装是自然界的一个普遍现象.许多生物大分子如DNA、病毒分子和酶等都是通过自组装过程,形成高度组织、信息化和功能化的复杂结构.在化学领域,分子自组装也是普遍存在的,如.b,体生长、液.b,形成、人工脂质双层的自发生成、金属配位化合物的合成、分子在表而上的有序排列等.分子自组装是指分子与分子之间靠非共价键作用力(包括库仑力、范德华力、疏水作用力、兀一兀堆叠作用力、氢键)形成具有一定结构和功能的聚集体的过程.该过程是自发的,不需要借助于外力}},HI.分子自组装的物理本质是永久多极矩、瞬时多极矩、诱导多极矩三者之间的相互作用.有两大类分子自组装:静态自组装和动态自组装,它们的区别主要在于是否涉及能量耗散.口前,大多数自组装的研究都集中在静态自组装.动态自组装涉及能量耗散,尚处于研究的初级阶段1I.分子自组装与定位组装不同,在定位组装过程中,人工对各个分子的安置具有相对较大的控制能力,在分子自组装中,分子的安置和排列可能跟定位组装一样重要,但是,一旦组装开始以后,其过程很大程度上由自然控制.

超支化聚合物应用研究进展

超支化聚合物研究进展 摘要:本综述的目的是叙述和讨论近年来国内外有关超支化聚合物(HBP)的概述、制备方法、羟基改性引入功能基团以及应用研究进展,并对今后HBP的应用前景进行了展望。方法是以数据库资源为主,查询万方、维普、以及各大外文数据库中有关超支化聚合物研究进展的资料。结果选取其中有代表性的文献进行参考后做出的总结与讨论。本文介绍了超支化聚合物的结构和性能特征,综述了超支化聚合物的制备方法,如缩聚反应、加成反应等,介绍了羟基改性引入功能基团、功能型元素的用途,并对其应用研究进行了说明和分析。Abstract: The purpose of this review is described and discussed the hyperbranched polymer(HBP)'s research in recent years. Method is based on database resources, mainly inquires the ten thousand party, VIP, and other big foreign language database about the hyperbranched polymer. The results is came from making reference to summarize and discuss after selecting representative literature. This paper introduces the hyperbranched polymer structure and performance characteristics,summarized the hyperbranched polymer preparation methods, such as polycondensation reaction,addition reaction.And introduces the hydroxyl modified into functional groups and analysis its application in research. 关键词:超支化聚合物端羟基制备方法应用前景 Keyword:The hyperbranched polymer Hydroxyl Preparation methods Application prospect 正文: 一.超支化聚合物的概述 1.1 结构特征 超支化聚合物(Hyperbranched Polymer)(简称HBP)可以简单描述为具有高度支化结构的聚合物。它既与支化聚合物不同也与树形分子有别。超支化高分子因其分子结构而得名,其结构和树枝状大分子非常相似,树枝状大分子分子结构中只含有末端单元和支化单元,而超支化聚合物不仅含有末端单元、支化单元还有线形单元。如图1所示.

轮烷类化合物的合成方法研究进展

2011年第31卷 有 机 化 学 V ol. 31, 2011 * E-mail: zllzll@https://www.360docs.net/doc/131788223.html, Received September 27, 2010; revised November 16, 2010; accepted December 29, 2010. ·综述与进展· 轮烷类化合物的合成方法研究进展 纪奉元 朱亮亮* (华东理工大学精细化工研究所 结构可控先进功能材料及其制备教育部重点实验室 上海 200237) 摘要 轮烷类互锁分子因其多样的结构和性质, 多年来一直是超分子化学领域的一个热点. 综述了近年来轮烷类化合物的合成及制备方法, 包括用传统的模板法(引入氢键、疏水作用、静电效应、配位和离子诱导等超分子作用)制备轮烷类化合物. 除此之外, 还介绍了利用“Click ”化学、“穿线-收缩”、“穿线-膨胀”、自排序组织和自由基识别等新的合成手段来制备这类化合物. 关键词 超分子; 轮烷; 模板法 Progress on Synthesis of Rotaxane Analogues Ji, Fengyuan Zhu, Liangliang * (Key Laboratory for Advanced Materials and Institute of Fine Chemicals , East China University of Science & Technology , Shanghai 200237) Abstract Rotaxane-based interlocked molecular system has become a hot issue in supramolecular chemis-try for years, owing to its various structural architectures and performances. This tutorial review mainly fo-cuses on the synthetic strategies of the rotaxane analogues in recent years. The traditional template-directed strategies of rotaxane preparation including the employment of the supramolecular interaction such as hy-drogen bonding, hydrophobic effect, electrostatic interaction, coordination and ionic template are reviewed, respectively. So me no vel synthetic metho do lo gies, like “click” chemistry, “threading-fo llo wed-by-shrink- ing” and “threading-followed-by-swelling” protocol, self-sorting organization as well as radical recognition, are also introduced. Keywords supramolecular; rotaxane; template-directed strategies 超分子化学是研究分子与分子之间通过非共价键的弱相互作用(如氢键、疏水相互作用等)缔合形成的复杂而有序的超分子体系的科学. 分子机器与分子器件[1]是基于超分子化学而设计的具有多组分功能性分子系统, 到现在为止仍旧是超分子化学领域的一个研究热点. 自从制造人工芯片成为现代电子技术的重要目标之一以来, 当前普遍采用的“自上而下”的硅光刻技术正在接近其物理尺度上的极限. 制备与发展分子机器和分子开关是从分子水平上拓展芯片制备的有效手段, 即 “自下而上”的技术. 轮烷类化合物[2]作为分子机器的一种主要原型, 不仅自身可以体现独特的功能性, 而且可以成为制备应用性分子器件的化学基础. 一个轮烷(rotaxane)结构通常包含一个杆状的分子组分嵌套于一个或者多个环状分子组分, 杆状分子的两侧是大的封基(stopper)以防止环的滑脱. 轮烷的化学性质稳定, 功能比较鲜明. 与之相对的是拟轮烷(pseudorotaxane)结构, 它的杆状分子的两侧没有封基, 因此它的大环可以在一定条件下发生组装-解离运动. 拟轮烷的化学性质活泼, 功能丰富多样. 拟轮烷本身也具有和轮烷相似的性能,

相关文档
最新文档