高考复习物理电磁感应大题

合集下载

高考物理电磁学练习题库及答案

高考物理电磁学练习题库及答案

高考物理电磁学练习题库及答案一、选择题1. 在电场中,带电粒子的运动路径称为()A. 轨道B. 轨迹C. 路径D. 脉冲2. 下列哪项不是电磁感应现象中主要的应用?A. 电动机B. 发电机C. 变压器D. 电吹风3. 在电磁波中,波长越小,频率越()A. 大B. 小C. 相等D. 不确定4. 电流大小与导线截面积之间的关系是()A. 正比例B. 反比例C. 平方反比D. 指数关系5. 下列哪个现象与电磁感应无关?A. 磁铁吸引铁矿石B. 手持电磁铁吸附铁钉C. 相机闪光灯工作D. 电动车行驶二、填空题1. 电流的单位是()2. 电阻的单位是()3. 电势差的单位是()4. 电功的单位是()5. 法拉是电容的单位,它的符号是()三、简答题1. 什么是电磁感应?2. 什么是洛仑兹力?3. 简述电阻对电流的影响。

4. 电势差与电压的关系是什么?5. 什么是电容?四、计算题1. 一根导线质量为0.5kg,长度为2m,放在匀强磁场中,当磁感应强度为0.4T时,该导线受到的洛仑兹力大小为多少?(设导线的电流为2A)2. 一台电视机的功率为200W,使用时电流为2A,求电源的电压是多少?3. 一个电容器带电量为5μC,电容为10μF,求该电容器的电势差。

4. 一台电脑的电压为110V,电流为2A,求功率是多少?5. 一根电阻为10欧姆的导线通过电流2A,求该导线两端的电压。

五、综合题1. 请解释什么是电磁感应现象,并列举两个具体的应用。

2. 电流和电势差之间的关系是什么?请给出相关公式并解释其含义。

3. 请计算一个电感为2H的线圈,通过电流为5A,求该线圈的磁场强度。

4. 一个电容器的电容为20μF,通过电流为0.5A,求该电容器两端的电压。

5. 请简述电阻、电容和电感的区别与联系。

答案及解析如下:一、选择题1. B. 轨迹解析:带电粒子在电场中的运动路径称为轨迹。

2. C. 变压器解析:变压器是电磁感应现象的一种重要应用。

高考物理《法拉第电磁感应定律》真题练习含答案专题

高考物理《法拉第电磁感应定律》真题练习含答案专题

高考物理《法拉第电磁感应定律》真题练习含答案专题1.如图所示,用粗细相同的铜丝做成边长分别为 L 和2L 的两只闭合线框a 和b ,以相同的速度从磁感应强度为B 的匀强磁场区域中匀速地拉到磁场外,若感应电动势分别为E a 、E b ,则E a ∶E b 为( )A .1∶4B .1∶2C .2∶1D .4∶1 答案:B解析:线框切割磁感线时的感应电动势为E =BLv ,解得E a ∶E b =1∶2,B 正确.2.[2024·湖北省名校联盟联考]今年11月底,襄阳三中举行了秋季运动会,其中“旋风跑”团体运动项目很受学生欢迎.如图是比赛过程的简化模型,一名学生站在O 点,手握在金属杆的一端A 点,其他四名学生推着金属杆AB ,顺时针(俯视)绕O 点以角速度ω匀速转动.已知OA =l ,AB =L 运动场地附近空间的地磁场可看作匀强磁场,其水平分量为B x ,竖直分量为B y ,则此时( )A .A 点电势高于B 点电势B .AB 两点电压大小为B y ω(L 2+2lL )2C .AB 两点电压大小为B y ω(L +l )22D .AB 两点电压大小为B x ωL(L +l) 答案:B解析:地磁场在北半球的磁感应强度斜向下,其竖直分量B y 竖直向下,则金属杆切割B y 产生动生电动势,由右手定则可知电源内部的电流从A 点到B 点,即B 点为电源的正极,故A 点电势低于B 点电势,A 错误;动生电动势的大小为E =Bl v -,解得U BA =B y L ω(L +l )+ωl 2 =B y Lω(L +2l )2,B 正确,C 、D 错误.3.(多选)动圈式扬声器的结构如图(a )和图(b )所示,图(b )为磁铁和线圈部分的右视图,线圈与一电容器的两端相连.当人对着纸盆说话,纸盆带着线圈左右运动能将声信号转化为电信号.已知线圈有n 匝,线圈半径为r ,线圈所在位置的磁感应强度大小为B ,则下列说法正确的是( )A.纸盆向左运动时,电容器的上极板电势比下极板电势高B.纸盆向左运动时,电容器的上极板电势比下极板电势低C.纸盆向右运动速度为v时,线圈产生的感应电动势为2nrBvD.纸盆向右运动速度为v时,线圈产生的感应电动势为2nπrBv答案:BD解析:根据右手定则,可知上极板带负电,下极板带正电,因此下极板电势更高,A项错误,B项正确;每匝有效切割长度为2πr,则E=2πnBvr,C项错误,D项正确.4.如图所示,一根弧长为L的半圆形硬导体棒AB在水平拉力F作用下,以速度v0在竖直平面内的U形框架上匀速滑动,匀强磁场的磁感应强度为B,回路中除电阻R外,其余电阻均不计,U形框左端与平行板电容器相连,质量为m的带电油滴静止于电容器两极板中央,半圆形硬导体棒AB始终与U形框接触良好.则以下判断正确的是()A.油滴所带电荷量为mgdBLv0B.电流自上而下流过电阻RC.A、B间的电势差U AB=BLv0D.其他条件不变,使电容器两极板距离减小,电容器所带电荷量将增加,油滴将向下运动答案:B解析:由右手定则可知,导体棒中电流方向从B到A,电流自上而下流过电阻R,故B正确;弧长为L的半圆形硬导体棒切割磁感线的有效长度D=2Lπ,则A、B间的电势差为U AB=2BLv0π,C错误;油滴受力平衡可得qE=mg,E=U ABd,则油滴所带电荷量为q=πmgd2BLv0,A错误;其他条件不变,使电容器两极板距离减小,由C=εS4πkd知电容器的电容变大,又由Q=UC可知,电容器所带电荷量将增加,电场力变大,油滴将向上运动,故D错误.5.(多选)如图所示,矩形金属框架三个竖直边ab 、cd 、ef 的长都是l ,电阻都是R ,其余电阻不计.框架以速度v 匀速平动地穿过磁感应强度为B 的匀强磁场,设ab 、cd 、ef 三条边先后进入磁场时,ab 边两端电压分别为U 1、U 2、U 3,则下列判断结果正确的是( )A .U 1=13 Blv B .U 2=2U 1C .U 3=0D .U 1=U 2=U 3 答案:AB解析:当ab 边进入磁场时I =E R +R 2=2Blv 3R ,则U 1=E -IR =13Blv ;当cd 边也进入磁场时I =E R +R 2 =2Blv 3R ,则U 2=E -I R 2 =23 Blv ,三条边都进入磁场时U 3=Blv ,A 、B 正确.6.[2024·湖北省武汉市月考](多选)如图所示,电阻不计的平行长直金属导轨水平放置,间距L =1 m .导轨左右端分别接有阻值R 1=R 2=4 Ω的电阻.电阻r =2 Ω的导体棒MN 垂直放置在导轨上,且接触良好,导轨所在区域内有方向竖直向的匀强磁场,大小为B =2 T .在外力作用下棒沿导轨向左以速度v =2 m /s 做匀速直线运动,外力的功率为P ,MN 两端的电势差为U MN ,则以下说法正确的是( )A .U MN =4 VB .U MN =2 VC .P =16 WD .P =4 W 答案:BD解析:棒产生的感应电动势大小为E =BLv =4 V ,外电阻是R 1和R 2并联总电阻为R =2 Ω,MN 两端的电势差为U MN =R R +r E =2 V ,A 错误,B 正确;回路电流为I =ER +r =1 A ,电路总功率为P 总=EI =4 W ,由能量守恒可知外力的功率和电路总功率相同,有P =4 W ,C 错误,D 正确.7.[2024·吉林省长春市模拟]在如图甲所示的电路中,电阻R 1=R 2=R ,圆形金属线圈半径为r 1,线圈导线的电阻也为R ,半径为r 2(r 2<r 1)的圆形区域内存在垂直于线圈平面向里的匀强磁场,磁感应强度B 随时间t 变化的关系如图乙所示,图线与横、纵轴的交点坐标分别为t 0和B 0,其余导线的电阻不计.闭合开关S ,至t =0的计时时刻,电路中的电流已经稳定,下列说法正确的是( )A .线圈中产生的感应电动势大小为B 0πr 21t 0B .t 0时间内流过R 1的电量为B 0πr 22RC .电容器下极板带负电D .稳定后电容器两端电压的大小为B 0πr 223t 0答案:D解析:由法拉第电磁感应定律知感应电动势为E =ΔΦΔt =ΔB Δt S =πr 22 B 0t 0,A 错误;由闭合电路欧姆定律得感应电流为I =E R +R 1+R 2 =πr 22 B 03Rt 0 ,t 0时间内流过R 1的电量为q =It 0=πr 22 B 03R,B 错误;由楞次定律知圆形金属线圈中的感应电流方向为顺时针方向,金属线圈相当于电源,电源内部的电流从负极流向正极,则电容器的下极板带正电,上极板带负电,C 错误;稳定后电容器两端电压的大小为U =IR 1=B 0πr 223t 0,D 正确.8.(多选)如图所示,长为a ,宽为b ,匝数为n 的矩形金属线圈恰有一半处于匀强磁场中,线圈总电阻为R ,线圈固定不动.当t =0时匀强磁场的磁感应强度的方向如图甲所示,磁感应强度B 随时间t 变化的关系图像如图乙所示,则( )A .线圈中的感应电流的方向先逆时针再顺时针B .回路中感应电动势恒为nB 0ab2t 0C .0~2t 0时刻,通过导线某横截面的电荷量为nB 0abRD .t =0时刻,线圈受到的安培力大小为nB 20 a 2b2t 0R答案:BC解析:由题意可知线圈中磁通量先垂直纸面向外减小,再垂直纸面向里增大,根据楞次定律可知线圈中的感应电流方向始终为逆时针方向,A 错误;根据法拉第电磁感应定律可得线圈中感应电动势的大小为E =n ΔΦΔt =nS ΔB Δt =nabB 02t 0 ,根据闭合电路欧姆定律可得,线圈中电流大小为I =E R =nabB 02Rt 0 ,t =0时刻,线圈受到的安培力大小为F =nB 0I·a =n 2a 2bB 202Rt 0 ,B 正确,D 错误;0~2t 0时刻,通过导线某横截面的电荷量为q =I·2t 0=nabB 0R,C 正确.9.如图所示,足够长通电直导线平放在光滑水平面上并固定,电流I 恒定不变.将一个金属环以初速度v 0沿与导线成一定角度θ(θ<90°)的方向滑出,此后关于金属环在水平面内运动的分析,下列判断中正确的是( )A .金属环做直线运动,速度先减小后增大B .金属环做曲线运动,速度一直减小至0后静止C .金属环最终做匀速直线运动,运动方向与直导线平行D .金属环最终做匀变速直线运动,运动方向与直导线垂直 答案:C解析:金属环周围有环形的磁场,金属环向右运动,磁通量减小,根据“来拒去留”可知,所受的安培力将阻碍金属圆环远离通电直导线,即安培力垂直直导线向左,与运动方向并非相反,故金属环做曲线运动,安培力使金属环在垂直导线方向做减速运动,当垂直导线方向的速度减为零,只剩沿导线方向的速度,然后磁通量不变,无感应电流,水平方向不受外力作用,故最终做匀速直线运动,方向与直导线平行,故金属环先做曲线运动后做直线运动,C 项正确.10.[2024·云南省昆明市模拟]如图甲所示,一匝数N =200的闭合圆形线圈放置在匀强磁场中,磁场垂直于线圈平面.线圈的面积为S =0.5 m 2,电阻r =4 Ω.设垂直纸面向里为磁场的正方向,磁感应强度B 随时间的变化图像如图乙所示.求:(1)2 s 时感应电流的方向和线圈内感应电动势的大小; (2)在3~9 s 内通过线圈的电荷量q 、线圈产生的焦耳热Q. 答案:(1)逆时针,E 1=20 V (2)q =15 C ,Q =150 J解析:(1)由楞次定律知,0~3 s 感应电流磁场垂直纸面向外,感应电流方向为逆时针方向;感应电动势为E 1=N ΔΦ1Δt 1 =N ΔB 1·S Δt 1结合图像并代入数据解得E 1=20 V(2)同理可得3 s ~9 s 内有感应电动势E 2=N ΔΦ2Δt 2 =N ΔB 2·SΔt 2感应电流I 2=E 2r电荷量q =I 2Δt 2 代入数据解得q =15 C 线圈产生的焦耳热Q =I 22 r Δt 2 代入数据得Q =150 J。

高考物理法拉第电磁感应定律(大题培优 易错 难题)附答案

高考物理法拉第电磁感应定律(大题培优 易错 难题)附答案

一、法拉第电磁感应定律1.如图所示,在磁感应强度B =1.0 T 的有界匀强磁场中(MN 为边界),用外力将边长为L =10 cm 的正方形金属线框向右匀速拉出磁场,已知在线框拉出磁场的过程中,ab 边受到的磁场力F 随时间t 变化的关系如图所示,bc 边刚离开磁场的时刻为计时起点(即此时t =0).求:(1)将金属框拉出的过程中产生的热量Q ; (2)线框的电阻R .【答案】(1)2.0×10-3 J (2)1.0 Ω 【解析】 【详解】(1)由题意及图象可知,当0t =时刻ab 边的受力最大,为:10.02N F BIL ==可得:10.02A 0.2A 1.00.1F I BL ===⨯ 线框匀速运动,其受到的安培力为阻力大小即为1F ,由能量守恒:Q W =安310.020.1J 2.010J F L -==⨯=⨯(2) 金属框拉出的过程中产生的热量:2Q I Rt=线框的电阻:3222.010Ω 1.0Ω0.20.05Q R I t -⨯===⨯2.如图甲所示,一个电阻值为R ,匝数为n 的圆形金属线圈与阻值为2R 的电阻R 1连接成闭合回路。

线圈的半径为r 1。

在线圈中半径为r 2的圆形区域内存在垂直于线圈平面向里的匀强磁场,磁感应强度B 随时间t 变化的关系图线如图乙所示,图线与横、纵轴的截距分别为t 0和B 0。

导线的电阻不计,求0至t1时间内(1)通过电阻R1上的电流大小及方向。

(2)通过电阻R1上的电荷量q。

【答案】(1)2020 3n B rRtπ电流由b向a通过R1(2)20213n B r tRtπ【解析】【详解】(1)由法拉第电磁感应定律得感应电动势为22022n B rBE n n rt t tππ∆Φ∆===∆∆由闭合电路的欧姆定律,得通过R1的电流大小为20233n B rEIR Rtπ==由楞次定律知该电流由b向a通过R1。

(2)由qIt=得在0至t1时间内通过R1的电量为:202113n B r tq ItRtπ==3.如图(a)所示,一个电阻值为R、匝数为n的圆形金属线圈与阻值为2R的电阻R1连接成闭合回路,线圈的半径为r1, 在线圈中半径为r2的圆形区域存在垂直于线圈平面向里的匀强磁场,磁感应强度B随时间t变化的关系图线如图(b)所示,图线与横、纵轴的截距分别为t0和B0,导线的电阻不计.求(1) 0~t0时间内圆形金属线圈产生的感应电动势的大小E;(2) 0~t1时间内通过电阻R1的电荷量q.【答案】(1)202n B rEtπ=(2)20123n B t rqRtπ=【解析】【详解】(1)由法拉第电磁感应定律E ntφ∆=∆有202n B rBE n St tπ∆==∆①(2)由题意可知总电阻R总=R+2R=3 R②由闭合电路的欧姆定律有电阻R1中的电流EIR=总③0~t1时间内通过电阻R1的电荷量1q It=④由①②③④式得20123n B t rqRtπ=4.如图所示,两平行光滑的金属导轨MN、PQ固定在水平面上,相距为L,处于竖直向下的磁场中,整个磁场由n个宽度皆为x0的条形匀强磁场区域1、2、3、…n组成,从左向右依次排列,磁感应强度的大小分别为B、2B、3B、…nB,两导轨左端MP间接入电阻R,一质量为m的金属棒ab垂直于MN、PQ放在水平导轨上,与导轨电接触良好,不计导轨和金属棒的电阻。

电磁感应高考题选

电磁感应高考题选

电磁感应高考题1.2010·海南物理·2一金属圆环水平固定放置。

现将一竖直的条形磁铁,在圆环上方沿圆环轴线从静止开始释放,在条形磁铁穿过圆环的过程中,条形磁铁与圆环A.始终相互吸引B.始终相互排斥C.先相互吸引,后相互排斥D.先相互排斥,后相互吸引【答案】D2. 2010·江苏物理·2一矩形线框置于匀强磁场中,线框平面与磁场方向垂直,先保持线框的面积不变,将磁感应强度在1 s 时间内均匀地增大到原来的两倍,接着保持增大后的磁感应强度不变,在1 s 时间内,再将线框的面积均匀地减小到原来的一半,先后两个过程中,线框中感应电动势的比值为(A)12(B)1 (C)2 (D)4答案:B3. 2010·全国卷Ⅱ·18如图,空间某区域中有一匀强磁场,磁感应强度方向水平,且垂直于纸面向里,磁场上边界b 和下边界d 水平。

在竖直面内有一矩形金属线圈,线圈上下边的距离很短,下边水平。

线圈从水平面a 开始下落。

已知磁场上下边界之间的距离大于水平面a 、b 之间的距离。

若线圈下边刚通过水平面b 、c (位于磁场中)和d 时,线圈所受到的磁场力的大小分别为b F 、c F 和d F ,则A .d F >c F >b F B. c F <d F <b FC. c F >b F >d FD. c F <b F <d F答案:D4.(09·山东·21)如图,一导线弯成半径为a 的半圆形闭合回路。

虚线MN 右侧有磁感应强度为B 的匀强磁场。

方向垂直于回路所在的平面。

回路以速度v 向右匀速进入磁场,直径CD 始络与MN 垂直。

从D 点到达边界开始到C 点进入磁场为止,下列结论错误的是( )A .感应电流方向不变B .CD 段直线始终不受安培力C .感应电动势最大值E =BavD .感应电动势平均值14E Bav =π答案:B5. 2010·新课标·21如图所示,两个端面半径同为R的圆柱形铁芯同轴水平放置,相对的端面之间有一缝隙,铁芯上绕导线并与电源连接,在缝隙中形成一匀强磁场.一铜质细直棒ab水平置于缝隙中,且与圆柱轴线等高、垂直.让铜棒从静止开始自由下落,铜棒下落距离为0.2R时铜棒中电动势大小为E1下落距离为0.8R时电动势大小为E2,忽略涡流损耗和边缘效应.关于E1、E2的大小和铜棒离开磁场前两端的极性,下列判断正确的是A、E1>E2,a端为正B、E1>E2,b端为正C、E1<E2,a端为正D、E1<E2,b端为正答案:D6.(08·全国Ⅱ·21)如图,一个边长为l的正方形虚线框内有垂直于纸面向里的匀强磁场;一个边长也为l的正方形导线框所在平面与磁场方向垂直;虚线框对角线ab与导线框的一条边垂直,ba的延长线平分导线框.在t=0时,使导线框从图示位置开始以恒定速度沿ab方向移动,直到整个导线框离开磁场区域.以i表示导线框中感应电流的强度,取逆时针方向为正.下列表示i-t关系的图示中,可能正确的是()答案:C7.(08·全国Ⅰ·20)矩形导线框abcd固定在匀强磁场中,磁感线的方向与导线框所在平面垂直,规定磁场的正方向垂直低面向里,磁感应强度B随时间变化的规律如图所示.若规定顺时针方向为感应电流I的正方向,下列各图中正确的是答案:D8.(08·上海·10)如图所示,平行于y轴的导体棒以速度v向右匀速直线运动,经过半径为R、磁感应强度为B的圆形匀强磁场区域,导体棒中的感应电动势ε与导体棒位置x关系的图像是( )答案:A9.(2011全国卷1)(15分)如图,两根足够长的金属导轨ab 、cd 竖直放置,导轨间距离为L 1电阻不计。

高中物理新高考考点复习40 电磁感应中的动力学、能量与动量问题

高中物理新高考考点复习40 电磁感应中的动力学、能量与动量问题

考点规范练40电磁感应中的动力学、能量与动量问题一、单项选择题1.如图所示,在光滑绝缘水平面上,有一矩形线圈以一定的初速度进入匀强磁场区域,线圈全部进入匀强磁场区域时,其动能恰好等于它在磁场外面时的一半,磁场区域宽度大于线圈宽度,则( )A.线圈恰好在完全离开磁场时停下B.线圈在未完全离开磁场时即已停下C.线圈在磁场中某个位置停下D.线圈能通过场区不会停下2.如图所示,两光滑平行金属导轨间距为l ,直导线MN 垂直跨在导轨上,且与导轨接触良好,整个装置处在垂直于纸面向里的匀强磁场中,磁感应强度为B 。

电容器的电容为C ,除电阻R 外,导轨和导线的电阻均不计。

现给导线MN 一初速度,使导线MN 向右运动,当电路稳定后,MN 以速度v 向右做匀速运动时( )A.电容器两端的电压为零B.电阻两端的电压为BlvC.电容器所带电荷量为CBlvD.为保持MN 匀速运动,需对其施加的拉力大小为B 2l 2vR3.(2021·辽宁模拟)如图所示,间距l=1 m 的两平行光滑金属导轨固定在水平面上,两端分别连接有阻值均为2 Ω的电阻R 1、R 2,轨道有部分处在方向竖直向下、磁感应强度大小为B=1 T 的有界匀强磁场中,磁场两平行边界与导轨垂直,且磁场区域的宽度为d=2 m 。

一电阻r=1 Ω、质量m=0.5 kg 的导体棒ab 垂直置于导轨上,导体棒现以方向平行于导轨、大小v 0=5 m/s 的初速度沿导轨从磁场左侧边界进入磁场并通过磁场区域,若导轨电阻不计,则下列说法正确的是( )A.导体棒通过磁场的整个过程中,流过电阻R 1的电荷量为1 CB.导体棒离开磁场时的速度大小为2 m/sC.导体棒运动到磁场区域中间位置时的速度大小为3 m/sD.导体棒通过磁场的整个过程中,电阻R 2产生的电热为1 J4.如图所示,条形磁体位于固定的半圆光滑轨道的圆心位置,一半径为R 、质量为m 的金属球从半圆轨道的一端沿半圆轨道由静止下滑,重力加速度大小为g 。

高三高考物理复习专题练习:电磁感应

高三高考物理复习专题练习:电磁感应

电磁感应1.[多选]如图甲所示,电阻R1=R, R 2=2 R,电容为C的电容器,圆形金属线圈半径为广2,线圈的电阻为R半径为r1(r1<r2)的圆形区域内存在垂直线圈平面向里的匀强磁场,磁感应强度B随时间t 变化的关系图象如图乙所示,t「12时刻磁感应强度分别为B「B2,其余导线的电阻不计,闭合开关S,至11时刻电路中的电流已稳定,下列说法正确的是 ()图甲图乙A.电容器上极板带正电B.11时刻,电容器的带电荷量为:孙而C.11时刻之后,线圈两端的电压为;D.12时刻之后,R1两端的电压为■ ■2.[多选]如图甲所示,abcd是位于竖直平面内的正方形闭合金属线框,在金属线框的下方有一磁感应强度为B的匀强磁场区域,MN和M W是匀强磁场区域的水平边界并与线框的bc 边平行,磁场方向与线框平面垂直现金属线框由距MN的某一高度从静止开始下落,图乙是金属线框由开始下落到完全穿过匀强磁场区域的v-t图象.已知金属线框的质量为m,电阻为R,当地的重力加速度为g,图象中坐标轴上所标出的匕、v2、v3、t p 12、13、14均为已知量(下落过程中线框abcd始终在竖直平面内,且bc边始终水平).根据题中所给条件,以下说法正确的是()图甲图乙A.可以求出金属线框的边长B.线框穿出磁场时间(t4-t3)等于进入磁场时间(t2-t1)C.线框穿出磁场与进入磁场过程所受安培力方向相同D.线框穿出磁场与进入磁场过程产生的焦耳热相等3.[多选]如图所示,x轴上方第一象限和第二象限分别有垂直纸面向里和垂直纸面向外的匀强磁场,且磁感应强度大小相同,现有四分之一圆形线框。

〃乂绕。

点逆时针匀速转动,若规定线框中感应电流/顺时针方向为正方向,从图示时刻开始计时,则感应电流I及ON边所受的安培力大小F随时间t的变化示意图正确的是()A BCD4.[多选]匀强磁场方向垂直纸面,规定垂直纸面向里的方向为正方向,磁感应强度B随时间t的变化规律如图甲所示.在磁场中有一细金属圆环,圆环平面位于纸面内,如图乙所示.令11、12、13分别表示Oa、ab、bc段的感应电流工、力、力分别表示感应电流为11、12、13时,金属环上很小一段受到的安培力.则()A.11沿逆时针方向,12沿顺时针方向B.12沿逆时针方向,13沿顺时针方向C f1方向指向圆心石方向指向圆心D外方向背离圆心向外右方向指向圆心5.[多选]如图所示,光滑水平面上存在有界匀强磁场,磁感应强度大小为B,方向垂直纸面向里, 质量为m、边长为a的正方形线框ABCD斜向穿进磁场,当AC刚进入磁场时线框的速度大小为%方向与磁场边界所成夹角为45°,若线框的总电阻为凡则()A.线框穿进磁场的过程中,框中电流的方向为D T C T B T A T DB AC刚进入磁场时线框中感应电流为一,镇铲。

高考物理:带你攻克电磁感应中的典型例题(附解析)

高考物理:带你攻克电磁感应中的典型例题(附解析)

高考物理:带你攻克电磁感应中的典型例题(附解析)例1、如图所示,有一个弹性的轻质金属圆环,放在光滑的水平桌面上,环中央插着一根条形磁铁.突然将条形磁铁迅速向上拔出,则此时金属圆环将()A. 圆环高度不变,但圆环缩小B. 圆环高度不变,但圆环扩张C. 圆环向上跳起,同时圆环缩小D. 圆环向上跳起,同时圆环扩张解析:在金属环中磁通量有变化,所以金属环中有感应电流产生,按照楞次定律解决问题的步骤一步一步进行分析,分析出感应电流的情况后再根据受力情况考虑其运动与形变的问题.也可以根据感应电流的磁场总阻碍线圈和磁体间的相对运动来解答。

当磁铁远离线圈时,线圈和磁体间的作用力为引力,由于金属圆环很轻,受的重力较小,因此所受合力方向向上,产生向上的加速度.同时由于线圈所在处磁场减弱,穿过线圈的磁通量减少,感应电流的磁场阻碍磁通量减少,故线圈有扩张的趋势。

所以D选项正确。

一、电磁感应中的力学问题导体切割磁感线产生感应电动势的过程中,导体的运动与导体的受力情况紧密相连,所以,电磁感应现象往往跟力学问题联系在一起。

解决这类电磁感应中的力学问题,一方面要考虑电磁学中的有关规律,如安培力的计算公式、左右手定则、法拉第电磁感应定律、楞次定律等;另一方面还要考虑力学中的有关规律,如牛顿运动定律、动量定理、动能定理、动量守恒定律等。

例2、如图1所示,两根足够长的直金属导轨MN、PQ平行放置在倾角为θ的绝缘斜面上,两导轨间距为L,M、P两点间接有阻值为R的电阻。

一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直。

整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直斜面向下,导轨和金属杆的电阻可忽略。

让ab杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦。

(1)由b向a方向看到的装置如图2所示,请在此图中画出ab 杆下滑过程中某时刻的受力示意图;(2)在加速下滑过程中,当ab杆的速度大小为v时,求此时ab 杆中的电流及其加速度的大小;(3)求在下滑过程中,ab杆可以达到的速度最大值。

高考物理专项复习《电磁感应》十年高考真题汇总

高考物理专项复习《电磁感应》十年高考真题汇总
A.选用铜质弦,电吉他仍能正常工作 B.取走磁体,电吉他将不能正常工作 C.增加线圈匝数可以增大线圈中的感应电动势 D.弦振动过程中,线圈中的电流方向不断变化 24.(2012·海南卷)图中装置可演示磁场对通电导线的作用。电磁铁上下两磁极之间某一水平 面内固定两条平行金属导轨,L 是置于导轨上并与导轨垂直的金属杆。当电磁铁线圈两端 a、 b,导轨两端 e、f,分别接到两个不同的直流电源上时,L 便在导轨上滑动。下列说法正确 的是
挂在直导线正上方,开关未闭合时小磁针处于静止状态。下列说法正确的是
A. 开关闭合后的瞬间,小磁针的 N 极朝垂直纸面向里的方向转动 B. 开关闭合并保持一段时间后,小磁针的 N 极指向垂直纸面向里的方向 C. 开关闭合并保持一段时间后,小磁针的 N 极指向垂直纸面向外的方向 D. 开关闭合并保持一段时间再断开后的瞬间,小磁针的 N 极朝垂直纸面向外的方向转动 8.(2011·北京卷·T19)某同学为了验证断电自感现象,自己找来带铁心的线圈L、小灯泡A、开 关S和电池组E,用导线将它们连接成如图所示的电路。检查电路后,闭合开关S,小灯泡发 光;再断开开关S,小灯泡仅有不显著的延时熄灭现象。虽经多次重复,仍未见老师演示时 出现的小灯泡闪亮现象,他冥思苦想找不出原因。你认为最有可能造成小灯泡末闪亮的原因 是
A.T1>mg,T2>mg B.T1<mg,T2<mg
C.T1>mg,T2<mg D.T1<mg,T2>mg
13.(2016·上海卷)磁铁在线圈中心上方开始运动时,线圈中产生如图方向的感应电流,则磁

A.向上运动
B.向下运动
C.向左运动
D.向右运动
14.(2016·海南卷)如图,一圆形金属环与两固定的平行长直导线在同一竖直平面内,环的圆

高考物理《电磁感应中的动力学问题》真题练习含答案专题

高考物理《电磁感应中的动力学问题》真题练习含答案专题

高考物理《电磁感应中的动力学问题》真题练习含答案专题1.(多选)如图所示,有两根和水平方向成α角的光滑平行的金属轨道,上端接有可变电阻R ,下端足够长,空间有垂直于轨道平面的匀强磁场,磁感应强度为B ,一根质量为m 的金属杆(电阻不计)从轨道上由静止滑下.经过足够长的时间,金属杆的速度趋近于一个最大速度v m ,则( )A .如果B 增大,v m 将变大B .如果α变大,v m 将变大C .如果R 变大,v m 将变大D .如果m 变大,v m 将变大答案:BCD解析:当加速度为零时,速度最大,则有mg sin α=BIL ,又I =BL v m R ,解得v m =mgR sin αB 2L 2,如果B 增大,v m 将变小;如果α变大,v m 将变大;如果R 变大,v m 将变大;如果m 变大,v m 将变大,B 、C 、D 正确.2.(多选)如图所示,水平放置足够长光滑金属导轨abc 和de ,ab 与de 平行,bc 是以O 为圆心的圆弧导轨,圆弧be 左侧和扇形Obc 内有方向如图的匀强磁场,金属杆OP 的O 端与e 点用导线相接,P 端与圆弧bc 接触良好,初始时,可滑动的金属杆MN 静止在平行导轨上,若杆OP 绕O 点在匀强磁场区内从b 到c 匀速转动时,回路中始终有电流,则此过程中,下列说法正确的有( )A .杆OP 产生的感应电动势恒定B .杆OP 受到的安培力不变C .杆MN 做匀加速直线运动D .杆MN 中的电流逐渐减小答案:AD解析:OP 转动切割磁感线产生的感应电动势为E =12Br 2ω,因为OP 匀速转动,所以杆OP 产生的感应电动势恒定,故A 正确;杆OP 匀速转动产生的感应电动势,产生的感应电流由M 到N 通过MN 棒,由左手定则可知,MN 棒会向左运动,MN 棒运动会切割磁感线,产生的电动势与原来电流方向相反,让回路电流减小,MN 棒所受合力为安培力,电流减小,安培力会减小,加速度减小,故D 正确,B 、C 错误.3.(多选)如图,横截面积为S 的n 匝线圈,线圈总电阻为R ,其轴线与大小均匀变化的匀强磁场B 1平行.间距为L 的两平行光滑倾斜轨道PQ 、MN 足够长,轨道平面与水平面的夹角为α,底部连有一阻值2R 的电阻,磁感应强度B 2的匀强磁场与轨道平面垂直.K 闭合后,质量为m 、电阻也为2R 的金属棒ab 恰能保持静止,金属棒始终与轨道接触良好,其余部分电阻不计,下列说法正确的是( )A .B 1均匀减小B .B 1的变化率为ΔB 1Δt =4mgR sin αnB 2SLC .断开K 之后,金属棒ab 将做匀加速直线运动D .断开K 之后,金属棒的最大速度为v =4Rmg sin αB 22 L 2 答案:ABD解析:由平衡条件知金属棒所受安培力的方向应平行轨道向上,电流大小恒定,磁场B 1均匀变化;根据左手定则判断金属棒中电流方向由b 指向a ,线圈中感应电流磁场方向与原磁场方向相同,则可判断B 1减小,A 正确;设B 1的变化率为ΔB 1Δt,螺线管中感应电动势E =n ΔB 1Δt S ,回路中总电阻R 总=R +R =2R ,电路中总电流I =E R 总 =E 2R,安培力F =B 2IL 2 ,由平衡条件得F =mg sin α,解得ΔB 1Δt =4mgR sin αnB 2SL,B 正确;断开K 之后,金属棒ab 将做变加速直线运动,C 错误;断开K 之后,金属棒速度最大时,受力平衡,有B 2I ′L =mg sin α,且电流I ′=E 4R =B 2L v 4R ,联立解得v =4Rmg sin αB 22 L 2 ,D 正确. 4.如图所示,这是感受电磁阻尼的铜框实验的简化分析图,已知图中矩形铜框(下边水平)的质量m=2 g,长度L=0.5 m,宽度d=0.02 m,电阻R=0.01 Ω,该铜框由静止释放时铜框下边与方向水平向里的匀强磁场上边界的高度差h=0.2 m,磁场上、下水平边界间的距离D=0.27 m,铜框进入磁场的过程恰好做匀速直线运动.取重力加速度大小g=10 m/s2,不计空气阻力.下列说法正确的是()A.铜框进入磁场的过程中电流方向为顺时针B.匀强磁场的磁感应强度的大小为0.5 TC.铜框下边刚离开磁场时的速度大小为3 m/sD.铜框下边刚离开磁场时的感应电流为0.3 A答案:C解析:铜框下边进入磁场过程,由右手定则判断感应电流为逆时针方向,A错误;铜框下边刚进入磁场时的速度大小v1=2gh ,此时感应电动势E=BL v1,电流I=ER,铜框受的安培力大小F=BIL,由平衡条件得F=mg,解得磁感应强度B=0.2 T,B错误;铜框全部进入磁场后开始做加速度为g的匀加速直线运动,设铜框下边刚离开磁场时速度大小为v2,根据运动学公式得v22-v21=2g(D-d),解得v2=3 m/s,C正确;铜框下边刚离开磁场时,感应电流大小I′=BL v2R=3 A, A、D错误.5.(多选)如图所示,两条足够长的平行光滑长直导轨MN、PQ固定于同一水平面内,它们之间的距离为l;ab和cd是两根质量皆为m的金属细杆,杆与导轨垂直,且与导轨接触良好.两杆的电阻皆为R.cd的中点系一轻绳,绳的另一端绕过定滑轮悬挂一质量为M的重物,滑轮与杆cd之间的轻绳处于水平伸直状态并与导轨平行.不计滑轮与转轴、细绳之间的摩擦,不计导轨的电阻.导轨和金属细杆都处于匀强磁场中,磁感应强度大小为B,方向竖直向上.现将两杆及重物同时由静止释放,下列说法正确的是()A.释放重物瞬间,其加速度大小为Mg m+MB.最终回路中的电流为MmgBl(m+M)C.最终ab杆所受安培力的大小为mMg2m+MD .最终ab 和cd 两杆的速度差恒为2MmgR B 2l 2(2m +M )答案:ACD解析:释放重物瞬间,ab 杆和cd 杆均不受安培力,设重物的加速度大小为a 1,则对重物,有Mg -T 1=Ma 1;对cd 杆,有T 1=ma 1,解得a 1=Mg m +M,A 项正确;最终ab 杆、cd 杆和重物三者的加速度大小相等,设其为a ,对重物,有Mg -T 2=Ma ;对cd 杆,有T 2-BIl =ma ;对ab 杆,有BIl =ma ,解得I =Mmg (2m +M )Bl ,F 安=BIl =Mmg 2m +M,B 项错误,C 项正确;设最终两杆速度差为Δv ,回路中感应电动势为E =Bl Δv ,I =E 2R,解得Δv =2MmgR B 2l 2(2m +M ),D 项正确. 6.(多选)如图所示,倾角θ=30°的斜面上放置一间距为L 的光滑U 形导轨(电阻不计),导轨上端连接电容为C 的电容器,电容器初始时不带电,整个装置放在磁感应强度大小为B 、方向垂直斜面向下的匀强磁场中.一质量为2m 、电阻为R 的导体棒垂直放在导轨上,与导轨接触良好,另一质量为m 的重物用一根不可伸长的绝缘轻绳通过光滑的定滑轮与导体棒拴接,定滑轮与导体棒间的轻绳与斜面平行.将重物由静止释放,在导体棒到达导轨底端前的运动过程中(电动势未到达电容器的击穿电压),已知重力加速度为g ,下列说法正确的是( )A .电容器M 板带正电,且两极板所带电荷量随时间均匀增加B .经时间t 导体棒的速度为v =2mgt 3m +CB 2L 2C.回路中电流与时间的关系为I =2BLmg (3m +CB 2L 2)Rt D .重物和导体棒在运动过程中减少的重力势能转化为动能和回路的焦耳热答案:AB解析:设运动过程中经时间Δt ,导体棒的速度增加Δv ,对电容器,两极板的充电电流I =ΔQ Δt =C ΔU Δt =CBL Δv Δt,对导体棒受力分析,由牛顿第二定律有2mg sin 30°+F T -BIL =2ma ;对重物分析,有mg -F T =ma ,又Δv Δt =a ,解得a =2mg 3m +CB 2L 2,加速度恒定,所以导体棒在到达导轨底端前做匀加速直线运动,电容器两极板所带电荷量随时间均匀增加,由右手定则可知,M 板带正电,A 项正确;经时间t ,导体棒的速度v =2mgt 3m +CB 2L 2,B 项正确;由A 项分析可知回路中电流恒定,C 项错误;重物和导体棒在运动过程中减少的重力势能一部分转化为动能和回路的焦耳热,一部分转化为电容器储存的电能,D 项错误.7.[2024·河北省邢台市五岳联盟联考]游乐园中的过山车因能够给游客带来刺激的体验而大受欢迎.为了保证过山车的进站安全,过山车安装了磁力刹车装置,将磁性很强的铷磁铁安装在轨道上,正方形导体框安装在过山车底部.磁力刹车装置的工作原理可简化为如图所示的模型:质量m =5 kg 、边长L =2 m 、电阻R =1.8 Ω的单匝导体框abcd 沿着倾角为θ的光滑斜面由静止开始下滑x 0=4.5 m 后,下边框bc 进入匀强磁场区域时导体框开始减速,当上边框ad 进入磁场时,导体框刚好开始做匀速直线运动.已知磁场的上、下边界与导体框的上、下边框平行,磁场的宽度也为L =2 m ,磁场方向垂直斜面向下、磁感应强度大小B =3 T ,sin θ=0.4,取重力加速度大小g =10 m/s 2,求:(1)上边框ad 进入磁场时,导体框的速度大小v ;(2)下边框bc 进入磁场时,导体框的加速度大小a 0.答案:(1)1 m/s (2)20 m/s 2解析:(1)当导体框的上边框ad 进入磁场时,上边框ad 切割磁感线产生的感应电动势为E =BL v导体框中的感应电流为I =E R导体框的上边框在磁场中受到的安培力大小F A =BIL导体框刚好做匀速直线运动,根据受力平衡有mg sin θ=F A联立解得v =1 m/s(2)导体框沿斜面由静止开始到下边框bc 进入匀强磁场的过程中,根据机械能守恒定律有mgx 0sin θ=12m v 20 当导体框的下边框进入磁场时,导体框的下边框在磁场中受到的安培力大小F A0=B2L2v0 R对导体框受力分析,根据牛顿第二定律有F A0-mg sin θ=ma0联立解得a0=20 m/s2.。

近6年全国各地高考物理真题汇编:电磁感应(Word版含答案)

近6年全国各地高考物理真题汇编:电磁感应(Word版含答案)

2017-2022年全国各地高考物理真题汇编:电磁感应学校:___________姓名:___________班级:___________考号:___________一、单选题(本大题共12题)1.(2022·全国·高考真题)三个用同样的细导线做成的刚性闭合线框,正方形线框的边长与圆线框的直径相等,圆线框的半径与正六边形线框的边长相等,如图所示。

把它们放入磁感应强度随时间线性变化的同一匀强磁场中,线框所在平面均与磁场方向垂直,正方形、圆形和正六边形线框中感应电流的大小分别为12I I 、和3I 。

则( )A .132I I I <<B .132I I I >>C .123I I I =>D .123I I I ==2.(2017·天津·高考真题)如图所示,两根平行金属导轨置于水平面内,导轨之间接有电阻R 。

金属棒ab 与两导轨垂直并保持良好接触,整个装置放在匀强磁场中,磁场方向垂直于导轨平面向下。

现使磁感应强度随时间均匀减小,ab 始终保持静止,下列说法正确的是( )A .ab 中的感应电流方向由b 到aB .ab 中的感应电流逐渐减小C .ab 所受的安培力保持不变D .ab 所受的静摩擦力逐渐减小3.(2021·北京·高考真题)如图所示,在竖直向下的匀强磁场中,水平U 型导体框左端连接一阻值为R 的电阻,质量为m 、电阻为r 的导体棒ab 置于导体框上。

不计导体框的电阻、导体棒与框间的摩擦。

ab 以水平向右的初速度v 0开始运动,最终停在导体框上。

在此过程中 ( )A .导体棒做匀减速直线运动B .导体棒中感应电流的方向为a b →C .电阻R 消耗的总电能为202()mv R R r +D .导体棒克服安培力做的总功小于2012mv 4.(2020·江苏·高考真题)如图所示,两匀强磁场的磁感应强度1B 和2B 大小相等、方向相反。

《电磁感应》历年高考题

《电磁感应》历年高考题

《电磁感应》高考试题回顾1.第一个发现电磁感应现象的科学家是:A.奥斯特B.库仑C.法拉第D.安培2.如图所示,一均匀的扁平条形磁铁与一圆线圈同在一平面内,磁铁中央与圆心O重合.为了在磁铁开始运动时在线圈中得到一方向如图所示的感应电流i,磁铁的运动方式应为:A.N极向纸内,S极向纸外,使磁铁绕O点转动B.N极向纸外,S极向纸内,使磁铁绕O点转动C.使磁铁沿垂直于线圈平面的方向向纸外做平动D.使磁铁沿垂直于线圈平面的方向向纸内做平动E.使磁铁在线圈平面内绕O点沿顺时针方向转动F.使磁铁在线圈平面内绕O点沿逆时针方向转动3.如图所示,一无限长直导线通有电流I,有一矩形线圈与其共面.当电流I减小时,矩形线圈将:A.向左平动B.向右平动C.静止不动D.发生转动4.如图所示,有一固定的超导体圆环,在其右侧放着一条形磁铁,此时圆环中没有电流.当把磁铁向右方移动时,由于电磁感应,在超导体圆环中产生了一定电流:A.该电流的方向如图中箭头所示.磁铁移走后,这电流很快消失B.该电流的方向如图中箭头所示.磁铁移走后,这电流继续维持C.该电流的方向与图中箭头方向相反.磁铁移走后,电流很快消失D.该电流的方向与图中箭头方向相反.磁铁移走后,电流继续维持5.如图所示,在水平放置的光滑绝缘杆ab上,挂有两个金属环M和N.两环套在一个通电密绕长螺线管的中部,螺线管中部区域的管外磁场可以忽略.当变阻器的滑动触头向左移动时,两环将怎样运动?A.两环一起向左运动B.两环一起向右运动C.两环互相靠近D.两环互相离开6.如图所示,金属圆环放在匀强磁场中,将它从磁场中匀速拉出,下列哪个说法是正确的?A.向左拉出和向右拉出,其感应电流方向相反B.不管向什么方向拉出,环中感应电流方向总是顺时针的C.不管向什么方向拉出,环中感应电流方向总是逆时针的D.在此过程中,感应电流大小不变7.恒定的匀强磁场中有一圆形的闭合导体线圈,线圈平面垂直于磁场方向.当线圈在此磁场中做下列哪种运动时,线圈中能产生感应电流?A.线圈沿自身所在的平面做匀速运动B.线圈沿自身所在的平面做加速运动C.线圈绕任意一条直径做匀速转动D.线圈绕任意一条直径做变速转动8.M和N是绕在一个环形铁心上的两个线圈,绕法和线路如图所示.现将开关K从a处断开,然后合向b处.在此过程中,通过电阻R2的电流方向是:A.先由c流向d,后又由c流向dB.先由c流向d,后由d流向cC.先由d流向c,后又由d流向cD.先由d流向c,后由c流向d9.如图所示,A、B为两个相同的环形线圈,共轴并靠近放置.A线圈中通有如图(a)所示的交流电i,则:A.在t1到t2时间内A、B两线圈相吸B.在t2到t3时间内A、B两线圈相斥C.t1时刻两线圈间作用力为零D.t2时刻两线圈间作用力最大10.如图所示,一个N极朝下的条形磁铁竖直下落,恰能穿过水平放置的固定小方形导线框A.磁铁经过图中位置⑴时,线框中感应电流沿abcd方向,经过位置⑵时,沿adcb方向B.磁铁笋过⑴时,感应电流沿adcb方向,经过⑵时沿abcd方向C.磁铁经过⑴和⑵时,感应电流都沿adcb方向D.磁铁经过⑴和⑵时,感应电流都沿abcd方向11.一平面线圈用细杆悬于P点,开始时细杆处于水平位置,释放后让它在如图所示的匀强磁场中运动.已知线圈平面始终与纸面垂直,当线圈第一次通过位置I和位置Ⅱ时,顺着磁场的方向看去,线圈中感应电流的方向分别为:A.逆时针方向逆时针方向B.逆时针方向顺时针方向C.顺时针方向顺时针方向D.顺时针方向逆时针方向.12.法拉第电磁感应定律可以这样表述,闭合电路中感应电动势大小A.跟穿过这一闭合回路的磁通量成正比B.跟穿过这一闭合回路的磁通量变化量成正比C.跟穿过这一闭合回路的磁通量变化率成正比D.跟穿过这一闭合回路的磁感应强度成正比13.如图所示,甲中两条轨道不平行而乙中的两条轨道是平行的,其余物理条件都相同,金属棒MN都正在轨道上向右匀速平动,在棒运动的过程中,将观察到:A.L1、L2小电珠都发光,只是亮度不同B.L1、L2都不发光C.L2发光,L1不发光D.L1发光,L2不发光14.如图所示,闭合矩形线圈abcd从静止开始竖直下落,穿过一个匀强磁场区域,此磁场区域竖直方向的长度远大于矩形线圈bc边的长度.不计空气阻力,则:A.从线圈山边进入磁场到口6边穿出磁场的整个过程中,线圈中始终有感应电流B.从线圈dc边进入磁场到ab边穿出磁场的整个过程中,有一个阶段线圈的加速度等于重力加速度C.dc边刚进入磁场时线圈内感生电流的方向,与dc边刚穿出磁场时感生电流的方向相反D.dc边刚进入磁场时线圈内感生电流的大小,与dc边刚穿出磁场时的感生电流的大小一定相等15.边长为h的正方形金属导线框,从图所示的初始位置由静止开始下落,通过一匀强磁场区域.磁场方向是水平的,且垂直于线框平面磁场区宽度等于H,上下边界如图中水平虚线所示,H>A.从线框开始下落到完全穿过磁场区的整个过程中:A.线框中总是有感应电流存在B.线框受到的磁场力的合力的方向有时向上,有时向下.C.线框运动的方向始终是向下的.D.线框速度的大小不一定总是在增加.16.如图所示,PQRS为一正方形导线框,它以恒定的速度向右进入以MN为边界的匀强磁场,磁场方向垂直线圈平面,MN线与线框的边成450角.E、F分别为PS和PQ的中点.关于线框中的感应电流,正确的说法是:A.当E点经过边界MN时,线框中感应电流最大B.当P点经过边界MN时,线框中感应电流最大C.当F 点经过边界MN 时,线框中感应电流最大D.当Q 点经过边界MN 时,线框中感应电流最大17. 如图所示,大小相等的匀强磁场分布在直角坐标系的四个象限里,相邻象限的磁感强度B 的方向相反,均垂直于纸面,现在一闭合扇形线框OABO ,以角速度ω绕Oz 轴在xOy 平面内匀速转动,那么在它旋转一周的过程中(从图中所示位置开始计时),线框内感应电动势与时间的关系图线是:18. 一闭合线圈固定在垂直于纸面的匀强磁场中,设向里为磁感强度B 的正方向,线圈中的箭头为电流i 的正方向(如图所示).已知线圈中感生电流i 随时间而变化的图像如图所示,则磁感强度B 随时间而变化的图像可能是:19. 图中A 是一边长为l 的方形线框,电阻为R .今维持线框以恒定的速度v 沿x轴运动,并穿过图中所示的匀强磁场B 区域.若以x 轴正方向作为力的正方向,线框在图示位置的时刻作为时间的零点,则磁场对线框的作用力F 随时间t 的变化图线为:20. 如图所示电路,多匝线圈的电阻和电池的内电阻可以忽略,两个电阻器的阻值都是R ,电键K 原来打开着,电流R I 20ε=,今合下电键将一电阻器短路,于是线圈中有自感电动势产生,该自感电动势:A.有阻碍电流的作用,最后电流由I 0减小到零B.有阻碍电流的作用,最后电流小于I 0C.有阻碍电流增大的作用,因而电流保持为I 0不变D.有阻碍电流增大的作用,但电流最后还是要增大到2I 021.如图所示的电路中,A1和A2是完全相同的灯泡,线圈L的电阻可以忽略.下列说法中正确的是:A1后亮,最后一A.合上开关K接通电路时,A样亮B.合上开关K接通电路时,A1和A2始终一样亮C.断开开关K切断电路时,A2立刻熄灭,A l过一会儿才熄灭D.断开开关K切断电路时,A1和A2都要过一会儿才熄灭22.如图所示为演示自感现象的实验电路图,L是电感线圈,A1、A2是规格相同的灯泡,R的阻值与L 的电阻值相同,当开关K由断开到合上时,观察到的自感现象是,最后达到同样亮.23.电阻为R的矩形导线框abcd,边长ab=L,ad=h,质量为m,自某一高度自由落下,通过一匀强磁场,磁场方向垂直纸面向里,磁场区域的宽度为h(如图所示).若线框恰好以恒定速度通过磁场,线框中产生的焦耳热是。

高考物理法拉第电磁感应定律(大题培优)附答案解析

高考物理法拉第电磁感应定律(大题培优)附答案解析
高考物理法拉第电磁感应定律(大题培优)附答案解析
一、法拉第电磁感应定律
1.如图甲所示,两根足够长的水平放置的平行的光滑金属导轨,导轨电阻不计,间距为 L,导轨间电阻为 R。PQ 右侧区域处于垂直纸面向里的匀强磁场中,磁感应强度大小为 B; PQ 左侧区域两导轨间有一面积为 S 的圆形磁场区,该区域内磁感应强度随时间变化的图象 如图乙所示,取垂直纸面向外为正方向,图象中 B0 和 t0 都为已知量。一根电阻为 r、质量 为 m 的导体棒置于导轨上,0〜t0 时间内导体棒在水平外力作用下处于静止状态,t0 时刻立 即撤掉外力,同时给导体棒瞬时冲量,此后导体棒向右做匀速直线运动,且始终与导轨保 持良好接触。求:
(1)磁通量变化率,回路的感应电动势。 (2)a、b 两点间电压 Uab。 【答案】(1)0.04Wb/s 4V(2)2.4V 【解析】
【详解】
(1)由 B=(2+0.2t)T 得磁场的变化率为
则磁通量的变化率为:
B 0.2T/s t
S B 0.04Wb/s t t
根据 E n 可知回路中的感应电动势为: t
【答案】(1) P= B2L2v2 (2)Q= B2L3v
R
4R
【解析】
【详解】
(1)线圈中的感应电动势
感应电流
E=BLv
E
I=
R
拉力大小等于安培力大小
拉力的功率
F=BIL
(2)线圈 ab 边电阻
P=Fv= B2L2v2 R
R
Rab=
4
运动时间 ab 边产生的焦耳热
t= L v
Q=I2Rabt = B2L3v 4R
(1)0~t0 时间内导体棒 ab 所受水平外力的大小及方向

【高考物理必刷题】电磁感应(后附答案解析)

【高考物理必刷题】电磁感应(后附答案解析)

1
B.
2
如图所示,两根平行金属导轨置于水平面内,导轨之间接有电阻
中的感应电流逐渐减小
3
时,线圈中的电流改变方向
一个周期内,线圈产生的热量为
4
、总电阻为的正
边与磁场边界平行,如图(a)所示,已知导线框一直向右做匀速
时刻进入磁场.线框中感应电动势随时间变化的图线如图(b)所示(感
左转轴上侧绝缘漆挂掉,右转轴下侧的绝缘漆刮掉左转轴上下两侧绝缘漆都挂掉,右转轴下侧的绝缘漆刮掉
5
D.
和.圆形匀强磁场的边缘恰好与线圈重合,则穿6
7
磁场的方向;
答案B.
1
A 2
中的感应电流逐渐减小3
时,线圈中的电流改变方向
一个周期内,线圈产生的热量为
,所以线圈平面平行于磁感线,故A正确;
和,故B错误;
C.在交变电流产生的过程当中,磁通量最大时,感应电动势以及感应电流最小,故C 4
5
左转轴上侧绝缘漆挂掉,右转轴下侧的绝缘漆刮掉
左转轴上下两侧绝缘漆都挂掉,右转轴下侧的绝缘漆刮掉
6
D.
7
磁场的方向;
考点
开关接后,开始向右加速运动,速度达到最大值时,设上的感应电动势为,有

依题意有⑦
设在此过程中的平均电流为,上受到的平均安培力为,有

由动量定理,有

又⑩
联立⑤⑥⑦⑧⑨⑩式得

电磁感应
涡流、电磁阻尼和电磁驱动。

电磁感应综合问题(解析版)--2024年高考物理大题突破优选全文

电磁感应综合问题(解析版)--2024年高考物理大题突破优选全文

电磁感应综合问题1.掌握应用动量定理处理电磁感应问题的思路。

2.掌握应用动量守恒定律处理电磁感应问题的方法。

3.熟练应用楞次定律与法拉第电磁感应定律解决问题。

4.会分析电磁感应中的图像问题。

5.会分析电磁感应中的动力学与能量问题。

电磁感应中的动力学与能量问题1(2024·河北·模拟预测)如图甲所示,水平粗糙导轨左侧接有定值电阻R =3Ω,导轨处于垂直纸面向外的匀强磁场中,磁感应强度B =1T ,导轨间距L =1m 。

一质量m =1kg ,阻值r =1Ω的金属棒在水平向右拉力F 作用下由静止开始从CD 处运动,金属棒与导轨间动摩擦因数μ=0.25,金属棒的v -x 图像如图乙所示,取g =10m/s 2,求:(1)x =1m 时,安培力的大小;(2)从起点到发生x =1m 位移的过程中,金属棒产生的焦耳热;(3)从起点到发生x =1m 位移的过程中,拉力F 做的功。

【答案】(1)0.5N ;(2)116J ;(3)4.75J 【详解】(1)由图乙可知,x =1m 时,v =2m/s ,回路中电流为I =E R +r =BLv R +r=0.5A安培力的大小为F 安=IBL =0.5N (2)由图乙可得v =2x金属棒受到的安培力为F A =IBL =B 2L 2v R +r=x2(N )回路中产生的焦耳热等于克服安培力做的功,从起点到发生x =1m 位移的过程中,回路中产生的焦耳热为Q =W 安=F A x =0+0.52×1J =0.25J金属棒产生的焦耳热为Q 棒=r R +rQ =116J(3)从起点到发生x =1m 位移的过程中,根据动能定理有W F -W 安-μmgx =12mv 2解得拉力F 做的功为W F =4.75J1.电磁感应综合问题的解题思路2.求解焦耳热Q 的三种方法(1)焦耳定律:Q =I 2Rt ,适用于电流恒定的情况;(2)功能关系:Q =W 克安(W 克安为克服安培力做的功);(3)能量转化:Q =ΔE (其他能的减少量)。

高考物理电磁学知识点之电磁感应基础测试题及答案(2)

高考物理电磁学知识点之电磁感应基础测试题及答案(2)

高考物理电磁学知识点之电磁感应基础测试题及答案(2)一、选择题1.如图甲所示,光滑的平行金属导轨(足够长)固定在水平面内,导轨间距为l=20cm,左端接有阻值为R=1Ω的电阻,放在轨道上静止的一导体杆MN与两轨道垂直,整个装置置于竖直向上的匀强磁场中,磁场的磁感应强度大小为B=0.5T.导体杆受到沿轨道方向的拉力F做匀加速运动,测得力F与时间t的关系如图2所示。

导体杆及两轨道的电阻均可忽略不计,导体杆在运动过程中始终与轨道垂直且两端与轨道保持良好接触,则导体杆的加速度大小和质量分别为( )A.10 m/s2,0.5 kgB.10 m/s2,0.1 kgC.20 m/s2,0.5 kgD.D. 20 m/s2,0.1 kg2.如图所示,有一正方形闭合线圈,在足够大的匀强磁场中运动。

下列四个图中能产生感应电流的是A.B.C.D.3.如图所示,MN和PQ为竖直方向的两平行长直金属导轨,间距l为0.4m,电阻不计。

导轨所在平面与磁感应强度B为0.5T的匀强磁场垂直。

质量m为6.0×10-3kg电阻为1Ω的金属杆ab始终垂直于导轨,并与其保持光滑接触。

导轨两端分别接有滑动变阻器R2和阻值为3.0Ω的电阻R1。

当杆ab达到稳定状态时以速率v匀速下滑,整个电路消耗的电功率P为0.27W。

则()A.ab稳定状态时的速率v=0.4m/sB.ab稳定状态时的速率v=0.6m/sC.滑动变阻器接入电路部分的阻值R2=4.0ΩD.滑动变阻器接入电路部分的阻值R2=6.0Ω4.如图所示,L是自感系数很大的线圈,但其自身的电阻几乎为零。

A和B是两个完全相同的小灯泡。

下列说法正确的是()A.接通开关S瞬间,A灯先亮,B灯不亮B.接通开关S后,B灯慢慢变亮C.开关闭合稳定后,突然断开开关瞬间,A灯立即熄灭、B灯闪亮一下D.开关闭合稳定后,突然断开开关瞬间,A灯、B灯都闪亮一下5.两条平行虚线间存在一匀强磁场,磁感应强度方向与纸面垂直。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考复习物理 电磁感应大题高中物理高三板块复习。

1.(18分)如图所示,两根相同的劲度系数为k 的金属轻弹簧用两根等长的绝缘线悬挂在水平天花板上,弹簧上端通过导线与阻值为R 的电阻相连,弹簧下端连接一质量为m ,长度为L ,电阻为r 的金属棒,金属棒始终处于宽度为d 垂直纸面向里的磁感应强度为B 的匀强磁场中。

开始时弹簧处于原长,金属棒从静止释放,水平下降h 高时达到最大速度。

已知弹簧始终在弹性限度内,且弹性势能与弹簧形变量x 的关系为221kx E p ,不计空气阻力及其它电阻。

求:(1)此时金属棒的速度多大?(2)这一过程中,R 所产生焦耳热Q R 多少?2.(17分)如图15(a )所示,一端封闭的两条平行光滑导轨相距L ,距左端L 处的中间一段被弯成半径为H 的1/4圆弧,导轨左右两段处于高度相差H 的水平面上。

圆弧导轨所在区域无磁场,右段区域存在磁场B 0,左段区域存在均匀分布但随时间线性变化的磁场B (t ),如图15(b )所示,两磁场方向均竖直向上。

在圆弧顶端,放置一质量为m 的金属棒ab ,与导轨左段形成闭合回路,从金属棒下滑开始计时,经过时间t 0滑到圆弧顶端。

设金属棒在回路中的电阻为R ,导轨电阻不计,重力加速度为g 。

⑴问金属棒在圆弧内滑动时,回路中感应电流的大小和方向是否发生改变?为什么?⑵求0到时间t0内,回路中感应电流产生的焦耳热量。

⑶探讨在金属棒滑到圆弧底端进入匀强磁场B0的一瞬间,回路中感应电流的大小和方向。

3、(16分)t=0时,磁场在xOy平面内的分布如图所示。

其磁感应强度的大小均为B0,方向垂直于xOy平面,相邻磁场区域的磁场方向相反。

每个同向磁场区域的宽度均为l0。

整个磁场以速度v沿x轴正方向匀速运动。

⑴若在磁场所在区间,xOy平面内放置一由n匝线圈串联而成的矩形导线框abcd,线框的bc边平行于x轴.bc=l B、ab=L,总电阻为R,线框始终保持静止。

求:①线框中产生的总电动势大小和导线中的电流大小;②线框所受安培力的大小和方向。

⑵该运动的磁场可视为沿x轴传播的波,设垂直于纸面向外的磁场方向为正,画出t=0时磁感应强度的波形图,并求波长λ和频率f。

4、(16分)如图甲所示, 两根足够长的平行光滑金属导轨固定放置在水平面上,间距L =0.2m ,一端通过导线与阻值为R =1Ω的电阻连接;导轨上放一质量为m =0.5kg 的金属杆,金属杆与导轨的电阻均忽略不计.整个装置处于竖直向上的大小为B =0.5T 的匀强磁场中.现用与导轨平行的拉力F 作用在金属杆上,金属杆运动的v-t 图象如图乙所示. (取重力加速度g =10m/s 2)求: (1)t =10s 时拉力的大小及电路的发热功率. (2)在0~10s 内,通过电阻R 上的电量.5、 (20分)如图所示间距为 L 、光滑的足够长的金属导轨(金属导轨的电阻不计)所在斜面倾角为 两根同材料、长度均为 L 、横截面均为圆形的金属棒CD 、 PQ 放在斜面导轨上.已知CD 棒的质量为m 、电阻为 R , PQ 棒的圆截面的半径是CD 棒圆截面的 2 倍。

磁感应强度为 B 的匀强磁场垂直于导轨所在平面向上两根劲度系数均为 k 、相同的弹簧一端固定在导轨的下端另一端连着金属棒CD 开始时金属棒CD 静止,现用一恒力平行于导轨所在平面向上拉金属棒 PQ .使金属棒 PQ 由静止开始运动当金属棒 PQ 达到稳定时弹簧的形变量与开始时相同,已知金属棒 PQ 开始运动到稳定的过程中通过CD 棒的电量为q,此过程可以认为CD 棒缓慢图乙地移动,已知题设物理量符合αsin 54mg BL qRk =的关系式,求此过程中 (l )CD 棒移动的距离; (2) PQ 棒移动的距离 (3) 恒力所做的功。

(要求三问结果均用与重力mg 相关的表达式来表示).6、(12分)如图所示,AB 和CD 是足够长的平行光滑导轨,其间距为l ,导轨平面与水平面的夹角为θ。

整个装置处在磁感应强度为B 、方向垂直于导轨平面且向上的匀强磁场中。

AC 端连有阻值为R 的电阻。

若将一质量为M 、垂直于导轨的金属棒EF 在距BD 端s 处由静止释放,则棒滑至底端前会有加速和匀速两个运动阶段。

现用大小为F 、方向沿斜面向上的恒力把金属棒EF 从BD 位置由静止推至距BD 端s 处,此时撤去该力,金属棒EF 最后又回到BD 端。

求: (1)金属棒下滑过程中的最大速度。

(2)金属棒棒自BD 端出发又回到BD 端的整个过程中,有多少电能转化成了内能(金属棒及导轨的电阻不计)?7.(12分)如图所示,一矩形金属框架与水平面成 =37°角,宽L =0.4m,上、下两端各有一个电阻R0 =2Ω,框架的其他部分电阻不计,框架足够长,垂直于金属框平面的方向有一向上的匀强磁场,磁感应强度B=1.0T.ab为金属杆,与框架良好接触,其质量m=0.1Kg,杆电阻r=1.0Ω,杆与框架的动摩擦因数μ=0.5.杆由静止开始下滑,在速度达到最大的过程中,上端电阻R0产生的热量Q0=0. 5J.(sin37°=0.6,cos37°=0.8)求:(1)流过R0的最大电流;(2)从开始到速度最大的过程中ab杆沿斜面下滑的距离;(3)在时间1s内通过杆ab横截面积的最大电量.8.(14分)如图(A)所示,固定于水平桌面上的金属架cdef,处在一竖直向下的匀强磁场中,磁感强度的大小为B0,金属棒ab搁在框架上,可无摩擦地滑动,此时adeb构成一个边长为l的正方形,金属棒的电阻为r,其余部分的电阻不计。

从t = 0。

求:(1)用垂直于金属棒的水平拉力F使金属棒保持静止,写出F的大小随时间t变化的关系式。

(2)如果竖直向下的磁场是非均匀增大的(即k不是常数),金属棒以速度v0向什么方向匀速运动时,可使金属棒中始终不产生感应电流,写出该磁感强度B t 图(A)图(B)v-v图(C)B-B随时间t 变化的关系式。

(3)如果非均匀变化磁场在0—t 1时间内的方向竖直向下,在t 1—t 2时间内的方向竖直向上,若t = 0时刻和t 1时刻磁感强度的大小均为B 0,且adeb 的面积均为l 2。

当金属棒按图(B )中的规律运动时,为使金属棒中始终不产生感应电流,请在图(C )中示意地画出变化的磁场的磁感强度B t 随时间变化的图像(t 1-t 0 = t 2-t 1< l v )。

9. 一有界匀强磁场区域如图甲所示,质量为m 、电阻为R 的长方形矩形线圈abcd 边长分别为L 和2L ,线圈一半在磁场内,一半在磁场外,磁感强度为B 0。

t =0时刻磁场开始均匀减小,线圈中产生感应电流,在磁场力作用下运动, v -t 图象如图乙,图中斜向虚线为过0点速度图线的切线,数据由图中给出,不考虑重力影响。

求:⑴ 磁场磁感强度的变化率。

⑵ t 3时刻回路电功率。

10.(14分)如图所示,竖直向上的匀强磁场在初始时刻的磁感应强度B 0=0.5T ,并且以Bt∆∆=1T/s 在增加,水平导轨的电阻和摩擦阻力均不计,导轨宽为0.5m ,左端所接电阻R = 0.4Ω。

在导轨上l =1.0m 处的右端搁一金属棒ab ,其电阻R 0=0.1Ω,并用水平细绳通过定滑轮吊着质量为M = 2kg 的重物,欲将重物吊起,问:L 2L Babcd 甲乙(1)感应电流的方向(请将电流方向标在本题图上)以及感应电流的大小; (2)经过多长时间能吊起重物。

11.(14分) 如图所示,边长L =2.5m 、质量m =0.50kg 的正方形金属线框,放在磁感应强度B =0.80T 的匀强磁场中,它的一边与磁场的边界MN 重合。

在水平力作用下由静止开始向左运动,在5.0s 内从磁场中拉出。

测得金属线框中的电流随时间变化的图象如下图所示。

已知金属线框的总电阻R =4.0Ω。

⑴试判断金属线框被拉出的过程中,线框中的感应电流方向,并在图中标出。

⑵求t =2.0s 时金属线框的速度大小和水平外力的大小。

⑶已知在5.0s 内力F 做功1.92J ,那么金属线框从磁场拉出的过程中,线框中产生的焦耳热是多少?12、(16分)如图所示,倾角为370的光滑绝缘的斜面上放着M=1kg 的导轨abcd ,ab ∥cd 。

另有一质量m=1kg 的金属棒EF 平行bc 放在导轨上,EF 下侧有绝缘的垂直于斜面B的立柱P 、S 、Q 挡住EF 使之不下滑,以OO′为界,斜面左边有一垂直于斜面向下的匀强磁场。

右边有平行于斜面向下的匀强磁场,两磁场的磁感应强度均为B=1T ,导轨bc 段长L=1m 。

金属棒EF 的电阻R=1.2Ω,其余电阻不计,金属棒与导轨间的动摩擦因数μ=0.4,开始时导轨bc 边用细线系在立柱S 上,导轨和斜面足够长,当剪断细线后,试求:(1)求导轨abcd 运动的最大加速度; (2)求导轨abcd 运动的最大速度;(3)若导轨从开始运动到最大速度的过程中,流过金属棒EF 的电量q=5C ,则在此过程中,系统损失的机械能是多少?(sin370=0.6)13.(20分)如图所示,在磁感应强度为B 的水平方向的匀强磁场中竖直放置两平行导轨,磁场方向与导轨所在平面垂直。

导轨上端跨接一阻值为R 的电阻(导轨电阻不计)。

两金属棒a 和b 的电阻均为R ,质量分别为kg m a2102-⨯=和kg m b 2101-⨯=,它们与导轨相连,并可沿导轨无摩擦滑动。

闭合开关S ,先固定b ,用一恒力F 向上拉,稳定后a 以s m v /101=的速度匀速运动,此时再释放b ,b 恰好保持静止,设导轨足够长,取2/10s m g =。

(1)求拉力F 的大小;(2)若将金属棒a 固定,让金属棒b 自由滑下(开关仍闭合),求b 滑行的最大速度2v ;(3)若断开开关,将金属棒a 和b 都固定,使磁感应强度从B 随时间均匀增加,经0.1s 后磁感应强度增到2B 时,a 棒受到的安培力正好等于a 棒的重力,求两金属棒间的距离h 。

14.(14分)如图甲所示是某人设计的一种振动发电装置,它的结构是一个套在辐向形永久磁铁槽中的半径为r =0.1 m 、匝数n =20的线圈,磁场的磁感线均沿半径方向均匀分布(其右视图如图乙所示)。

在线圈所在位置磁感应强度B 的大小均为0.2 T ,线圈的电阻为2 Ω,它的引出线接有8 Ω的小电珠L 。

外力推动线圈框架的P 端,使线圈沿轴线做往复运动,便有电流通过电珠。

当线圈向右的位移x 随时间t 变化的规律如图丙所示时(x 取向右为正),求:(1)线圈运动时产生的感应电动势E 的大小;(2)线圈运动时产生的感应电流I 的大小,并在图丁中画出感应电流随时间变化的图像(在图甲中取电流由C 向上流过电珠L 到D 为正);(3)每一次推动线圈运动过程中作用力F 的大小; (4)该发电机的输出功率P (摩擦等损耗不计);(5)某同学说:“该线圈在运动过程中,磁感线始终与线圈平面平行,线圈中的磁通量始终为零,磁通量保持不变,因此线圈中应该没有感应电流产生,但实际却产生了电流,如何解释这个问题呢?”对这个问题说说你的看法。

相关文档
最新文档