综合流体力学实验装置说明书

合集下载

流体力学实验指导书

流体力学实验指导书

《流体力学》实验指导书目录实验装置简介及实验安排…………………………………………………… 1-2 实验一:伯努利方程验证实验………………………………………………… 3-8 实验二:雷诺实验…………………………………………………………… 9-12实验装置简介及实验安排实验装置:流体力学综合实验台是一个多功能实验装置,用此实验台可进行伯努利方程(能量方程)验证实验、雷诺实验、沿程阻力测定实验、局部阻力测定实验、毕托管测速实验和文丘里流量计实验等多个流体力学实验。

实验装置如图1-1所示。

1—供水箱,水泵;2—实验桌;3—层流测针;4—恒压水箱;5—彩色墨水罐;6—差压板;7—沿程阻力实验管;8—局部阻力实验管;9—伯努利实验管;10—雷诺实验管;11—伯努利差压板;12—毕托管;13—计量水箱;14—回水管。

图1-1 多功能流体力学综合实验台针对轮机工程专业36学时或32学时的流体力学课程,我们开设两个实验,即伯努利方程验证实验和雷诺实验。

在雷诺实验中,学生可以借助该实验装置观察层流和湍流(紊流)特征以及它们之间的转换特征,掌握测定临界雷诺数Re 的方法。

在伯努利方程实验中,学生可以借助该实验装置验证总流的伯努利方程,观察流体流动过程中的能量守恒关系,同时可以掌握流速、流量和压强等要素的实验量测技能。

实验学时分配:实验一:伯努利方程验证实验 2学时实验二:雷诺实验 2学时实验分组:每个实验7-8人一组,每个自然班分成四组。

实验一:伯努利方程验证实验一、实验目的1.掌握伯努利方程式中各项的物理意义及它们之间的转换关系; 2.验证流体总流的能量方程;3.掌握流速、流量、压强等动水力学水力要素的实验量测技术; 4.学习使用测压管、总压管测水头的实验技能及绘制水头线的方法。

二、实验原理1.伯努利方程(能量方程)在伯努利实验管路中沿水流方向取n 个过流断面。

在动能修正系数α近似取为1的情况下,可以列出进口断面(1)至任一断面(i )的能量方程式(i = 2,3,……,n )i ,i i i h gv p z g v p z -+++=++1f 2211122γγ (1)式中,z 、γp 和gv 22分别为位置水头(位头)、压力水头(压头)和速度水头(动头),单位为m (水柱);i ,h -1f 为从过流断面1到断面n 的水头损失,单位也是m (水柱)。

流体力学实验指导书

流体力学实验指导书

篇一:流体力学实验指导书1流体力学(水力学)实验指导书黎强张永东编西南大学工程技术学院建筑系二零零八年九月流体力学综合实验台简介流体力学综合实验台为多用途实验装置,其结构示意图如图1所示。

图1 流体力学综合试验台结构示意图1.储水箱2.上、回水管3.电源插座4.恒压水箱5.墨盒6.实验管段组7.支架8.计量水箱9.回水管 10.实验桌利用这种实验台可进行下列实验:一、雷诺实验;二、能量方程实验;三、管路阻力实验;1.沿层阻力实验2.局部阻力实验;四、孔板流量计流量系数和文丘里流量系数的测定方法;五、皮托管测流速和流量的方法。

一、雷诺实验1.实验目的(1)观察流体在管道中的流动状态;(2)测定几种状态下的雷诺数;(3)了解流态与雷诺数的关系。

2.实验装置本实验的实验装置为:(1)流体力学综合实验台;(2)雷诺实验台。

在流体力学综合实验台中,雷诺实验涉及的部分有高位水箱、雷诺数实验管、阀门、伯努力方程实验管道、颜料水(蓝墨水)盒及其控制阀门、上水阀、出水阀,水泵和计量水箱等,秒表及温度计自备。

雷诺实验台部件种类同综合实验台雷诺实验部分。

3.实验前准备(1)、将实验台的各个阀门置于关闭状态。

开启水泵,全开上水阀门,把水箱注满水,再调节上水阀门,使水箱的水有少量溢流,并保持水位不变。

(2)、用温度计测量水温。

4.实验方法(1)、观察状态打开颜料水控制阀,使颜料水从注入针流出,颜料水和雷诺实验管中的水迅速混合成均匀的淡颜色水,此时雷诺实验管中的流动状态为紊流;随着出水阀门的不断的关小,颜料水与雷诺实验管中的水渗混程度逐渐减弱,直至颜料水与雷诺实验管中形成一条清晰的线流,此时雷诺实验管中的流动为层流。

(2)测定几种状态下的雷诺系数全开出水阀门,然后在逐渐关闭出水阀门,直至能开始保持雷诺实验管内的颜料水流动状态为层流状态。

按照从小流量到大流量的顺序进行实验,在每一个状态下测量体积流量和水温,并求出相应的雷诺数。

流体力学实验指导书.

流体力学实验指导书.

《流体力学》实验指导书郭广思王连琪沈阳理工大学2006年10月一伯努利方程综合性实验(一)实验目的伯努利方程是水力学三大基本方程之一,反映了水流在流动时,位能、压能、动能之间的关系。

1.了解总水头线和测压管水头线在局部阻力和沿程阻力处的变化规律;2.了解总水头线在不同管径段的下降坡度,即水力坡度J的变化规律;3.了解总水头线沿程下降和测压管水头线升降都有可能的原理;4.用实例流量计算流速水头去核对测压板上两线的正确性;不同管径流速水头的变化规律(二)设备简图本实验台由高位水箱、供水箱、水泵、测压板、有机玻璃管道、铁架、量筒等部件组成,可直观地演示水流在不同管径、不同高程的管路中流动时,上述三种能量之间的复杂变化关系。

(三)实验原理过水断面的能量由位能、压能、动能三部分组成。

水流在不同管径、不同高程的管路中流动时,三种能量不断地相互转化,在实验管道各断面设置测压管及测速管,即可演示出三种能量沿程变化的实际情况。

测压管中水位显示的是位能和压能之和,即伯努利方程中之前两项:gp Z ρ+,测速管中水位显示的是位能、压能和动能之和。

即伯努利方程中三项之和:gv g p Z 22++ρ。

将测压管中的水位连成一线,称为测压管水头线,反映势能沿程的变化;将测速管中的水位连成一线,称为总水头线,反映总能量沿程的变化,两线的距离即为流速水头g v 2/2。

本实验台在有机玻璃实验管道的关键部位处,设置测压管及测速管,适当的调节流量就可把总水头线和测压管水头线绘制于测压板上。

注:计算所的流速水头值是采用断面平均流速求得,而实测流速水头值是根据断面最大速度得出,显然实测值大于计算值,两者相差约为1.3倍。

(四)实验步骤1.开动水泵,将供水箱内之水箱至高位水箱;2.高位水箱开始溢流后,调节实验管道阀门,使测压管,测速管中水位和测压板上红、黄两线一致;3.实验过程中,始终保持微小溢流;4.如水位和红黄两线不符,有两种可能:一是连接橡皮管中有气泡,可不断用手挤捏橡皮管,使气泡排出;二是测速管测头上挂有杂物,可转动测头使水流将杂物冲掉。

《流体力学》实验指导书

《流体力学》实验指导书

实验(一)流体静力学综合性实验一、实验目的和要求掌握用测压管测量流体静压强的技能;通过测量静止液体点的静水压强,加深理解位臵水头、压强水头、及测管水头的基本概念;观察真空现象,加深对真空度的理解;验证不可压缩流体静力学基本方程;测量油的重度二、实验装臵本实验装臵如图1.1所示4.真空测压管5.U 型测压管6.通气阀7.加压打气球8.截止阀9.油柱10. 水柱11.减压放水阀说明: 1. 所有测压管液面标高均以标尺(测压管2)零度数为基准;2.仪器铭牌所注^B 、▽D 系测点B 、C 、D 标高;若同时取标尺零点作为静力学基本方程的基准,则^B 、▽C .▽D 亦为Z B 、Z C 、Z D3. 本仪器中所有阀门旋柄顺管轴线为开。

4. 测压管读数据时,视线与液面保持水平,读凹液面最低点对应的数据。

三、实验原理1在重力作用下不可压缩流体静力学基本方程pz +=constY或p =+y h式中:z —被测点在基准面以上的位置高度;1.测压管2.带标尺测压管3.连通管 I2367485D图1.1流体静力学综合性实验装臵图p—被测点的静水压强,用相对压强表示,以下同;po—水箱中液面的表面压强Y—液体容重;h—被测点的液体深度。

上式表明,在连通的同种静止液体中各点对于同一基准面的测压管水头相等。

利用液体的平衡规律,可测量和计算出连通的静止液体中任意一点的压强,这就是测压管测量静水压强的原理。

压强水头£和位置水头z之间的互相转换,决定了夜柱高和压差的对应关系:Ap二yKh Y对装有水油(图1.2及图1.3)U型侧管,在压差相同的情况下,利用互相连通的同种液体的等压面原理可得油的比重So有下列关系:Y h0=1—Y h+hw12图1.2图1.3据此可用仪器(不用另外尺)直接测得So。

四、实验方法与步骤1.搞清仪器组成及其用法。

包括:1)各阀门的开关;2)加压方法关闭所有阀门(包括截止阀),然后用打气球充气;3)减压方法开启筒底阀11放水4)检查仪器是否密封加压后检查测管1、2、5液面高程是否恒定。

流体力学实验指导书

流体力学实验指导书

《流体力学实验指导书》一、电液比例综合测试实验台简介该实验台是根据《液压气动传动》通用教材设计而成,集可编程控制器和数据转换卡、液压元件模块为一体,除可进行常规的液压基本控制回路实验外,还可进行液压,组合应用实验及液压技术课程设计,元件的性能测试。

实验台配置了完备的各种类型传感器,包括压力传感器、流量传感器、转速传感器、功率传感器、位移传感器等,以满足各项实验参数测试的需要。

实验台是采用快速拼装结构,实验人员可根据实验项目原理图,选用相应的液压元件快速组成液压实验回路,通过电磁换向阀动作的控制和相关液压阀的调节进行实验。

实验台计算机测试控制系统实现实验参数(压力、流量、转速、功率、位移等)的自动数据检测、自动处理计算和存储等,还能实现回路电磁阀的自动控制,提高了实验台操作的自动化和智能化水平。

实验台可以同时进行16路实验数据的采集和8个二位电磁阀的控制。

1、性能与特点1、实验台采用台式结构,便利于多名学生的安装、测试。

2、操作平台面积大,可集成多个子系统。

3、阀体固定安装在操作平台上,管路连接采用快速接头,在背面连接,保证正面整洁。

4、实验用管件采用金属线,耐压胶管,压力可达到31.5Mpa。

5、测试方法实用、可靠。

实验装置由实验台架、液压泵站、电气测控单元等几部分组成。

3、液压站原理操作面板分布图A1.仪表数显区, A2.比例放大器与检测区,A3.PLC控制区, A4.传感器接口与手动控制区,A5.基础实验行程控制区, A6.液压站控制区。

5、数显区:功率表--—--定量叶片泵的实时功率。

转速表--—--定量叶片泵的实时转速。

流量表——--流过流量传感器的实时流量。

图A1 数显区分布图1、功率数显表;2、转速数显表;3、流量数显表;6.液压站控制区主系统控制区——定、变量泵的启动与停止,液压系统的供压与卸荷,冷却与加热以及总停的控制。

实验时先确定总停按钮为开启状态,即顺时钟旋转一定角度,自动升起为开。

流体输送综合实训装置说明书.

流体输送综合实训装置说明书.
3.帮助学生了解孔板流量计、文丘里流量计、转子流量计、涡轮流量计、热电阻温度计、各种常用液位计、压差计等工艺参数测量仪表的结构和测量原理;掌握使用方法,着重训练并掌握计算机远程控制系统DCS在流体输送中的应用技术;
4.了解离心泵结构、工作原理及性能参数,会离心泵特性曲线测定及离心泵最佳工作点确定;掌握正确使用、维护保养离心泵通用技能;会判断离心泵气缚、气蚀等异常现象并掌握排除技能;能够根据工艺条件正确选择离心泵的类型及型号。
当合成器液位达到指定位置时,关闭压缩机出口阀门,切断压缩机电源,将贮气罐内余气放出。
11.利用真空系统输送流体操作技能训练:
(1)真空输送流体操作规程:
1)准备工作(开车前的检查)
2)检查电压是否正常、(示值不超过额定电压(380V)±5%);电气开关和设备接地线是否正常。
3)实训任务:正确操作真空机组将原料罐内液体输送到合成器中并达到指定液位(400mm)。
然后打开阀门VA113、VA115,半开阀门VA120,流体在重力作用下从高位槽V101流向合成器V102,通过调节阀门VA115开度调节流量,转子流量计F101记录流量,控制合成器液位保持恒定。
13.合成器液位自动控制操作技能训练:
实训任务:应用离心泵(Ⅱ)电机频率调节将原料罐流体输送到合成器中并保持到指定液位(400mm)。
(2)离心泵停车操作:
1)逐渐关闭泵的出口阀门至全关。
2)当出口阀门全部关闭后停电机。
3)泵停止运转后关闭泵入口阀门。
8.离心泵串、并联操作技能训练:
(1)离心泵串联操作:
打开阀门VA153、VA146其余阀门全部关闭,调节离心泵(I)P103、离心泵(II)P102变频器频率为50(HZ)后启动二台离心泵变频器开关,打开阀门VA140,用电动调节阀VA145调节流量,打开阀门VA149。使流体形成从原料罐V105→泵P102→泵P103→电动调节阀VA145→涡轮流量计F105→原料罐V105的回路。

流体力学综合实验装置实验指导书

流体力学综合实验装置实验指导书

《三》实验管道中液流循环如下 (见实验装置)
1 / 31
流体力学综合实验装置
1、实验台潜水泵供水到恒压水箱,水箱内液体分别由实验管 A(雷诺实验及沿 程阻力系数测定实验) 、实验管 B(伯努利方程实验) 、实验管 C(局部阻力系数测定实 验)、实验管 D 毕托管测流速、文丘里、孔板和毕托管实验) 经流量计流入辅助水箱, 再返回到供水水箱中循环使用。 2、雷诺实验:颜色水容器的颜色水径调节阀调节,进入实验管 A,随 A 管内的流 动水一起运动,显示有色的流线;经辅助水箱,辅助水箱排尽阀直接排入地沟; 3、实验中基准水平面的选取 用本实验装置做以上各项实验时,其基准水平面一律选择为工作台面板的上平面。 4、本实验指导书中各项实验所涉及的运算,均采用国际单位制。
《二》实验台参数
1、水泵:型号 HQB-4500;最大扬程:8m;最大流量:75L/min;额定功率 100W; 电源:单相~220V。 2、恒压水箱:长×宽×高=300×350×600; 3、实验管 A:管径内径 Φ14,长约 1.0 (m),雷诺数实验管; 4、实验管 B:小管内径 Φ14,大管内径 Φ30,轴线高度差 70,总长约 1.0 (m); 伯努利方程实验管; 5、实验管 C:管内径 Φ14,大管内径Φ30,总长约 1.0 (m);突然扩大和突然缩 小阻力测定;毕托管的测定速实验和文丘里实验; 6、实验管 D:管内径 Φ14,沿程损失实验管,沿程损失计算长度 L=0.75 (m); 7、实验管 E:管内径Φ14, 闸阀和弯头阻力实验管 8、实验台总尺寸:长×宽×高=1800×500×1700。
λ=64/Re
(2)对于水力滑管紊流流动可取
8 / 29
流体力学综合实验装置
=
0.3164 5 < Re ( ) 10 Re1/4

流体力学综合实验装置

流体力学综合实验装置

• 3. 排气:先进行管路的引压操作。需打开 光滑管均压环上的引压阀A和B后,对1号倒 U型管(这种压差计内充空气,以待测液体 为指示液,一般用于测量液体小压差的场 合)进行操作如下,其结构如图2所示。
图2 倒U型管压差计 1-低压侧阀门;2-高压侧阀门; 3-进气阀门; 4-平衡阀门; 5-出水活栓
流体力学综合实验装置
流体流动阻力测定
• 一、实验目的 • 1.掌握测定流体流经直管、管件和阀门时阻力损 失的一般实验方法。 • 2.测定直管摩擦系数λ与雷诺准数Re的关系,验 证在一般湍流区内λ与Re的关系曲线。 • 3.测定流体流经管件、阀门时的局部阻力系数。 • 4.学会倒U形压差计和涡轮流量计的使用方法。 • 5.识辨组成管路的各种管件、阀门,并了解其作 用。
• • • • • •
五、实验数据处理 根据上述实验测得的数据填写到下表: 实验日期: 实验人员: 学号: 温度: 装置号: 直管基本参数: 光滑管径 粗糙管径 局部阻力管径
• 表2
序 号 流量(m3/h) 光滑管mmH2O 左 右 压差 左 粗糙管mmH2O 右 压差 左 局部阻力mmH2O 右 压差
• 三、实验装置与流程 • 1、实验装置 • 实验装置如图1所示:
• 1-水箱;2-离心泵;3-进口压力表;4-出口压力表; 5-涡轮流量计;6-闸阀;7-球阀; 8-倒U形压差计; 9-均压环;10-球阀; 11-局部阻力管上的闸阀;12- 出水管路闸阀;13-水箱放水阀;14-温度计

图1 实验装置流程示意图
• 水的流量使用玻璃转子流量计测量,管路 和管件的阻力采用倒U形压差计将进口出口 的压差直接显示出来。 • 3.装置参数 • 装置参数如表1所示。
• 表1

流体力学综合实验指导书

流体力学综合实验指导书

流体力学综合实验实验指导书第 1 页共13页流体力学综合实验一、实验目的1)能进行光滑管、粗糙管、闸阀局部阻力测定实验,测出湍流区阻力系数与雷诺数关系曲线图;2)能进行离心泵特性曲线测定实验,测出扬程、功率和效率与流量的关系曲线图;3)学习工业上流量、功率、转速、压力和温度等参数的测量方法,使学生了解涡轮流量计、C1000、电动调节阀以及相关仪表的原理和操作;二、装置整体流程图:1-离心泵;2-进口压力变送器;3-铂热电阻(测量水温);4-出口压力变送器;5-电气仪表控制箱;6-均压环;7-粗糙管;8-光滑管(离心泵实验中充当离心泵管路);9-局部阻力管;10-管路选择球阀;11-涡轮流量计;12-局部阻力管上的闸阀;13-电动调节阀;14-差压变送器;15-水箱图1 实验装置流程示意图第 2 页共13页第 3 页 共 13页离心泵特性测定实验一、基本原理离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下泵的扬程H 、轴功率N 及效率η与泵的流量Q 之间的关系曲线,它是流体在泵内流动规律的宏观表现形式。

由于泵内部流动情况复杂,不能用理论方法推导出泵的特性关系曲线,只能依靠实验测定。

1.扬程H 的测定与计算取离心泵进口真空表和出口压力表处为1、2两截面,列机械能衡算方程:f h gug p z H g u g p z ∑+++=+++2222222111ρρ (1-1)由于两截面间的管长较短,通常可忽略阻力项f h ∑,速度平方差也很小故可忽略,则有 (=H gp p z z ρ1212)-+- 210(H H H ++=表值)(1-2) 式中: 120z z H -=,表示泵出口和进口间的位差,m ;和ρ——流体密度,kg/m 3 ; g ——重力加速度 m/s 2;p 1、p 2——分别为泵进、出口的真空度和表压,Pa ;H 1、H 2——分别为泵进、出口的真空度和表压对应的压头,m ; u 1、u 2——分别为泵进、出口的流速,m/s ; z 1、z 2——分别为真空表、压力表的安装高度,m 。

流体力学综合实验仪说明书(小)

流体力学综合实验仪说明书(小)

JK-LLZ流体力学综合实验仪产品说明书目录一、概述 (1)二、实验装置外形图 (1)三、设备性能与主要技术参数 (2)四、可开实验 (2)五、实验目的 (2)六、实验流程图 (5)七、实验操作步骤与注意事项 (5)八、设备维护 (7)湘潭金凯化工装备技术有限公司JK-LLZ流体力学综合实验仪一、概述本实验装置是集雷诺实验、柏努利实验、沿程阻力实验和局部阻力实验于一体的综合实验台,外形美观,且节约实验投资与占地面积。

在实际生产中,许多过程都涉及到流体流动的内部细节,尤其是流体的流动现象,故而了解流体的流动形态极其重要。

流体在流动过程中为克服流动阻力必定要消耗能量。

流体流动阻力产生根本的原因是流体具有粘性,流动时存在着内磨擦,而固定的管壁或其它形状固体壁面,促使流动流体的内部发生相对运动,为流体流动阻力的产生提供了条件,因此液体阻力的大小与流体的物性、流动状况及壁面等因素有关。

流体在流动系统中作定态流动时,流体在各截面上的流速、密度、压强等物理参数仅随位置而改变而不随时间而变。

根据能量守恒定律,对任一段管路内流体流动做能量衡算,即可得到表示流体的能量关系和流动规律的柏努利方程。

二、实验装置外形图三、设备性能与主要技术参数1、运行环境:温度0-400C,相对湿度:≤90%RH,电源:220V/50Hz ,可连续操作。

2、雷诺实验管:长1000mm、内径φ14mm,有机玻璃制作。

3、柏努利实验管:总长1000mm、内径φ40mm和φ14mm,有机玻璃管制作,可按两点法求出各有变化点的动静压头。

4、沿程阻力管:长1000mm、内径φ14mm,有机玻璃制作,两测压点间的距离:800mm。

5、局部阻力管:长1000mm、内径φ14mm,有机玻璃制作,上装孔板流量计β2=0.5,文丘里流量计β2=0.5、闸阀,可用来测定流体流经铜闸阀的前后压差,以及对文丘里流量计和孔板流量计进行校核。

6、测压计:长600mm 、内径φ8mm ,14根,压差计内的指示液为水,无毒、操作安全。

流体力学综合实验装置说明书

流体力学综合实验装置说明书

流体力学综合实验装置使用说明书一、概述本实验装置可以测定对比:粗糙直管、光滑管和阀门等阻力系数。

在实际生产中,许多过程都涉及到流体流动的内部细节,尤其是流体的流动阻力。

流体在流动过程中为克服流动阻力必定要消耗能量。

流体流动阻力产生根本的原因是流体具有粘性,流动时存在着内磨擦,而固定的管壁或其它形状固体壁面,促使流动流体的内部发生相对运动,为流体流动阻力的产生提供了条件,因此液体阻力的大小与流体的物性、流动状况及壁面等因素有关。

流体在流动系统中作定态流动时,流体在各截面上的流速、密度、压强等物理参数仅随位置而改变而不随时间而变。

二、设备性能及主要技术参数1、该实验装置主要由:不锈钢离心泵、蓄水箱、光滑管、粗糙管、局部阻力管、压差传感器、空气—水倒置∪型管、转子流量计、阀门、实验台架及电控箱等组成。

2、光滑直管段:管径DN—0.010m、测量段管长L=1.4m,材质:不锈钢管。

3、粗糙直管段:管径 DN—0.012m、测量段管长L=1.4m,材质:不锈钢管,内装不锈钢螺旋丝。

4、局部阻力直管段:管径 DN—0.020m,测量段管长近点L=0.6m、远点L=1.2m,材质:不锈钢管。

5、LZB-25水转子流量计:流量范围 100~1000 l/h 和LZB-10水转子流量计:流量范围10~100 l/h6、差压传感器:0-150Kpa,精度0.5。

由AI-501智能仪表显示压差阻力。

AI-501测量水温。

7、不锈钢离心泵参数:流量: 0-7.2m3/h,扬程: 20m,电机功率: 550W。

8、蓄水箱为不锈钢材质,容积约80L。

三、实验目的1、掌握流体流经直管和阀门时的阻力损失和测定方法,通过实验了解流体流动中能量损失的变化规律。

2、测定直管摩擦系数λ与雷诺数Re的关系。

3、测定流体流经闸阀时的局部阻力系数 。

四、实验原理a) 直管阻力与局部阻力实验:流体阻力产生的根源是流体具有粘性,流动时存在内摩擦。

DYT001Ⅱ 数字型流体力学综合实验装

DYT001Ⅱ 数字型流体力学综合实验装

DYT001Ⅱ数字型流体力学综合实验装置上海大有仪器设备一.实验目的
通过本实验熟悉流体力学实验的操作流程。

该实验台可测定:
1.沿程阻力系数测定实验。

2.局部阻力系数测定实验(突扩、突缩实验)。

3.雷诺实验(有机玻璃管内流体流态变化)。

4.伯努利方程实验。

5.文丘里流量计测流量系数实验。

6.孔板流量计测流量系数实验。

7.毕托管流量计测流量系数实验。

二.技术指标
1.设备工作环境:常温、常压。

2.工作电源:AC220V,50HZ,单相三线制。

安全保护:具有接地保护、漏电保护、过流保护。

3.装置外形尺寸:2520×800×1680mm。

一.实验目的
通过本实验熟悉流体力学实验的操作流程。

该实验台可测定:
1.沿程阻力系数测定实验。

2.局部阻力系数测定实验(突扩、突缩实验)。

3.雷诺实验(有机玻璃管内流体流态变化)。

4.伯努利方程实验。

5.文丘里流量计测流量系数实验。

6.孔板流量计测流量系数实验。

7.毕托管流量计测流量系数实验。

二.技术指标
1.设备工作环境:常温、常压。

2.工作电源:AC220V,50HZ,单相三线制。

安全保护:具有接地保护、漏电保护、过流保护。

3.装置外形尺寸:2520×800×1680mm。

1/ 1。

《流体力学综合实验》指示书(2014年版)

《流体力学综合实验》指示书(2014年版)

流体力学综合实验指示书向文英江岸城市建设与环境工程学院二O一四年十一月目录实验一流体静力学实验实验二不可压缩恒定流能量方程实验实验三文丘里流量系数校正实验实验四不可压缩恒定流动量方程实验五沿程水头损失实验实验六局部水头损失实验实验七孔口与管嘴出流实验实验八雷诺与渗流实验实验九水面曲线与流动现象演示实验实验十明渠流动与堰流实验实验一 流体静力学实验一、实验目的1、验证静力学的基本方程;2、学会使用测压管与差压计的量测技能;3、理解绝对压强与相对压强及毛细管现象;4、灵活应用静力学的基本知识进行实际工程量测。

二、实验原理1、重力作用下不可压缩流体静力学基本方程: c pz =+γ2、静压强分布规律: h p p γ+=0式中:z ——被测点相对于基准面的位置高度;p ——被测点的静水压强,用相对压强表示,以下同; p 0——水箱中液面压强;γ——液体容重;h ——被测点在液体中的淹没深度。

3、等压面原理:对于连续的同种介质,流体处于静止状态时,水平面即等压面。

三、实验仪器设备实验仪器:流体静力学实验仪仪器元件:测压管、U 型测压管、打气球、通气阀、放水阀、截止阀、量杯 流体介质:水、油、气 实验装置如图:四、实验要求1、熟练并能准确进行测压管的读数;2、控制与测定液面的绝对压强或相对压强;3、分析测定介质容重;4、验证静力学基本方程;5、由等压面原理分析压差值。

五、实验步骤与方法1、熟悉实验装置各部分的功能与作用;2、打开通气阀,使液面与大气相通。

记录水箱液面高程0∇和测压管液面高程H∇。

3、液面增压。

关闭通气阀、放水阀、截止阀,用打气球加压,记录水箱液面高程0∇和测压管液面高程H ∇,计算各点压强γap 、γbp 、γcp 及各点测压管水头γaa p z +、γbb p z +、γcc p z +;继续加压数次并记录计算。

4、液面减压。

关闭通气阀和截止阀,打开放水阀放出一定水量后关闭放水阀,记录水箱液面高程0∇和测压管液面高程H ∇,计算各点压强γap 、γbp 、γcp 及各点测压管水头γaa p z +、γbb p z +、γcc p z +;继续减压数次并记录计算。

流体力学实验指导书(2012.9.16)

流体力学实验指导书(2012.9.16)

实验一 能量转换实验一、实验目的1、熟悉流体在流动过程中各种能量和水头的概念及其转换关系,加深对伯努利方程的理解;2、观察流体流速随管径变化的规律。

二、实验原理1、总水头的分析:总水头为测压管水头与流速水头之和,任意两截面间的能量方程为21,2111222222--++=++f H gv g p Z g v g p Z ρρ 。

图一所示实验装置中,从实验可以观测到B 截面的总水头低于A 截面的总水头,这符合伯努利方程。

2、A 、B 截面间压强水头的分析:由于A 、B 两截面处于同一水平位置,B 截面面积比A 截面面积大。

所以B 截面处的流速比A 截面处小。

设流体从A 截面流到B 截面的水头损失为B A f H -,,在A 、B 两截面间列伯努利方程。

B A f BB B A A A H gv g p Z g v g p Z -+++=++,2222ρρ B A Z Z =B A f BA AB H gv g v g p g p ---=-,2222ρρ 即A 、B 两截面处的压强水头之差,决定于ggBA2222νν-和B A f H -,。

当ggBA2222νν-大于B A f H -,时,压强水头的增值为正,反之,压强水头的增值为负。

3、C 、D 截面间压强水头的分析:出口阀全开时,由于C 、D 截面积相等,所以C 、D 两截面处的流速相等,即流速水头相等;设流体从C 截面流到D 截面的水头损失为D C f H -, ,在C 、D 两截面间列伯努利方程。

D C f DD D C C C H gv g p Z g v g p Z -+++=++,2222ρρgv g v DC 2222=D C f D C CD H Z Z gp g p ---=-,ρρ 即C 、D 两截面压强水头之差,决定于)(D C Z Z -和D C f H -,。

当)(D C Z Z -大于D C f H -,时,压强水头的增值为正,反之,压强水头的增值为负。

《流体力学》动量定律综合性实验

《流体力学》动量定律综合性实验

《流体力学》动量定律综合性实验一、实验目的与要求测定射流对平板的冲击力,验证不可压缩流体恒定流的动量方程;了解动量与流速、流量、出射角度、动量矩等概念,测定动量修正系数;了解活塞式动量定律实验仪原理、构造及其使用方法,进一步启发与培养创造性思维的能力。

二、实验装置本实验的装置如图6.1所示图6.1动量定律综合型实验装置图1.自循环供水器2.实验台3.可控硅无极调速器4.水位调节阀5.恒压水箱6..管嘴7.集水箱8.带活塞的测压管9.带活塞和翼片的抗冲平板 10.上回水管自循环供水装置1由离心式水泵和蓄水箱组合而成。

水泵的开启、流量大小的调节均由调速器3控制。

水流经供水管供给恒压水箱5,溢流水经回水管流回蓄水箱。

流经管嘴6的水流形成射流,冲击带活塞和翼片的抗冲平板9,并以与入射角成90。

的方向离开抗冲平板。

抗冲平板在射流冲力和测可由测压管8测得,由此可求得射流的冲压管8中的水压力作用下处于平衡状态。

活塞形心水深hc力,即动量力F。

冲击后的弃水经集水箱7汇集后,再经上回水管10流出,最后经漏斗和下回水管流回蓄水箱。

为了自动调节测压管内的水位,以使带活塞的平板受力平衡并减少摩擦阻力对活塞的影响,本实验装置应用了自动控制的反馈原理和动摩擦减阻技术,其构造如下:带活塞和翼片的抗冲平板9和带活塞套的测压管8如图3.4所示,该图是活塞退出活塞套时的分部件示意图。

活塞中心设有一细导水管a ,进口端位于平板中心,出口端伸出活塞头部,出口方向与轴向垂直。

在平板上设有翼片b,活塞套上设有窄槽c 。

工作时,在射流冲击力作用下,水流经导水管a 向测压管内加水,当射流冲击力大于测压管内水柱对活塞的压力时,活塞内移,窄槽c 关小,水流外溢减少,使测压管内水位升高,水压力增大。

反之,活塞外移窄槽开大水流外溢增多,测压管内水位降低,水压力减少。

在恒定射流冲击下,经短时间的自动调整,即可达到射流冲击力和水压力的平衡状态,这时活塞处在半进半出、窄槽部分开启的位置上,过a 流进测压管的水量和过c 外溢的水量相等。

流体力学综合实验台实验指导书.

流体力学综合实验台实验指导书.

流体力学综合实验流体力学综合实验台为多用途实验装置,其结构示意图如图1所示。

图1 流体力学综合试验台结构示意图1.储水箱2.上、回水管3.电源插座4.恒压水箱5.墨盒6.实验管段组7.支架8.计量水箱9.回水管10.实验桌利用这种实验台可进行下列实验:一、雷诺实验;二、能量方程实验;三、管路阻力实验;1.沿层阻力实验2.局部阻力实验;四、孔板流量计流量系数和文丘里流量系数的测定方法;五、皮托管测流速和流量的方法。

一、雷诺实验1.实验目的(1)观察流体在管道中的流动状态;(2)测定几种状态下的雷诺数;(3)了解流态与雷诺数的关系。

2.实验装置在流体力学综合实验台中,雷诺实验涉及的部分有高位水箱、雷诺数实验管、阀门、伯努力方程实验管道、颜料水(蓝墨水)盒及其控制阀门、上水阀、出水阀,水泵和计量水箱等,秒表及温度计自备。

3.实验前准备(1)、将实验台的各个阀门置于关闭状态。

开启水泵,全开上水阀门,把水箱注满水,再调节上水阀门,使水箱的水有少量溢流,并保持水位不变。

(2)、用温度计测量水温。

4.实验方法 (1)、观察状态打开颜料水控制阀,使颜料水从注入针流出,颜料水和雷诺实验管中的水迅速混合成均匀的淡颜色水,此时雷诺实验管中的流动状态为紊流;随着出水阀门的不断的关小,颜料水与雷诺实验管中的水渗混程度逐渐减弱,直至颜料水与雷诺实验管中形成一条清晰的线流,此时雷诺实验管中的流动为层流。

(2)测定几种状态下的雷诺系数全开出水阀门,然后在逐渐关闭出水阀门,直至能开始保持雷诺实验管内的颜料水流动状态为层流状态。

按照从小流量到大流量的顺序进行实验,在每一个状态下测量体积流量和水温,并求出相应的雷诺数。

实验数据处理举例:设某一工况下具体积流量Q=3.467×10-5m 3/s ,雷诺实验管内径d=0.014m ,实验水温T=5℃,查水的运动粘度与水温曲线,可知微v=1.519×10-6m 2/s 。

流体力学综合实验指导书

流体力学综合实验指导书

流体力学综合实验实验指导书第 1 页共13页流体力学综合实验一、实验目的1)能进行光滑管、粗糙管、闸阀局部阻力测定实验,测出湍流区阻力系数与雷诺数关系曲线图;2)能进行离心泵特性曲线测定实验,测出扬程、功率和效率与流量的关系曲线图;3)学习工业上流量、功率、转速、压力和温度等参数的测量方法,使学生了解涡轮流量计、C1000、电动调节阀以及相关仪表的原理和操作;二、装置整体流程图:1-离心泵;2-进口压力变送器;3-铂热电阻(测量水温);4-出口压力变送器;5-电气仪表控制箱;6-均压环;7-粗糙管;8-光滑管(离心泵实验中充当离心泵管路);9-局部阻力管;10-管路选择球阀;11-涡轮流量计;12-局部阻力管上的闸阀;13-电动调节阀;14-差压变送器;15-水箱图1 实验装置流程示意图第 2 页共13页第 3 页 共 13页离心泵特性测定实验一、基本原理离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下泵的扬程H 、轴功率N 及效率η与泵的流量Q 之间的关系曲线,它是流体在泵内流动规律的宏观表现形式。

由于泵内部流动情况复杂,不能用理论方法推导出泵的特性关系曲线,只能依靠实验测定。

1.扬程H 的测定与计算取离心泵进口真空表和出口压力表处为1、2两截面,列机械能衡算方程:f h gug p z H g u g p z ∑+++=+++2222222111ρρ (1-1)由于两截面间的管长较短,通常可忽略阻力项f h ∑,速度平方差也很小故可忽略,则有 (=H gp p z z ρ1212)-+- 210(H H H ++=表值) (1-2)式中: 120z z H -=,表示泵出口和进口间的位差,m ;和ρ——流体密度,kg/m 3 ; g ——重力加速度 m/s 2;p 1、p 2——分别为泵进、出口的真空度和表压,Pa ;H 1、H 2——分别为泵进、出口的真空度和表压对应的压头,m ; u 1、u 2——分别为泵进、出口的流速,m/s ; z 1、z 2——分别为真空表、压力表的安装高度,m 。

流体力学实验室建设设备之文丘里(文透利)实验装置

流体力学实验室建设设备之文丘里(文透利)实验装置

文丘里原理较为复杂,其涉及流体物理学中的连续性方程及伯努力原理。

即当一定流量的氧气通过横截面积较小的射流孔后流速增大形成高速气流,产生一定负压,进而卷入周围空气,最终形成高流量的空氧混合气流。

这种效应就如同当一列高速的火车驶过时,在其周围形成的气流会将路旁的树叶“吸”向列车一样。

流体力学中的的文丘里现象的应用也很广泛。

下面就给大家介绍一款研究文丘里流量计的实验设备。

名称:自循环文丘里综合实验仪型号:MGH-ZW 2-3-3一、主要功能:1、流量电测实时显示与手测功能并存,实验内容多功能。

2、定量测量实验——文丘里流量计的率定及流量因数的测量。

3、定性分析实验——文丘里流量计结构与布置;多孔均压环构造。

4、设计性实验——文丘里流量计最大允许过流量的理论分析与实验。

二、主要配置及技术参数:1、美国原装进口精密传感器,教学专用实时数显管道式流量仪,经重量法标定误差1%FS。

2、数字温度传感器测温范围-50℃—110℃。

3、计算机型实验桌,规格1500×550×800,自循环供水系统,抗腐蚀ABS 全封闭防水绝缘安全外壳水泵,功率30W,扬程2m,有机玻璃蓄水箱与恒压供水器。

4、多孔均压环结构文丘里流量计,自循环管阀。

5、有滑尺与校准镜面的可调式多管倒U型测压计,毫米刻度。

6、配套高教社出版的,并由公司董事长及技术领衔人毛根海教授主编的配套教材7、能自动绘制水头线的数据处理软件。

8、拥有原创自主知识产权。

提供实验报告测试样本。

(可作调试验收标准)9、配套文丘里综合实验WEB网络版实验虚拟仿真CAI软件,基于互联网+,电脑、IPAD、手机都可通过其上的WEB浏览器访问做实验,不需下载APP,网上实验真正做到了24小时全开放,方便学生实验虚实结合,真实具有网络虚拟仿真测量,记录,后台强大的逻辑计算功能,随时随地进行实验预习和复习。

10、配套文丘里综合实验WEB网络版实验虚拟仿真CAI软件,具备真正用户实验交互操作,实时仿真实验数据、动画反馈的功能;可供学生利用网络做各项实验的过程操作、数据采集和成果分析,还设有实验提示、错误纠正等功能,以辅导学生按正确途径深入有序进行实验。

流体力学综合实验装置

流体力学综合实验装置

• 4.引压:打开对应实验管路的手阀,然后适当调 节流量大小,看是否倒U形压差计可以正常指示。 • 5.流量调节:手控出水闸阀,,然后开启管路出 口阀,调节流量,让流量从小到大或从大到小变 化。每次改变流量,待流动达到稳定后,记下对 应的压差值,主要获取实验参数为:流量Q、测 量段压差P,及流体温度t;管内径d和测量段管长 L为给定的装置参数。按上步操作,由小到大或由 大到小调节管路总出口阀,待各参数显示稳定后, 读取各项数据,共作8-10组实验点。
• 三、实验装置与流程 • 1、实验装置 • 实验装置如图1所示:
• 1-水箱;2-离心泵;3-进口压力表;4-出口压力表; 5-涡轮流量计;6-闸阀;7-球阀; 8-倒U形压差计; 9-均压环;10-球阀; 11-局部阻力管上的闸阀;12- 出水管路闸阀;13-水箱放水阀;14-温度计

图1 实验装置流程示意图
• c)平衡水位。关闭阀(4)、(5)、(3),然后打 开(1)和(2)两个阀门,让水进入玻璃管至平 衡水位(此时系统中的出水阀门始终是关闭 的,管路中的水在零流量时,U形管内水位 是平衡的。)压差计即处于待用状态 • d)调节管路总出口阀,则被测对象在不同流 量下对应的差压,就反应为倒U型管压差计 的左右水柱之差。
• 6.进行粗糙管阻力测定:先打开粗糙管的 阀门,然后将管路上的闸阀开到最大开度, 重复1-5步骤。 • 7.进行局部阻力管阻力测定:先打开局部 阻力管的阀门,然后将管路上的闸阀开到 最大开度,重复1-5步骤。 • 8.实验结束:关闭出口阀,关闭水泵和仪 表电源,清理装置。
• 9.计算:装置确定时,根据和u的实验测 定值,可计算λ和ξ,在等温条件下,雷诺数 Re=duρ/μ=Au,其中A为常数,因此只要调 节管路流量,即可得到一系列λ~Re的实验 点,从而绘出λ~Re曲线。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

化工流动过程综合实验装置(单泵)说明书天津大学化工基础实验中心2011.10一、实验装置功能特点介绍:本实验装置将流体阻力实验、离心泵性能实验、流量计性能实验有机结合在一起,是一套多功能实验装置。

可用于化工教学实验。

通过实验,可以练习光滑直管、粗糙直管的阻力系数与雷诺准数的测量方法,并能绘制关系曲线;学习几种压差测量方法,加深对流体流动阻力概念的理解;同时可以让学生了解离心泵的结构、操作方法,掌握离心泵特性曲线测定方法,掌握离心泵管路特性曲线测定方法,并能绘制相应曲线,加深对离心泵性能的理解;了解各种流量计(节流式、转子、涡轮)的结构、性能及特点,掌握其使用方法;掌握节流式流量计标定方法,会测定并绘制文丘里流量计流量标定曲线(流量-压差关系)与流量系数和雷诺数之间的关系(Re 0 C 关系)。

二、实验设备主要技术参数: 1.流体阻力部分: (1)被测直管段:光滑管: 管径d-0.008 (m) 管长L-1.708 (m) 材料不锈钢粗糙管: 管径d-0.01 (m) 管长L-1.713(m) 材料不锈钢 (2)玻璃转子流量计:型 号 测量范围 精度 LZB —25 100~1000(L/h ) 1.5 LZB —10 10~100(L/h ) 2.5(3)压差传感器: 型号LXWY 测量范围200 KPa (4)数字显示仪表:宇电数字显示仪表测量参数名称 仪表名称 数量温度 AI-501B 1 压差 AI-501BV24 1 流量 AI-501BV24 1 功率 AI-501B 1(5)离心泵:型号WB70/055 2. 流量计性能部分:流量测量:文丘里流量计 文丘里喉径0.020m实验管路管径:0.043m,3.离心泵性能部分;(1)离心泵:型号WB70/055 电机效率60%;(2)真空表:用于泵吸入口真空度的测量测量范围0.1-0MPa 精度1.5级,=0.028m真空表测压位置管内径d1(3)压力表:用于泵出口压力的测量测量范围0-0.25MPa 精度1.5级=0.042m压强表测压位置管内径d2(4)流量计:涡轮流量计精度0.5级;(5)两测压口之间距离:真空表与压强表测压口之间的垂直距离h=0.43m4.管路特性部分:变频器:型号N2-401-H 规格:(0-50)Hz三、实验装置流程图及基本情况简介1.实验装置流程示意图见图一图一流动过程综合实验流程示意图1-水箱;2-水泵;3-入口真空表; 4-出口压力表; 5、16-缓冲罐; 6、14-测局部阻力近端阀; 7、15-测局部阻力远端阀; 8、17-粗糙管测压阀; 9、21-光滑管测压阀; 10-局部阻力阀; 11-文丘里流量计(孔板流量计); 12-压力传感器; 13-涡流流量计; 18、32-阀门; 20-粗糙管阀; 22-小转子流量计;23-大转子流量计; 24阀门; 25-水箱放水阀; 26-倒U型管放空阀; 27- 倒U型管; 28、30-倒U型管排水阀; 29、31-倒U型管平衡阀2.实验装置仪表面板图见图二(1)流体阻力测量:水泵2将储水槽1中的水抽出,送入实验系统,经玻璃转子流量计22、23测量流量,然后送入被测直管段测量流体流动阻力,经回流管流回储水槽1。

被测直管段流体流动阻力ΔP可根据其数值大小分别采用变送器12或空气—水倒置U型管来测量。

(2)流量计、离心泵性能测定:水泵2将水槽1内的水输送到实验系统,流体经涡轮流量计13计量,用流量调节阀32调节流量,回到储水槽。

同时测量文丘里流量计两端的压差,离心泵进出口压强、离心泵电机输入功率并记录。

(3)管路特性测量:用流量调节阀32调节流量到某一位置,改变电机频率,测定涡轮流量计的频率、泵入口真空度、泵出口压强并记录。

四、实验方法及步骤:1.流体阻力测量(1)向储水槽内注水至水满为止。

(最好使用蒸馏水,以保持流体清洁)(2)光滑管阻力测定:a. 关闭粗糙管路阀门,将光滑管路阀门全开,在流量为零条件下,打开通向倒置U型管的进水阀,检查导压管内是否有气泡存在。

若倒置U型管内液柱高度差不为零,则表明导压管内存在气泡。

需要进行赶气泡操作。

导压系统如图三所示。

操作方法如下:加大流量,打开U型管进出水阀门11,使倒置U型管内液体充分流动,以赶出管路内的气泡;若观察气泡已赶净,将流量调节阀24关闭,U型管进出水阀11关闭,慢慢旋开倒置U型管上部的放空阀26后,分别缓慢打开阀门3、4,使液柱降至中点上下时马上关闭,管内形成气—水柱,此时管内液柱高度差不一定为零。

然后关闭放空阀26,打开U型管进出水阀11,此时U型管两液柱的高度差应为零(1—2mm的高度差可以忽略),如不为零则表明管路中仍有气泡存在,需要重复进行赶气泡操作。

图三导压系统示意图3、4-排水阀; 11- U型管进水阀;12-压力传感器;26- U型管放空阀;27-U型管b. 该装置两个转子流量计并联连接,根据流量大小选择不同量程的流量计测量流量。

c. 差压变送器与倒置U型管亦是并联连接,用于测量压差,小流量时用∪型管压差计测量,大流量时用差压变送器测量。

应在最大流量和最小流量之间进行实验操作,一般测取15~20组数据。

注:在测大流量的压差时应关闭U型管的进出水阀11,防止水利用U型管形成回路影响实验数据。

(3) 粗糙管阻力测定:关闭光滑管阀,将粗糙管阀全开,从小流量到最大流量,测取15~20组数据。

(4) 测取水箱水温。

待数据测量完毕,关闭流量调节阀,停泵。

(5) 粗糙管、局部阻力测量方法同前。

2.流量计、离心泵性能测定(1)向储水槽内注入蒸馏水。

检查流量调节阀32,压力表4的开关及真空表3的开关是否关闭(应关闭)。

(2)启动离心泵,缓慢打开调节阀32至全开。

待系统内流体稳定,即系统内已没有气体,打开压力表和真空表的开关,方可测取数据。

(3)用阀门32调节流量,从流量为零至最大或流量从最大到零,测取 10~15组数据,同时记录涡轮流量计频率、文丘里流量计的压差、泵入口真空度、泵出口压强、功率表读数,并记录水温。

(4)实验结束后,关闭流量调节阀,停泵,切断电源。

3.管路特性的测量(1)测量管路特性曲线测定时,先置流量调节阀32为某一开度,调节离心泵电机频率(调节范围50—20Hz),测取 8~10组数据,同时记录电机频率、泵入口真空度、泵出口压强、流量计读数,并记录水温。

(2)实验结束后,关闭流量调节阀,停泵,切断电源。

五、实验注意事项1.直流数字表操作方法请仔细阅读说明书,待熟悉其性能和使用方法后再进行使用操作。

2.启动离心泵之前以及从光滑管阻力测量过渡到其它测量之前,都必须检查所有流量调节阀是否关闭。

3.利用压力传感器测量大流量下△P时,应切断空气—水倒置∪型玻璃管的阀门否则将影响测量数值的准确。

4.在实验过程中每调节一个流量之后应待流量和直管压降的数据稳定以后方可记录数据。

5. 若之前较长时间未做实验,启动离心泵时应先盘轴转动,否则易烧坏电机。

6. 该装置电路采用五线三相制配电,实验设备应良好接地。

7. 使用变频调速器时一定注意FWD指示灯亮,切忌按REV指示灯亮时电机反转。

8. 启动离心泵前,必须关闭流量调节阀,关闭压力表和真空表的开关,以免损坏测量仪表。

9. 实验水质要清洁,以免影响涡轮流量计运行。

六、附数据处理过程举例: ㈠ 计算过程 1.流体阻力测量(1) 直管摩擦系数λ与雷诺数Re 的测定直管的摩擦阻力系数是雷诺数和相对粗糙度的函数,即)/(Re,d f ελ=,对一定的相对粗糙度而言,(Re)f =λ。

流体在一定长度等直径的水平圆管内流动时,其管路阻力引起的能量损失为:ρρff P P P h ∆=-=21 (1)又因为摩擦阻力系数与阻力损失之间有如下关系(范宁公式)22u d l h fP fλρ==∆ (2)整理(1)(2)两式得22uP l d f∆⋅⋅=ρλ (3) μρ⋅⋅=u d Re (4)式中: -d 管径,m ;-∆f P 直管阻力引起的压强降,Pa ;-l 管长,m ;-u 流速,m / s ; -ρ流体的密度,kg / m 3;-μ流体的粘度,N ·s / m 2。

在实验装置中,直管段管长l 和管径d 都已固定。

若水温一定,则水的密度ρ和粘度μ也是定值。

所以本实验实质上是测定直管段流体阻力引起的压强降△P f 与流速u (流量V )之间的关系。

根据实验数据和式(3)可计算出不同流速下的直管摩擦系数λ,用式(4)计算对应的Re ,从而整理出直管摩擦系数和雷诺数的关系,绘出λ与Re 的关系曲线。

计算举例:① 光滑管、小流量数据:Q =60(L /h) h =51(mmH 2O) ( 以表一 第17组数据为例)实验水温t =27.8℃ 粘度μ=0.85×10-3 (Pa.s) 密度ρ=995.78(kg /m 3) 管内流速 33.0008.0)4/(1000/3600/60)4(22=⨯==ππd Q u (m/s ) 阻力降 1000/5181.978.995⨯⨯=⋅⋅=∆h g P f ρ=498(Pa)雷诺数 =⨯⨯⨯=⋅⋅=-31085.078.99533.0008.0Reμρu d 3.109×103 阻力系数 =⨯⨯⨯=∆⨯⋅=2233.04981.69878.995008.022u P L d f ρλ 4.3×10-2 ② 粗糙管、大流量数据:Q =300(L /h) △P =18.2 (kPa) ( 以表二 第13组数据为例)实验水温t =29.2℃ 粘度μ=0.82×10-3 (Pa.s),密度ρ=995.40(kg /m 3) 管内流速 =⨯==2201.0)4/(1000/3600/300)4(πd Q u 1.06 (m/s ) 阻力降 =∆f P 18.2×1000 = 18200(Pa) 雷诺数 =⨯⨯⨯=⋅⋅=-31082.040.99506.101.0Re μρu d 1.29×104 阻力系数 2206.100281705.140.99501.022⨯⨯⨯=∆⨯⋅=u P L d f ρλ= 0.190(2) 测定局部阻力系数 a.局部阻力系数ζ的测定22'u P h ff ζρ=∆=' 2'2u P f∆⋅⎪⎪⎭⎫ ⎝⎛=ρζ式中: -ζ局部阻力系数,无因次; -∆'f P 局部阻力引起的压强降,Pa ;-'f h 局部阻力引起的能量损失,J /kg 。

图-4 局部阻力测量取压口布置图局部阻力引起的压强降'f P ∆ 可用下面的方法测量:在一条各处直径相等的直管段上,安装待测局部阻力的阀门,在其上、下游开两对测压口a-a'和b-b ',见图1-1,使ab =bc ; a 'b '=b 'c '则 △P f ,a b =△P f ,bc ;△P f ,a 'b '= △P f ,b 'c '在a~a '之间列柏努利方程式:P a -P a ' =2△P f ,a b +2△P f ,a 'b '+△P 'f (5)在b~b '之间列柏努利方程式:P b -P b ' = △P f ,bc +△P f ,b 'c '+△P 'f= △P f ,a b +△P f ,a 'b '+△P 'f (6) 联立式(5)和(6),则:'f P ∆=2(P b -P b ')-(P a -P a ')为了实验方便,称(P b -P b ')为近点压差,称(P a -P a ')为远点压差。

相关文档
最新文档