简单实用的大功率可控硅触发电路图
可控硅驱动电路
CBB规范可控硅驱动线路(VER: V1.0)拟制:辉时间:2010- 4-15批准:波时间:2010- 4-15文件评优级别:□A优秀□B良好□C一般1 功能介绍本电路为可控硅门极触发电路,SCRDRV为控制信号,当SCRDRV信号为高电平时,光耦PC1导通,CN1两端为高电平,SCRDRV信号为低电平时光耦PC1截止,CN1两端为低电平。
本电路的关键在于电路的输出信号能保证可控硅可靠触发。
2 详细原理图3 器件功能♦限流电阻R1、R2、R3,当SCRDRV信号为高电平时,限制流过光耦PC1的原边电流,以防止PC1因过流而可能损坏;♦光耦PC1,实现电气隔离,同时起信号传输作用;♦开关管Q1, 通过控制Q1的开通与关断控制光耦PC1的导通与截止;♦R6的作用是确保没有输入信号时Q1处于截止,R5的作用是限制基极电流。
♦稳压二极管Z1,电压箝位,防止可控硅门极电压过高;♦R10,R11为限流电阻,限制流过可控硅门极的电流,并起到分压作用。
♦Q2为PNP型晶体管,起放大作用。
♦Q3,Q4为对管,推挽输出,起功率放大作用。
♦LED1为发光二极管,当光耦导通时点亮LED1,光耦截止时熄灭LED1,起指示作用。
4 参数计算♦光耦PC1及R1,R2,R3的选取:流过光耦副边电流为(8V-0.6V-0.3V)/4.7K=1.5mA,选型号为PS2501的光耦,其Ic=50mA,If=80mA,Vfmax=1.2V,CTR的范围为200%-400%。
R1,R2的大小应时SCRDRV信号为高电平时光耦饱和导通, R1和R2选510Ω并联,此时光耦原边电流约为(5-1.2-0.3)/255=13.8mA,R1、R2功率约等于(0.0138/2)2*510=0.02W,选1\10W的电阻,满足降额要求,R3取2K,流过R3电流约为1.2V/2K=0.6mA♦R4,LED1的选取:按发光管通过1mA的电流计算,若Q1的饱和压降为0.5V,LED1的正向压降为1V,则通过LED1的电流为(5V-1V-0.5V)/R4=1mA,计算出的R4=3.5K,实际可以使流过的电流稍微大一点,选2K的电阻。
三相可控硅触发板说明电路图
三相移相可控硅触发器产品例图产品型号TSCR-B三相可控硅触发器优特点:只要个信号:(多种控制信号输入:DC 4-20mA、DC 1-5V、10k电位器),就能给出最佳线性,任意调温调速调压。
可直接触发800A以下的晶闸管另有3000A以下的触发板。
本控制板由进口高性能单片机作为控制、运算放大器、脉冲变压器等单元组成。
可以与各种自动化仪表配套使用,对仪表无干扰,也可以外接电位器手动控制,额定电压:AC380-440产品系列:TR电流性质:交流额定电流:800A 线圈功率:75mA触点切换电流:1触点切换电压:1防护特征:敞开式触点负载:弱功率应用范围:固态型号:TSCR-B吸合电流:1释放电流:1品牌:月盛触点形式:模拟量控制适应电路三相全控桥式可控整流电路带平衡电抗器的双反星形可控整流电路变压器原边交流调压,副边二极管整流电路三相零式整流电路三相半控桥式可控整流电路三相交流相控调压电路三相五柱式双反星形可控硅整流电路三相可控硅触发板接线图(全控整流)三相可控硅触发板接线图(相位调压).一、可控硅模块产品概述:1.散热能力最强,同等条件温升最低且长期稳定2.外形长方型,环氧树脂灌封(模块)。
3.使用时需配适当散热器,必要时加强迫风冷。
4.国际标准封装。
5.阻燃工程塑料外壳,黄铜底板6.用途广范:如电气开关柜,自动化控制,大功率设备等二.以下是可控硅模块参数:.型号MTC-100A MTC-150A MTC-200A 额定工作电压1200V,1700V反向重复峰值电压800-1200反向重复峰值电流≤20mA浪涌电流ITMS(A) 2980门极触发电流(ma)≤150门极触发电压(V)≤2.5VDC维持电流IH(mA) ≤150通态压降VTM(V) ≤1.8通态门槛VTO(V) 0.80结壳热阻Rth(j-c)0.20(C/W)内部电路工作温度—35~75 ℃散热条件≥25A配散热器,≥40A再加风扇强冷外形尺寸94.0长×38.0高×35.0宽重量168g三.可控硅模块外形尺寸和安装接线图:(单位:mm).四.月盛可控硅模块型号对照表:如有侵权请联系告知删除,感谢你们的配合!。
双向可控硅及触发电路
双向可控硅及其触发电路双向可控硅是一种功率半导体器件,也称双向晶闸管,在单片机控制系统中,可作为功率驱动器件,由于双向可控硅没有反向耐压问题,控制电路简单,因此特别适合做交流无触点开关使用。
双向可控硅接通的一般都是一些功率较大的用电器,且连接在强电网络中,其触发电路的抗干扰问题很重要,通常都是通过光电耦合器将单片机控制系统中的触发信号加载到可控硅的控制极。
为减小驱动功率和可控硅触发时产生的干扰,交流电路双向可控硅的触发常采用过零触发电路。
(过零触发是指在电压为零或零附近的瞬间接通,由于采用过零触发,因此需要正弦交流电过零检测电路)双向可控硅分为三象限、四象限可控硅,四象限可控硅其导通条件如下图:总的来说导通的条件就是:G极与T1之间存在一个足够的电压时并能够提供足够的导通电流就可以使可控硅导通,这个电压可以是正、负,和T1、T2之间的电流方向也没有关系。
因为双向可控硅可以双向导通,所以没有正极负极,但是有T1、T2之分再看看BT134-600E的简介:(飞利浦公司的,双向四象限可控硅,最大电流4A)推荐电路:为了提高效率,使触发脉冲与交流电压同步,要求每隔半个交流电的周期输出一个触发脉冲,且触发脉冲电压应大于4V ,脉冲宽度应大于20us.图中BT 为变压器,TPL521 - 2 为光电耦合器,起隔离作用。
当正弦交流电压接近零时,光电耦合器的两个发光二极管截止,三极管T1基极的偏置电阻电位使之导通,产生负脉冲信号,T1的输出端接到单片机80C51 的外部中断0 的输入引脚,以引起中断。
在中断服务子程序中使用定时器累计移相时间,然后发出双向可控硅的同步触发信号。
过零检测电路A、B 两点电压输出波形如图2 所示。
过零触发电路电路如图3 所示,图中MOC3061 为光电耦合双向可控硅驱动器,也属于光电耦合器的一种,用来驱动双向可控硅BCR 并且起到隔离的作用,R6 为触发限流电阻,R7 为BCR 门极电阻,防止误触发,提高抗干扰能力。
简单可控硅充电机制作四款可控硅充电机电路图详解
简单可控硅充电机制作四款可控硅充电机电路图详解在现代社会中,电器的使用越来越频繁,充电器也成为了我们生活中必不可少的用品之一。
然而,不合格的充电器可能会造成安全事故,使用不当可能会损坏电器,因此对于充电器的制作,我们需要严格遵循相关的规定和标准。
可控硅充电机电路图是充电器制作中常用的一种电路,本文将会介绍四款可控硅充电机电路图的详细制作过程。
一、单管稳压可控硅充电机电路图单管稳压可控硅充电机电路图如下:+---------------------+| |R1 || |+---+ / +------+ /| | \\ | | \\ E1| |_ |/---+ | / MOC3063AC | --/\\/\\/----|VO_____| \\| _|_ |\\---+ | || | | | | | |+---+ C1 | +------+ || |+---------------------+其中,元器件描述如下:•R1:2.2 kΩ 横向,1/4W 金属膜电阻•C1:0.1 μF,250V 陶瓷电容器•MOC3063: 隔离型三端高速可控硅输出光耦,用于隔离控制电路和功率电路。
•VO:触发电压,可根据实际需要进行调整。
在制作单管稳压可控硅充电机电路时,需要注意以下几点:•电阻R1的阻值需根据电源电压和电路电流进行选择,保证可控硅的正向电流灭火电流不小于电路电流(额定载流量);•需要进行触发电流的选择,尽可能使得触发性能优良,可以选择超过5 mA的稳定电流源。
二、双晶体双向可控硅充电机电路图双晶体双向可控硅充电机电路图如下:+--------------+/ | \\/ *T1 (2N6661) \\/ ,--C1 | C2 --. \\+--|_ / | ,--|+CD---+| | |/ R1 +----|>| (_) | __Load__ +--VAL (AC)--|--+--+-----------<| ( ) +--|______| | | +-------------|<-|+CD---+| \\ || \\ |\\ / / _ \\ R2\\ / --- | /\\/\\/\\/\\----|>| -------+vo DC+\\__________/ |/ |_____ __|______|其中,元器件描述如下:•T1:2N6661 双向隔离型可控硅•R1:2KΩ,1/4W 金属膜电阻•R2:1KΩ,1/2W 碳膜电阻•C1:0.15 μF, 630 版电解电容•C2:0.1 μF, 630 版陶瓷电容在制作双晶体双向可控硅充电机电路时,需要注意以下几点:•确保稳压电源的稳定性,否则会影响充电器的充电效果。
大功率双向可控硅移相触发电路
大功率双向可控硅移相触发电路大功率双向可控硅移相触发电路是一种电子元件,常用于交流电控制电路中。
它通过控制双向可控硅的触发角,实现对交流电的移相控制,从而改变电路中电流的相位。
本文将对大功率双向可控硅移相触发电路的原理、工作方式以及应用进行详细介绍。
一、原理大功率双向可控硅移相触发电路是基于双向可控硅的特性设计而成的。
双向可控硅是一种能够在正、反两个方向上都能控制的硅控制器件。
它由四个PN结组成,具有双向导电特性。
在交流电控制电路中,通过对双向可控硅的触发角进行控制,可以实现对交流电的移相。
二、工作方式大功率双向可控硅移相触发电路一般由触发电路、移相电路和功率放大电路组成。
触发电路用于产生触发脉冲,移相电路用于对触发脉冲进行延时和移相,而功率放大电路则用于控制双向可控硅的导通和截止。
在工作时,触发电路会根据控制信号产生相应的触发脉冲。
这些触发脉冲经过移相电路的处理,通过延时和移相的方式,控制双向可控硅的触发角。
当双向可控硅的触发角满足一定条件时,它将开始导电,电流开始流过。
当触发角不满足条件时,双向可控硅将截止导电。
三、应用大功率双向可控硅移相触发电路在工业控制领域有着广泛的应用。
它常被用于交流电调光、交流电变频和交流电电压调节等场合。
通过控制双向可控硅的触发角,可以实现对交流电的控制,从而满足不同的需求。
举个例子来说,在交流电调光中,大功率双向可控硅移相触发电路可以根据光照强度的变化,通过控制触发角的移相,实现对灯光亮度的调节。
当光照强度较弱时,触发角可以被移相,使得灯光亮度增加;当光照强度较强时,触发角可以被移相,使得灯光亮度减小。
通过这种方式,可以实现对灯光亮度的精确控制。
大功率双向可控硅移相触发电路还可以用于交流电变频。
通过控制触发角的移相,可以改变交流电的频率,从而实现对电机转速的调节。
这在一些需要变频控制的场合,如工业生产中的电机控制,具有重要的应用价值。
大功率双向可控硅移相触发电路是一种常用的电子元件,通过控制双向可控硅的触发角,实现对交流电的移相控制。
可控硅移相触发器KC10应用电路图
可控硅移相触发器KC10应用电路图
相关元件pdf下载:kc10 可控硅移相触发器kcl0主要适用于单相、三相半控桥式供电装置中作可控硅的单路脉冲移相触发。
该触发器具有温漂小,移相线性度好,多种输出结构,同步灵敏度高,移相范围宽等功能和特点。
电参数如下:电源电压:直流+15v,允许波动±5%(±10%功能正常:电源电流:正电流≤15ma。
同步电压:任意值(一般l0v左右)。
移相范围:≥l70°(同步电压20v,同步电阻20kω)。
锯齿波幅度:≥10v(幅度以锯齿波出现平顶为准)。
输出脉冲:a.脉冲宽度:l00µs~3.3 ms(改变脉宽电容达到)。
b.脉冲幅度:>13v(输出接10kf2电阻负载)。
c.最大输出能力:l5ma(吸收电流)。
移相线性误差:≤±1%。
同步输入端允许最大同步电流:3ma(有效值)。
允许使用环境温度:-l0-+70℃。
kc10引脚图kc10的应用电路kc10各点波形图kc10电路本身由锯齿波形成电路,移相电压,偏听偏信移电压和锯齿波电压综合比较放大电路及称相触发脉宽调节电路三部分组成。
同步输入电阻r5、r6可以按下式计算:。
可控硅应用电路图
单向可控硅PCR606应用电路图:用PCR406制作调光电路:单向晶闸管调光灯电路板:电路原理:由灯泡、开关S、整流管D1-D4:1N4007、可控硅100-6与电源构成主电路:由电位器PR1A:500K、电容C1:1U、电阻R1:1K;R2:1K构成触发电路。
接通220v后,经过D1-D4全桥整流得到的脉动直流电压加至RP1A,给电容C1充电,当C1两端电压上升到一定的程度时,就会触发可控硅Q1,灯泡点亮。
同样的,调节RP1A变C1充/放电时间常数,因而改变触发脉冲的长短,改变了Q1的导电角(导通程度),达到调节灯牌亮度的目的。
电路中,由电源插头XP、灯泡EL、电源开关S、整流管VD1~VD4、单相晶闸管VS与电源构成主电路;由电位器RP、电容C、电阻R1与R2构成触发电路。
将XP插入市电插座,闭合S,接通220V交流电源,VD1~VD4全桥整流得到脉动直流电压加至RP,调节RP的阻值,就能改变C的充/放电时间常数,即改变VS控制触发角,从而改变VS的导通程度,使EL获得0~220V电压。
RP的阻值调得越大,则EL越暗,反之越亮,达到无级调光的目的。
双向可控硅调光电路及线路板图工作原理,图1:R、RP、C、D组成脉冲形成网络触发双向可控硅vT,使VT在市电正负半周均保持相应正反向导通。
调节RP阻值,即可改变VT的导通角,达到调节负载RL上电压的目的。
可用于家庭台灯调光、电熨斗、电热毯的调温等。
此双向可控硅在加散热器的情况下,控制的负载功率可达500w左右。
图2为印板图。
最简单的双向晶闸管调光灯电路图如图是一个最简单的双向晶闸管调光灯电路,双向晶闸管的特点是只要在其控制极上加上适当的触发脉冲或控制电流,无论在交流的正半周还是负半周,均可导通,导通时间与所加的脉冲宽度及门极电流大小有关。
调节RP可改变灯泡E的亮度大小。
调光台灯电路:调光台灯的电路非常简单,仅仅是一个可控硅调压电路而已。
市场上见到的电路大多是第二个图所示的电路,工作原理是:当交流电的正半周或副半周到来是,经过全桥整流,加到可控硅上的电源是单向的。
可控硅应用电路图
单向可控硅PCR606应用电路图:用PCR406制作调光电路:单向晶闸管调光灯电路板:电路原理:由灯泡、开关S、整流管D1-D4:1N4007、可控硅100-6与电源构成主电路:由电位器PR1A:500K、电容C1:1U、电阻R1:1K;R2:1K构成触发电路。
接通220v后,经过D1-D4全桥整流得到的脉动直流电压加至RP1A,给电容C1充电,当C1两端电压上升到一定的程度时,就会触发可控硅Q1,灯泡点亮。
同样的,调节RP1A变C1充/放电时间常数,因而改变触发脉冲的长短,改变了Q1的导电角(导通程度),达到调节灯牌亮度的目的。
电路中,由电源插头XP、灯泡EL、电源开关S、整流管VD1~VD4、单相晶闸管VS与电源构成主电路;由电位器RP、电容C、电阻R1与R2构成触发电路。
将XP插入市电插座,闭合S,接通220V交流电源,VD1~VD4全桥整流得到脉动直流电压加至RP,调节RP的阻值,就能改变C的充/放电时间常数,即改变VS控制触发角,从而改变VS的导通程度,使EL获得0~220V电压。
RP的阻值调得越大,则EL越暗,反之越亮,达到无级调光的目的。
双向可控硅调光电路及线路板图工作原理,图1:R、RP、C、D组成脉冲形成网络触发双向可控硅vT,使VT在市电正负半周均保持相应正反向导通。
调节RP阻值,即可改变VT的导通角,达到调节负载RL上电压的目的。
可用于家庭台灯调光、电熨斗、电热毯的调温等。
此双向可控硅在加散热器的情况下,控制的负载功率可达500w左右。
图2为印板图。
最简单的双向晶闸管调光灯电路图如图是一个最简单的双向晶闸管调光灯电路,双向晶闸管的特点是只要在其控制极上加上适当的触发脉冲或控制电流,无论在交流的正半周还是负半周,均可导通,导通时间与所加的脉冲宽度及门极电流大小有关。
调节RP可改变灯泡E的亮度大小。
调光台灯电路:调光台灯的电路非常简单,仅仅是一个可控硅调压电路而已。
市场上见到的电路大多是第二个图所示的电路,工作原理是:当交流电的正半周或副半周到来是,经过全桥整流,加到可控硅上的电源是单向的。
简单实用的大功率可控硅触发电路图
简单实用的大功率可控硅触发电路图
电路见图。
将两只单向可控硅SCRl、SCR2反向并联.再将控制板与本触发电路连接,就组成了一个简单实用的大功率无级调速电路。
这个电路的独特之处在于可控硅控制极不需外加电源,只要将负载与本电路串联后接通电源,两个控制极与各自的阴极之间便有5V~8V 脉动直流电压产生,调节电位器R2即可改变两只可控硅的导通角,增大R2的阻值到一定程度,便可使两个主可控硅阻断,因此R2还可起开关的作用。
该电路的另一个特点是两只主可控硅交替导通,一个的正向压降就是另一个的反向压降,因此不存在反向击穿问题。
但当外加电压瞬时超过阻断电压时,SCR1、SCR2会误导通,导通程度由电位器R2决定。
SCR3与周围元件构成普通移相触发电路,其原理这里从略。
SCR1、SCR2笔者选用的是封装好的可控硅模块(110A/1000V),SCR3选用BTl36,即600V的双向可控硅。
本电路如用于感性负载,应增加R4,C3阻容吸收电路及压敏电阻RV作过压保护,防止负载断开和接通瞬间产生很高的感应电压损坏可控硅。
可控硅电源原理图
可控硅电源原理图
下面是一幅可控硅电源的原理图:
(画面中只包含电路元件,没有标题注解)
在电路中,可控硅被用作开关,控制输出电压的大小。
可控硅的控制引脚通过一个电位器与触发电路相连,触发电路由触发器组成。
当触发电路收到输入信号时,控制的可控硅将导通,并将电压输出给负载。
这个原理图中的负载与电源通过一个电感器相连,负载的电流通过电感器产生了峰值电压,然后通过二极管桥整流器进行整流。
电路的左边是一个变压器,它将高电压输入转换为较低的电压输出,以满足负载的需求。
右边的电容器用于滤波,以确保输出电压平稳无波动。
这个可控硅电源电路的原理是,通过可控硅的控制,调节触发电路产生的输入信号,从而实现对输出电压的控制。
电感器和整流器配合使用,将电压转换为可被负载所使用的直流电压。
请注意,以上是一幅简化的可控硅电源原理图,仅供参考。
实际的电路设计可能还涉及其他元件和技术细节,例如电路保护和稳定性的考虑等。
20a双向可控硅 光耦触发电路
20a双向可控硅光耦触发电路
20A双向可控硅光耦触发电路是一种常见的电子电路,用于控制大电流负载的开关。
双向可控硅是一种功率半导体器件,能够控制交流电路的导通和截止。
光耦是一种光电耦合器件,用于隔离输入和输出电路,保护控制电路免受高电压或高电流的影响。
光耦触发电路通常由光耦、电阻、双向可控硅和其他辅助元件组成。
当光耦接收到输入信号时,它会产生相应的输出信号,通过电阻和触发电路控制双向可控硅的导通和截止,从而控制负载的通断。
在设计20A双向可控硅光耦触发电路时,需要考虑输入信号的稳定性、光耦的灵敏度、双向可控硅的额定电流和电压等参数。
此外,还需要注意电路的绝缘性能、抗干扰能力和热稳定性,以确保电路稳定可靠地工作。
总的来说,20A双向可控硅光耦触发电路是一种重要的电子控制电路,应用广泛,涉及到电气、电子、通信等多个领域。
设计和应用时需要充分考虑电路的性能和稳定性,以确保其安全可靠地工作。
可控硅移相触发器KC785外电路连接图 TCA785 全控桥式触发器
可控硅移相触发器KC785外电路连接图 TCA785 全控桥式触发器
:
KC785可控硅移相触发器主要用在单相、三相全控桥式供电装置中,作可控硅的双路脉冲移相触发。
它有两路相位差180°的移相触发脉冲输出,可以方便地构成全控桥式触发器电路。
该电路具有输出负载能力大、移相性能好、正负半周脉冲相位均衡性好、移相范围宽(大于170°)、对同步电压要求低等功能和特点。
可与德国TCA785直接互换。
电参数如下:
电源电压:直流+15V(允许范围l2~18V)。
电源电流:≤l0mA。
移相电压范围:≥-0.5V~(Vcc-2V)。
移相范围:≥l70°。
同步端允许最大同步电流:200µA(有效值)。
输出脉冲:
a.脉冲宽度:无脉冲宽度电容时为30µs;有脉冲宽度电容时为400~600µs。
b.脉冲幅度:高电平≥(VCC-2.5v):低电平≤2V。
C.最大输出能力:55mA。
KC785引脚图
KC785的内部结构框图和外电路连接图
KC785各引脚波形图。
双向可控硅及触发电路
双向可控硅及其触发电路双向可控硅是一种功率半导体器件,也称双向晶闸管,在单片机控制系统中,可作为功率驱动器件,由于双向可控硅没有反向耐压问题,控制电路简单,因此特别适合做交流无触点开关使用。
双向可控硅接通的一般都是一些功率较大的用电器,且连接在强电网络中,其触发电路的抗干扰问题很重要,通常都是通过光电耦合器将单片机控制系统中的触发信号加载到可控硅的控制极。
为减小驱动功率和可控硅触发时产生的干扰,交流电路双向可控硅的触发常采用过零触发电路。
(过零触发是指在电压为零或零附近的瞬间接通,由于采用过零触发,因此需要正弦交流电过零检测电路)双向可控硅分为三象限、四象限可控硅,四象限可控硅其导通条件如下图:总的来说导通的条件就是:G极与T1之间存在一个足够的电压时并能够提供足够的导通电流就可以使可控硅导通,这个电压可以是正、负,和T1、T2之间的电流方向也没有关系。
因为双向可控硅可以双向导通,所以没有正极负极,但是有T1、T2之分再看看BT134-600E的简介:(飞利浦公司的,双向四象限可控硅,最大电流4A)推荐电路:为了提高效率,使触发脉冲与交流电压同步,要求每隔半个交流电的周期输出一个触发脉冲,且触发脉冲电压应大于4V ,脉冲宽度应大于20us.图中BT 为变压器,TPL521 - 2 为光电耦合器,起隔离作用。
当正弦交流电压接近零时,光电耦合器的两个发光二极管截止,三极管T1基极的偏置电阻电位使之导通,产生负脉冲信号,T1的输出端接到单片机80C51 的外部中断0 的输入引脚,以引起中断。
在中断服务子程序中使用定时器累计移相时间,然后发出双向可控硅的同步触发信号。
过零检测电路A、B 两点电压输出波形如图2 所示。
过零触发电路电路如图3 所示,图中MOC3061 为光电耦合双向可控硅驱动器,也属于光电耦合器的一种,用来驱动双向可控硅BCR 并且起到隔离的作用,R6 为触发限流电阻,R7 为BCR 门极电阻,防止误触发,提高抗干扰能力。
相可控硅触发板说明电路图
三相移相可控硅触发器产品例图产品型号TSCR-B三相可控硅触发器优特点:只要个信号:(多种控制信号输入:DC 4-20mA、DC 1-5V、10k电位器),就能给出最佳线性,任意调温调速调压。
可直接触发800A以下的晶闸管另有3000A以下的触发板。
本控制板由进口高性能单片机作为控制、运算放大器、脉冲变压器等单元组成。
可以与各种自动化仪表配套使用,对仪表无干扰,也可以外接电位器手动控制,广泛应用于负载要求连续平滑调节,拧制精度较高或不允许大电流冲击的控制系统。
如交直流电机调速、调压、充电等。
主要用于单相纯阻性负载、三相感性负载或变压器原边控制,如硅碳棒、硅钼棒、额定电压:AC380-440产品系列:TR电流性质:交流额定电流:800A 线圈功率:75mA触点切换电流:1触点切换电压:1防护特征:敞开式触点负载:弱功率应用范围:固态型号:TSCR-B吸合电流:1释放电流:1品牌:月盛触点形式:模拟量控制实现对交、直流电机、软启动及调速。
对变压器的原边调压、焊机、控温、励磁、电镀、水处理等。
适应电路三相全控桥式可控整流电路带平衡电抗器的双反星形可控整流电路变压器原边交流调压,副边二极管整流电路三相零式整流电路三相半控桥式可控整流电路三相交流相控调压电路三相五柱式双反星形可控硅整流电路三相可控硅触发板接线图(全控整流)三相可控硅触发板接线图(相位调压)一、可控硅模块产品概述:1.散热能力最强,同等条件温升最低且长期稳定2.外形长方型,环氧树脂灌封(模块)。
3.使用时需配适当散热器,必要时加强迫风冷。
4.国际标准封装。
5.阻燃工程塑料外壳,黄铜底板6.用途广范:如电气开关柜,自动化控制,大功率设备等二.以下是可控硅模块参数:型号MTC-100A MTC-150A MTC-200A 额定工作电压1200V,1700V反向重复峰值电压800-1200反向重复峰值电流≤20mA浪涌电流ITMS(A)2980门极触发电流(ma)≤150门极触发电压(V)≤维持电流IH(mA)≤150通态压降VTM(V)≤通态门槛VTO(V)结壳热阻Rth(j-c)(C/W)内部电路工作温度—35~75 ℃散热条件≥25A配散热器,≥40A再加风扇强冷外形尺寸长×高×宽重量168g三.可控硅模块外形尺寸和安装接线图:(单位:mm)四.月盛可控硅模块型号对照表:。
可控硅接线图
可控硅接线图
可控硅接线图
从图中得知:这是可同时触发2个可控硅的触发板。
图中有一脉冲变压器,其次级有2组线圈,分别接图中的G1、K1和G2、K2接点。
对于交流可控整流输出电路或交流调压电路,其主回路都含有2只可控硅器件作为正负半周的可控整流器件,由于这二个可控硅的阴极不为同电位,故需用2路独立的触发信号,来分别触发这2只可控硅。
图中的
G1、K1与G2、K2即为2路独立的触发信号的引线端。
其与可控硅连线为:G1与K1接第一个可控硅的栅极与阴极,G2与K2接第二个可控硅的栅极与阴极,请见下图的可控硅与触发板的连线:该图为可控硅交流调压电路,主回路有2只反并联可控硅组成,其D1管的栅极接触发板的G1引线端,D1管的阴极接触发板的K1引线端,D2管的栅极接触发板的G2引线端,D2管的阴极接触发板的K2引线端,D1与D2这二个可控硅是分别工作电源电压的正负半周。
正半周(即UA》UB)时,可控硅D1的阳极电位高于其阴极,故
G1端输入正脉冲触发时,可控硅D1由截止变导通。
而可控硅D2此时阳极。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简单实用的大功率可控硅触发电路图
文章出处: 发布时间:2010-2-19 0:00:00 | 1356 次阅读| 12次推荐| 0条留言
一般书刊介绍的大功率可控硅触发电路都比较复杂,而且有些元件难以购买。
笔者仅花几元钱制作的触发电路已成功触发100A以上的可控硅模块,用于工业淬火炉上调节380V 电压,又装一套用于大功率鼓风机作无级调速用,效果非常好。
本电路也可用作调节220V 交流供电的用电器。
电路见图。
将两只单向可控硅SCRl、SCR2反向并联.再将控制板与本触发电路连接,就组成了一个简单实用的大功率无级调速电路。
这个电路的独特之处在于可控硅控制极不需外加电源,只要将负载与本电路串联后接通电源,两个控制极与各自的阴极之间便有5V~8V 脉动直流电压产生,调节电位器R2即可改变两只可控硅的导通角,增大R2的阻值到一定程度,便可使两个主可控硅阻断,因此R2还可起开关的作用。
该电路的另一个特点是两只主可控硅交替导通,一个的正向压降就是另一个的反向压降,因此不存在反向击穿问题。
但当外加电压瞬时超过阻断电压时,SCR1、SCR2会误导通,导通程度由电位器R2决定。
SCR3与周围元件构成普通移相触发电路,其原理这里从略。
SCR1、SCR2笔者选用的是封装好的可控硅模块(110A/1000V),SCR3选用BTl36,即600V的双向可控硅。
本电路如用于感性负载,应增加R4,C3阻容吸收电路及压敏电阻RV作过压保护,防止负载断开和接通瞬间产生很高的感应电压损坏可控硅。