人教A版高中数学必修二全册课件

合集下载

人教A版(新教材)高中数学第二册(必修2)课件4:8.6.3 平面与平面垂直(二)

人教A版(新教材)高中数学第二册(必修2)课件4:8.6.3  平面与平面垂直(二)

【规律方法】
(1)空间中的垂直关系有线线垂直、线面垂直、面面垂直,这三种
关系不是孤立的,而是相互关联的.它们之间的转化关系如下:
判定定理
判定定理
线线垂直 线面垂直定义 线面垂直 性质定理 面面垂直
(2)空间问题化成平面问题是解决立体几何问题的一个基本原则,
解题时,要抓住几何图形自身的特点,如等腰(边)三角形的三线合
(1)求证:AD⊥PB; (2)若 E 为 BC 边的中点,则能否在棱上找到一点 F,使平面 DEF⊥平面 ABCD?并证明你的结论.
[解] (1)证明:设 G 为 AD 的中点,连接 PG,BG,如图.
∵△PAD 为正三角形,∴PG⊥AD. 在菱形 ABCD 中,∠DAB=60°,G 为 AD 的中点,∴BG⊥AD. 又 BG∩PG=G,∴AD⊥平面 PGB. ∵PB⊂平面 PGB,∴AD⊥PB.
(2)当 F 为 PC 的中点时,满足平面 DEF⊥平面 ABCD. 证明如下: 在△PBC 中,FE∥PB,在菱形 ABCD 中,GB∥DE. 又 FE⊂平面 DEF,DE⊂平面 DEF,EF∩DE=E, PB⊂平面 PGB,GB⊂平面 PGB,PB∩GB=B, ∴平面 DEF∥平面 PGB. 由(1)得 PG⊥平面 ABCD,而 PG⊂平面 PGB, ∴平面 PGB⊥平面 ABCD,∴平面 DEF⊥平面 ABCD.
答案 (1)C (2)5
【题型探究】
题型一 面面垂直性质的应用 例 1 如图所示,P 是四边形 ABCD 所在平面外的一点,四边形 ABCD 是∠DAB=60°且边长为 a 的菱形.侧面 PAD 为正三角形,其所在平 面垂直于底面 ABCD.
(1)若 G 为 AD 边的中点,求证:BG⊥平面 PAD; (2)求证:AD⊥PB.

人教A版高中数学必修第二册教学课件:第八章8.2立体图形的直观图(共29张PPT)

人教A版高中数学必修第二册教学课件:第八章8.2立体图形的直观图(共29张PPT)

知识梳理
一、 投影与直观图
1.投影的定义 由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的影子,这 种现象叫做投影.其中,我们把光线叫做投影线,把留下物体影子的屏幕叫 做投影面.
2.直观图 (1)直观图是观察者站在某一点观察一个空间几何体获得的图形. (2)立体图形的直观图通常是在平行投影下得到的平面图形.
Hale Waihona Puke ① ② ③ ④ ⑤图8-2-4
A.①② B.①②③ C.②⑤ D.③④⑤
2. C 解析:由斜二测画法知,长方形的直观图应为平行 四边形,且锐角为45°,故②⑤正确.
训练题3 如图8-2-5所示是水平放置的三角形的直观图, A′B′∥y′轴,则原图中△ABC是 ( )
下列叙述中,正确的个数为
()
斜二测画法的位置关系与2.度用量斜特征二用测口诀画简法记为画:空间几何体的直观图的具体规则
了解空间几何体的不同表现形式.
用斜二测画法画出正六棱锥P-ABCDEF的直观图,其中底面ABCDEF为正六边形,点P在底面的投影是正六边形的中心O.
九十度,画一半,横不变,纵减半,
第八章 立体几何初步
三、用斜二测画法画空间几何体的直观图
原图形中平行于x轴的线段,在直观图中保持原长度不变,平行于y轴的线段,在直观图中长度变为原来的一半”的规则,确定平面图
形的关键点.
点拨:斜二测画法中“斜二测”的意思:
(1)直观图是观察者站在某一点 观 察 一个 空 间几何体获得的图形.
1
C.
① ②
训练题1.下列叙述中,正确的个数为 ( )
①相等的角,在直观图中仍相等;
②长度相等的线段,在直观图中长度仍相等;
③若两条线段平行,则在直观图中对应的线段仍平行;

人教A版高中数学必修第二册教学课件:事件的相互独立性

人教A版高中数学必修第二册教学课件:事件的相互独立性


1 12
+
1 8
+
1 4

11 24
,所以事件A,B,C只发生两个的概率为
11 24
.
人教A版( 高2中01数9)学高必中修数第学二必册修教第学二课册件 教:学事课件 件的:相第互 十独章立性 10.2 事件的相互独立性(共16张PPT)
人教A版( 高2中01数9)学高必中修数第学二必册修教第学二课册件 教:学事课件 件的:相第互 十独章立性 10.2 事件的相互独立性(共16张PPT)
人教A版高中数学必修第二册教学课件 :事件 的相互 独立性
人教A版高中数学必修第二册教学课件 :事件 的相互 独立性
(3)记A:出现偶数点,B:出现3点或6点,
则A={2,4,6},B={3,6},AB={6},
所以P(A)= 3 = 1 ,P(B)= 2 = 1 ,P(AB)= 1 .
62
63
6
【变式训练2】端午节放假,甲回老家过节的概率为 1 ,乙、丙回老家 3
过节的概率分别为 1 ,1 .假定三人的行动相互之间没有影响,那么这段 45
时间内至少1人回老家过节的概率为 ( )
A. 59
B. 1
C. 3
D. 1
60
2
5
60
人教A版( 高2中01数9)学高必中修数第学二必册修教第学二课册件 教:学事课件 件的:相第互 十独章立性 10.2 事件的相互独立性(共16张PPT)
人教A版( 高2中01数9)学高必中修数第学二必册修教第学二课册件 教:学事课件 件的:相第互 十独章立性 10.2 事件的相互独立性(共16张PPT)
所以P(AB)=P(A)P(B),
所以事件A与B相互独立.

人教A版高中数学必修第二册教学课件-第十章 -10-1-1有限样本空间与随机事件

人教A版高中数学必修第二册教学课件-第十章 -10-1-1有限样本空间与随机事件
解 事件M的含义是“从3双不同的鞋中随机抽取2只,取出的2只鞋不成双”.
高中数学 必修第二册 RJ·A
(2)N={A1B1,B1C1,A1C1}; 解 事件N的含义是“从3双不同的鞋中,随机抽取2只,取出的2只 鞋都是左脚的”.
(3)P={A1B2,A1C2,A2B1,A2C1,B1C2,B2C1}. 解 事件P的含义是“从3双不同的鞋中,随机抽取2只,取到的鞋一 只是左脚的,一只是右脚的,且不成双”.
高中数学 必修第二册 RJ·A
典例剖析
一、样本空间的求法
例1 写出下列试验的样本空间: (1)同时抛掷三枚骰子,记录三颗骰子出现的点数之和;
解 该试验的样本空间Ω1={3,4,5,…,18}.
高中数学 必修第二册 RJ·A
(2)从含有两件正品a1,a2和两件次品b1,b2的四件产品中任取两件,观察取出产品的结果; 解 该试验所有可能的结果如图所示,
高中数学 必修第二册 RJ·A
解 设石头为w1,剪刀为w2,布为w3,用(i,j)表示游戏的结果,其中i表示甲出的拳, j表示乙出的拳,则样本空间E={(w1,w1),(w1,w2),(w1,w3),(w2,w1),(w2,w2), (w2,w3),(w3,w1),(w3,w2),(w3,w3)}. 因为事件A表示随机事件“甲乙平局”, 则满足要求的样本点共有3个:(w1,w1),(w2,w2),(w3,w3), 所以事件A={(w1,w1),(w2,w2),(w3,w3)}. 事件B表示“甲赢得游戏”, 则满足要求的样本点共有3个:(w1,w2),(w2,w3),(w3,w1), 所以事件B={(w1,w2),(w2,w3),(w3,w1)}.
解 事件C中所含样本点中两个数的差的绝对值为2,且样本空间中两个数的差的绝对值 为2的样本点都在事件C中,故事件C的含义为连续抛掷一枚均匀的骰子2次,两次掷出的 点数之差的绝对值为2.

事件的关系和运算 课件(1)-人教A版高中数学必修第二册(共29张PPT)

事件的关系和运算 课件(1)-人教A版高中数学必修第二册(共29张PPT)

E1 “点数为1或2"={1, 2};
E2 "点数为2或3"={2,3}
F "点数为偶数"= {2, 4, 6}
G "点数为奇数"= {1,3,5}
我们借助集合与集合的关系和运算以及事件的相关定义,我们发现这些 事件之间有着奇妙的联系,可以分为以下几种情况.
概念解析 用集合的形式表示事件C1=“点数为1”和事件G=“点数为奇数”,它们分
事件 D1 为事件 E1 和事件 E2 的并事件. 一般地,事件A与事件B至少有一个发生,这样的一个事件中的样本点或者在事件A中,
或者在事件B中,我们称这个事件为事件A与事件B的并事件(或和事件),记作AUB(或A+B).
可以用图中的绿色区域和黄色区域表示这个并事件.
可以发现,事件E 和E 同时发生,相当于 12
判断下列结论是否正确.
(1)C1与C2互斥;
(2)C2,C3为对立事件;
(3)C3⊆D2; (5)D1∪D2=Ω,D1D2=Φ; (7)E=C1∪C3∪C5; (9)D2∪D3=D2;
探究新知
从前面的学习中可以看到,我们在一个随机试验中可以定义很多随机事件。这些事 件有的简单,有的复杂,我们希望从简单事件的概率推算出复杂事件的概率,所以需要研 究事件之间的关系和运算.
引例:在掷骰子试验中,观察骰子朝上面的点数,可以定义许多随机事件
例如:Ci=“点数为i”,i=1,2,3,4,5,6; D1=“点数不大于3”;D2=“点数大于3”; E1=“点数为1或2”;E2=“点数为2或3”; F=“点数为偶数”;G=“点数为奇数”;
时,称为事件A发生
必然 Ω作为自身的子集,包含了所有的样本点,在每次试验中总有 事件 一个样本点发生,所以Ω总会发生,我们称Ω为必然事件

新人教A版高中数学第二册(必修2)课件:8.4.1 平面

新人教A版高中数学第二册(必修2)课件:8.4.1   平面

答案 B
[微思考] 1.几何里的“平面”有边界吗?用什么图形表示平面?
提示 没有.平行四边形. 2.一个平面把空间分成了几部分?
提示 两部分. 3.基本事实1有什么作用?
提示 ①确定平面的依据;②判定点线共面. 4.基本事实2有什么作用?
提示 ①确定直线在平面内的依据;②判定点在平面内. 5.基本事实3有什么作用?
点,有且只有一个平面
经过两条相交直线,有且只有 推论2
一个平面 经过两条平行直线,有且只有 推论3 一个平面
图形
作用 定平面的依据
[微判断]
拓展深化
1.一个平面的面积是16 cm2.( × ) 2.直线l与平面α有且只有两个公共点.( × ) 3.四条线段首尾相连一定构成一个平面四边形.( × ) 4.8个平面重叠起来要比6个平面重叠起来厚.( × ) 5.空间不同三点确定一个平面.( × )
证明 如图所示.由已知a∥b,
所以过a,b有且只有一个平面α. 设a∩l=A,b∩l=B, ∴A∈α,B∈α,且A∈l,B∈l, ∴l⊂α,即过a,b,l有且只有一个平面.
规律方法 在证明多线共面时,可用下面的两种方法来证明: (1)纳入法:先由部分直线确定一个平面,再证明其他直线在这个平面内. (2)同一法:即先证明一些元素在一个平面内,再证明另一些元素在另一个平面内, 然后证明这两个平面重合,即证得所有元素在同一个平面内.
2.如图表示两个相交平面,其中画法正确的是( ) 答案 D
3.已知点A,直线a,平面α.
①若A∈a,a⊄α,则A∉α;
②若A∈α,a⊂α,则A∈a;
③若A∉a,a⊂α,则A∉α;
④若A∈a,a⊂α,则A∈α.
以上说法中,表达正确的个数是( )

人教A版(新教材)高中数学第二册(必修2)课件:9.2.2 总体百分位数的估计

人教A版(新教材)高中数学第二册(必修2)课件:9.2.2 总体百分位数的估计

2.数据7.0,8.4,8.4,8.4,8.6,8.7,9.0,9.1的第30百分位数是________. 解析 因为8×30%=2.4,故30%分位数是第三项数据8.4. 答案 8.4
3.一组样本数据的频率分布直方图如图所示,试估计此样本数据的第50百分位数为 ________.
解析 样本数据低于 10 的比例为(0.08+0.02)×4=0.40,样本数据低于 14 的比例为
规律方法 计算一组n个数据的第p百分位数的一般步骤: (1)排列:按照从小到大排列原始数据; (2)算i:计算i=n×p%; (3)定数:若i不是整数,大于i的最小整数为j,则第p百分位数为第j项数据;若i是整 数,则第p百分位数为第i项与第(i+1)项数据的平均数.
【训练1】 如图所示是某市3月1日至3月10日的最低气温(单位:℃)的情况绘制的折 线统计图,由图可知这10天最低气温的第80百分位数是( )
一般地,一组数据的第p百分位数是这样一个值,它使得这组数据中至少有__p_%____ 的数据小于或等于这个值,且至少有(100-p)%的数据大于或等于这个值.
2.计算一组n个数据的第p百分位数的步骤 第1步,按__从__小__到__大___排列原始数据. 第2步,计算i=n×p%. 第3步,若i不是整数,而大于i的比邻整数为j,则第p百分位数为第j项数据;若i是整 数,则第p百分位数为第i项与第(i+1)项数据的___平__均__数___.
解 (1)将所有数据从小到大排列,得 7.8,7.9,8.0,8.3,8.4,8.5,8.5,8.5,8.6,8.9,9.0,9.9, 因为共有12个数据, 所以12×25%=3,12×50%=6,12×95%=11.4, 则第 25 百分位数是8.0+2 8.3=8.15, 第 50 百分位数是8.5+2 8.5=8.5, 第 95 百分位数是第 12 个数据为 9.9.

人教A版高中数学必修第二册教学课件-第九章 -9-2-1总体取值规律的估计

人教A版高中数学必修第二册教学课件-第九章 -9-2-1总体取值规律的估计
反思感悟
绘制频率分布直方图的注意点 (1)各组频率的和等于1,因此,各小矩形的面积之和也等于1. (2)同样一组数据,如果组距不同,横轴、纵轴单位不同,得到的频率分布直方图的 形状也会不同.
高中数学 必修第二册 RJ·A
跟踪训练
为了了解九年级学生中女生的身高(单位:cm)情况, 某中学对九年级部分女生身高进行了一次测量,所 得数据整理后列出的频率分布表如右: (1)求出表中m,n,M,N所表示的数分别是多少;
所以 b=频组率距=0.225=0.125.
高中数学 必修第二册 RJ·A
(3)假设同一组中的每个数据可用该组区间的中点值代替, 试估计样本中的100名学生该周课外阅读时间的平均数在 第几组(只需写出结论).
解 样本中的100名学生该周课外阅读时间的平均数在 第4组.
组号 1 2 3 4 5 6 7 8 9
分组 [145.5,149.5) [149.5,153.5) [153.5,157.5) [157.5,161.5) [161.5,165.5) [165.5,169.5]
合计
频数 1 4 20 15 8 m M
频率 0.02 0.08 0.40 0.30 0.16
n N
高中数学 必修第二册 RJ·A
频数
③相应的频率=样本容量. (2)频率分布直方图反映了样本在各个范围内取值的可能性,由抽样的代表性利用样本 在某一范围内的频率,可近似地估计总体在这一范围内的可能性.
高中数学 必修第二册 RJ·A
跟踪训练
从某校随机抽取100名学生,获得了他们一周课外阅读 时间(单位:小时)的数据,整理得到数据分组及频数分 布表和频率分布直方图:
高中数学 必修第二册 RJ·A
(2)画出频率分布直方图; 解 频率分布直方图如图所示.

新课标人教A版数学必修2全部课件:4.0直观图

新课标人教A版数学必修2全部课件:4.0直观图
p
p
. 正视图 . O .p .
O′
. 侧视图 . O
O′
.
俯视图
z
y′
y
O′
x′
o
x
.p . .
o
O′
1.2.2 空间几何体的直观图
画直观图的方法:斜二侧法
1、画水平放置的正六边形的直观图.
y
F M E
y′
F' M'
O′
A
O
D
x
A' B'
E'
D'
x′
N&
C
规则:
(1)在已知图形中取互相垂直的x轴和y轴,两轴相交 于点O.画直观图时,把它们画成对应的 x '轴和 y ' 轴,两 轴相交于O,且使 x ' o ' y ' 45 0 或 135 0 ,它们确定的平面 表示水平面;
长方体的直观图.
D1
z
y
C1
A1 D M A P Q
B1 C N B
o
x
规则:
(1)在已知图形中取水平平面,取互相垂直的轴ox、 oy,再取oz轴,使∠xoz=900,且∠yoz=900 ;
(2)画直观图时,把它们画成对应的 轴,使 x ' o ' y ' 45 0 或 135 0 , x ' o ' z ' 90 0. 的平面表示水平平面;
o' x', o' y', o' z'
x'o' y'
所确定
(3)已知图形中平行于x轴、y轴或z轴的线段,在 直观图中分别画成平行于 x ' 轴 y '轴或 z '轴的线段; (4)已知图形中平行于x轴和z轴的线段,在直观 图中保持长度不变;平行于y轴的线段,长度为原 来的一半

高中数学必修二全册课件ppt人教版

高中数学必修二全册课件ppt人教版

解析答案
反思与感悟
解 (1)∵这个几何体的所有面中没有两个互相平行的面,∴这个几何体不是棱柱. (2)在四边形ABB1A1中,在AA1上取E点,使AE=2;在BB1上取F点,使BF=2;连接C1E、EF、C1F,则过C1、E、F的截面将几何体分成两部分,其中一部分是棱柱ABC—EFC1,其侧棱长为2;截去部分是一个四棱锥C1—EA1B1F,该几何体的特征为:有一个面为多边形,其余各面都是有一个公共顶点的三角形.
①③
1.在理解的基础上,要牢记棱柱、棱锥、棱台的定义,能够根据定义判断几何体的形状.2.各种棱柱之间的关系(1)棱柱的分类
棱柱
(2)常见的几种四棱柱之间的转化关系
3.棱柱、棱锥、棱台在结构上既有区别又有联系,具体见下表:
名称
底面
侧面
侧棱

平行于底面的截面
棱柱
斜棱柱
平行且全等的两个多边形
平行四边形
第一 章 § 1.1 空间几何体的结构
第1课时 多面体的结构特征
1.认识组成我们的生活世界的各种各样的多面体;2.认识和把握棱柱、棱锥、棱台的几何结构特征;3.了解多面体可按哪些不同的标准分类,可以分成哪些类别.
问题导学
题型探究
达标检测
学习目标
问题导学 新知探究 点点落实
如图棱柱可记作:棱柱
相关概念:底面(底):两个互相 的面侧面: 侧棱:相邻侧面的顶点: 的公共顶点
互相平行
四边形
互相平行
平行
其余各面
公共边
侧面与底面
ABCDEF—
A′B′C′D′E′F′
答案
分类:①依据:底面多边形的 ②类例: (底面是三角形)、 (底面是四边形)……

人教版高中数学必修二全册教学课件ppt

人教版高中数学必修二全册教学课件ppt



答 旋转轴叫做圆台的轴,垂直于轴的边
旋转而成的圆面叫做圆台的底面,斜边旋
转而成的曲面叫做圆台的侧面,斜边在旋
转中的任何位置叫做圆台侧面的母线.
圆台用表示它的轴的字母表示,如上图的圆台表示为圆台 O′O.
研一研·问题探究、课堂更高效
填一填 研一研 练一练
问题 3 圆柱、圆锥、圆台都是旋转体,它们在结构上有哪些相同点
答案 图1是由圆柱中挖去圆台形成的, 图2是由球、棱柱、棱台组合而成的.
答案
返回
达标检测
1.下图是由哪个平面图形旋转得到的( D )
1 23 4
答案
2.下列说法正确的是( D ) A.圆锥的母线长等于底面圆直径 B.圆柱的母线与轴垂直 C.圆台的母线与轴平行 D.球的直径必过球心
解析 圆锥的母线长与底面直径无联系; 圆柱的母线与轴平行; 圆台的母线与轴不平行.
答案
球的结构特征

图形及表示
定义:以 半圆的直径 所在直线为旋转轴, 半圆面旋转一周形成的旋转体叫做球体, 简称球
相关概念: 球心:半圆的 圆心 半径:半圆的 半径 直径:半圆的 直径
图中的球表示为: 球O
答案
知识点五 简单组合体
思考 下图中的两个空间几何体是柱、锥、台、球体中的一种吗? 它们是如何构成的?


上看是由八个圆柱组合成的一个组合体,我们周围的很多建筑物
栏 目
和它一样,也都是由一些简单几何体组合而成的组合体.本节我
开 关
们就来学习旋转体与简单组合体的结构特征.
填一填 研一研 练一练
研一研·问题探究、课堂更高效
探究点一 圆柱的结构特征
问题 1 如图所示的空间几何体叫做圆柱,那么圆

人教A版高中数学必修第二册教学课件-第八章 -8-2立体图形的直观图

人教A版高中数学必修第二册教学课件-第八章 -8-2立体图形的直观图
新知学习
知识点一 水平放置的平面图形的直观图的画法
用斜二测画法画水平放置的平面图形的直观图的步骤
45° 135° 水平面
的线段
x′轴或y′轴
保持原长度不变
一半
高中数学 必修第二册 RJ·A
知识点二 空间几何体直观图的画法
立体图形直观图的画法步骤
(1)画轴:与平面图形的直观图画法相比多了一个 轴,直观图中与之对应的是 (2)画底面:平面 x′O′y′ 表示水平平面,平面 y′O′z′和 x′O′z′ 表示竖z′直平面,按照平面图形的画法,画底面的直观图. (3)画侧棱:已知图形中平行于z轴(或在z轴上)的线段,在其直观图中 平行性 和 长度都不变. (4)成图:去掉辅助线,将被遮挡的部分改为 虚线 .

y′轴平行,且A′B′=A′C′,那么△ABC是
A.等腰三角形
B.钝角三角形
C.等腰直角三角形
D.直角三角形
解析 因为水平放置的△ABC的直观图中,∠x′O′y′=45°,A′B′=A′C′,且A′B′∥x′轴, A′C′∥y′轴,所以AB⊥AC,AB≠AC,所以△ABC是直角三角形.
高中数学 必修第二册 RJ·A
高中数学 必修第二册 RJ·A
跟踪训练
用斜二测画法画出六棱锥P-ABCDEF的直观图,其中底面ABCDEF为正六边形,点P在底面 上的投影是正六边形的中心O.(尺寸自定)
高中数学 必修第二册 RJ·A
解 画法: (1)画出六棱锥P-ABCDEF的底面.①在正六边形ABCDEF中,取AD所在的直线为x轴, 对称轴MN所在的直线为y轴,两轴相交于点O,如图(1); 画出相应的x′轴、y′轴、z′轴,三轴相交于O′,使∠x′O′y′=45°,∠x′O′z′=90°,如图(2);

人教版A版高中数学必修二全册课件【完整版】

人教版A版高中数学必修二全册课件【完整版】

人教版A版高中数学必修二全册课件【完整版】一、直线与方程1. 直线的斜率定义:直线斜率是指直线上任意两点之间的纵坐标之差与横坐标之差的比值。

计算公式:k = (y2 y1) / (x2 x1)性质:斜率k与直线倾斜角度的关系为k = tan(θ),其中θ为直线与x轴正方向的夹角。

2. 直线的截距定义:直线截距是指直线与y轴的交点的纵坐标。

计算公式:b = y kx,其中k为直线斜率,x为直线与x轴的交点的横坐标,y为直线与y轴的交点的纵坐标。

3. 直线方程点斜式:y y1 = k(x x1),其中k为直线斜率,(x1, y1)为直线上的一点。

斜截式:y = kx + b,其中k为直线斜率,b为直线截距。

一般式:Ax + By + C = 0,其中A、B、C为常数,且A、B 不同时为0。

4. 两条直线的位置关系平行:两条直线的斜率相等。

垂直:两条直线的斜率互为负倒数。

相交:两条直线的斜率不相等。

二、圆与方程1. 圆的定义定义:圆是平面上所有与一个固定点(圆心)距离相等的点的集合。

2. 圆的标准方程方程:(x a)² + (y b)² = r²,其中(a, b)为圆心坐标,r 为半径。

3. 圆的一般方程方程:x² + y² + Dx + Ey + F = 0,其中D、E、F为常数。

4. 圆与直线的位置关系相离:直线与圆没有交点。

相切:直线与圆有且仅有一个交点。

相交:直线与圆有两个交点。

三、椭圆与方程1. 椭圆的定义定义:椭圆是平面上所有与两个固定点(焦点)距离之和等于常数的点的集合。

2. 椭圆的标准方程方程:(x h)²/a² + (y k)²/b² = 1,其中(h, k)为椭圆中心坐标,a为椭圆长轴的一半,b为椭圆短轴的一半。

3. 椭圆的一般方程方程:Ax² + By² + Cx + Dy + E = 0,其中A、B、C、D、E 为常数,且A、B不同时为0。

新人教版高中数学必修二全册课件ppt

新人教版高中数学必修二全册课件ppt

(1)三棱柱有 6 个顶点,三棱锥有 4 个顶点;
(2)圆柱上底面圆上任一点与下底面圆上任一点的连线都是圆柱的
母线;
本 课
(3)一直角梯形绕下底所在直线旋转一周,所形成的曲面围成的几
时 栏
何体是圆台;

(4)圆锥、圆台中过轴的截面是轴截面,圆锥的轴截面是等腰三角
开 关
做圆柱侧面的母线.圆柱用表示它的轴的字母表示,如下图中的圆
柱表示为圆柱 O′O.
研一研·问题探究、课堂更高效
问题 2 如图,平行于圆柱底面的截面,经过圆柱任意两条母线的截 面分别是什么图形?



栏 目
答 分别是圆面、矩形.


研一研·问题探究、课堂更高效
探究点二 圆锥的结构特征 问题 1 类比圆柱的定义,结合下图你能给圆锥下个定义吗?
5.简单组合体
(1)概念:由 简单几何体 组合而成的几何体叫做简单组
合体.常见的简单组合体大多是由具有柱、锥、台、球等


几何结构特征的物体组成的.


(2)基本形式:一种是由简单几何体 拼接 而成,另一种是


由简单几何体 截去 或 挖去 一部分而成.

研一研·问题探究、课堂更高效
[问题情境]

举世闻名的比萨斜塔是意大利的一个著名景点.它的构造从外形
课 时
上看是由八个圆柱组合成的一个组合体,我们周围的很多建筑物
栏 目
和它一样,也都是由一些简单几何体组合而成的组合体.本节我

们就来学习旋转体与简单组合体的结构特征.

研一研·问题探究、课堂更高效
探究点一 圆柱的结构特征
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档