万有引力定律优秀教案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六万有引力和天体运动

(一)开普勒行星定律

1.第一定律——轨道定律

所有行星围绕太阳运动的轨道都是椭圆,太阳处于所有椭圆的一个焦点上。

因此地球公转时有近日点和远日点

2.第二定律——面积定律

太阳和行星的连线在相等的时间内扫过的面积相等。

因此行星的公转速率是不均匀的,在近日点最快,在远日点最慢。

3.第三定律——周期定律

所有行星椭圆轨道的半长轴R的三次方与公转周期T的平方的比值都相等。

R 3

T 2 =

k k是与行星无关,而与太阳有关的量。

(1)若公转轨道为圆,那么R就是指半径。

(2)第三定律针对的是绕同一中心天体运动的各星体,若中心天体不同,不能死套周期定律:

例如比较地球和火星,就有R地3

T地2 =

R火3

T火2 =

k

k是一个与中心天体太阳有关的常数,与行星无关。

例如比较月球和人造卫星,就有R月3

T月2 =

R卫3

T卫2 =

k ′

k ′是一个与中心天体地球相关的常数,与卫星无关。

例如行星的卫星并非主要绕太阳运动,不能直接和行星比较,即R地3

T地2 ≠

R月3

T月2

例1.已知日地距离为1.5亿千米,火星公转周期为1.88年,据此可推算得火星到太阳的距离约为A. 1.2亿千米 B. 2.3亿千米

C. 4.6亿千米

D. 6.9亿千米

解:B

(二)万有引力定律

1.基本概念

(1)表述:自然界中任何两个物体都是相互吸引的——引力普遍存在;

引力的大小跟这两个物体的质量的乘积成正比,跟它们的距离的二次方成反比——F万∝m1m2 R 2

(2)公式:F万=G m1m2 R 2

其中G称为引力常量,适用于任何物体,由卡文迪许首先测出。它在数值上等于两个质量都是1kg的质点

相距1m时的相互作用力:G=6.67×10-11N·m2/kg2。

(3)定律的适用范围:

①定律只适用于质点间的相互作用,公式中的R是所研究的两质点间的距离。

②定律还可用于两均匀球体间的相互作用,公式中的R是两球心间的距离。

③定律还可用于一均匀球体和球体外另一质点间的相互作用,公式中的R是球心与质点间的距离。

例2.已知月球中心到地球中心的距离约是地球半径的60倍,两者质量之比M月∶M地=1∶81。问由地球飞往月球的飞船距月球中心多远时,地球与月球对飞船的万有引力的合力恰好为零?

解:设飞船质量为m,所求距离为d,据平衡条件有

G M月m

d 2=

G

M地m

(60R地-d)2

解得d=6 R地

2.万有引力和重力

(1)地面上物体的重力mg是地球对该物体的万有引力的一个分力。

随着纬度的升高,物体所需向心力减小,物体的重力逐渐增大。

事实上,地球表面的物体受到的万有引力和重力十分接近。

例如,在赤道上的一个质量为1kg的物体,用F万=G Mm

R 2计算出来的万

有引力是9.830N,用F向=m 4π2

T 2

R计算出来的的向心力是0.034N,那么物体受到的重力是mg=F万-F

=9.796N。因此

(2)在地面及附近,可认为

mg=G Mm R 2

那么重力加速度g=G M

R 2——黄金代换

例3.已知地球的半径约为R,地球表面的重力加速度为g,月球绕地球运动的周期为T。又知月球的公转可看做匀速圆周运动,试用上述物理量表达出地月距离L(L远大于R)。

解:L远大于R,可将地球和月球视为质点,由万有引力定律和牛顿第二定律有

G Mm月

L 2=

m月

4π2

T 2

L ①

在地球表面,有m物g=G Mm物

R 2②

联立①、②式解得L=3gR 2T 2

4π2

(3)地球表面附近高度为h(h<<R)的地方,仍可视为重力等于万有引力:

mg ′=G

Mm (R+h)2

故距地面高度为h的地方,重力加速度g ′=GM

(R+h)2 =

R2

(R+h)2

g

可见,随高度的增大,重力加速度迅速减小。

例4.在地球某处海平面上测得物体自由下落高度h时所经历的时间为t。在某高山顶上测得物体下落同样的高度所需时间增加了Δt。已知地球半径为R,试用上述各量表达山的高度H。

解:设地面的重力加速度为g,据直线运动规律有g= 2h t2

设高山顶上的重力加速度为g′,同理有g′= 2h

(t+Δt) 2

则g

g′=(

t+Δt

t)2①

在地面附近,可认为重力等于万有引力,有

mg=G Mm R 2

mg′=G

Mm (R+H)2

则g

g′=(

R+H

R )2 ②

联立①②式得t+Δt

t=

R+H

R 解得

H=

Δt

t

R

3.利用万有引力定律测量天体质量和密度(1)以天体表面的物体为研究对象

设星球半径为R,在天体表面有:

mg=G Mm R 2

得M=gR 2

G;而

V=

4

3

πR3 ,则ρ=

M

V =

3g

4πGR

例5.已知地球表面的重力加速度为9.8m/s2,地球半径为6.4×103km,引力常量为6.67×10-11N·m2/kg2。(1)试估算地球的平均密度。(2)已知地核的体积约为整个地球体积的16%,地核的质量约为地球质量的34%,试估算地核的平均密度。

解:设地面上有一质量为m的物体,它所受到的地球引力近似等于它的重力:

mg=G Mm

R 2得

M地=

gR 2

G

相关文档
最新文档