常用几种钢结构构件的拼接
钢结构的连接方式
5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。
我们只说喜欢,就算喜欢也是偷偷摸摸的。
”6.方茴说:“我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。
”7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。
8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。
9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。
§3-1钢结构的连接钢结构的构件是由型钢、钢板等通过连接(connections)构成的,各构件再通过安装连接架构成整个结构。
因此,连接在钢结构中处于重要的枢纽地位。
在进行连接的设计时,必须遵循安全可靠、传力明确、构造简单、制造方便和节约钢材的原则。
钢结构的连接方法可分为焊接连接、铆钉连接、螺栓连接和轻型钢结构用的紧固件连接等(图3.1.1)。
3.1.1 焊缝连接一、焊缝连接的特点焊接连接(welded connection)是现代钢结构最主要的连接方法。
其优点是:构造简单,任何形式的构件都可直接相连;用料经济,不削弱截面;制作加工方便,可实现自动化操作;连接的密闭性好,结构刚度大。
其缺点是:在焊缝附近的热影响区内,钢材的金相组织发生改变,导致局部材质变脆;焊接残余应力和残余变形使受压构件承载力降低;焊接结构对裂纹很敏感,局部裂纹一旦发生,就容易扩展到整体,低温冷脆问题较为突出。
二、钢结构常用的焊接方法1、手工电弧焊这是最常用的一种焊接方法(3.1.2)。
通电后,在涂有药皮的焊条和焊件间产生电弧。
电弧提供热源,使焊条中的焊丝熔化,滴落在焊件上被电弧所吹成的小凹槽熔池中。
由电焊条药皮形成的熔渣和气体覆盖着熔池,防止空气中的氧、氮等气体与熔化的液体金属接触,避免形成脆性易裂的化合物。
钢结构常用的连接方法
钢结构常用的连接方法
钢结构常用的连接方法包括以下几种:
1. 螺栓连接:使用螺栓将钢结构构件连接在一起,可以采用普通螺栓、高强度螺栓或预应力螺栓。
2. 焊接连接:通过焊接将钢结构构件连接在一起,包括手工电弧焊接、气体保护焊接、埋弧焊接等。
3. 铆接连接:采用铆钉将钢结构构件连接在一起,可以采用拉铆或者冲击铆接的方式。
4. 锈蚀连接:使用锈蚀或者锈蚀加粘结的方式将钢结构构件连接。
5. 槽钢连接:将槽钢与其他构件进行连接,可以实现不同方向的连接。
6. 槽型连接:使用槽型钢将钢结构构件连接在一起,可实现不同角度的连接。
需要根据具体的钢结构设计和要求选择合适的连接方法,并严格按照相关规范和标准进行施工操作。
钢结构的连接方式
§3-1钢结构的连接钢结构的构件是由型钢、钢板等通过连接(connections)构成的,各构件再通过安装连接架构成整个结构。
因此,连接在钢结构中处于重要的枢纽地位。
在进行连接的设计时,必须遵循安全可靠、传力明确、构造简单、制造方便和节约钢材的原则。
钢结构的连接方法可分为焊接连接、铆钉连接、螺栓连接和轻型钢结构用的紧固件连接等(图3.1.1)。
3.1.1 焊缝连接一、焊缝连接的特点焊接连接(welded connection)是现代钢结构最主要的连接方法。
其优点是:构造简单,任何形式的构件都可直接相连;用料经济,不削弱截面;制作加工方便,可实现自动化操作;连接的密闭性好,结构刚度大。
其缺点是:在焊缝附近的热影响区内,钢材的金相组织发生改变,导致局部材质变脆;焊接残余应力和残余变形使受压构件承载力降低;焊接结构对裂纹很敏感,局部裂纹一旦发生,就容易扩展到整体,低温冷脆问题较为突出。
二、钢结构常用的焊接方法1、手工电弧焊这是最常用的一种焊接方法(3.1.2)。
通电后,在涂有药皮的焊条和焊件间产生电弧。
电弧提供热源,使焊条中的焊丝熔化,滴落在焊件上被电弧所吹成的小凹槽熔池中。
由电焊条药皮形成的熔渣和气体覆盖着熔池,防止空气中的氧、氮等气体与熔化的液体金属接触,避免形成脆性易裂的化合物。
焊缝金属冷却后把被连接件连成一体。
手工电弧焊设备简单,操作灵活方便,适于任意空间位置的焊接,特别适于焊接短焊缝。
但生产效率低,劳动强度大,焊接质量与焊工的技术水平和精神状态有很大的关系。
手工电弧焊所用焊条应与焊件钢材(或称主体金属)相适应,例如:对Q235钢采用E43型焊条(E4300~E4328);对Q345钢采用E50型焊条(E5000~E5048);对390钢和Q420钢采用E55型焊条(E5500~E5518)。
焊条型号中字母E表示焊条类型等。
不同钢种的钢材相焊接时,宜采用低组配方案,即宜采用与低强度钢相适应的焊条。
钢结构的连接方法
钢结构的连接方法一、钢结构的连接方法1、焊接连接2、螺栓连接3、铆钉连接二、以钢材制作为主的结构,是主要的建筑结构类型之一。
钢材的特点是强度高、自重轻、刚度大,故用于建造大跨度和超高、超重型的建筑物特别适宜;材料匀质性和各向同性好,属理想弹性体,最符合一般工程力学的基本假定;材料塑性、韧性好,可有较大变形,能很好地承受动力荷载;建筑工期短;其工业化程度高,可进行机械化程度高的专业化生产;加工精度高、效率高、密闭性好,故可用于建造气罐、油罐和变压器等。
其缺点是耐火性和耐腐性较差。
主要用于重型车间的承重骨架、受动力荷载作用的厂房结构、板壳结构、高耸电视塔和桅杆结构、桥梁和库等大跨结构、高层和超高层建筑等。
钢结构今后应研究高强度钢材,大大提高其屈服点强度;此外要轧制新品种的型钢,例如H型钢(又称宽翼缘型钢)和T形钢以及压型钢板等以适应大跨度结构和超高层建筑的需要。
钢结构又分轻钢和重钢。
判定没有一个统一的标准,很多有经验的设计师或项目经理也常常不能完全说明白,可以以一些数据综合考虑并加以判断。
三、钢结构以钢材制作为主的结构,是主要的建筑结构类型之一。
钢材的特点是强度高、自重轻、刚度大,故用于建造大跨度和超高、超重型的建筑物特别适宜;材料匀质性和各向同性好,属理想弹性体,最符合一般工程力学的基本假定;材料塑性、韧性好,可有较大变形,能很好地承受动力荷载;建筑工期短;其工业化程度高,可进行机械化程度高的专业化生产;加工精度高、效率高、密闭性好,故可用于建造气罐、油罐和变压器等。
其缺点是耐火性和耐腐性较差。
主要用于重型车间的承重骨架、受动力荷载作用的厂房结构、板壳结构、高耸电视塔和桅杆结构、桥梁和库等大跨结构、高层和超高层建筑等。
钢结构今后应研究高强度钢材,大大提高其屈服点强度;此外要轧制新品种的型钢,例如H型钢(又称宽翼缘型钢)和T形钢以及压型钢板等以适应大跨度结构和超高层建筑的需要。
钢结构又分轻钢和重钢。
钢结构的连接(焊接,螺栓连接)
F N
.
50
三、普通螺栓抗剪连接
(一)工作性能和破坏形式
N
1.工作性能
对图示螺栓连接做抗剪试验,即可 N/2 得到板件上a、b两点相对位移δ 和作用力N的关系曲线,该曲线清 N/2 a
楚的揭示了抗剪螺栓受力的四个 N 阶段,即:
(1)摩擦传力的弹性阶段(0~1段)
直线段—连接处于弹性状态; 该阶段较短—摩擦力较小。
端距 中距
边距 中距 边距
A 并列
B 错列
.
46
3.螺栓排列的要求
(1)受力要求:
垂直受力方向:为了防止螺栓应力集中相互影响、截 面削弱过多而降低承载力,螺栓的边距和端距不能 太小;
顺力作用方向:为了防止板件被拉断或剪坏,端距不 能太小;
对于受压构件:为防止连接板件发生鼓曲,中距不能 太大。
(2)构造要求;
Q390、Q420钢选择E55型焊条(E5500--5518)
B、焊条的表示方法:
E—焊条(Electrode)
第1、2位数字为熔融金属的最小抗拉强度(kgf/mm2)
第3、4适用焊接位置、电流及药皮的类型。
不同钢种的钢材焊接,宜采用与低强度钢材相适应的焊条。
C、优、缺点
优点:方便,特别在高空和野外作业,小型焊接;
第三章
3.1 钢结构的连接方法 一、焊缝连接 优点:不削弱截面,方便施工,连接刚度大;
缺点:材质易脆,存在残余应力,对裂纹敏感。
对接焊缝连接
.
角焊缝连接
2
二、铆钉连接
优点:连接刚度大,传力可靠; 缺点:对施工技术要求很高,劳动 强度大,施工条件差, 施工速度慢。
三、螺栓连接
分为: 普通螺栓连接 高强度螺栓连接
常用的几种钢结构构件的拼接
常用的几种钢结构构件的拼接构件的拼接一、等截面拉、压杆拼接1、工厂拼接①拉杆:可以采用直接对焊(图a)或拼接板加角焊缝(图b)。
直接对焊时焊缝质量必须达到一、二级质量标准,否则要采用拼接板加角焊缝。
②压杆:可以采用直接对焊(图a)或拼接板加角焊缝(图b)。
采用拼接板加角焊缝时,构件的翼缘和腹板都应有各自的拼接板和焊缝,使传力尽量直接、均匀,避免应力过分集中。
确定腹板拼接板宽度时,要留够施焊纵焊缝时操作焊条所需的空间。
2、工地拼接①拉杆:可以用拼接板加高强螺栓(图c)或端板加高强螺栓(图d)。
②压杆:可以采用焊接(图e、f)或上、下段接触面刨平顶紧直接承压传力(图g、h)。
用焊接时,上段构件要事先在工厂做好坡口,下段(或上、下两段)带有定位零件(槽钢或角钢),保证施焊时位置正确。
上、下段接触面刨平顶紧直接承压传力时应辅以少量焊缝和螺栓,使不能错动。
拉压杆的拼接宜按等强度原则来计算,亦即拼接材料和连接件都能传递断开截面的最大内力。
二、变截面柱的拼接(略)三、梁的拼接梁的拼接施工条件的不同分为车间(工厂)拼接和工地拼接两种。
1、工厂拼接1)翼缘和腹板的工厂拼接位置最好错开,以避免焊缝集中。
2)翼缘和腹板的拼接焊缝一般采用对接焊缝。
3)对于满足1、2级焊缝质量检验级别的焊缝不需要进行验算。
4) 对于满足3级焊缝质量检验级别的焊缝需要进行验算.当焊缝强度不足时可采用斜焊缝。
当θ满足tgθ≤1.5时,可以不必验算。
2、工地拼接的构造1)工地拼接一般应使翼缘和腹板在同一截面处断开,以便于分段运输(图a)。
为了使翼缘板在焊接过程中有一定地伸缩余地,以减少焊接残余应力,可在工厂预留约500mm长度不焊。
2)图b将翼缘和腹板的拼接位置适当错开的方式,可以避免焊缝集中在同一截面,但运输有一定困难。
3)对于铆接梁和较重要的或受动力荷载作用的焊接大型梁,其工地拼接常采用高强螺栓连接。
主次梁的连接一.次梁为简支梁1、叠接构造:在主梁上的相应位置应设置支承加劲肋,以免主梁腹板承受过大的局部压力。
钢筋连接方法
钢筋连接方法钢筋连接是建筑工程中非常重要的一环,它直接关系到建筑物的安全和稳定性。
在建筑结构中,钢筋连接的质量和可靠性直接影响着整个建筑物的使用寿命和安全性。
因此,选择合适的钢筋连接方法是至关重要的。
本文将介绍几种常见的钢筋连接方法,以及它们的特点和适用范围。
首先,我们来介绍机械连接法。
机械连接法是利用机械装置将钢筋连接在一起的方法,常见的机械连接装置有螺纹套筒连接、扭剪连接等。
螺纹套筒连接是将两根钢筋分别套入两个螺纹套筒中,然后通过螺纹连接起来的方法。
这种连接方法适用于直径较大的钢筋,连接牢固,但施工难度较大。
扭剪连接是将两根钢筋用特殊的扭剪套筒连接在一起,这种连接方法适用于直径较小的钢筋,连接简单方便,但承载能力较低。
其次,焊接连接法是利用焊接设备将钢筋连接在一起的方法。
焊接连接法连接牢固,适用于各种规格的钢筋,但需要专业的焊接工人和设备,施工难度较大。
而且焊接连接容易受到环境条件的影响,如潮湿、温度等,需要特别注意防护措施。
另外,粘接连接法是利用专用的胶粘剂将钢筋连接在一起的方法。
粘接连接法施工简便,适用范围广,但需要严格控制胶粘剂的质量和施工工艺,以确保连接的牢固性和可靠性。
最后,螺栓连接法是利用螺栓将钢筋连接在一起的方法。
螺栓连接法适用于各种规格的钢筋,连接牢固可靠,但需要特殊的螺栓和螺母,施工成本较高。
综上所述,钢筋连接方法有机械连接法、焊接连接法、粘接连接法和螺栓连接法等几种。
在选择钢筋连接方法时,需要根据具体的工程要求和条件进行综合考虑,选择合适的连接方法。
同时,在施工过程中,需要严格按照相关规范和标准进行操作,确保连接的质量和可靠性。
希望本文对大家有所帮助,谢谢阅读。
钢结构的连接方法
钢结构的连接方法一、钢结构的连接方法1、焊接连接2、螺栓连接3、铆钉连接二、以钢材制作为主的结构,是主要的建筑结构类型之一。
钢材的特点是强度高、自重轻、刚度大,故用于建造大跨度和超高、超重型的建筑物特别适宜;材料匀质性和各向同性好,属理想弹性体,最符合一般工程力学的基本假定;材料塑性、韧性好,可有较大变形,能很好地承受动力荷载;建筑工期短;其工业化程度高,可进行机械化程度高的专业化生产;加工精度高、效率高、密闭性好,故可用于建造气罐、油罐和变压器等。
其缺点是耐火性和耐腐性较差。
主要用于重型车间的承重骨架、受动力荷载作用的厂房结构、板壳结构、高耸电视塔和桅杆结构、桥梁和库等大跨结构、高层和超高层建筑等。
钢结构今后应研究高强度钢材,大大提高其屈服点强度;此外要轧制新品种的型钢,例如H型钢(又称宽翼缘型钢)和T形钢以及压型钢板等以适应大跨度结构和超高层建筑的需要。
钢结构又分轻钢和重钢。
判定没有一个统一的标准,很多有经验的设计师或项目经理也常常不能完全说明白,可以以一些数据综合考虑并加以判断。
三、钢结构以钢材制作为主的结构,是主要的建筑结构类型之一。
钢材的特点是强度高、自重轻、刚度大,故用于建造大跨度和超高、超重型的建筑物特别适宜;材料匀质性和各向同性好,属理想弹性体,最符合一般工程力学的基本假定;材料塑性、韧性好,可有较大变形,能很好地承受动力荷载;建筑工期短;其工业化程度高,可进行机械化程度高的专业化生产;加工精度高、效率高、密闭性好,故可用于建造气罐、油罐和变压器等。
其缺点是耐火性和耐腐性较差。
主要用于重型车间的承重骨架、受动力荷载作用的厂房结构、板壳结构、高耸电视塔和桅杆结构、桥梁和库等大跨结构、高层和超高层建筑等。
钢结构今后应研究高强度钢材,大大提高其屈服点强度;此外要轧制新品种的型钢,例如H型钢(又称宽翼缘型钢)和T形钢以及压型钢板等以适应大跨度结构和超高层建筑的需要。
钢结构又分轻钢和重钢。
钢结构常见的几种梁柱刚性连形式
钢结构常见的几种梁柱刚性连形式(1)梁与柱刚性连接的构造形式有三种,如图所示:(2)梁与柱的连接节点计算时,主要验算以下内容:①梁与柱连接的承载力②柱腹板的局部抗压承载力和柱翼缘板的刚度③梁柱节点域的抗剪承载力(3)梁与柱刚性连接的构造①框架梁与工字形截面柱和箱形截面柱刚性连接的构造:框架梁与柱刚性连接②工字形截面柱和箱形截面柱通过带悬臂梁段与框架梁连接时,构造措施有两种:柱带悬臂梁段与框架梁连接梁与柱刚性连接时,按抗震设防的结构,柱在梁翼缘上下各500mm的节点范围内,柱翼缘与柱腹板间或箱形柱壁板间的组合焊缝,应采用全熔透坡口焊缝。
(4)改进梁与柱刚性连接抗震性能的构造措施①骨形连接骨形连接是通过削弱梁来保护梁柱节点。
骨形连接梁端翼缘加焊楔形盖板在不降低梁的强度和刚度的前提下,通过梁端翼缘加焊楔形盖板。
(5)工字形截面柱在弱轴与主梁刚性连接当工字形截面柱在弱轴方向与主梁刚性连接时,应在主梁翼缘对应位置设置柱水平加劲肋,在梁高范围内设置柱的竖向连接板,其厚度应分别与梁翼缘和腹板厚度相同。
柱水平加劲肋与柱翼缘和腹板均为全熔透坡口焊缝,竖向连接板与柱腹板连接为角焊缝。
主梁与柱的现场连接如图所示。
2梁与柱的铰接连接(1)梁与柱的铰接连接分为:仅梁腹板连接、仅梁翼缘连接:仅梁腹板连接仅梁翼缘连接柱上伸出加劲板与梁腹板相连梁与柱用双盖板相连(2)柱在弱轴与梁铰接连接分为:柱上伸出加劲板与梁腹板相连、梁与柱用双盖板相连柱的拼接节点一般都是刚接节点,柱拼接接头应位于框架节点塑性区以外,一般宜在框架梁上方1.3m左右。
考虑运输方便及吊装条件等因素,柱的安装单元一般采用三层一根,长度10~12m左右。
根据设计和施工的具体条件,柱的拼接可采取焊接或高强度螺栓连接。
按非抗震设计的轴心受压柱或压弯柱,当柱的弯矩较小且不产生拉力的情况下,柱的上下端应铣平顶紧,并与柱轴线垂直。
柱的25%的轴力和弯矩可通过铣平端传递,此时柱的拼接节点可按75%的轴力和弯矩及全部剪力设计。
钢结构标准件的种类
钢结构标准件的种类
钢结构标准件是指按照一定的规格、尺寸和性能要求生产的常用钢制连接件和零部件。
下面是一些常见的钢结构标准件种类:
1. 螺栓和螺母:包括普通螺栓、高强度螺栓和防松螺栓等。
2. 螺栓连接片:用于连接钢结构构件的螺栓套筒、连接板等。
3. 锚栓和锚固件:用于固定钢结构构件到基础上的锚定件,包括地脚螺栓、锥形锚栓和锚具等。
4. 螺栓式高强度连接件:如拆装式钢构件连接件、零位偏移连接件等。
5. 钢结构焊接件:包括焊接钢板、焊接构件、焊接支撑件等。
6. 钢结构支撑件:用于支撑和固定钢结构的支座、吊杆、斜撑等。
7. 补强件:用于增加钢结构构件的强度和刚度,如剪力板、压力板和角钢等。
8. 托盘和脚手架:用于搭建和支撑钢结构施工过程中的临时工作平台和支架。
9. 安全设施:如钢结构防护栏杆、逃生通道和防火涂料等。
以上只是常见的一些钢结构标准件种类,实际上还有许多其他具体用途的标准件。
选择合适的钢结构标准件需要根据具体的项目需求和设计要求来确定。
简述钢结构连接方法的种类
简述钢结构连接方法的种类
钢结构连接方法的种类包括以下几种:
1. 螺栓连接:使用螺栓和螺母将钢构件连接在一起。
螺栓连接能够提供较高的刚度和强度,并且易于安装和拆卸。
2. 焊接连接:通过将钢构件进行熔接来实现连接。
焊接连接能够提供更高的刚度和强度,并且可以实现连续的结构性能。
3. 铆接连接:使用铆钉将钢构件连接在一起。
铆接连接具有较高的刚度和强度,并且能够实现连续的结构性能。
4. 锚固连接:通过固定钢构件到混凝土结构或者其他基础上来实现连接。
锚固连接能够提供较高的稳定性和抗震能力。
5. 拼装连接:将预制的钢构件通过扣件或者其他连接件进行组合拼装。
拼装连接能够提高施工速度和灵活性,并且便于现场安装。
6. 机械连接:使用机械连接件,如榫卯接头、卡口式接头等,将钢构件连接在一起。
机械连接能够提供较高的刚度和强度,并且方便拆卸和更换。
总结起来,钢结构连接方法的种类多样,每种连接方法都有其适用的场景和特点,选择合适的连接方法可以提高钢结构的安全性和可靠性。
钢结构构件5种常用的组装方法
钢结构构件5种常用的组装方法
一、地样法
装配方法:
用比例1:1在装配平台上放有构件实样。
然后根据零件在实样上的位置,分别组装起来成为构件。
使用范围:
桁架、框架等少批量结构组装。
二、仿形复制装配法
装配方法:
先用地样法组装成单面(单片)的结构,并且必须定位点焊,然后翻身作为复制胎模,在上装配另一单面的结构、往返2次组装。
使用范围:
横断面互为对称的桁架结构。
三、立装
装配方法:
根据构件的特点,及其零件的稳定位置,选择自上而下或自下而上的装配。
使用范围:
用于配置平稳,高度不大的结构或大直径圆筒。
四、卧装
装配方法:
构件放置卧的位置的装配。
使用范围:
用于断面不大,但长度较大的细长构件。
五、胎膜装配法
装配方法:
把构件的零件用胎模定位在其装配位置上的组装。
使用范围:
用于制造构件批量大精度高的产品。
备注:
在布置拼装抬模时必须注意各种加工余量。
钢结构六大施工方法
钢结构六大施工方法随着体育馆、博物馆、美术馆、大型商业等建筑形式快速发展,我们身边出现了更多的大型钢结构建筑。
下面来看看大型钢结构施工重点技术都有哪些吧。
高空原位单元安装法高空原位安装法包括高空原位散装法和高空原位单元安装法。
(1)散装法。
一般采用悬挑法或满堂脚手架法直接将构件在设计位置拼装。
此法为满足高空搁置及工人施工条件,需搭设满堂脚手架进行操作平台支撑。
适用于跨度较小、工期要求较宽松的网架、网壳等结构中。
优点:由于单件的重量较轻,可有效降低起重设备的起重要求。
缺点:支撑搭设时间长,高空作业多,工期跨度大,且需用大量支撑材料,占用大量建筑物内场地。
(2)单元安装法。
采用结构分块措施,将合理分块的单元吊装安装。
此法在条件允许情况下,可预先将单元在工厂进行预拼装。
吊装单元的合理划分,一般应把握以下几点。
1)单元的大小视起重机能力和结构形式而定。
2)梁柱结构一般将分段位置设在反弯点位置。
3)网架、网壳结构可采取分块、分条的方式。
4)单元须有足够的稳定性、刚度及强度,自成一体。
滑移安装法滑移安装法一般分结构滑移法、支承滑移法。
(1)结构滑移法。
将结构整体(或局部)先在具备拼装条件的场地组装完成,再利用滑移系统整体移位完成安装。
这种安装技术拼装场地和组装用机械设备可集中于一块相对固定的场地,与原位安装法相比,可减少临时支承与操作平台的措施用量,节约场地处理和管理成本。
采用此法至少应注意几个要点。
1)结构支承处有利于铺设滑移轨道,滑移路线长,效率越高。
2)滑移单元应为几何不变体系,滑移过程中有足够的刚度和稳定性,尽可能减少滑移时的抵抗力。
3)当采用多点牵引来实现滑移时,为避免结构在滑移过程中发生扭转,牵引的同步性须得到控制,若难以保证,则应充分计算评估因牵引不同步给滑移单元造成的影响,必要时可为滑移单元进行临时加固。
4)滑移单元在最后固定之前,结构在移动方向与其正交方向存在着“容易滑移”的趋势,因为与设计支承条件不同,要防止设计外(即滑移平面外)的变形,有必要采取防止“滑落”的对策,比如在两侧支承附近设置自平衡的刚性拉杆或柔性拉索。
钢结构构件常用的连接方式
钢结构构件常用的连接方式1.焊接连接焊接连接有气焊、接触焊和电弧焊等方法。
在电弧焊中又分手工焊、自动焊和半自动焊三种。
目前,钢结构中常用的是手工电弧焊。
利用手工操作的方法,以焊接电弧产生的热量使焊条和焊件熔化,从而凝固成牢固接头的工艺过程,就是手工电弧焊。
(1)焊缝的形式与构造①对接焊缝对接焊缝的形式有直边缝、单边V形缝、双边V形缝、U形缝、K形缝、X 形缝等。
当焊件厚度很小,可采用直边缝。
对于一般厚度的焊件,因为直边缝不易焊透,可采用有斜坡口的单边V形缝或双边V形缝,斜坡口和焊缝根部共同形成一个焊条能够运转的施焊空间,使焊件易于焊透。
对于较厚的焊件,则应采用U形缝、K形缝和X形缝。
其中V形缝和U形缝为单面施焊,但在焊缝根部还需要补焊,当焊件可随意翻转施焊时,使用K 形缝和X形缝较好。
焊缝的起点和终点处常因不能熔透而出现凹形的焊口,为避免受力后出现裂纹及应力集中,施焊时应将两端焊至引弧板上,然后再将多余部分切除,这样便不致减小焊缝处的截面。
对接焊缝的优点是用料经济,传力均匀、平顺,没有显着的应力集中,承受动力荷载的构件最适于采用对接焊缝。
缺点是施焊的焊件应保持一定的间隙,板边需要加工,施工不便。
②角焊缝在相互搭接或丁字连接构件的边缘,所焊截面为三角形的焊缝,叫做角焊缝。
角焊缝按外力作用方向可分为平行于外力作用方向的侧面角焊缝和垂直于外力作用方向的正面角焊缝。
钢结构中,最常用的是普通直角焊缝,其他形式主要是为了改变受力状态,避免应力集中,一般多用于直接受动力荷载的结构。
杆件与节点板的连接焊缝一般宜采用两面侧焊,也可用三面围焊,对角钢焊件还可采用L形围焊,但为不引起偏心,角钢背焊缝长度常受到限制,所以一般只适用于受力较小的焊件。
所有围焊的转角处必须连续施焊。
角焊缝的优点是焊件板边不必预先加工,也不需要校正缝距,施工方便。
其缺点是应力集中现象比较严重,由于必须有一定的搭接长度,角焊缝连接在材料使用上不够经济。
钢结构的构件连接方式
d e钢结构的构件连接方式钢结构的连接方法大体来看,有以下几种:焊接——是使用最普遍的方法,该方法对几何形体适应性强,构造简单,省材省工,易于自动化,工效高;但是焊接属于热加工过程,对材质要求高,对于工人的技术水平要求也高,焊接程序严格,质量检验工作量大。
铆接——该方法传力可靠,韧性和塑性好,质量易于检查,抗动力荷载好;但是由于铆接时必须进行钢板的搭接,相对来讲费钢、费工。
普通螺栓连接——这种方式装卸便利,设备简单,工人易于操作;但是对于该方法,螺栓精度低时不宜受剪,螺栓精度高时加工和安装难度较大。
高强螺栓连接——此法加工方便,对结构削弱少,可拆换,能承受动力荷载,耐疲劳,塑性、韧性好摩擦面处理,安装工艺略为复杂,造价略高射钉、自攻螺栓连接——较为灵活,安装方便,构件无须预先处理,适用于轻钢、薄板结构不能受较大集中力。
焊接连接 焊接是钢结构较为常见的连接方式,也是比较方便的连接方式,在众多的钢结构中,焊接是最为常见的一种。
根据焊接的形式,焊缝可以分为对接(平接)焊缝、角焊缝、和顶接焊缝三大类。
对接焊缝对接焊缝按受力与焊缝方向分直缝——作用力方向与焊缝方向正交;斜缝——作用力方向与焊缝方向斜交两类。
从直观来看,直缝受拉,斜缝受拉与剪的同时作用。
对接焊缝在焊接上有以下处理形式: a )直边缝:适合板厚t 10mm b )单边V 形:适合板厚t =10~20mmc )双边V 形:适合板厚t =10~20mmd )U 形:适合板厚t > 20mme )K 形:适合板厚t > 20mm b斜缝 直缝f)X形:适合板厚t > 20mm对接焊缝的优点是用料经济、传力均匀、无明显的应力集中1[1],利于承受动力荷载;但也有缺点,需剖口,焊件长度要精确。
对接焊缝需要做以下构造处理:首先,在施焊过程中,起落弧处易有焊接缺陷,所以用引弧板;但采用引弧板施工复杂,除承受动力荷载外,一般不用,计算时将焊缝长度两端各减去5mm。
装配式钢结构的连接方式
装配式钢结构的连接方式一、螺栓连接螺栓连接是装配式钢结构中常用的一种连接方式。
它通过将螺栓穿过连接板、钢梁和钢柱等构件的孔洞,并用螺母紧固,实现构件之间的连接。
螺栓连接具有拆卸方便、灵活性高的特点,适用于需要频繁拆卸和改动的场所。
二、焊接连接焊接连接是装配式钢结构中另一种常用的连接方式。
它通过将连接板、钢梁和钢柱等构件进行熔接,使其形成一个整体结构。
焊接连接具有连接强度高、刚性好的特点,适用于需要承受较大荷载和保持稳定性的场所。
三、组合连接组合连接是一种将螺栓连接和焊接连接相结合的连接方式。
它通过在一部分构件上采用螺栓连接,而在另一部分构件上采用焊接连接,使得整个结构在保证强度和稳定性的同时,具备了一定的拆卸和改动的能力。
四、槽钢连接槽钢连接是一种将槽钢用作连接件的连接方式。
它通过将槽钢与钢梁或钢柱等构件的侧面进行焊接,实现构件之间的连接。
槽钢连接具有连接稳定、刚性好的特点,适用于需要承受较大荷载的场所。
五、剪力连接剪力连接是一种将钢板用作连接件的连接方式。
它通过将钢板垂直于钢梁或钢柱等构件进行焊接,实现构件之间的连接。
剪力连接具有连接强度高、刚性好的特点,适用于需要承受较大剪力力的场所。
六、翼板连接翼板连接是一种将翼板用作连接件的连接方式。
它通过将翼板与钢梁或钢柱等构件的侧面进行焊接,实现构件之间的连接。
翼板连接具有连接稳定、刚性好的特点,适用于需要承受较大荷载的场所。
七、角钢连接角钢连接是一种将角钢用作连接件的连接方式。
它通过将角钢与钢梁或钢柱等构件的侧面进行焊接,实现构件之间的连接。
角钢连接具有连接稳定、刚性好的特点,适用于需要承受较大荷载的场所。
八、法兰连接法兰连接是一种将法兰用作连接件的连接方式。
它通过将法兰与钢梁或钢柱等构件的端面进行螺栓连接,实现构件之间的连接。
法兰连接具有连接强度高、刚性好的特点,适用于需要承受较大荷载的场所。
九、卡口连接卡口连接是一种将构件通过卡口进行连接的连接方式。
钢结构的常用连接方法
钢结构的常用连接方法钢结构的基本构件由钢板、型钢等连接而成,如梁、柱、桁架等,运到工地后通过安装连接成整体结构。
因此在钢结构中,连接占有很重要的地位。
在传力过程中,连接部位应有足够的强度、刚度和延性。
被连接件间应保持正确的位置,以满足传力和使用要求。
连接的加工和安装比较复杂而且费工,因此选定连接方案是钢结构设计的重要环节。
钢结构的连接通常有焊接、铆接和螺栓连接三种方式(见图10-1)。
在在房屋结中铆接已经很少采用,常用焊接和螺栓连接。
(a)焊接连接(b)铆钉连接(c)螺栓连接图10-1 钢结构的连接方式(书中图名改为图示所示)10.1.1 焊接连接焊接是通过电弧产生热量,使焊条和焊件局部熔化,然后冷却凝结形成焊缝,使焊件连成一体。
焊接连接是当前钢结构最主要的连接方式,它的优点是构造简单,用钢省,加工方便,连接的密闭性好,易于采用自动化作业。
焊接连接的缺点是焊件会产生残余应力和残余变形,焊缝附近材质变脆,焊缝质量易受材料、操作的影响,对钢材材性要求较高,高强度钢更要有严格的焊接程序。
钢结构常用的焊接方法有气焊、电阻焊和电弧焊等方法。
10.1.2 铆钉连接铆钉连接是将一端带有预制钉头的铆钉插入被连接构件的钉孔中,利用铆钉枪或压铆机将另一端压成封闭钉头而成。
这种连接传力可靠,韧性和塑性较好,质量易于检查,适用于承受动力荷载、荷载较大和跨度较大的结构。
但铆钉连接费工费料、劳动条件差、成本高,现在很少采用,多被焊接及高强度螺栓连接所代替。
10.1.3 螺栓连接螺栓连接需要先在构件上开孔,然后通过拧紧螺栓产生紧固力将被连接板件连成一体,其分为普通螺栓连接和高强度螺栓连接两种。
1.普通螺栓连接普通螺栓的优点是装卸便利,不需特殊设备。
普通螺栓又分为C级螺栓(又称粗制螺栓)和A、B级螺栓(又称精制螺栓)两种。
C级螺栓制作精度较差,栓径和孔径之间的缝隙相差1-1.5mm,便于制作和安装,但螺杆与钢板孔壁接触不够紧密,当传递剪力时,连接变形较大,故C级螺栓宜用于承受拉力的连接,或用于次要结构和可拆卸结构的受剪连接以及安装时的临时固定。
常见钢结构构件连接方法详解
常见钢结构构件连接方法详解钢结构构件的连接钢结构的连接方法有焊接、普通螺栓连接、高强度螺栓连接和铆接,具体如下:(一)焊接1、建筑工程中钢结构常用的焊接方法:按焊接的自动化程度一般分为手工焊接、半自动焊接和自动化焊接三种。
2、根据焊接接头的连接部位,可以将熔化焊接头分为:对接接头、角接接头、T 形及十字接头、搭接接头和塞焊接头等。
3、在焊接时应合理选择焊接方法、条件、顺序和预热等工艺措施,尽可能把焊接应力和焊接变形控制到最小。
必要时,应取合理措施消除焊接残余应力和变形。
4、焊缝缺陷通常分为:裂纹、孔穴、固体夹杂、未熔合、未焊透、形状缺陷和上述以外的其他缺陷。
其主要产生原因和处理方法为:(1)裂纹:通常有热裂纹和冷裂纹之分。
产生热裂纹的主要原因是母材抗裂性能差、焊接材料质量不好、焊接工艺参数选择不当、焊接内应力过大等;产生冷裂纹的主要原因是焊接结构设计不合理、焊缝布置不当、焊接工艺措施不合理,如焊前未预热、焊后冷却快等。
处理办法是在裂纹两端钻止裂孔或铲除裂纹处的焊缝金属,进行补焊。
(2)孔穴:通常分为气孔和弧坑缩孔两种。
产生气孔的主要原因是焊条药皮损坏严重、焊条和焊剂未烘烤、母材有油污或锈和氧化物、焊接电流过小、弧长过长、焊接速度太快等,其处理方法是铲去气孔处的焊缝金属,然后补焊。
产生弧坑缩孔的主要原因是焊接电流太大且焊接速度太快、熄弧太快,未反复向熄弧处补充填充金属等,其处理方法是在弧坑处补焊。
(3)固体夹杂:有夹渣和夹钨两种缺陷。
产生夹渣的主要原因是焊接材料质量不好、焊接电流太小、焊接速度太快、熔渣密度太大、阻碍熔渣上浮、多层焊时熔渣未清除干净等,其处理方法是铲除夹渣处的焊缝金属,然后焊补。
产生夹钨的主要原因是氩弧缝金属,重新焊补。
(4)未熔合、未焊透:产生的主要原因是焊接电流太小、焊接速度太快、坡口角度间隙太小、操作技术不佳等。
对于未熔合的处理方法是铲除未熔合处的焊缝金属后补焊。
对于未焊透的处理方法是对开敞性好的结构的单面未焊透,可在焊缝背面直接补焊。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
构件的拼接
一、等截面拉、压杆拼接
1、工厂拼接
①拉杆:可以采用直接对焊(图a)或拼接板加角焊缝(图b)。
直接对焊时焊缝质量必须达到一、二级质量标准,否则要采用拼接板加角焊缝。
②压杆:可以采用直接对焊(图a)或拼接板加角焊缝(图b)。
采用拼接板加角焊缝时,构件的翼缘和腹板都应有各自的拼接板和焊缝,使传力尽量直接、均匀,避免应力过分集中。
确定腹板拼接板宽度时,要留够施焊纵焊缝时操作焊条所需的空间。
2、工地拼接
①拉杆:可以用拼接板加高强螺栓(图c)或端板加高强螺栓(图d)。
②压杆:可以采用焊接(图e、f)或上、下段接触面刨平顶紧直接承压传力(图g、
h)。
用焊接时,上段构件要事先在工厂做好坡口,下段(或上、下两段)带有定
位零件(槽钢或角钢),保证施焊时位置正确。
上、下段接触面刨平顶紧直接承
压传力时应辅以少量焊缝和螺栓,使不能错动。
拉压杆的拼接宜按等强度原则
来计算,亦即拼接材料和连接件都能传递断开截面的最大内力。
二、变截面柱的拼接(略)
三、梁的拼接
梁的拼接施工条件的不同分为车间(工厂)拼接和工地拼接两种。
1、工厂拼接
1)翼缘和腹板的工厂拼接位置最好错开,以避免焊缝集中。
2)翼缘和腹板的拼接焊缝一般采用对接焊缝。
3)对于满足1、2级焊缝质量检验级别的焊缝不需要进行验算。
4) 对于满足3级焊缝质量检验级别的焊缝需要进行验算.当焊缝强度不足时可
采用斜焊缝。
当θ满足tgθ≤1.5时,可以不必验算。
2、工地拼接的构造
1)工地拼接一般应使翼缘和腹板在同一截面处断开,以便于分段运输(图a)。
为了使翼缘板在焊接过程中有一定地伸缩余地,以减少焊接残余应力,可在工
厂预留约500mm长度不焊。
2)图b将翼缘和腹板的拼接位置适当错开的方式,可以避免焊缝集中在同一截面,但运输有一定困难。
3)对于铆接梁和较重要的或受动力荷载作用的焊接大型梁,其工地拼接常采用高强螺栓连接。
主次梁的连接
一.次梁为简支梁
1、叠接
构造:在主梁上的相应位置应设置支承加劲肋,以免主梁腹板承受过大的局部
压力。
特点:构造简单,次梁安装方便,但主、次梁体系所占的净空大。
计算:一般不用计算,螺栓只是起到安装固定作用。
2、侧面连接:
构造:次梁连于主梁的侧面,可以直接连在主梁的加劲肋上(图a、b)或连于短角钢上(图c)。
特点:
图a:为用螺栓连于劲肋上,构造简单,安装方便,但须将次梁的上翼缘和下
翼缘的一侧切除;
图b:为采用工地焊缝连接,此时螺栓仅起临时固定作用,但次梁腹板端部
焊缝焊接不太方便;
图c、d:为用短角钢角钢连接主次梁的螺栓连接或安装焊缝,需要将上翼缘
局部切去。
计算:
图a、b:连接需要的焊缝或螺栓应按次梁的反力计算,考虑到并非理想铰接,
故计算时,宜将次梁反力增加20~30%。
图c:当计算螺栓①时可将短角钢视为与次梁为一体。
因此,螺栓①应承担次
梁支反力R和力矩M=Re的共同作用,而螺栓②则只承受R的作用。
反过来,也可以将短角钢视为与主梁为一体。
则螺栓①只承受反力R的作用,而螺栓②则
应承担次梁支反力R和力矩M=Re的共同作用。
图d:计算方法与图c类似。
即焊缝①和焊缝②也分别承担R或R和M=Re的共
同作用。
二、次梁为连续梁
1、叠接
与前面叠接相同,只是次梁连续通过,不在主梁上断开.当次梁需要拼接时,拼接位置可设在弯矩小处.主、次梁之间只要用螺栓或焊缝固定它们的相互位置即可。
2、侧面连接:
构造:为了保证两跨次梁在主梁处的连续性,必须在上、下翼缘处设置连接板。
图a:用高强螺栓连接,次梁的腹板连接在主梁的加劲肋上,下翼缘的连接板分
成两块,焊在主梁腹板的两侧。
图b:用工地安装焊缝连接,次梁支承在主梁的支托上,在次梁的上翼缘设有
连接板,而下翼缘的连接板则.由支托的平板代替。
计算:
支座反力由支托传至主梁,端部的负弯矩,则由上下,翼缘承受,连接、盖板和顶板传递M分解的水平力,F=M/h(h次梁高)其截面尺寸和焊缝螺栓的
连接计算均用F,为避免仰焊,连接盖板比上翼缘窄,拉板比下翼缘宽。
梁与柱的连接
处理连接节点时,要求遵循下列基本原则:
安全可靠。
应尽可能使受力分析接近于实际工作状况,采用和构件实际连接状
况相符或相接近的计算简图;连接处应有明确的传力路线和可靠的构造保证。
便于制作、运输、安装。
减少节点类型;拼接的尺寸应留有调节的余地;尽量
方便施工时的操作,如:避免工地焊缝的仰焊、设置安装支托等。
经济合理。
对于用材、制作、施工等综合考虑后确定最经济的方法,而不应单
纯理解为用钢量的节省。
梁柱连接按转动刚度的不同可分为柔性连接(铰接)、刚接、半刚接三类。
一、梁柱的柔性连接(轴压柱与梁的连接一般均用铰接)
1、梁支承于柱顶
图a:梁的支承反力直接传递给柱的翼缘。
相邻梁之间留一空隙,以便安装时有
调节余地。
传力明确,构造简单,施工方便,但当两相邻梁反力不等时即引起
柱的偏心受压,一侧梁传递的反力很大时,还可能引起柱翼缘的局部屈曲。
图b:即使两相邻梁反力不等,柱仍接近轴心受压。
突缘加劲肋底部应刨平顶紧
于柱顶板;柱腹板是主要受力部分,其厚度不能太薄;在柱顶板之下,应设置
加劲肋,加劲肋要有足够的长度,以满足焊缝长度的要求和应力均匀扩散的要求;
2、梁支承于柱侧
图a:梁的反力较小时,梁可不设支承加劲肋,直接搁置在柱的牛腿上,用普通螺栓相连;构造比较简单,施工方便。
图b:梁反力较大时采用。
梁的反力由端加劲肋传给支托;支托采用厚钢板(其厚度应大于加劲肋的厚度)或加劲后的角钢,与柱侧用焊缝相连。
图c:两邻梁反力相差较大时采用。
梁的反力通过柱的腹板传递,使柱仍接近轴心受力状态。
二、梁柱的刚性连接(框架梁、柱一般采用刚性连接)
需满足以下几个要求:
保证将梁段的弯矩和剪力可靠地传到柱子;保证节点刚性,使连接不至产生明显的相对转角;构造简单,便于施工;
图a、b:通过焊缝将弯矩和剪力直接传给柱子.可以认为梁端弯矩全部由翼缘连接焊缝传给柱子,而剪力由腹板焊缝传给柱子。
为使翼缘连接焊缝能在平焊位置施焊,要在柱侧焊上衬板,同时在梁腹板端部预先留出槽口,上槽口是让出衬板位置,下槽口是为了满足施焊要求。
图c、d :通过高强螺栓和焊缝将梁端弯矩和剪力传给柱子。
由于要通过连接板和角钢才能将力传给柱子,故属于间接传力的构造。
梁在和柱连接的范围内可以设置横向加劲肋如图b、d所示,也可不设如图a、c所示,后一情况需对柱腹板和翼缘的强度和稳定作出验算。
柱脚设计
柱脚的作用:把柱下端固定并将其内力可靠地传给基础.
柱脚的分类:按其与基础的连接方式不同,可分为铰接和刚接两种。
一、轴心受压柱的柱脚
1、构造
如图所示,除底板外根据具体需要,可配置靴梁、隔板和肋板。
压弯构件的柱脚
1、类型
1)分离式柱脚
分离式柱脚相当于独立的轴心受压柱脚的组合,其计算方法和轴压柱脚相同。
2)整体式柱脚
整体式柱脚的受力状况与下列诸多因素相关,难以精确计算:
①柱脚和基础顶面是否平整和紧密接触
②锚栓预拉力的大小
③柱脚、锚栓和基础顶面受力后的变形。