高中物理必修一 力的合成与分解 (提高)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
力的合成与分解
【学习目标】
1. 知道合力与分力的概念
2. 知道平行四边形定则是解决矢量问题的方法,学会作图,并能把握几种特殊情形
3. 知道共点力,知道平行四边形定则只适用于共点力
4. 理解力的分解和分力的概念,知道力的分解是力的合成的逆运算
5. 会用作图法求分力,会用直角三角形的知识计算分力
6. 能区别矢量和标量,知道三角形定则,了解三角形定则与平行四边形定则的实质是一样的
【要点梳理】
要点一、力的合成
要点诠释:
1.合力与分力
①定义:一个力产生的效果跟几个力的共同作用产生的效果相同,则这个力就叫那几个力的合力,那几个力叫做分力。
②合力与分力的关系。
a.合力与分力是一种等效替代的关系,即分力与合力虽然不同时作用在物体上,但可以相互替代,能够相互替代的条件是分力和合力的作用效果相同,但不能同时考虑分力的作用与合力的作用。
b.两个力的作用效果可以用一个力替代,进一步想,满足一定条件的多个力的作用效果也可由一个力来替代。
2.力的合成
①定义:求几个力的合力的过程叫做力的合成。
②说明:力的合成的实质是找一个力去替代作用在物体上的几个已知的力,而不改变其作用效果的方法。
3.平行四边形定则
①内容:两个力合成时,以表示这两个力的线段为邻边作平行四边形,这两个邻边之间的对角线就代表合力的大小和方向,这个法则叫做平行四边形定则。
说明:平行四边形定则是矢量运算的基本法则。
②应用平行四边形定则求合力的三点注意
a.力的标度要适当;
b.虚线、实线要分清,表示分力和合力的两条邻边和对角线画实线,并加上箭头,平行四边形的另两条边画虚线;
c.求合力时既要求出合力的大小,还要求出合力的方向,不要忘了用量角器量出合力与某一分力间的夹角。要点二、共点力
要点诠释:
1.共点力:一个物体受到两个或更多个力的作用,若它们的作用线交于一点或作用线的延长线交于一点,这一组力就是共点力。
2.多个力合成的方法:
如果有两个以上共点力作用在物体上,我们也可以应用平行四边形定则求出它们的合力:先求出任意两个力的合力,再求出这个合力跟第三个力的合力,直到把所有的力都合成进去,最后得到的结果就是这些力的合力。
说明:
①平行四边形定则只适用于共点力的合成,对非共点力的合成不适用。
②今后我们所研究的问题,凡是涉及力的运算的题目,都是关于共点力方向的问题。
3.合力与分力的大小关系:
由平行四边形可知:F1、F2夹角变化时,合力F的大小和方向也发生变化。
(1)合力F的范围:|F1-F2|≤F≤F1+F2。
①两分力同向时,合力F最大,F=F1+F2。
②两分力反向时,合力F最小,F=|F1-F2|。
③两分力有一夹角θ时,如图甲所示,在平行四边形OABC中,将F2平移到F1末端,则F1、F2、F围成一个闭合三角形。如图乙所示,
由三角形知识可知;|F1-F2|<F<F1+F2。
综合以上三种情况可知:
①|F1-F2|≤F≤F1+F2。
②两分力夹角越大,合力就越小。
③合力可能大于某一分力,也可能小于任一分力.
要点三、力的分解
要点诠释:
1.分力:几个力,如果它们产生的效果跟原来一个力产生的效果相同,这几个力就叫做原来那个力的分力.注意:几个分力与原来那个力是等效的,它们可以相互替代,并非同时存在.
2.力的分解:求一个已知力的分力叫力的分解.
3.力的分解定则:平行四边形定则,力的分解是力的合成的逆运算.
两个力的合力唯一确定,一个力的两个分力不是唯一的,如果没有其他限制,对于一条对角线,可以作出无数个不同的平行四边形(如图所示).即同一个力F可以分解成无数对大小、方向不同的分力.
要点四、实际分解力的方法
要点诠释:
1.按效果进行分解
在实际分解中,常将一个力沿着该力的两个效果方向进行分解,效果分解法的方法步骤:
①画出已知力的示意图;
②根据此力产生的两个效果确定出分力的方向;
③以该力为对角线作出两个分力方向的平行四边形,即作出两个分力.
2.利用平行四边形定则求分力的方法
①作图法:利用平行四边形作出其分力的图示,按给定的标度求出两分力的大小,用量角器量出各分力与已知力间的夹角即分力的方向.
②计算法:利用力的平行四边形定则将已知力按几何方法求解,作出各力的示意图,再根据解几何知识求出各分力的大小,确定各分力的方向.
由上可知,解决力的分解问题的关键是根据力的作用效果,画出力的平行四边形,接着就转化为一个根据已知边角关系求解的几何问题.因此其解题的基本思路可表示为
3.
要点五、力的分解中定解条件
要点诠释:
将一个力F分解为两个分力,根据力的平行四边形定则,是以这个力F为平行四边形的一条对角线作一个平行四边形,在无附加条件限制时可作无数个不同的平行四边形,这说明两个力的合力可唯一确定,一个力的分力不是唯一的,要确定一个力的两个分力,一定要有定解条件.
(1)已知合力(大小、方向)和两个分力的方向,则两个分力有唯一确定的值.如图甲所示,要求把已知力F分解成沿OA、OB方向的两个分力,可从F的矢(箭头)端作OA、OB的平行线,画出力的平行四边形得两个分力F1、F2.
(2)已知合力(大小、方向)和一个分力(大小、方向),则另一个分力有唯一确定的值.如图乙所示,已知F(合力),分力F1,则连接F和F1的矢端,即可作出力的平行四边形得另一个分力F2.
(3)已知合力(大小、方向)和两分力大小,则两分力有两组解,如图所示,分别以O点和F的矢端为圆心,以F1、F2大小为半径作圆,两圆交于两点,作出三角形如图.
(4)已知合力(大小、方向)和一个分力的方向,则另一分力无确定值,且当两分力垂直时有最小值.如图所示,假设F1与F的夹角为θ,分析方法如下:
以F的尾端为圆心,以F2的大小为半径画圆,看圆与F1的交点即可确定解释的情形.
①当F2<Fsinθ时,圆(如圆①)与F1无交点,无解;
②当F2=Fsinθ时,圆(如圆②)与F1有一交点,故有唯—解,且F2最小;
③当Fsinθ<F2<F时,圆(如圆③)与F1有两交点,有两解;
④当F2>F时,圆(如圆④)与F1有一交点,有唯—解.
要点六、实验验证力的平行四边形定则
要点诠释:
1.实验目的:验证力的平行四边形定则
2.实验器材:方木板、白纸、弹簧测力计(两个)、橡皮筋、细绳套(两个)、铅笔、三角板、刻度尺、图钉
3.实验原理:结点受三个共点力作用处于平衡状态,则F1、F2之合力必与F3平衡,改用一个拉力F′使结点仍到O,则F必与F1、F2的合力等效,与F3平衡,以F1、F2为邻边作平行四边形求出合力F,比较F′与F的大小和方向,以验证力合成时的平行四边形定则。
4.实验步骤:
(1)用图钉把白纸钉在方木板上。
(2)把方木板平放在桌面上,用图钉把橡皮条的一端固定在A
(3)用两只弹簧秤分别钩住细绳套,互成角度的拉橡皮条,使橡皮条伸长到某一位置O(如图所示)用铅笔描下O点的位置和两条细绳的方向,并记录弹簧秤的读数。注意在使用弹簧秤的时候,要使细绳与木板平面平行。