matlab层次分析法的组合一致性检验

合集下载

层次分析法判断矩阵求权值以及一致性检验程序

层次分析法判断矩阵求权值以及一致性检验程序

function [w,CR]=mycom(A,m,RI)[x,lumda]=eig(A);r=abs(sum(lumda));n=find(r==max(r));max_lumda_A=lumda(n,n);max_x_A=x(:,n);w=A/sum(A);CR=(max_lumda_A-m)/(m-1)/RI;end本matlab程序用于层次分析法中计算判断矩阵给出的权值已经进行一致性检验。

其中A为判断矩阵,不同的标度和评定A将不同。

m为A的维数RI为判断矩阵的平均随机一致性指标:根据m的不同值不同。

当CR<0.1时符合一致性检验,判断矩阵构造合理。

下面是层次分析法的简介,以及判断矩阵构造方法。

一.层次分析法的含义层次分析法(The analytic hierarchy process)简称AHP,在20世纪70年代中期由美国运筹学家托马斯·塞蒂(T.L.Saaty)正式提出。

它是一种定性和定量相结合的、系统化、层次化的分析方法。

由于它在处理复杂的决策问题上的实用性和有效性,很快在世界范围得到重视。

它的应用已遍及经济计划和管理、能源政策和分配、行为科学、军事指挥、运输、农业、教育、人才、医疗和环境等领域。

二.层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一样的。

(1)层次分析法的原理层次分析法是将决策问题按总目标、各层子目标、评价准则直至具体的备投方案的顺序分解为不同的层次结构,然后得用求解判断矩阵特征向量的办法,求得每一层次的各元素对上一层次某元素的优先权重,最后再加权和的方法递阶归并各备择方案对总目标的最终权重,此最终权重最大者即为最优方案。

这里所谓“优先权重”是一种相对的量度,它表明各备择方案在某一特点的评价准则或子目标,标下优越程度的相对量度,以及各子目标对上一层目标而言重要程度的相对量度。

层次分析法比较适合于具有分层交错评价指标的目标系统,而且目标值又难于定量描述的决策问题。

层次分析

层次分析

干部选拔模型摘要如今干部选拔问题已经引起了政府和人民的热切关注,怎样才能选择好的干部已经成为当今社会的焦点问题。

每一位干部都应具有干部应有的良好素质,如:健康状况、业务知识、写作水平、口才、政策水平和工作作风等。

许多单位的选拔标准就用这些属性来衡量。

使用层次分析法对甲、乙、丙三人进行综合评价,并选出最合适的人。

使用MATLAB对程序进行运行以便观察结果。

关键字:层次分析法、MATLAB。

一、问题重述某单位希望从三名同志中选择一名作为干部,选拔的标准用6个属性来衡量:健康状况、业务知识、写作水平、口才、政策水平和工作作风等。

组织部门根据选拔的标准对甲、乙、丙每人进行打分,最终从3人中选择最合适的人。

通过建立数学模型运用层次分析法对闻听进行分析。

二、模型假设1、假设选拔甲、乙、丙时,不考虑其他随机因素,对三人按照选拔标准进行客观的打分。

2、假设三人在选拔时都正常发挥,不考虑其他额外因素,且都不受外界的影响,进行公平的竞争。

3、假设组织部门严格按照部门的流程进行选拔,也不考虑外界因素和影响。

三、符号说明p: 选拔干部的标准的第k个属性;kB: 判断矩阵;: 判断矩阵的特征根;W: 判断矩阵的权向量;CI: 一致性指标;RI:随机一致性指标;CR:一致性比率(用于确定判断矩阵的不一致性的容许范围);四、问题分析对于干部选拔的问题,就是综合分析的最优化问题,也是一个多目标的决策问题,使用层次分析法对甲、乙、丙按照选拔标准进行综合分析,并使用MATLAB 对分析的程序进行运行,观察和分析结果,最终有组织部门根据分析结果从三人中选择最合适的人。

五、建立模型使用层次分析法,先建立层次结构模型,模型分为3层:第一层,为解决问题目的的目标层;第二层,为实现总目标而采取的各种措施和方案的准则层;第三层,用于解决问题的各种措施和方案。

层次结构模型如下用123456,,,,,p p p p p p 分别表示:健康状况、业务水平、写作水平、口才、政策水平、工作作风。

matlab计算AHP层次分析法

matlab计算AHP层次分析法

matlab计算AHP层次分析法第一篇:matlab计算AHP层次分析法用matlab解决层次分析法AHP1、求矩阵最大特征值及特征向量用matlab求:输入:A=[1 1/2 2 1/4;2 1 1 1/3;1/2 1 1 1/3;4 3 3 1][x,y]=eig(A)得出:特征向量x=[0.2688 0.3334 0.2373 0.8720]最大特征值λmax=4.19642、一致性检验CI=(λmax-n)/(n-1)=(4.1964-4)/(4-1)=0.0655 CR=CI/RI=0.0655/0.9=0.0727(注:维数为4时,RI=0.9)CR=0.0727<0.1,矩阵一致性通过检验3、对最大特征值进行归一化处理,即可得到各指标权重(归一化:分项/分项之和)W=[0.157 0.195 0.139 0.510]第二篇:AHP层次分析法层次分析法层次分析法(The analytic hierarchy process,简称AHP),也称层级分析法什么是层次分析法层次分析法(The analytic hierarchy process)简称AHP,在20世纪70年代中期由美国运筹学家托马斯·塞蒂(T.L.Saaty)正式提出。

它是一种定性和定量相结合的、系统化、层次化的分析方法。

由于它在处理复杂的决策问题上的实用性和有效性,很快在世界范围得到重视。

它的应用已遍及经济计划和管理、能源政策和分配、行为科学、军事指挥、运输、农业、教育、人才、医疗和环境等领域。

层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一样的。

不妨用假期旅游为例:假如有3个旅游胜地A、B、C供你选择,你会根据诸如景色、费用和居住、饮食、旅途条件等一些准则去反复比较这3个候选地点.首先,你会确定这些准则在你的心目中各占多大比重,如果你经济宽绰、醉心旅游,自然分别看重景色条件,而平素俭朴或手头拮据的人则会优先考虑费用,中老年旅游者还会对居住、饮食等条件寄以较大关注。

层次分析法及matlab程序

层次分析法及matlab程序

层次分析法建模层次分析法(AHP-Analytic Hierachy process)---- 多目标决策方法70 年代由美国运筹学家T·L·Satty提出的,是一种定性与定量分析相结合的多目标决策分析方法论.吸收利用行为科学的特点,是将决策者的经验判断给予量化,对目标(因素)结构复杂而且缺乏必要的数据情况下,採用此方法较为实用,是一种系统科学中,常用的一种系统分析方法,因而成为系统分析的数学工具之一。

传统的常用的研究自然科学和社会科学的方法有:机理分析方法:利用经典的数学工具分析观察的因果关系;统计分析方法:利用大量观测数据寻求统计规律,用随机数学方法描述(自然现象、社会现象)现象的规律。

基本内容:(1)多目标决策问题举例AHP建模方法(2)AHP建模方法基本步骤(3)AHP建模方法基本算法(3)AHP建模方法理论算法应用的若干问题。

参考书:1、姜启源,数学模型(第二版,第9章;第三版,第8章),高等教育出版社2、程理民等, 运筹学模型与方法教程,(第10章),清华大学出版社3、《运筹学》编写组,运筹学(修订版),第11章,第7节,清华大学出版社一、问题举例:A.大学毕业生就业选择问题获得大学毕业学位的毕业生,“双向选择”时,用人单位与毕业生都有各自的选择标准和要求。

就毕业生来说选择单位的标准和要求是多方面的,例如:①能发挥自己的才干为国家作出较好贡献(即工作岗位适合发挥专长);②工作收入较好(待遇好);③生活环境好(大城市、气候等工作条件等);④单位名声好(声誉—Reputation);⑤工作环境好(人际关系和谐等)⑥发展晋升(promote,promotion)机会多(如新单位或单位发展有后劲)等。

问题:现在有多个用人单位可供他选择,因此,他面临多种选择和决策,问题是他将如何作出决策和选择?——或者说他将用什么方法将可供选择的工作单位排序?工作选择贡献收入发展声誉工作环境生活环境B.假期旅游地点选择暑假有3个旅游胜地可供选择.例如:1P :苏州杭州,2P 北戴河,3P 桂林,到底到哪个地方去旅游最好?要作出决策和选择。

(完整版)层次分析法及matlab程序

(完整版)层次分析法及matlab程序

层次分析法建模层次分析法(AHP-Analytic Hierachy process)---- 多目标决策方法70 年代由美国运筹学家T·L·Satty提出的,是一种定性与定量分析相结合的多目标决策分析方法论。

吸收利用行为科学的特点,是将决策者的经验判断给予量化,对目标(因素)结构复杂而且缺乏必要的数据情况下,採用此方法较为实用,是一种系统科学中,常用的一种系统分析方法,因而成为系统分析的数学工具之一。

传统的常用的研究自然科学和社会科学的方法有:机理分析方法:利用经典的数学工具分析观察的因果关系;统计分析方法:利用大量观测数据寻求统计规律,用随机数学方法描述(自然现象、社会现象)现象的规律。

基本内容:(1)多目标决策问题举例AHP建模方法(2)AHP建模方法基本步骤(3)AHP建模方法基本算法(3)AHP建模方法理论算法应用的若干问题。

参考书:1、姜启源,数学模型(第二版,第9章;第三版,第8章),高等教育出版社2、程理民等,运筹学模型与方法教程,(第10章),清华大学出版社3、《运筹学》编写组,运筹学(修订版),第11章,第7节,清华大学出版社一、问题举例:A.大学毕业生就业选择问题获得大学毕业学位的毕业生,“双向选择”时,用人单位与毕业生都有各自的选择标准和要求。

就毕业生来说选择单位的标准和要求是多方面的,例如:①能发挥自己的才干为国家作出较好贡献(即工作岗位适合发挥专长);②工作收入较好(待遇好);③生活环境好(大城市、气候等工作条件等);④单位名声好(声誉-Reputation);⑤工作环境好(人际关系和谐等)⑥发展晋升(promote, promotion)机会多(如新单位或单位发展有后劲)等。

问题:现在有多个用人单位可供他选择,因此,他面临多种选择和决策,问题是他将如何作出决策和选择?——或者说他将用什么方法将可供选择的工作单位排序?工作选择贡献收入发展声誉工作环境生活环境B.假期旅游地点选择暑假有3个旅游胜地可供选择。

Matlab求解层次分析法程序代码【求解步骤+代码】

Matlab求解层次分析法程序代码【求解步骤+代码】

层次分析法1)建立层次结构模型:(2)构造判断矩阵判断矩阵()ij A a =应为正互反矩阵,而且ij a 的判断如下(1~9尺度法):(3)单层排序及一致性检验1、单层排序求解判断矩阵A 的最大特征值max λ,再由最大特征值求出对应的特征向量ω()max A ωλω=,并将ω标准化,即为同一层相对于上一层某一因素的权重,根据此权重的大小,便可确定该层因素的排序。

2、一致性检验取一致性指标max 1nCI n λ-=-,(n 为A 的阶数)令CR RI=,若0.1CR <,则认为A 具有一致性。

否则,需要对A 进行调整,直到具有满意的一致性为止。

(4)层次总排序及一致性检验假定准则层12,,,n C C C 排序完成,其权重分别为12,,,n a a a ,方案层P 包含m 个方案:12,,,m P P P 。

其相对于上一层的()1,2,,j C j n =对方案层P 中的m 个方案进行单层排序,其排序权重记为12,,,j j mj b b b ()1,2,,j n =,则方案层P 中第i 个方案Pi 的总排序权重为1nj ijj a b=∑,见下表:从而确定层的排序。

例:纯文本文件txt3.txt 中的数据格式如下:1 1 1 4 1 1/2 1 1 2 4 1 1/2 1 1/2 1 53 1/2 1/4 1/4 1/5 1 1/3 1/3 1 1 1/3 3 1 12 2 23 3 11 1/4 1/24 1 32 1/3 11 1/4 1/54 1 1/25 2 11 3 1/31/3 1 1/73 7 11 1/3 53 1 71/5 1/7 11 1 71 1 71/7 1/7 11 7 91/7 1 11/9 1 1matlab程序:>> fid=fopen('txt3.txt','r');n1=6;n2=3;a=[];for i=1:n1tmp=str2num(fgetl(fid));a=[a;tmp]; %读准则层判断矩阵endfor i=1:n1str1=char(['b',int2str(i),'=[];']);str2=char(['b',int2str(i),'=[b',int2str(i),';tmp];']); eval(str1);for j=1:n2tmp=str2num(fgetl(fid));eval(str2); %读方案层的判断矩阵endendri=[0,0,0.58,0.90,1.12,1.24,1.32,1.41,1.45]; %一致性指标[x,y]=eig(a);lamda=max(diag(y));num=find(diag(y)==lamda);w0=x(:,num)/sum(x(:,num));cr0=(lamda-n1)/(n1-1)/ri(n1)for i=1:n1[x,y]=eig(eval(char(['b',int2str(i)])));lamda=max(diag(y));num=find(diag(y)==lamda);w1(:,i)=x(:,num)/sum(x(:,num));cr1(i)=(lamda-n2)/(n2-1)/ri(n2);endcr1, ts=w1*w0, cr=cr1*w0层次分析法层次分析法层次分析法层次分析法层次分析法层次分析法层次分析法层次分析法层次分析法层次分析法层次分析法层次分析法层次分析法层次分析法层次分析法层次分析法层次分析法层次分析法层次分析法实例与步骤结合一个具体例子,说明层次分析法的基本步骤和要点。

层次分析法一致性检验讲解

层次分析法一致性检验讲解

层次分析法(Analytic Hierarchy Process,简称AHP)是对一些较为复杂、较为模糊的问题作出决策的简易方法,它特别适用于那些难于完全定量分析的问题。

它是美国运筹学家T. L. Saaty 教授于70 年代初期提出的一种简便、灵活而又实用的多准则决策方法。

§1 层次分析法的基本原理与步骤人们在进行社会的、经济的以及科学管理领域问题的系统分析中,面临的常常是一个由相互关联、相互制约的众多因素构成的复杂而往往缺少定量数据的系统。

层次分析法为这类问题的决策和排序提供了一种新的、简洁而实用的建模方法。

运用层次分析法建模,大体上可按下面四个步骤进行:(i)建立递阶层次结构模型;(ii)构造出各层次中的所有判断矩阵;(iii)层次单排序及一致性检验;(iv)层次总排序及一致性检验。

下面分别说明这四个步骤的实现过程。

1.1 递阶层次结构的建立与特点应用AHP 分析决策问题时,首先要把问题条理化、层次化,构造出一个有层次的结构模型。

在这个模型下,复杂问题被分解为元素的组成部分。

这些元素又按其属性及关系形成若干层次。

上一层次的元素作为准则对下一层次有关元素起支配作用。

这些层次可以分为三类:(i)最高层:这一层次中只有一个元素,一般它是分析问题的预定目标或理想结果,因此也称为目标层。

(ii)中间层:这一层次中包含了为实现目标所涉及的中间环节,它可以由若干个层次组成,包括所需考虑的准则、子准则,因此也称为准则层。

(iii)最底层:这一层次包括了为实现目标可供选择的各种措施、决策方案等,因此也称为措施层或方案层。

递阶层次结构中的层次数与问题的复杂程度及需要分析的详尽程度有关,一般地层次数不受限制。

每一层次中各元素所支配的元素一般不要超过9 个。

这是因为支配的元素过多会给两两比较判断带来困难。

下面结合一个实例来说明递阶层次结构的建立。

例1 假期旅游有、、3 个旅游胜地供你选择,试确定一个最佳地点。

MATLAB层次分析法

MATLAB层次分析法

C11
C1
0
桥梁 D1
隧道 D2
渡船 D3
(1)过河效益层次结构
例3 横渡江 河、海峡方 案的抉择
经济代价 B1
过河的代价 A
社会代价 B2
环境代价 B3
投 操 冲冲 交 居 汽 对 对
入 作 击击 通 民 车 水 生
资 维 渡生 拥 搬 排 的 态
金 护 船活 挤 迁 放 污 的
C1 C2 业 方 C5 C6 物 染 破






对外 贸易
位 置
供选择的岗位
例3 横渡江 河、海峡方 案的抉择
经济效益 B1
过河的效益 A
社会效益 B2
节 收岸 当 建安 交 自
省 入间 地 筑全 往 豪
时 C2 商 商 就 可 沟 感

业 业 业 靠 通 C8
C1
C3 C4 C5 C6 C7
环境效益 B3
舒进 美
适出 化
C9
方 便
Ci : C j aij
A
(aij )nn , aij
0,
a ji
1 aij
选 择
1 1/ 2 4 3 3
2
1
7
5
5
A~成对比较阵
旅 A 1/ 4 1/ 7
游 地
1/ 3
1/ 5
1/ 3 1/ 5
1 2
1/ 2 1
1/ 3
1
A是正互反阵
3 1 1
要由A确定C1,…, Cn对O的权向量
2
n
min
wi ( i1,,n ) i1
n j1 ln aij
ln wi wj

matlab组合数条件筛选-概述说明以及解释

matlab组合数条件筛选-概述说明以及解释

matlab组合数条件筛选-概述说明以及解释1.引言1.1 概述概述:在许多实际问题中,需要对各种组合进行筛选和条件搜索。

在Matlab 中,可以通过组合生成算法和条件筛选算法来实现这一目的。

本文将介绍Matlab中的组合数生成方法以及条件筛选算法,并展示如何在Matlab 中实现对组合数的条件筛选。

通过本文的学习,读者将能够掌握如何在Matlab中进行高效的组合数筛选工作,从而为实际问题的解决提供有力的支持。

1.2 文章结构文章结构部分的内容应包括对本文主要内容的概括和组织,以便读者能够清晰地了解整篇文章的逻辑结构和内容安排。

在这里可以写上以下内容:本文主要包括引言、正文和结论三个部分。

在引言部分,将对组合数条件筛选的背景和意义进行介绍,引出本文的研究目的和意义。

在正文部分,将分三个小节介绍Matlab中的组合数生成方法、条件筛选算法的原理和实现方法。

在结论部分,对整篇文章进行总结和归纳,展望该方法在实际应用中的可能性,并给出本文的最终结论。

整篇文章结构严谨,逻辑清晰,内容完整,为读者提供了全面的研究与参考。

1.3 目的本文旨在介绍如何在Matlab中生成组合数,并通过条件筛选算法来筛选出符合特定条件的组合。

通过学习本文,读者将能够掌握Matlab中组合数生成的方法,并了解如何使用条件筛选算法来过滤符合要求的组合。

同时,本文也将展示如何将这些技术应用到实际问题中,以解决具体的应用场景。

通过本文的学习,读者将提升对Matlab编程的理解和应用能力,为其在科学研究和工程实践中的工作提供有力的支持。

2.正文2.1 Matlab中的组合数生成在Matlab中,我们可以使用combntns函数来生成组合数。

该函数的语法如下:matlabC = combntns(v,k)其中,v是包含待选取元素的向量,k是选择元素的个数。

该函数返回一个大小为N*(k+1)的矩阵C,其中每一行都是一个组合。

例如,如果我们有向量v=[1 2 3 4],我们想要选择2个元素,那么我们可以使用以下代码生成所有可能的组合:matlabv = [1 2 3 4];k = 2;C = combntns(v,k);生成的矩阵C将包含如下组合:1 21 31 42 32 43 4通过这种方式,我们可以方便地生成所有可能的组合数,为接下来的条件筛选提供了基础。

层次分析法判断矩阵

层次分析法判断矩阵

层次分析法判断矩阵层次分析法判断矩阵程序先确定判断矩阵;然后用以下程序就好了:%层次分析法的matlab程序%%%%diertimoxingyiclc,cleardisp(输入判断矩阵);% 在屏幕显示这句话A=input(A=);% 从屏幕接收判断矩阵[n,n]=size(A);% 计算A的维度,这里是方阵,这么写不太好x=ones(n,100);% x为n行100列全1的矩阵y=ones(n,100);% y同xm=zeros(1,100);% m为1行100列全0的向量m(1)=max(x(:,1));% x第一列中最大的值赋给m的第一个分量y(:,1)=x(:,1);% x的第一列赋予y 的第一列x(:,2)=A*y(:,1);% x的第二列为矩阵A*y(:,1)m(2)=max(x(:,2));% x 第二列中最大的值赋给m的第二个分量y(:,2)=x(:,2)/m(2);% x的第二列除以m(2)后赋给y的第二列p=0.0001;i=2;k=abs(m(2)-m(1));% 初始化p,i,k为m(2)-m(1)的绝对值while k>p% 当k>p是执行循环体i=i+1;% i 自加1x(:,i)=A*y(:,i-1);% x的第i列等于A*y的第i-1列m(i)=max(x(:,i));% m的第i个分量等于x第i列中最大的值y(:,i)=x(:,i)/m(i);% y的第i列等于x的第i列除以m的第i个分量k=abs(m(i)-m(i-1));% k等于m(i)-m(i-1)的绝对值enda=sum(y(:,i));% y的第i列的和赋予aw=y(:,i)/a;% y的第i 列除以at=m(i);% m的第i个分量赋给tdisp(权向量:);disp(w);% 显示权向量wdisp(最大特征值:);disp(t);% 显示最大特征值t %以下是一致性检验CI=(t-n)/(n-1);% t-维度再除以维度-1的值赋给CIRI=[0 0 0.52 0.89 1.12 1.26 1.36 1.41 1.46 1.49 1.52 1.54 1.56 1.58 1.59];% 计算的标准CR=CI/RI(n);% 计算一致性if CR摘要在定性问题的决策中,AHP是一种优秀的方法,其基础是对评价对象的两两比较,并用比较结果构造判断矩阵,而这些都依赖于决策者选用的偏好关系。

Matlab层次分析法权重计算程序

Matlab层次分析法权重计算程序

m=zeros(1,100); m(1)=max(x(:,1));
计算结果如下:
y(:,1)=x(:,1);
x(:,2)=A*y(:,1);
m(2)=max(x(:,2));
y(:,2)=x(:,2)/m(2);
p=0.0001;i=2;k=abs(m(2)-m(1));
while k>p
i=i+1;
该文档来源于
该文档来源于
该文档来源于
2.AHP方法案例一
2.AHP方法案例二
烤烟种植适宜性评价
彭光雄等,地理研究2010年第5期 图见于: 本AHP案例源于:中国科学院博士后研究报告 2010 彭光雄: 基于多源信息的红河烟草遥感监测与空间布局优化分析
3.AHP的Matlab求解程序
disp(t);
%以下是一致性检验
CI=(t-n)/(n-1);RI=[0 0 0.52 0.89 1.12 1.26 1.36 1.41 1.46 1.49 1.52 1.54 1.56
1.58 1.59];
disp('CI=');disp(CI);
disp('RI=');disp(RI(n));
杜栋等著《现代综合评价方法与案例精选》
该书附带的光盘软件,主要界面如下
软件案例数据见
AHP层次分析法评价计算案例.doc GRAY灰色综合评价计算案例.doc
AHP层次分析法评价计算案例.doc GRAY灰色综合评价计算案例.doc
软件案例数据见
谢谢!
end
烤烟种植适宜性评价结果及烟田分布
4.AHP软件和参考书
推荐参考书目:
1.杜栋,庞庆华,吴炎.现代综合评价方法与案例精选[M].北京,清华大学出版社,2008. 2.荩垆著.实用模糊数学[M].北京,科学技术文献出版社,1989.

层次分析法在城市购房决策中的应用

层次分析法在城市购房决策中的应用

层次分析法的应用及MATLAB实现作者:沈小欣指导老师:陈俊前言随着经济的发展,收入水平的提高,消费者对商品房的要求也在增加。

目前多数消费者购房时考虑的因素有居住环境、孩子的教育环境、地理位置和房价等等。

由于涉及金额较大,购房需慎之又慎,以免花钱买后悔。

针对消费者的需求,房地产开发商也在不断地推出新的楼盘。

这些楼盘往往各有各的特点,这使得消费者经常因选房而筋疲力尽,生怕捡了芝麻丢了西瓜。

究其原因,主要是考虑的因素太多,这就使得购房者难以做出孰优孰劣的判断。

但是,所有的购房者都想买到物美价廉的房子,这是总目标,如果我们能够对备选房源“物美价廉”的程度进行量化,就能通过简单的数值比较做出决策,已达到最大的满意度。

在该文中我们运用运筹学中的层次分析法就能轻松解决这一决策难题。

1、层次分析法概述1.1 简介[1]层次分析法(Analytic Hierarchy Process简称AHP)是美国运筹学家匹茨堡大学教授萨蒂于20世纪70年代在为美国国防部研究"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题时,应用网络系统理论和多目标综合评价方法,提出的一种实用的定性和定量相结合的多准则决策方法。

它是把复杂的决策按照目标层、准则层、子准则层、方案层的顺序表示为一个有序的递阶层次结构,通过人们的比较判断,计算各种决策方案在不同准则及总目标之下的相对重要性权重,从而把难以量化的各种方案定量化,以得到各种方案的相对优劣的排序值,并据此做出最后的决策。

1.2 层次分析法的基本步骤[2] [3]1.2.1建立层次结构模型根据问题的性质和要求,提出一个总目标。

将目标逐层分解为几个层次,一般分为三层,最上面为目标层,最下面为方案层,中间是准则层或指标层。

1.2.2构造成对比较矩阵设某层有 n 个因素,{}12,,,n X x x x =,要比较它们对上一层某一准则(或目标)的影响程度,确定在该层中相对于某一准则所占的比重。

层次分析法一致性检验

层次分析法一致性检验

层次分析法一致性检验在层次分析法中,我们通常需要判定所设计的判断矩阵是否一致性,以保证计算结果的准确性。

下面,我们将介绍如何进行层次分析法的一致性检验。

层次分析法简介层次分析法,又称AHP(Analytic Hierarchy Process),是一种根据专家主观判断构建的层次结构模型,用于定量化分析多个方案或选择问题的方法。

通过对不同因素在目标达成中的相对重要程度进行比较,得出最终的方案或选择。

该方法在科研、经济、管理等领域得到广泛应用。

判断矩阵在层次分析法中,需要构建判断矩阵,用于表示两两因素之间的重要程度。

判断矩阵通常是一个n×n的矩阵,其中n表示因素的个数,矩阵中的每个元素用aij表示第i个因素相对于第j个因素的重要程度,其取值范围为1到9。

其中,1表示两者同等重要,9表示第i个因素是第j个因素的9倍重要。

对于判断矩阵,需要满足以下两个条件:1.对角线上的元素均为1,即每个因素相对于其自身的重要程度为1;2.对于任意i和j,aij=1/aji。

一致性检验在实际应用中,我们需要对所构建的判断矩阵进行一致性检验,以保证计算结果的准确性。

一致性检验的原理一致性检验的原理是:当判断矩阵中的一个元素发生变化,会引起整个判断矩阵的一致性变化。

一致性检验的目的是通过计算判断矩阵的一致性指标,检查判断矩阵是否满足一致性。

如果判断矩阵不满足一致性,我们需要对判断矩阵进行调整,直到满足一致性要求。

一致性指标一致性指标是用来判断判断矩阵是否满足一致性的数学指标。

常用的一致性指标为CR值(Consistency Ratio),其计算如下:CR = CI/RI其中,CI为判断矩阵的一致性指标,RI为与判断矩阵规模相同的随机一致性指标,其值可以从一致性指标对照表中查找。

当CR小于等于0.1时,可认为判断矩阵满足一致性。

当CR大于0.1时,需要对判断矩阵进行调整,使其满足一致性。

一致性检验步骤以下是进行一致性检验的详细步骤:1.计算判断矩阵的特征向量。

层次分析法——精选推荐

层次分析法——精选推荐

层次分析法title: 层次分析法date: 2020-02-25 19:14:41categories: 数学建模tags: [MATLAB, 评价模型]mathjax: true定义层次分析法(The Analytic Hierarchy Process即AHP)是由美国运筹学家、 匹兹堡⼤学教授T . L. Saaty于20世纪70年代创⽴的⼀种系统分析与决策的综合 评价⽅法,是在充分研究了⼈类思维过程的基础上提出来的,它较合理地解 决了定性问题定量化的处理过程。

AHP的主要特点是通过建⽴递阶层次结构,把⼈类的判断转化到若⼲因 素两两之间重要度的⽐较上,从⽽把难于量化的定性判断转化为可操作的重 要度的⽐较上⾯。

在许多情况下,决策者可以直接使⽤AHP进⾏决策,极⼤ 地提⾼了决策的有效性、可靠性和可⾏性,但其本质是⼀种思维⽅式,它把 复杂问题分解成多个组成因素,⼜将这些因素按⽀配关系分别形成递阶层次 结构,通过两两⽐较的⽅法确定决策⽅案相对重要度的总排序。

整个过程体 现了⼈类决策思维的基本特征,即分解、判断、综合,克服了其他⽅法回避 决策者主观判断的缺点。

步骤第⼀步递阶层次结构分析系统中各因素之间的关系,建⽴系统的递阶层次结构。

第⼆步构造判断矩阵{1,2,3,...,9}:代表重要程度,逐渐递增得到⼀个⽅阵,我们记为A,对应的元素为a ij.(1)a ij表⽰的意义是,与指标j相⽐,i的重要程度。

(2)当i=j时,两个指标相同,因此同等重要记为1,这就解释了主对⾓线元素为1。

(3)a ij>0且满⾜a ij∗a ji=1(我们称满⾜这⼀条件的矩阵为正互反矩阵)第三步⼀致性检验判断矩阵各⾏(各列)之间成倍数关系a ij>0且满⾜a ij∗a ji=1(我们称满⾜这⼀条件的矩阵为正互反矩阵)在层次分析法中,我们构造的判断矩阵均是正互反矩阵若正互反矩阵满⾜a ij∗a jk=a ik,则我们称其为⼀致矩阵注意:在使⽤判断矩阵求权重之前,必须对其进⾏⼀致性检验。

(完整版)层次分析法计算权重在matlab中的实现

(完整版)层次分析法计算权重在matlab中的实现

信息系统分析与设计作业层次分析法确定绩效评价权重在matlab中的实现小组成员:孙高茹、王靖、李春梅、郭荣1 程序简要概述编写程序一步实现评价指标特征值lam、特征向量w以及一致性比率CR的求解。

具体的操作步骤是:首先构造评价指标,用专家评定法对指标两两打分,构建比较矩阵,继而运用编写程序实现层次分析法在MATLAB中的应用。

通过编写MATLAB程序一步实现问题求解,可以简化权重计算方法与步骤,减少工作量,从而提高人力资源管理中绩效考核的科学化电算化。

2 程序在matlab中实现的具体步骤function [w,lam,CR] = ccfx(A)%A为成对比较矩阵,返回值w为近似特征向量% lam为近似最大特征值λmax,CR为一致性比率n=length(A(:,1));a=sum(A);B=A %用B代替A做计算for j=1:n %将A的列向量归一化B(:,j)=B(:,j)./a(j);ends=B(:,1);for j=2:ns=s+B(:,j);endc=sum(s);%计算近似最大特征值λmaxw=s./c;d=A*wlam=1/n*sum((d./w));CI=(lam-n)/(n-1);%一致性指标RI=[0,0,0.58,0.90,1.12,1.24,1.32,1.41,1.45,1.49,1.51];%RI为随机一致性指标CR=CI/RI(n);%求一致性比率if CR>0.1disp('没有通过一致性检验');else disp('通过一致性检验');endend3 案例应用我们拟构建公司员工绩效评价分析权重,完整操作步骤如下:3.1构建的评价指标体系我们将影响员工绩效评定的指标因素分为:打卡、业绩、创新、态度与品德。

3.2专家打分,构建两两比较矩阵A =1.0000 0.5000 3.0000 4.00002.0000 1.0000 5.00003.00000.3333 0.2000 1.0000 2.00000.2500 0.3333 0.5000 1.00003.3在MATLAB中运用编写好的程序实现直接在MATLAB命令窗口中输入[w,lam,CR]=ccfx(A)继而直接得出d =1.30352.00000.51450.3926w =0.31020.46910.12420.0966lam =4.1687CR =0.0625,通过一致性检验3.4解读程序结果根据程序求解中得出的特征向量,可以得出打卡、业绩、创新以及态度品德在员工绩效评价中所占的权重分别为:0.3102、0.4691、0.1242、0.0966。

基于Matlab的层次分析法及其运用浅析

基于Matlab的层次分析法及其运用浅析

度 )具体标度 方法如表 1所示。 ,
表 1 T..a t LS ay教授 的 1 9标度方法 -
底层 指 标 相 对 于 准 则 层 的 权 重 系数 , 而 有助 于 选 择 最 优 方案 , 序 从 程 流程如图 1 所示 , 其中的平行 四边形表示输入数据 , 菱形表示判断 , 根据 判 断结 果 的不 同 出现 2个 分 支 。 程 序 中 , 于 生成 判 断矩 阵 的部 分 程 序 如 下 : 用
表 2 平均 随机一致性指标 ,
在当前信息化 、 全球化 的大背景下 , 传统的手工计 算已不能满足 素, 因此在判断矩 阵不能通过一致性检 验时, 需要对 各指标问相互重 人们高效 率、 高准确度 的决策需求。 因此计算机辅助决策当仁不让地 要性程度重新进行赋值 , 直至其通过矩阵一致性检验。 其最大特征值 成为 了管理决策 的新工具、 方法。基于 此, 新 本文在充分发挥计算机 对应 的特征 向量 即为该指标相对于上一级指标的重要性排序。 强大运算功能的基础上 ,选用美国 Mah rs公司的集成数学建 tWok
基于 Malb的层次分析 法及 其运 用浅析 t a
郭 东硕 程 正敏 彭茜 ( 西南大学 经济管理学院)
满足同一层 次中各指标对 所有的下级指标均产生影响 的假定条件下 ,实现 了层次分析法的分析运算。 本程序允许 用户自由设定指标层次结构内的层次数以及各层次 内的指标数 , 通过程序的循环 , 用户只需输入 判断矩 阵的部 分数据 , 程序可依据层 次分析 法的计算流程 进行计算并作 出判断。 本程序可以方便地处理层 次分析法下较 大的运算量 , 解决层次分析法的效率问题 , 提高计算机辅助决策的时效性。 关键词 : t b层 次分析法 判断矩阵 决策 Mal a

层次分析法一致性检验

层次分析法一致性检验

层次分析法一致性检验层次分析法(Analytic Hierarchy Process,简称AHP)是对一些较为复杂、较为模糊的问题作出决策的简易方法,它特别适用于那些难于完全定量分析的问题。

它是美国运筹学家T. L. Saaty 教授于70 年代初期提出的一种简便、灵活而又实用的多准则决策方法。

?1 层次分析法的基本原理与步骤人们在进行社会的、经济的以及科学管理领域问题的系统分析中,面临的常常是一个由相互关联、相互制约的众多因素构成的复杂而往往缺少定量数据的系统。

层次分析法为这类问题的决策和排序提供了一种新的、简洁而实用的建模方法。

运用层次分析法建模,大体上可按下面四个步骤进行: (i)建立递阶层次结构模型; (ii)构造出各层次中的所有判断矩阵; (iii)层次单排序及一致性检验; (iv)层次总排序及一致性检验。

下面分别说明这四个步骤的实现过程。

1.1 递阶层次结构的建立与特点应用AHP 分析决策问题时,首先要把问题条理化、层次化,构造出一个有层次的结构模型。

在这个模型下,复杂问题被分解为元素的组成部分。

这些元素又按其属性及关系形成若干层次。

上一层次的元素作为准则对下一层次有关元素起支配作用。

这些层次可以分为三类: (i)最高层:这一层次中只有一个元素,一般它是分析问题的预定目标或理想结果,因此也称为目标层。

(ii)中间层:这一层次中包含了为实现目标所涉及的中间环节,它可以由若干个层次组成,包to East for the neijiang-Kunming highway bridge across the River, maming Creek Bridge, pond bridge, bridge, rongzhou bridge, and South Bridge. There are two bridges across the minjiang River: minjiang River Bridge on neikun highway bridge. Inner-city transportation: Shu Nan road, binjiang road, North Road, the minjiang River, the Yangtze River Road, lingang括所需考虑的准则、子准则,因此也称为准则层。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4409e-016 ans = 方案层对准则层的第4因素的特征向量和CI值: ans = 0.6337 0.1919 0.1744 ans = 0.0046 ans = 方案层对准则层的第5因素的特征向量和CI值: ans = 0.1667 0.1667 0.6667 ans = -4.4409e-016 ans = 组合一致性比率CR值 CR = 0.0188 ans = 方案层对目标层的组合权向量为:
function s(x,y) %层次分析的初始化 %默认只有两层 x为准则数,y为方案数 %A为准则层对目标层生成的比较阵 %B为方案层对准则层生成的比较阵 %EigA为准则层的特征向量 %EigB为方案层的特征向量 x=5;y=3; EigA=zeros(x,1); EigB=zeros(y,x); dim=x; RI=[0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51];%RI标准 %准则层对目标层的成对比较阵 A=[1 1/2 4 3 3 21755 1/4 1/7 1 1/2 1/3 1/3 1/5 2 1 1 1/3 1/5 3 1 1] tempB=zeros(x+1); tempB=jianyan(dim,A); EigA=tempB(1:x); ci1=tempB(1+x); '准则层的特征向量:' EigA '准则层的ci值:' ci1 ci=zeros(1,x); dim=y; % 方案层对准则层各成对比较阵 B{1}=[1 2 5 1/2 1 2 1/5 1/2 1]; B{2}=[1 1/3 1/8 3 1 1/3 8 3 1];
0.3333 1.0000 1.0000 0.2500 1.0000 1.0000 ans = 1.0000 1.0000 0.2500 1.0000 1.0000 0.2500 4.0000 4.0000 1.0000 ans = 方案层对准则层的第1因素的特征向量和CI值: ans = 0.5954 0.2764 0.1283 ans = 0.0028 ans = 方案层对准则层的第2因素的特征向量和CI值: ans = 0.0819 0.2363 0.6817 ans = 7.7081e-004 ans = 方案层对准则层的第3因素的特征向量和CI值: ans = 0.4286 0.4286
result = 0.2993 0.2453 0.4554
ans = 准则层的特征向量: EigA = 0.2636 0.4758 0.0538 0.0981 0.1087 ans = 准则层的ci值: ci1 = 0.0180 ans = 方案层对准则层各成对比较阵: ans = 1.0000 2.0000 5.0000 0.5000 1.0000 2.0000 0.2000 0.5000 1.0000 ans = 1.0000 0.3333 0.1250 3.0000 1.0000 0.3333 8.0000 3.0000 1.0000 ans = 1.0000 1.0000 3.0000 1.0000 1.0000 3.0000 0.3333 0.3333 1.0000 ans = 1.0000 3.0000 4.0000
%判断该比较阵是不是一致阵 [V,D]=eig(CmpMatrix);%求得特征向量和特征值 %求出最大特征值和它所对应的特征向量 tempNum=D(1,1); pos=1; for h=1:dim if D(h,h)>tempNum tempNum=D(h,h); pos=h; end end eigVector=V(:,pos); maxeig=D(pos,pos); CI=(maxeig-dim)/(dim-1); CR=CI/RI(dim); if CR>0.1 disp('准则对目标影响度评分生成的矩阵不是一致阵,请重新评分') return end %归一化 sum=0; for h=1:dim sum=sum+eigVector(h); end for h=1:dim eigVector(h)=eigVector(h)/sum; end f=[eigVector;CI]; 结果: A= 1.0000 0.5000 4.0000 3.0000 3.0000 2.0000 1.0000 7.0000 5.0000 5.0000 0.2500 0.1429 1.0000 0.5000 0.3333 0.3333 0.2000 2.0000 1.0000 1.0000 0.3333 0.2000 3.0000 1.0000 1.0000
B{3}=[1 1 3 113 1/3 1/3 1]; B{4}=[1 3 4 1/3 1 1 1/4 1 1]; B{5}=[1 1 1/4 1 1 1/4 4 4 1]; '方案层对准则层各成对比较阵:' B{:} %判断该比较阵是不是一致阵 for k=1:x tempB=zeros(y+1); tempB=jianyan(dim,B{k}); EigB(:,k)=tempB(1:y); ci(k)=tempB(y+1); ['方案层对准则层的第',num2str(k),'因素的特征向量和CI值:'] EigB(:,k) ci(k) end %下面进行组合一致性检查 RI=[0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51]; CR=ci1/RI(x)+ci*EigA/RI(y); '组合一致性比率CR值' CR if CR>0.1 disp('组合一致性不通过,请重新评分') return end %下面根据比较阵的结果进行组合 result=EigB*EigA; '方案层对目标层的组合权向量为:' result function f=jianyan(dim,CmpMatrix) RI=[0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51];
相关文档
最新文档