《电磁场与电磁波》教案1

合集下载

电磁场与电磁波教案

电磁场与电磁波教案

电磁场与电磁波教案第一章:电磁场的基本概念1.1 电荷与电场介绍电荷的性质和分类解释电场的概念和电场线电场的叠加原理1.2 磁场与磁力介绍磁铁和磁性的概念解释磁场的概念和磁场线磁场的叠加原理和磁力计算1.3 电磁感应介绍法拉第电磁感应定律解释电磁感应现象的应用第二章:电磁波的基本性质2.1 电磁波的产生与传播介绍麦克斯韦方程组解释电磁波的产生和传播过程电磁波的波动方程和相位2.2 电磁波的波动性质介绍电磁波的波长、频率和波速波动方程的解和电磁波的波动性质2.3 电磁波的能量与辐射解释电磁波的能量和辐射机制介绍电磁波的辐射压和光电效应第三章:电磁波的传播与应用3.1 电磁波在自由空间的传播自由空间中电磁波的传播方程电磁波的传播速度和天线原理3.2 电磁波在介质中的传播介绍电磁波在介质中的传播方程介质的折射率和反射、透射现象3.3 电磁波的应用介绍电磁波在通信、雷达和医学等领域的应用第四章:电磁波的辐射与接收4.1 电磁波的辐射介绍电磁波的辐射机制和天线理论电磁波的辐射强度和辐射功率4.2 电磁波的接收介绍电磁波接收原理和接收器设计调制和解调技术在电磁波接收中的应用4.3 电磁波的辐射与接收实验设计实验来观察和测量电磁波的辐射和接收现象第五章:电磁波的传播特性与调控5.1 电磁波的传播特性介绍电磁波的传播损耗和传播距离电磁波的多径传播和散射现象5.2 电磁波的调控技术介绍电磁波的调制技术和幅度、频率和相位的调控方法5.3 电磁波的传播调控应用介绍电磁波在无线通信和雷达系统中的应用和调控技术第六章:电磁波的波动方程与电磁波谱6.1 电磁波的波动方程推导电磁波在均匀介质中的波动方程讨论电磁波的横向和纵向波动特性6.2 电磁波谱介绍电磁波谱的分类和各频段的特征讨论电磁波谱中常见的波段,如射频、微波、红外、可见光、紫外、X射线和γ射线等6.3 电磁波谱的应用分析电磁波谱在不同领域的应用,如通信、医学、材料科学等第七章:电磁波的传播环境与传播效应7.1 电磁波的传播环境分析不同传播环境对电磁波传播的影响,如自由空间、大气层、陆地、海洋等讨论传播环境中的衰减、延迟和散射等效应7.2 电磁波的传播效应介绍电磁波的折射、反射、透射、绕射和干涉等传播效应分析这些效应在实际应用中的影响和应对措施7.3 电磁波的传播环境与效应应用探讨电磁波传播环境与效应在通信、雷达、遥感等领域的应用和解决方案第八章:电磁波的辐射与天线技术8.1 电磁波的辐射原理分析电磁波辐射的物理机制,如开放电极、偶极子、天线阵列等讨论电磁波辐射的方向性和极化特性8.2 天线的基本理论介绍天线的基本参数,如阻抗、辐射效率、增益等分析天线的设计方法和性能优化策略8.3 电磁波的辐射与天线技术应用探讨天线技术在无线通信、广播、雷达等领域的应用和实例第九章:电磁波的接收与信号处理9.1 电磁波的接收原理介绍电磁波接收的基本过程,如放大、滤波、解调等分析接收机的性能指标,如灵敏度、选择性、稳定性等9.2 信号处理技术介绍信号处理的基本方法,如采样、量化、编码、调制等讨论数字信号处理技术在电磁波接收中的应用9.3 电磁波的接收与信号处理应用探讨电磁波接收与信号处理技术在通信、雷达、遥感等领域的应用和实例第十章:电磁波的测量与实验技术10.1 电磁波的测量原理分析电磁波测量的基本方法,如直接测量、间接测量、网络分析等讨论测量仪器和设备的选择与使用10.2 实验技术介绍电磁波实验的基本步骤和方法,如实验设计、数据采集、结果分析等分析实验中可能遇到的问题和解决策略10.3 电磁波的测量与实验技术应用探讨电磁波测量与实验技术在科研、工程、教学等领域的应用和实例重点解析第一章:电磁场的基本概念重点:电荷与电场的性质,电场的概念和电场线,电场的叠加原理。

电磁场与电磁波教案全案

电磁场与电磁波教案全案


(ex ey ez ) (ex A +ey A +ez A) = x y z x+ y+ z
4、斯托克斯定理 一个矢量函数的环量等于该矢量函数的旋度对该闭合曲线所包围的任意曲面的积分。该定 理用数学表达式可描述为
A d l rot A d s ( A )d s
d i vA = s l i m Ad l i m Ands = v v 0 v v 0

称为矢量 A 穿过 d s 的通量(flux)。
A d s 又表示了什么物理意义?
1、div A 表示在场中任意一点处,通量对体积的变化率,也可看作在该点处一个单位体积通过 的通量,它表示了场中各点的场与通量源的关系。 2、当 div A >0 时,表明该点存在正源,是发出能量线的;当 divA <0 时,表明该点存在负源, 是吸收通量线的;当 divA =0 时,表明该点无源;另外,divA 与所取的体积形状无关。因为 当ΔV→0 时,所有的尺寸都趋于 0。 3、引入一个矢性微分算子 ,称为哈密顿算子(W.R.Hamilton operator),即
第1章
矢量分析
教学目的与要求:
知识目标: 1、理解矢量与标量的定义,矢量的代数运算关系 2、理解标量场与矢量场的概念。 3、复习直角坐标系、圆柱坐标系和球面坐标系这三个最常用的正交坐标系,以及 三种坐标系中单位矢量之间的关系。 4、理解矢量函数的通量与散度。 5、定义高斯散度定理,了解其应用。 6、理解矢量函数的环量与旋度。 7、定义斯托克斯定理,了解其应用。 8、理解标量函数的方向导数与梯度 9、格林公式及其应用 10、亥姆霍兹定理及其意义 能力目标: 根据学生已具备的关于矢量和坐标系等方面数学知识,进一步引导学生对数学 知识的应用和拓展,培养学生的想象力及利用所学知识分析、总结问题的能力。

《第四章 2 电磁场与电磁波》学历案-高中物理人教版19选择性必修第二册

《第四章 2 电磁场与电磁波》学历案-高中物理人教版19选择性必修第二册

《电磁场与电磁波》学历案(第一课时)一、学习主题本次学习的主题为《电磁场与电磁波》。

这一主题作为高中物理课程的核心内容,是理解现代电磁学基础的关键。

在第一课时中,我们将着重学习电磁场的基本概念和性质,为后续的电磁波及其应用奠定坚实的基础。

二、学习目标1. 掌握电荷周围存在电场的观点,了解电场强度的基本概念及其表示方法。

2. 理解电流产生磁场的基本原理,掌握安培环路定律及其应用。

3. 了解电磁波的产生、传播及基本特性,初步建立电磁波的物理模型。

4. 培养学生的观察能力、实验能力和理论分析能力,增强学生对物理现象的探究兴趣。

三、评价任务1. 课堂表现:通过学生在课堂上的表现,评价其对电场和磁场基本概念的掌握情况,以及在讨论环节的参与度和表达能力。

2. 作业完成情况:通过布置相关的课后作业,如绘制电场图、解释电磁波产生与传播等,评价学生对知识点的理解和应用能力。

3. 测验或小测验:通过定期的测验或小测验,评估学生对电磁场与电磁波知识点的掌握程度,并针对问题进行及时的教学调整。

四、学习过程1. 导入新课:通过回顾之前学习的静电现象,引出电场的概念,并简要介绍磁场的相关知识。

2. 讲解电场:通过图示和实例,详细讲解电场的概念、电场强度的定义及表示方法。

让学生理解电荷周围存在电场的观点。

3. 学习磁场:讲解电流产生磁场的基本原理,通过实验演示安培环路定律的应用,并让学生动手操作简单的电磁铁实验。

4. 探究电磁波:介绍电磁波的产生、传播及基本特性,通过动画或实验视频展示电磁波的传播过程。

5. 课堂讨论:组织学生进行小组讨论,就电磁场的性质、电磁波的应用等话题展开讨论,培养学生的合作能力和表达能力。

6. 课堂总结:总结本课学习的重点内容,强调电场和磁场的概念及其在现实生活中的应用。

五、检测与作业1. 课堂检测:通过课堂小测验,检测学生对电场和磁场基本概念的掌握情况。

2. 课后作业:布置相关的课后作业,如绘制电场图、解释电磁波的产生与传播等,以巩固学生对知识点的理解和应用能力。

电磁场与电磁波电子教案

电磁场与电磁波电子教案

电磁场与电磁波电子教案第一章:电磁场的基本概念1.1 电荷和电场介绍电荷的性质和分类解释电场的概念和电场线电场强度的定义和计算电场的叠加原理1.2 磁场和磁力介绍磁铁和磁性的概念解释磁场的概念和磁感线磁感应强度的定义和计算磁场的叠加原理1.3 电磁感应介绍法拉第电磁感应定律解释感应电动势和感应电流的产生电磁感应的实验现象和应用第二章:电磁波的基本性质2.1 电磁波的产生和传播介绍麦克斯韦方程组和电磁波的理论基础解释电磁波的产生和传播过程电磁波的波动方程和波长、频率、速度的关系2.2 电磁波的能量和动量介绍电磁波的能量密度和能量传递解释电磁波的动量和动量传递电磁波的辐射压和辐射阻力的概念2.3 电磁波的偏振和反射、折射介绍电磁波的偏振现象和偏振光的性质解释电磁波在介质中的反射和折射现象反射定律和折射定律的原理及应用第三章:电磁波的传播和辐射3.1 电磁波在自由空间中的传播介绍自由空间中电磁波的传播特性解释电磁波的辐射和天线原理电磁波的辐射强度和辐射功率的概念3.2 电磁波在介质中的传播介绍电磁波在介质中的传播规律解释介质的折射率和介电常数的概念电磁波在介质中的衰减和色散现象3.3 电磁波的辐射和天线原理介绍天线的分类和基本原理解释天线的辐射特性和发展电磁波的辐射模式和天线的设计方法第四章:电磁波的应用4.1 电磁波在通信技术中的应用介绍电磁波在无线通信中的应用解释无线电波的传播和传播损耗电磁波在移动通信和卫星通信中的应用4.2 电磁波在雷达技术中的应用介绍雷达技术的基本原理和组成解释雷达方程和雷达的探测距离电磁波在雷达系统和雷达导航中的应用4.3 电磁波在医疗技术中的应用介绍电磁波在医学影像诊断中的应用解释磁共振成像(MRI)的原理和应用电磁波在放射治疗和电磁热疗中的应用第五章:电磁波的防护和辐射安全5.1 电磁波的辐射和防护原理介绍电磁波的辐射对人体健康的影响解释电磁波的防护原理和防护措施电磁屏蔽和电磁兼容的概念5.2 电磁波的辐射标准和法规介绍国际和国内电磁波辐射的标准和法规解释电磁波辐射的限制和测量方法电磁波辐射管理的政策和监管措施5.3 电磁波的辐射安全和防护措施介绍电磁波辐射的安全距离和防护措施解释电磁波辐射的个人防护和公共场所的防护措施电磁波辐射的环保意识和公众宣传的重要性第六章:电磁波在电力系统中的应用6.1 电磁波在电力传输中的应用介绍高压输电线路中的电磁干扰问题解释输电线路的屏蔽和接地措施电磁波在特高压输电技术中的应用6.2 电磁波在电力系统监测与控制中的应用介绍电力系统中的电磁场监测和测量技术解释电磁波在电力系统状态监测和故障诊断中的应用电磁波在智能电网和分布式发电系统中的应用6.3 电磁波在电力设备中的影响及防护分析电磁波对电力设备的干扰和影响解释电磁兼容性设计在电力设备中的应用电磁波防护措施在电力设备中的实施方法第七章:电磁波在交通领域的应用7.1 电磁波在铁路交通中的应用介绍铁路信号系统和电磁波在信号传输中的应用解释铁路通信和列车无线通信系统中电磁波的应用电磁波在铁路自动控制系统中的应用7.2 电磁波在汽车交通中的应用介绍汽车电子设备和电磁波的应用解释车载通信系统和电磁波在车辆导航中的应用电磁波在智能交通系统中的应用7.3 电磁波在航空和航天领域的应用介绍电磁波在航空通信和导航中的应用解释电磁波在卫星通信和航天器通信中的应用电磁波在航空航天器中的其他应用,如雷达和遥感技术第八章:电磁波在工科领域的应用8.1 电磁波在电子工程中的应用介绍电磁波在无线电发射和接收中的应用解释电磁波在微波器件和天线技术中的应用电磁波在射频识别(RFID)技术中的应用8.2 电磁波在光电子学中的应用介绍电磁波在光纤通信中的应用解释电磁波在激光器和光电器件中的应用电磁波在光电探测和成像技术中的应用8.3 电磁波在生物医学领域的应用介绍电磁波在医学诊断和治疗中的应用解释电磁波在磁共振成像(MRI)和微波热疗中的应用电磁波在其他生物医学技术中的应用,如电疗和电磁屏蔽第九章:电磁波的环境影响和政策法规9.1 电磁波的环境影响分析电磁波对环境和生物的影响,如电磁辐射污染解释电磁波的环境监测和评估方法电磁波环境保护措施和可持续发展策略9.2 电磁波的政策法规介绍国际和国内关于电磁波辐射的政策法规解释电磁波辐射的标准和限制条件电磁波辐射管理的政策和监管措施9.3 电磁波的公众宣传和教育分析电磁波辐射的公众认知和误解解释电磁波辐射的安全性和健康影响电磁波辐射的公众宣传和教育方法第十章:电磁波的未来发展趋势10.1 新型电磁波技术和材料的研究介绍新型电磁波发射和接收技术的研究解释新型电磁波传输材料和超材料的研究进展电磁波技术在未来的应用前景10.2 电磁波在新型能源领域的应用介绍电磁波在太阳能和风能等新型能源领域的应用解释电磁波在智能电网和能源互联网中的应用电磁波在未来能源系统中的作用和挑战10.3 电磁波与物联网和大数据的结合分析电磁波在物联网通信中的应用解释电磁波在大数据传输和处理中的作用电磁波在未来物联网和大数据技术中的挑战和发展趋势重点和难点解析一、电磁场的基本概念:理解电荷、电场、磁场和磁力的基本性质,以及电磁感应的原理。

电磁场与电磁波教案

电磁场与电磁波教案

电磁场与电磁波教案电磁场与电磁波教案学院:电子与信息工程学院教研室:电信基础教研室课程名称:电磁场与电磁波任课教师:封志宏学期:授课班级:电子与信息工程学院制兰州交通大学教案第1 次课学时:2 章节教学目的和要求讲授主要内容重点难点要求掌握知识点和分析方法第1章,回顾并进一步学习矢量代数的概念和运算,学习三种常用的正交坐标系。

于电磁场的计算经常采用圆柱坐标系和球坐标系,所以这两种坐标系在本课程中非常基础和重要的知识点。

矢量代数三种常用的正交坐标系授课对象重点是直角坐标系、圆柱坐标系和球坐标系,以及三种坐标系之间的换算关系。

要求掌握三种坐标系之下的微积分运算,以及三种坐标系之间的换算关系矢量代数?????????A?(B?C)?B?(C?A)?C?(A?B) ?????????A?(B?C)?(A?C)B?(A?B)C三种常用的正交坐标系 1. 直角坐标系教授思路,采用的教学方法和辅助手段,板书设计,重点如何突出,难点如何解决,师生互动等位置矢量:r?exx?eyy?ezz ????????线元矢量:dl?exdx?eydy?ezdz ??????面元矢量:dSx?exdlydlz?exdydz,dSy?eydlxdlz?eydxdz ???dSz?ezdlxdly?ez dxdy 体积元:dV?dxdydz 2. 圆柱坐标系x??cos?,y??sin?,z?z,0????,0???2?,???z?? 位置矢量:r?e???ezz ???????线元矢量:dl?e?d??e??d??ezdz 面元矢量:???dS??e?dl?dlz?e??d?dz ??? dS??e?dl?dlz?e?d?dz ???dSz?ezdl?dl??ez? d?d? 体积元:dV??d?d?dz 3. 球坐标系x?rsin?cos?,y?rsin?sin?,z?rsin?0?r??,0????,0???2? 作业布置主要参考资料备注位置矢量:r??e?rr 线元矢量:dl??e???rdr?e?rd??e?rsin?d? 面元矢量:dS??e??e?2rrdl?dl?rrsin?d?d? dS?????e?dlrdl??ezrsin?drd?dS??l???e?dlrd??e?rdrd? 体积元:dV?r2sin?drd?d? ,, 编著兰州大学出版社《电磁场与电磁波》李锦屏兰州交通大学教案第 2 次课学时:2 章节教学目的和要求讲授主要内容重点难点要求掌握知识点和分析方法第1章,梯度、散度和旋度是构成麦克斯韦方程组的基本算子,也是计算电磁场的基本算子,所以从方向导数、通量、环流的基础上,把三个算子的物理意义和计算公式介绍并推导出来。

电磁场与电磁波电子教案

电磁场与电磁波电子教案

电磁场与电磁波电子教案第一章:电磁场与电磁波概述1.1 电磁场的概念电场和磁场的定义电磁场的性质和特点1.2 电磁波的产生和传播电磁波的定义和特点麦克斯韦方程组与电磁波的产生电磁波的传播特性1.3 电磁波的分类和应用无线电波、微波、红外线、可见光、紫外线、X射线和γ射线的特点和应用电磁波谱的概述第二章:电磁场的基本方程2.1 电场和磁场的基本方程高斯定律、法拉第电磁感应定律和安培定律的表述边界条件和解的存在性2.2 波动方程和传播特性电磁波的波动方程波的传播方向、波速和波长之间的关系横波和纵波的特性2.3 电磁场的能量和辐射电磁场的能量密度和能量流密度辐射阻力和辐射功率天线辐射和接收的原理第三章:电磁波的传播和散射3.1 均匀介质中的电磁波传播均匀介质中电磁波的传播方程电磁波的传播速度和相位常数电磁波的极化特性3.2 非均匀介质中的电磁波传播非均匀介质中电磁波的传播方程非均匀介质对电磁波传播的影响波的折射、反射和透射3.3 电磁波的散射散射现象的定义和分类散射方程和散射矩阵散射cross section 和散射截面第四章:电磁波的辐射和接收4.1 电磁波的辐射辐射现象的定义和分类天线辐射的原理和特性辐射阻力和辐射功率的计算4.2 电磁波的接收接收天线和接收电路的设计与分析噪声和信号的接收与处理接收灵敏度和信噪比的计算4.3 电磁波的应用无线通信和广播技术雷达和声纳技术医学成像和治疗技术第五章:电磁波的数值方法和计算5.1 电磁波的数值方法概述数值方法的定义和特点常见数值方法的原理和应用5.2 有限差分时域法(FDTD)FDTD方法的原理和算法FDTD模型的建立和求解过程FDTD法的应用实例5.3 有限元法(FEM)FEM方法的原理和算法FEM模型的建立和求解过程FEM法的应用实例第六章:电磁波的测量与实验技术6.1 电磁波测量概述电磁波测量的目的和意义电磁波测量方法和技术6.2 电磁波的发射与接收实验实验设备的组成和功能发射与接收实验的步骤和注意事项实验数据的处理与分析6.3 电磁波的反射与折射实验实验设备的组成和功能反射与折射实验的步骤和注意事项实验数据的处理与分析第七章:电磁波在特定介质中的传播7.1 电磁波在均匀介质中的传播均匀介质中电磁波的传播特性电磁波在导体和绝缘体中的传播7.2 电磁波在非均匀介质中的传播非均匀介质中电磁波的传播特性电磁波在多层介质中的传播7.3 电磁波在复杂介质中的传播复杂介质中电磁波的传播特性电磁波在生物组织、大气等介质中的传播第八章:电磁波的应用技术8.1 无线通信与广播技术无线通信与广播系统的工作原理调制与解调技术信号传输与接收技术8.2 雷达与声纳技术雷达与声纳系统的工作原理脉冲信号处理与距离测量目标识别与跟踪技术8.3 医学成像与治疗技术医学成像技术的工作原理与应用磁共振成像(MRI)与X射线成像电磁波在医学治疗中的应用第九章:电磁波的防护与安全9.1 电磁波的防护原理电磁波防护的方法与技术电磁屏蔽与吸收材料的应用电磁防护材料的研发与评价9.2 电磁波的安全标准与规范电磁波辐射的安全限值与标准电磁兼容性与电磁干扰控制电磁波辐射的环境影响与监管9.3 电磁波防护与安全的实际应用电磁波防护在电子设备与通信系统中的应用电磁波防护在医疗与生物领域的应用电磁波防护在日常生活与工作中的应用第十章:电磁波的展望与未来发展趋势10.1 电磁波技术在通信领域的展望5G与6G通信技术的发展趋势量子通信与卫星通信技术的应用无线充电与智能物联网技术的发展10.2 电磁波技术在科研领域的展望电磁波在暗物质探测与宇宙观测中的应用电磁波技术在材料科学与环境工程中的应用电磁波技术在生物医学与基因工程中的应用10.3 电磁波技术在社会生活中的影响电磁波技术对人类生活的影响与改变电磁波技术在教育与娱乐领域的应用电磁波技术在智能家居与交通工具中的应用重点和难点解析第一章中电磁场的概念和电磁波的产生传播是基础,需要重点关注电磁场的性质和特点,以及麦克斯韦方程组与电磁波产生的关系。

4-2 电磁场与电磁波 教案

4-2 电磁场与电磁波 教案

4.2电磁场与电磁波〖教材分析〗本节课内容主要有麦克斯韦的电磁理论和赫兹的火花实验。

通过理论分析和推导使学生对麦克斯韦的电磁理论有一定的了解,不需要计算。

赫兹实验是验证电磁波是否存在的实验,它是检验麦克斯韦理论是否正确的试金石。

最后通过地电磁波和机械波的对比,加深理解和学习研究问题的科学方法。

〖教学目标与核心素养〗物理观念∶理解电磁理论的内容,体会物理观念产生的过程。

科学思维∶结合前面学习过的知识,理解变化的磁场产生电场。

科学探究:培养学生实验探求知识的意识,增强求知欲望。

科学态度与责任∶通过结合生活中各种相应现象及常识,理解电磁波在人们生活中的地位。

〖教学重难点〗教学重点:麦克斯韦电磁场理论的基本内容。

教学难点:电磁波的特点以及赫兹实验原理。

〖教学准备〗多媒体课件。

〖教学过程〗一、新课引入电磁振荡电路中的能量有一部分要以电磁波的形式辐射到周围空间中去,那么,这些电磁波是怎样产生的?动图展示:振荡电路电磁场的变化。

分析:上节课我们讲过振荡电路中的能量消耗主要有俩个,一是电路有电阻,产生的内能,也就是焦耳热。

另外就是一电磁波的形式辐射出去。

这些电磁波是怎样产生的?二、新课教学(一)电磁场1.变化的磁场产生电场在变化的磁场中放一个闭合电路,由于穿过电路的磁通量发生变化,电路里会产生感应电流。

电子的定向移动形成电流,但是电子的定向移动需要电场。

所以麦克斯韦从场认为电路里能产生感应电流,是因为变化的磁场产生了电场,正是这个电场促使导体中的自由电荷做定向运动,产生感应电流。

即:变化的磁场能产生电场。

既然变化的磁场能产生电场,那变换的电场能否产生磁场呢?2.变化的电场产生磁场变化的电场驱动→运动的电荷→产生变化的电流→产生磁场。

麦克斯韦假设∶变化的电场就像运动的电荷,也会在空间产生磁场,即变化的电场产生磁场。

例如,在电容器充、放电的过程中,不仅导体中的电流产生磁场,而且在电容器两极板间周期性变化的电场也产生磁场。

电磁场与电磁波教学教案

电磁场与电磁波教学教案

2 教学内容
电磁场基本概念
电磁场的定义:电 场和磁场的统称
电磁场的性质:电 场和磁场相互联系、 相互转化
电磁场的来源:电 荷、电流、变化的 磁场
电磁场的基本方程 :麦克斯韦方程组
电磁波传播特性
电磁波的传播速 度:光速
电磁波的传播方 向:直线传播
电磁波的传播频 率:与波长和频 率有关
电磁波的传播能 量:与振幅和频 率有关
电磁场与电磁波教学 教案
XX,a click to unlimited possibilities
汇报人:XX
目录 /目录
01
教学目标
02
教学内容
04
教学过程
05
教学评价与反 馈
03
教学方法
06
教学反思与改 进
1 教学目标
知识目标
理解电磁场的 基本概念和性

掌握电磁波的 产生、传播和
接收原理
学会运用电磁 场和电磁波知 识解决实际问
添加标题
添加标题
添加标题
添加标题
分析反馈结果:对收集到的反馈数 据进行分析,找出学生的难点和薄 弱环节
持续跟踪:在调整教学策略后,持 续关注学生的反馈,以便及时调整 和改进教学。
6 教学反思与改进
反思教学内容和方法
教学方法:是否采用了生动 形象的教学方法,如举例、 图解、实验等?
教学内容:是否涵盖了电磁 场与电磁波的基本概念、原 理和公式?
通过动画和视频,帮助学生理 解抽象的电磁场和电磁波现象
利用交互式软件,让学生动手 操作,加深对电磁场与电磁波 知识的理解
结合实际案例,让学生了解电 磁场与电磁波在实际生活中的 应用
4 教学过程

电磁场与电磁波电子教案

电磁场与电磁波电子教案

电磁场与电磁波电子教案第一章:电磁场与电磁波概述1.1 电磁场的概念电场和磁场的基本性质电磁场的产生和变化1.2 电磁波的产生和传播电磁波的种类和特点电磁波的产生机制电磁波的传播特性1.3 电磁场与电磁波的应用电磁场在通信技术中的应用电磁波在医疗诊断中的应用第二章:静电场2.1 静电场的基本性质静电力和库仑定律电场强度和电势差2.2 静电场的能量和能量密度静电场的能量静电场的能量密度2.3 静电场的边界条件静电场的边界条件电场的连续性和跳跃性第三章:稳恒磁场3.1 稳恒磁场的基本性质磁场强度和磁感应强度安培环路定律3.2 磁场对电流的作用洛伦兹力和安培力磁场对电流的作用规律3.3 磁场的能量和能量密度磁场的能量磁场的能量密度第四章:电磁波的产生和传播4.1 电磁波的产生机制麦克斯韦方程组电磁波的产生过程4.2 电磁波的传播特性电磁波的波动方程电磁波的传播速度4.3 电磁波的能量和能量密度电磁波的能量电磁波的能量密度第五章:电磁波的应用5.1 电磁波在通信技术中的应用无线电通信和微波通信电磁波的天线原理5.2 电磁波在医疗诊断中的应用磁共振成像(MRI)微波热疗和电磁波治疗5.3 电磁波在其他领域的应用电磁波在能源传输中的应用电磁波在环境监测中的应用第六章:电磁波的波动方程与传播特性6.1 电磁波的波动方程电磁波的数学描述电磁波的波长、频率和波速6.2 电磁波的传播特性电磁波的直线传播电磁波的衍射和干涉6.3 电磁波的极化电磁波的偏振现象电磁波的圆极化和线极化第七章:电磁波的辐射与接收7.1 电磁波的辐射电磁波的发射过程天线辐射原理7.2 电磁波的接收电磁波的接收原理接收天线和放大器的设计7.3 电磁波的辐射和接收的应用无线电广播和电视传输卫星通信和导航系统第八章:电磁波的传播环境与衰减8.1 电磁波的传播环境自由空间中的电磁波传播导引波和波导传播8.2 电磁波的衰减电磁波在介质中的衰减电磁波的散射和反射8.3 电磁波的传播环境与衰减的影响因素天气和气候对电磁波传播的影响障碍物和遮挡对电磁波传播的影响第九章:电磁波的调制与解调9.1 电磁波的调制调幅和调频调相和复合调制9.2 电磁波的解调解调原理和方法解调电路的设计9.3 电磁波的调制与解调的应用无线通信和广播传输数据传输和网络通信第十章:电磁波的测量与监测10.1 电磁波的测量原理与方法电磁波的测量仪器和设备电磁波的测量技术和方法10.2 电磁波的监测与分析电磁波的监测原理和设备电磁波的频谱分析和信号处理10.3 电磁波的测量与监测的应用电磁兼容性分析和测试电磁环境监测和保护第十一章:电磁波在特定介质中的传播11.1 电磁波在均匀介质中的传播介质的电磁特性电磁波在介质中的传播方程11.2 电磁波在非均匀介质中的传播非均匀介质的特点电磁波在非均匀介质中的传播规律11.3 电磁波在特定介质中传播的应用电磁波在地球物理勘探中的应用电磁波在生物医学成像中的应用第十二章:电磁波的辐射与天线技术12.1 电磁波的辐射机制开放电荷和辐射场电磁波的辐射功率和辐射强度12.2 天线的基本原理与设计天线的作用和分类天线的辐射特性与设计方法12.3 电磁波的辐射与天线技术的应用无线通信和卫星通信的天线设计天线在雷达和导航系统中的应用第十三章:电磁波与物质的相互作用13.1 电磁波与物质的相互作用原理电磁波的吸收、反射和散射电磁波在物质中的传播过程13.2 电磁波在生物组织中的传播生物组织的电磁特性电磁波在医学成像中的应用13.3 电磁波与物质相互作用的应用电磁波在材料科学中的应用电磁波在环境监测中的应用第十四章:电磁波的安全与防护14.1 电磁波的安全性分析电磁波的生物效应电磁波的安全标准与规范14.2 电磁波的防护技术电磁屏蔽和吸波材料电磁波的防护设计与实施14.3 电磁波的安全与防护的应用电磁兼容性设计电磁环境保护和电磁辐射控制第十五章:电磁波的前沿领域与展望15.1 电磁波的前沿研究课题量子电动力学与高能电磁波极端条件下的电磁波传播15.2 电磁波技术的创新与发展新型天线技术与阵列处理智能材料与电磁波调控15.3 电磁波的应用前景与挑战未来通信系统的展望电磁波在可持续能源中的应用重点和难点解析重点:电磁场与电磁波的基本概念、原理、应用和发展前景。

电磁场与电磁波课程设计

电磁场与电磁波课程设计

目录1.课程设计的目的与作用 (2)1.1设计目的 (2)1.2设计作用 (2)2.设计任务及所用Maxwell软件环境介绍 (2)2.1设计任务 (2)2.2 Maxwell软件环境介绍 (3)3.电磁模型的建立 (3)4.电磁模型计算及仿真结果后处理分析 (9)4.1电磁模型计算 (10)4.2 仿真结果后处理分析 (10)5.设计总结及体会 (18)6.参考文献 (18)♦ 1.课程设计的目的与作用♦ 1.1设计目的电磁场与电磁波课程理论抽象、数学计算繁杂,将Maxwell 软件引入教学中,通过对典型电磁产品的仿真设计,并模拟电磁场的特性,将理论与实践有效结合,强化学生对电磁场与电磁波的理解和应用,提高教学质量 。

♦ 1.2设计作用电磁场与电磁波主要介绍电磁场与电磁波的发展历史、基本理论、基本概念、基本方法以及在现实生活中的应用,内容包括电磁场与电磁波理论建立的历史意义、静电场与恒流电场、电磁场的边值问题、静磁场、时变场和麦克斯韦方程组、准静态场、平面电磁波的传播、导行电磁波以及谐振器原理等。

全书沿着电磁场与电磁波理论和实践发展的历史脉络,将历史发展的趣味性与理论叙述和推导有机结合,同时介绍了电磁场与电磁波在日常生活、经济社会以及科学研究中的广泛应用。

书中的大量例题强调了基本概念并说明分析和解决典型问题的方法;每章末的思考题用于测验学生对本章内容的记忆和理解程度;每章的习题可增强学生对于公式中不同物理量的相互关系的理解,同时也可培养学生应用公式分析和解决问题的能力。

♦ 2.设计任务及所用Maxwell 软件环境介绍♦ 2.1设计任务如图1所示,两长直导线相距400mm ,导线半径20mm ,其材料(material)是铁(iron ),场域中介质是空气(air )(006.1=ε,0=γ)。

其中:一导线电势为10000V ,另一支导线电势为0V.求:计算平行双线周围的电场分布,并计算单位长电容图一♦2.2 Maxwell软件环境介绍Ansoft Maxwell 是低频电磁场有限元仿真软件,在工程电磁领域有广泛的应用。

【K12学习】电磁场与电磁波教案 第1章

【K12学习】电磁场与电磁波教案 第1章

电磁场与电磁波教案第1章教案编写说明一、教案的规范化建设是课程建设的重要组成部分。

为了进一步加强课程建设,规范教案管理,特制定教案编写说明。

二、教案的编写规范1.教师上课要有完整的教案,以Word文档编制的纸质教案为主,不能以课件幻灯片的打印稿代替纸质教案。

2.从20XX-20XX学年开始每位教师的教案,应加装统一格式的封面和首页。

3.于课程类型、教学内容的差异,教案编写的具体格式不作统一的规定,但必须包含以下主要要素:教学目的(教学目标):即教学中体现“课程的总体目标”和“章节的目标”及预期达到的效果。

教学内容:是指通过对教学大纲、教材和主要参考资料的研析,确定课程教学或课堂教学知识信息的总和。

教学重点、难点:本部分是指该章节的重点和难点部分,是学生必须掌握和加强学习的知识点。

教学进程组织与设计:是根据教学目的进行教学内容、教学方法、辅助手段、师生互动、学时安排、板书设计等的设计或选择。

课后自我总结分析:是对课程教学中知识的科学性和完整性评价;包括对某个教学环节的设计,教学重难点的把握,教学方法的应用,师生双边活动的设计,教学效果等课堂教学过程情况的总结与分析,为以后的教学提供经验和素材。

教案20XX ~20XX学年第一学期课程名称电磁场与波专业班级电信101、102 授课教师赵芳丽二级学院信息工程学院莆田学院莆田学院教案首页课程名称专业、层次教学安排电磁场与波本科总学时 45 本学期学时 45 课型:理论+实验教学方法:多媒体授课教材和主要参考书:教科书:郭辉萍刘学观编著.电磁场与电磁波,西安:西安电子科技大学出版社,参考书: [1]《电磁场与微波技术》李绪益主编.华南理工大学出版社, [2]《 Electromagnetic Theory 》Stratton J A. 教学目的与要求:学习本课程的主要目的和要求是:掌握电磁场的基本规律,注重掌握电磁场的基本概念、基本规律和基本的分析计算方法。

(完整版)电磁场与电磁波教案

(完整版)电磁场与电磁波教案
备注
xxxx大学教案(理论教学用)
第 2 次课 学时:2
授课对象
2011级电子工程专业本科生
章节
第1章1.3,1.4
教学目的和要求
梯度、散度和旋度是构成麦克斯韦方程组的基本算子,也是计算电磁场的基本算子,所以从方向导数、通量、环流的基础上,把三个算子的物理意义和计算公式介绍并推导出来。
讲授主要内容
1.3标量场的梯度
备注
xxxx大学教案(理论教学用)
第 3 次课 学时:2
授课对象
2011级电子工程专业本科生
章节
第1章1.5,1.6
教学目的和要求
梯度、散度和旋度是构成麦克斯韦方程组的基本算子,也是计算电磁场的基本算子,所以从方向导数、通量、环流的基础上,把三个算子的物理意义和计算公式介绍并推导出来。
讲授主要内容
1.5矢量场的环流与旋度
备注
xxxx大学教案(Hale Waihona Puke 论教学用)第10次课 学时:2
授课对象
2011级电子工程专业本科生
章节
第3章3.3,3.4,3.5
教学目的和要求
介绍恒定磁场的分析方法,磁场能量密度,静态场的边值问题,唯一性定理和镜像法。
讲授主要内容
3.3恒定磁场分析;3.4静态场的边值问题及解的惟一性定理;3.5镜像法
重点
备注
xxxx大学教案(理论教学用)
第7次课 学时:2
授课对象
2011级电子工程专业本科生
章节
第2章2.4
教学目的和要求
讲授电介质的极化性质,包括极化电荷的面密度、体密度、电介质的本构关系、电介质的基本方程。讲授磁介质的磁化性质,包括磁化电流的面密度、体密度、磁介质的本构关系、磁介质的基本方程。讲授媒质的传到特性。

电磁场与电磁波理论教学教案

电磁场与电磁波理论教学教案
考试表现:学生在电磁场与电磁波理论考试中的表现
教学目标:明确教学目标,确保学生理解电磁场与电磁波理论的基本概念和原理
教学方法:采用多种教学方法,如讲解、演示、实验等,激发学生的学习兴趣和积极性
教学效果:关注学生的学习效果,及时调整教学方法和策略
学生反馈:鼓励学生提出问题和建议,及时改进教学方式和内容
学会运用电磁场与电磁波的知识解决实际问题
理解电磁场与电磁波的相互关系和相互作用
掌握电磁场与电磁波的基本概念和原理
激发学生对电磁场与电磁波理论的兴趣和求知欲
培养学生的科学精神和创新意识
引导学生树立正确的科学观和价值观
培养学生的团队合作精神和沟通能力
教学内容
电磁场的定义:电场和磁场的统称
电磁场的性质:电场强度、磁场强度、电场线、磁场线等
汇报人:XX
电磁场与电磁波理论教学教案
目录
添加目录标题
教学目标
教学内容
教学方法
教学步骤
教学评价与反馈
添加章节标题
教学目标
理解电磁场的基本概念和性质
掌握电磁波的产生、传播和接收原理
学会运用电磁场与电磁波理论解决实际问题
培养创新意识和科学精神,提高科学素养
提高分析和解决问题的能力,培养创新意识和科学精神
《电磁场与电磁波理论案例分析》:本书通过案例分析,帮助学生理解和应用电磁场与电磁波理论的知识。
电磁场与电磁波理论教学课件:包括PPT、视频、动画等
电磁场与电磁波理论实验设备:如电磁场测量仪、电磁波发生器等
电磁场与电磁波理论在线资源:如学术论文、教学视频、论坛等
电磁场与电磁波理论仿真软件:如MATLAB、COMSOL等
电磁兼容:电子产品的电磁干扰和抗干扰设计

(完整版)电磁场与电磁波教案

(完整版)电磁场与电磁波教案
讲授主要内容
1.1矢量代数
1.2三种常用的正交坐标系
重点
难点
重点是直角坐标系、圆柱坐标系和球坐标系,以及三种坐标系之间的换算关系。
要求掌握知识点和分析方法
要求掌握三种坐标系之下的微积分运算,以及三种坐标系之间的换算关系
教授思路,采用的教学方法和辅助手段,板书设计,重点如何突出,难点如何解决,师生互动等
《电磁场与电磁波》李锦屏编著兰ቤተ መጻሕፍቲ ባይዱ大学出版社
兰州交通大学教案(理论教学用)
第 7 次课 学时:2
授课对象
章节
第2章2.4
教学目的和要求
直角坐标系:
圆柱坐标系:
球坐标系:
1.8亥姆霍兹定理
作业布置
主 要
参考资料
《电磁场与电磁波》李锦屏编著兰州大学出版社
兰州交通大学教案(理论教学用)
第 5 次课 学时:2
授课对象
章节
第2章2.1, 2.1
教学目的和要求
回顾《普通物理》中所学的电荷守恒定律和真空中静电场的基本规律,从梯度、散度、旋度的角度深入理解并掌握静电场的基本规律,为时变场打下基础。
作业布置
1.15,1.27,1.29
主 要
参考资料
《电磁场与电磁波》李锦屏编著兰州大学出版社
兰州交通大学教案(理论教学用)
第 4 次课 学时:2
授课对象
章节
第1章1.7,1.8
教学目的和要求
拉普拉斯运算是电磁场波动方程中的主要运算,亥姆霍兹定理总结了矢量场的基本性质,指出研究矢量场要从场的散度和旋度着手,研究电磁场也要从电场和磁场的散度和旋度着手。
要求掌握知识点和分析方法
掌握矢量场的环流与旋度的计算公式以及斯托克斯公式。

电磁场与电磁波+教学方案

电磁场与电磁波+教学方案

2 电磁场与电磁波教学目标(1)了解麦克斯韦提出电磁场理论的依据及大体过程,理解麦克斯韦电磁场理论的两个基本假设。

(2)体会麦克斯韦提出电磁场理论的意义。

(3)了解赫兹实验的原理及意义。

(4)在了解麦克斯韦提出电磁场理念的过程、及赫兹的实验的过程中,体会必然推理与或然推理在新理论的发展所起到的作用。

教学重难点教学重点麦克斯韦电磁场的两个基本假设、赫兹的实验教学难点麦克斯韦电磁场的两个基本假设、赫兹的实验教学准备多媒体课件教学过程新课引入教师设问:请大家回顾一下电流的磁效应。

学生活动:思考老师所提问题,然后集体回答所提问题。

教师设问:请大家回顾一下电磁感应定律。

学生活动:思考老师所提问题,然后集体回答老师所提问题。

教师口述:1820年,丹麦物理学家奥斯特发现了通电导线会使磁针偏转,揭示了电流的磁效应。

1831年,英国物理学家法拉第发现了电磁感应现象,表明磁也会生电。

好像电与磁有一定的联系。

教师口述:法拉第对自己所做的电磁实验进行了深入的思考,提出了一种全新的观点,磁体和电荷周围并不是空无一物,而是存在着一种由电荷和磁体本身产生的连续的介质,这种介质传递着电磁相互作用。

法拉第把这种看不见,摸不着的介质称作场。

教师口述:电与磁到底有怎样的联系?19世纪60年代,英国物理学家麦克斯韦在总结了前人研究成果的基础上,建立了具有划时代意义的电磁场理论,精辟地揭示了电场与磁场之间的联系。

下面我们就来学习麦克斯韦所提出的电磁场理论。

讲授新课一、电磁场为了将电场与磁场统一起来,麦克斯韦预言电场和磁场可以在空间中传播。

麦克斯韦提出电磁场理论基于如下信息:⏹电场线起源于正电荷,终止于负电荷。

⏹磁感线是闭合的曲线,没有起点和终点。

⏹变化的磁场可以产生电动势,因而有电场的产生。

⏹运动的电荷可以产生磁场。

变化的磁场可以产生电场,麦克斯韦认为自然界是对称的,因此,他认为变化的电场可以产生磁场。

教师活动:讲解麦克斯韦关于电磁场的两条基本理论。

教学设计1:4.2电磁场与电磁波

教学设计1:4.2电磁场与电磁波

4.2 电磁场与电磁波教学目标1.了解麦克斯韦电磁波理论的主要观点,知道电磁波的概念及通过电磁波体会电磁场的物质性。

2.体验赫兹证明电磁波存在的实验过程及实验方法,领会物理实验对物理学发展的基础意义。

教学重、难点电磁场理论的主要观点及赫兹证明电磁波存在的实验赫兹证明电磁波存在的实验过程及实验方法教学过程一、新课引入牛顿盖了一座房子,人类可以遮风避雨了,麦克斯韦看了看,觉得生活不太方便,顺手就把电线接进来了,于是“楼上楼下,电灯电话”,我们的小日子就过起来了。

后来爱因斯坦、普朗克、玻尔等发现地基不牢固,就把地基给挖了,不过电线还留着呢啊。

这个比方打完,是不是觉得麦克斯韦很伟大了啊。

但是麦克斯韦伟大在何处呢?二、新课学习1.电磁场(1)变化的磁场产生电场①在变化的磁场中放一个闭合电路,电路里会产生感应电流,如图所示。

这是法拉第发现的电磁感应现象。

②麦克斯韦进一步想到,既然产生了感应电流,一定是有了电场,它促使导体中的自由电荷做定向运动。

因此,麦克斯韦认为:这个现象的实质是变化的磁场在空间产生了电场。

电路中的自由电荷就是在这个电场的作用下做定向运动,产生了感应电流。

即使在变化的磁场中没有闭合电路,同样要产生电场,如图所示。

变化的磁场产生电场,这是一个普遍规律。

③非均匀变化的磁场产生变化的电场,均匀变化的磁场产生稳定的电场,稳定的磁场不产生电场。

(2)变化的电场产生磁场①麦克斯韦大胆地假设:变化的电场就像导线中的电流一样,会在空间产生磁场,如图所示。

即变化的电场产生磁场。

②非均匀变化的电场产生变化的磁场,均匀变化的电场产生稳定的磁场,稳定的电场不产生磁场。

(3)电磁场麦克斯韦认为在周期性变化的磁场周围产生周期性变化的电场,周期性变化的电场周围产生周期性变化的磁场,变化的电场和变化的磁场总是相互联系的,形成一个不可分离的统一的场,这就是电磁场。

周期性变化的电场和周期性变化的磁场交替产生,由近及远地向周围传播。

人教版选择性必修第二册42 电磁场与电磁波 教案

人教版选择性必修第二册42 电磁场与电磁波 教案

教案上课时间:年月日题课选择性必修二第四章第2节:电磁场与电磁波课型新课时 1教学目标1.了解麦克斯韦电磁场理论,知道电磁场是物质的一种形式。

2.领会在发现电磁波的过程中所蕴含的科学精神和科学研究方法,体会赫兹实验证明电磁波存在的重大意义。

3.了解发现电磁波的历史背景,知道麦克斯韦对电磁学的伟大贡献。

领会物理实验对物理学发展的基础意义。

学习重点麦克斯韦电磁场理论学习难点领会科学精神和科学研究方法教学过程教学环节(含备注)教学内容引入新课进行新课一.引入新课电磁波是怎样形成的?二.进行新课(一)电磁场1.变化的磁场产生电场证明:交流电产生了周期变化的磁场,上面的线圈中产生电流使灯泡发光2.变化的电场产生磁场麦克斯韦确信自然规律的统一性与和谐性,相信电场和磁场的对称美.3.麦克斯韦电磁场理论变化的磁场产生电场,周期性变化的磁场产生周期性变化的电场;变化的电场产生磁场,周期性变化的电场产生周期性变化的磁场。

4.理解:①恒定的电场不产生磁场②恒定的磁场不产生电场③均匀变化的电场在周围空间产生恒定的磁场④均匀变化的磁场在周围空间产生恒定的电场⑤振荡电场产生同频率的振荡磁场⑥振荡磁场产生同频率的振荡电场(二)电磁波1.电磁波的产生变化的电场和变化的磁场总是交替产生,并且由发生的区域向周围空间传播,电磁场由发生区域向远处传播就形成了电磁波。

2.电磁波的特点①电磁波是横波,在传播过程中,每一处的电场E 方向、磁场B 方向和传播方向都是互相垂直的。

②电磁波是物质波,在真空中也能传播,且以光速传播,在介质中传播的速度比光速小。

③电磁波从一种介质进入另一种介质,在传播过程中频率(周期)不变。

④电磁波能够脱离“振源”而继续传播(类同于机械波)。

⑤电磁波可以发生反射、折射、干涉、衍射、多普勒效应等的现象。

⑥电磁波的波长、波速、频率三者间关系v =λT =λf ,真空中有c =λT=λf 。

3.与机械波的区别4. 1886年,赫兹用实验证明了麦克斯韦预言的正确性,第一次发现了电磁波。

电磁场与电磁波电子教案

电磁场与电磁波电子教案

电磁场与电磁波(第四版)教案第一章 矢量分析主要内容1、矢量分析基础2、矢量场的散度3、矢量场的旋度4、标量场的梯度5、亥姆霍兹定理1、1矢量分析与场论基础一、 矢量与矢量场1、标量与矢量标量:只有大小、没有方向的物理量(如温度、高度等),用它的大小就能完整地描述物理量矢量:既有大小、又有方向的物理量(如力、电场强度等) 2、矢量的表示方式 (1) 数学表示n eA A ˆ=1ˆ0为表征矢量的方向,大小单位矢量,),(模值,表征矢量的大小AAeA n=∞ (2)图形表示:带有箭头的线段,线段的长度A = ,A 箭头表示A的方向空矢(零矢):唯一不能用箭头表示的矢量。

3、标量场与矢量场场概念的引入:物理量(如温度、电场、磁场等)在空间以某种形式分布,若每一时刻每个位置该物理量都有一个确定的值()(或t r F t r ,),(ψ),则称在该空间中确定了该物理量的场。

场的属性:占有一个空间,)(或t r F t r ,),(ψ在该空间区域内处处连续(除有限点或表面外)。

场的分类:按物理量的性质,(,)r t F r t ψ⎧⎨⎩标量场,物理量为标量,即每点单纯用一个代数量表示() 矢量场,物理量为矢量, 按物理量变化特性⎩⎨⎧的变化而变化时变场,物理量随时间)(间的变化而变化静态场,物理量不随时rψ二、矢量的运算 (以直角坐标系为例)z z y y x x z z y y x x B e B e B eB A e A e A e A ˆˆˆˆˆˆ++=++=1、矢量的加、减法说明:(1)矢量的加法符合交换律和结合律C B A C B A A B B A++=+++=±)()(,(2)矢量的加法和减法可用平行四边形法则求解A B A+BB B A -A2、矢量的乘法(1) 矢量与标量相乘A k e kA e kA e kA e A k A z z y y x x=++=ˆˆˆ⎪⎩⎪⎨⎧<>反向与同向与A A k k A A k k,0,0 (2) 矢量与矢量点乘z z y y x x AB B A B A B A B A B A ++==∙θcosABA B A B A B A B A ABB A θπθθcos 02,0上的投影在,平行与最大值⊥=∙==∙=AB点积说明:a 、两个矢量的点积为标量b 、矢量的点积符合交换律和分配律C A B A C B A A B B A ∙+∙=+∙∙=∙)((3) 矢量与矢量叉乘(矢量积))(ˆ)(ˆ)(ˆˆˆˆs i n ˆx y y x z z x x z y y z z y x z y x z yx z y x AB n B A B A e B A B A e B A B A e B B B A A A ee eAB e B A -+-+-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==⨯θ说明:a 、两个矢量的叉积为矢量b 、矢量的叉乘不符和交换律,但符合分配律 AB B A CA B A C B A A B B A⨯-=⨯⨯+⨯=+⨯⨯≠⨯)( c 、=⨯B A平行四边形面积,方向:垂直于B A 、所在的平面d 、矢量运算恒等式 三重矢量积三重标量积)()()()()()(B A C C A B C B A B A C A C B C B A∙-∙=⨯⨯⨯∙=⨯∙=⨯∙ 三、 常用正交坐标系1、直角坐标系(略讲) 基本变量:,,x y z),(∞-∞单位矢量:ˆˆˆˆˆˆˆˆˆˆˆˆ,,,,x y z x y z y z x z x y ee e ee e e e e e e e ⨯=⨯=⨯= z y x e e eˆˆˆ、、↑分别代表z y x 、、增加的方向,相互垂直且满足右手螺旋法则 矢量表示: z z y y x x A e A e A eA ˆˆˆ++=位置矢量:z e y e x er z y x ˆˆˆ++=微分长度元: dz e dy e dx er d z y x ˆˆˆ++=面元: d x d y ds dxdz ds dydz ds z y x ===,, 体元: d x d y d zdv = 拉梅系数:各方向的微分元与各自坐标的微分之比 1,1,1======dzdz h dy dy h dx dx h z y x 矢量运算:(见前)2、圆柱坐标系 基本变量:∞<<∞-≤≤∞<≤z z ,20,0,,πφρφρ单位矢量:ρφφρφρφρe e ee e ee e eeeez z z z ˆˆˆˆˆˆˆˆˆˆ,ˆ,ˆ⨯=⨯=⨯= z e e e ˆˆˆ、、φρ↑分别代表z 、、φρ增加的方向,相互垂直且满足右手螺旋法则 矢量表示:z z A e A e A eA ˆˆˆ++=φφρρ位置矢量:z e er z ˆˆ+=ρρ微分长度元:dz e d e d e z e d ed r d z z ˆˆˆ)ˆ()ˆ(++=+=φρρρφρρ面元: φρρρφρφρd d ds dz d ds dz d ds z ===,, 体元: dz d d dv φρρ= 拉梅系数: 1,,1======dzdz h d d h d d h z ρφφρρρφρ(第一次课完2.25) 说明:(1)圆柱坐标系与直角坐标系的变换关系z z y x y x e ee e e e e e zz y x ˆˆ,c o s ˆs i n ˆˆ,s i n ˆc o s ˆˆ,s i n ,c o s =+-=+====ϕϕϕϕϕρϕρφρ由于φρeeˆˆ、不是常矢量,与φ有关,可得ρϕϕρϕϕϕϕϕϕee e e ee e ey x y x ˆs i n ˆc o s ˆˆˆc o s ˆs i n ˆˆ-=--=∂∂=+-=∂∂(2)圆柱坐标系下矢量运算 z z z z B e B e B eB A e A e A e A ˆˆˆˆˆˆ++=++=φφρρφφρρzz z z z B A B A B A B A B A e B A e B A eB A ++=∙±+±+±=±φφρρφφφρρρ)(ˆ)(ˆ)(ˆ )(ˆ)(ˆ)(ˆˆˆˆρφφρρρφφφρφρφρφρB A B A e B A B A e B A B A e B B B A A A e ee B A z z z z Z z z z -+-+-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⨯3、球面坐标系基本变量: πϕπθϕθ20,0,0,,≤≤≤≤∞<≤r r单位矢量:θϕϕθφθϕθe e ee e ee e eeeer r r r ˆˆˆˆˆˆˆˆˆˆ,ˆ,ˆ⨯=⨯=⨯= 矢量表示: ϕϕθθA e A e A eA r r ˆˆˆ++=位置矢量: r er r ˆ=微分长度元:ϕθθϕθd r e rd e dr e e rd dr e er d r d r r r r sin ˆˆˆˆˆ)ˆ(++=+==面元: θϕθϕθθϕθr d r d ds drd r ds d d r ds r ===,sin ,sin 2体元: ϕθθd d r dr dv sin 2= 拉梅系数:θϕθsin ,,1r h r h h r ===说明:(1)球面坐标系与直角坐标系的变换关系z z y x z y x z y x r e ee e e e e e ee e e er z r y r x ˆˆcos ˆsin ˆˆsin ˆsin cos ˆcos cos ˆˆcos ˆsin sin ˆsin sin ˆˆcos ,sin sin ,cos sin =+-=-+=++====θϕθϕθϕθθϕθϕθθϕθϕθϕθ 由于φθe eer ˆˆˆ、、不是常矢量,与ϕθ、有关,可得 θθϕθϕϕθθϕθϕϕϕϕθθϕθcos ˆsin ˆˆ0ˆcos ˆˆˆˆsin ˆˆˆˆe eeee eeee ee er r r r --=∂∂=∂∂=∂∂-=∂∂=∂∂=∂∂ (2)球面坐标系下矢量运算ϕϕθθϕϕθθB e B e B eB A e A e A eA r r r r ˆˆˆˆˆˆ++=++=ϕϕθθϕϕϕθθθB A B A B A B A B A e B A e B A eB A r r r r r ++=∙±+±+±=±)(ˆ)(ˆ)(ˆ )(ˆ)(ˆ)(ˆˆˆˆr r r r r r r r B A B A e B A B A e B A B A eB B B A A A e ee B A θθϕϕϕθθϕϕθϕθϕθϕθ-+-+-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⨯1.2 标量场的梯度一、等值面(线)1、由场值相等的点构成的面(线),即为等值面(线),等位面、等高线等 即若标量函数为 ),,(z y x u u =,则等值面方程为2、特点:标量场中有无穷多个互不相交的等值面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁场与电磁波
一、导引
人类认识客观世界,发现新的事物,常有二种方式,一种是从生产实践,科学实验中观察分析后发现新的事物,另一种是从科学理论出发,预言新的事物存在,电磁波的发现,属于后一种。

麦克斯韦从电磁场理论出发,运用了较为深奥的数学工具,得到了描述电磁场特性的规律,并预言了电磁波的存在。

10年后,他的学生赫兹用实验方法证实了麦克斯韦的伟大预言,发射并接收了电磁波,从而开创了无线电技术的新时代。

我们现在粗略地介绍了一下麦克斯韦的这个理论。

准备知识: 1、分析闭合电路中电流的形成: 分析电路中AB 中电流的方向是A →B ,问为什么会有A 到 B 的电流,重点确定电流形成的实质是导体中有电场的结果,而
电场产生的电场力使电荷发生了定向移动。

结论:电路中电流形成的实质是电荷在电场力作用下发生的定向移动,而电场力的发生一....................................定伴随电场,电场的方向与导体中电流的方向相同。

.......................
2、感应电流的产生:
要使M 中产生感应电流的条件是什么?
穿过闭合回路M 的B 发生变化。

强调:在.M .环中产生感应电流的实质是环内产生了电场,电场驱....................... 使电子定向移动而产生了电流,电场的方向与电流方向相同。

...........................
那么将金属环拿走,当磁场变化时的电场是否存在呢?————引入麦克斯韦的电磁场理论。

3、一个变化的磁场中放一个闭合线圈会产生感应电流,这是一种电磁感应现象。

麦克斯韦研究了这种现象,认为若电路闭合就会有感应电流;若电路不闭合,则会产生感应电场;这个电场驱使导体中电子的运动,从而产生了感应电流。

麦克斯韦把这种情况的分析推广到不存在闭合电路
的情形,他认为在变化的磁场周围产生电场,是一种普
遍现象,跟闭合电路是否存在无关。

二、授课
1.麦克斯韦的理论要点一,变化的磁场产生电场
演示实验
当穿过螺线管的磁场随时间变化时,上面的线圈中产生感应电动势,引起感应电流使灯泡发光。

(1)线圈中产生感应电动势说明了什么?
麦克斯韦认为变化的磁场在线圈中产生电场,正是这种电场(涡旋电场)在线圈中驱使自由电子做定向的移动,引起了感应电流。

(2)如果用不导电的塑料线绕制线圈,线圈中还会有电流、电场吗?
引导学生思考后回答,有电场、无电流。

(3)想象线圈不存在时线圈所在处的空间还有电场吗?(有)
(4)总结说明,麦克斯韦认为线圈只不过用来显示电场的存在,线圈不存在时,变化的磁场同样在周围空间产生电场,即这是一种普遍存在的现象,跟闭合电路是否存在无关。

A
B
2.变化的电场产生磁场
我们知道,电流周围存在着磁场,麦克斯韦研究了电现象和磁现象的相似和联系。

经过反复思考提出一个假设,变化的电场产生磁场。

这一点,我们从哲学上知道,事物之间是相互联系的,可以相互转化。

比如根据麦克斯韦的理论,在给电容器充电的时候,不仅导体中电流要产生磁场,而且在电容器两极板间周期性变化着的电场周围也要产生磁场。

3.电磁场、电磁波
(1)概念
麦克斯韦根据自己的理论进一步预言,如果在空间某域中有周期性变化的电场,那么,这个变化的电场就在它周围空间产生周期性变化的磁场,这个变化的磁场又在它周围空间产生新的周期性变化的电场……。

可见,变化的电场和变化的磁场是相互联系的,形成一个不可分离的统一体,这就是电磁场,这种变化的电场和变化的磁场总是交替产生,并且由发生的区域向周围空间传播。

见课本6-7图,电磁场由发生区域向远处的传播就是电磁波。

(2)电磁波的特点
①是横波
②是物质波,真空中也能传播,能独立存在(与机械波不同)
③具有反射、折射、干涉、衍射等波的一切特性
(3)波速公式c=λ f
c为真空中速度,电磁波在真空中速度等于光速。

无线电技术中使用的电磁波叫无线电波,见课本表格介绍。

三、扩展
麦克斯韦的电磁场理论三点
1.变化的磁场能够在周围空间产生电场,变化的电场能够在周围空间产生磁场。

2.均匀变化的磁场,产生稳定的电场,均匀变化的电场,产生稳定的磁场。

这里的“均匀变化”指在相等时间内磁感应强度(或电场强度)的变化量相等,或者说磁感应强度(或电场强度)对时间变化率一定。

3.不均匀变化的磁场产生变化的电场,不均匀变化的电场产生变化的磁场
4.振荡的(即周期性变化的)磁场产生同频率的振荡电场,振荡的电场产生同频率的振荡磁场。

5.变化的电场和变化的磁场总是相互联系着,形成一个不可分离的统一体,这就是电磁场,向周围空间传播这就是电磁波。

四、学生活动设计
通过观察试验,发挥想象能力,画出变化磁场产生的电场的电场线。

2.总结机械波与电磁波的联系与区别
五、板书设计
电磁场和电磁波
麦克斯韦电磁场理论
1.变化的磁场产生电场
2.变化的电场产生磁场
3.电磁场→传播→电磁波。

相关文档
最新文档