九年级数学优等生训练卷11
中考数学优等生训练卷
优等生训练卷(1)一、填空题 1、若方程()()052322=+++--k x x x kx 有实数根,则k 的最小整数数是_________2、分式方程121112-=++-x x x x 的解是_________ 3、已知一次函数m x y +=23和n x y +-=21的图像都经过点A (–2,0),且与y 轴分别交于B 、C 两点,则△ABC 的面积等于_________4、如图,在四边形ABCD 中,已知AB =CD ,M 、N 、P 分别是AD ,BC 的中点,∠BDC=700,23cos =∠ABD ,那么∠NMP 的度数是_________ 5、如图,在△ABC 中,AC=2,D 是AB 的中点,E 是CD 上的一点,又ED=31CD ,若CE= 31AB ,且CE ⊥AE ,那么BC=_________ 二、解答题6、计算:()33131223211281⨯÷⎪⎭⎫ ⎝⎛-+⎥⎦⎤⎢⎣⎡-⋅-+-7、如图,在△ABC 中,已知AB=AC ,O 是BC 上一点,以O 为为圆心,OB 长为半径的圆与AC 相切于点A ,过点C 作CD ⊥BA ,垂足为D , (1)求证:∠CAD =2∠B ; (2)求证:CA 2=CD ·CO 。
8、如图,在⊙O 的内接△ABC 中,AB +AC =12,AD ⊥BC ,垂足D 在BC 上,且AD =3,设⊙O 的半径为y ,AB 长为x 。
(1)求y 与x 之间的函数关系式;(2)当AB 长等于多少时,⊙O 的面积最大。
9、如图,已知⊙O 1与⊙O 2外切于点O ,以直线O 1O 2为x 轴,点O 为坐标原点建立直角坐标系,直线AB 切⊙O 1于点B ,切⊙O 2于点A ,交y 轴于点C (0,2), 交x 轴于点M ;BO 的延长线交⊙O 2于点D ,且OB :OD =1:3, (l )求⊙O 2的半径长; (2)求直线AB 的解析式。
2020中学九年级数学优等生训练卷5套
2020中学九年级数学优等生训练卷5套九年级优等生训练卷(1)一、填空题(本大题有5小题,每小题4分,共20分)1、已知025=-y x ,那么()x y x :+=_________2、一元二次方程02=++c bx ax 两根之和为m ,两根的平方和为n ,那么c bm an 2++的值是_________3、方程:8|6||2|=-++x x 解是_________4、二次函数c bx ax y ++=2的图像如图所示,若|OA|=|OC|,那么b ac +=_________5、如图所示,在等腰梯形ABCD 中,DC ∥AB ,AC ⊥BC ,AC >BC ,△ABC 的面积为32,且AC +BC =()132+,那么此梯形的中位线长为_________二、解答题(本大题有4小题,共40分)6、(8分)已知:311=-y x ,求x xy y y xy x 252373---+的值。
7、(10分)如图,正方形ABCD 中,E ,F 分别是CD ,AD 的中点,BE ,CF 相交于G ,求证:AG=AB8、(10分)如图,在以O 为圆心的两个同心圆中,大圆的内接三角形△ABC 在圆环内,AC 与小圆相切于D ,AE 与小圆相切于E ,且B ,D ,E 在同一·直线上,求证:(1)△ABE ∽△BCD ;(2)AB 2:BC 2=BE :BD 。
9、(12分)在矩形ABCD 中,AB =a ,BC=b (a >b ),P 为AB 上的点,且DP ⊥CP 。
(1)满足上述条件的点P 存在两点,求a 、b 所满足的关系式;(2)满足上述条件的点P 有且仅有一点,求出a 、b 所满足的关系式;(3)a 、b 满足何种关系时,满足上述条件的点P 不存在。
九年级优等生训练卷(2)一、填空题::1、已知t t x +-=11,tt y +=12试用x 的代数式表示y 得y=_________ 2、设a 是方程0122=--x x 的根,。
初三数学优等生训练卷7-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试卷下
初三数学优等生训练卷7-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-初
中数学试卷-试卷下载
---------------------------------------优等生训练卷(7)
四、填空题(本大题有5小题,每小题4分,共20分)
27、三角形的三边互不相等,其中的两边长分别是2和5,且第三边的长也是整数,那么第三边的长为_________
28、在Rt△ABC中,△ACB=900,CD△AB,垂足为D,设BC=a,AC=b,若AB=16,且CD=6,那么a–b=_________
29、已知方程的两个实根为α、β,α=β,且α>β,那么a=_________ ,b的取值范围是_________
30、如图,在△ABC中,AB=AC=6,BC=4,F为AB的中点,延长BC到D,使CD=BC,连接FD交AC于E,那么四边形BCEF的面积为_________。
31、不等式的解集是_________
五、解答题(本大题有4小题,共40分)
32、(8分)已知菱形ABCD的周长为2p,对角线AC与BD的和是q,求菱形ABCD的面积。
33、(10分)如图,C是直径AB上任意一点,DE为△O的切线,D为切点,CE△DE,垂足为E,求证:CE·AB=AC·BC+CD2。
34、(10分)已知p、q为实数。
(1)方程有实数根,求证:p+q<1;
(2)若p2+q<0,求证:方程没有实数根。
35、如图,半径分别为R、r的两圆△O1,△O2,相交于点A、B,经过校点B的任意一条直线和两圆分别相交于C、D,求证:AC:AD为定值,并求出此定值。
感谢阅读,欢迎大家下载使用!。
初三数学培优试卷及答案
一、选择题(每题5分,共50分)1. 已知一元二次方程x^2 - 5x + 6 = 0,则方程的解为:A. x = 2,x = 3B. x = 1,x = 6C. x = 2,x = 4D. x = 3,x = 52. 下列函数中,是奇函数的是:A. y = x^2B. y = x^3C. y = |x|D. y = x^43. 在等腰三角形ABC中,AB = AC,若∠BAC = 40°,则∠B = ∠C = °。
4. 下列命题中,正确的是:A. 平行四边形的对角线互相平分B. 等腰三角形的底角相等C. 直角三角形的两条直角边相等D. 矩形的对边平行且相等5. 若a、b、c是等差数列,且a + b + c = 12,则a^2 + b^2 + c^2的值为:6. 已知二次函数y = ax^2 + bx + c的图象开口向上,且顶点坐标为(1, -2),则a、b、c的值分别为:7. 在直角坐标系中,点A(2, 3)关于x轴的对称点为B,则点B的坐标为:8. 已知等腰三角形ABC中,AB = AC,且BC = 6,AD是BC边上的高,则AD的长度为:9. 下列不等式中,正确的是:A. 3x > 2x + 1B. 2x < 3x - 1C. 3x ≥ 2x + 1D. 2x ≤ 3x - 110. 若a、b、c是等比数列,且a + b + c = 27,b^2 = ac,则a、b、c的值分别为:二、填空题(每题5分,共50分)11. 已知一元二次方程x^2 - 4x + 3 = 0的解为x1和x2,则x1 + x2 = ,x1x2 = 。
12. 函数y = 2x - 3的图象与x轴、y轴的交点坐标分别为(),()。
13. 在等腰三角形ABC中,AB = AC,若∠BAC = 45°,则∠B = ∠C = °。
14. 下列命题中,正确的是:平行四边形的对角线互相平分,等腰三角形的底角相等,矩形的对边平行且相等。
初三数学优等生训练卷17-初中三年级数学试题练习、期中期末试卷-初中数学试卷
初三数学优等生训练卷17-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-
初中数学试卷-试卷下载
优等生训练卷(17)
一、填空题:
1、对于非零实数a、b、c,若,则=_________
2、二次函数,当x=2时的值最小.设x等于–1,1,4时y的值依次等于p,q,r,则p、q、r的大小关系是_________
3、如图,正三角形ABC中,D,E分别在BC、AC上,CD=AE=AB,AD,BE相交于P,BQ⊥AD 于Q,则AP:PQ:QD=_________
4、如图,以⊥O的半径OC为直径的⊥O1与AB相切于D,AB是⊥O弦,已知劣弧CD,劣弧CA的长分别为3和2,那么劣弧AB的长为
5、A、B两地之间的公路有上坡路和下坡路,汽车从A到B比从B返回A多行驶15分钟,已知汽车在平路行驶的速度是每小时50千米,上坡减速,下坡加速,那么从A到B的上坡路比下坡路长_________千米。
二、问答题:
6、化简:
7、如图AD是⊥ABC的内角平分线,⊥BAC的外角平分线与BC的延长线交于E,CF⊥AD于F,BF的延长线交AE于G,求证:AG=EG
8、已知关于x的方程
(1)求证:无论实数a为何值,这个方程必有两个不相等的实数根;
(2)设这个方程两根,,当a<2时,求a的值。
9、如图,⊥O1与⊥O2相交于A,B,CD是公切线,C、D是切点,CA的延长线交⊥O2于E,连结BC,BD,BE,DE。
(1)求证:BD平分⊥CBE;
(2)已知BE=2,DE=,BD=3,求CD的长。
欢迎下载使用,分享让人快乐。
优等生试卷答案初三数学
一、选择题1. 下列各数中,有理数是()A. √2B. πC. √-1D. 0答案:D解析:有理数包括整数和分数,0是有理数,而√2和π是无理数,√-1是虚数。
2. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 1答案:C解析:绝对值表示数与0的距离,所以绝对值最小的是0。
3. 下列函数中,定义域为全体实数的是()A. y = √xB. y = 1/xC. y = x^2D. y = √(x+1)答案:C解析:函数y = x^2的定义域为全体实数。
4. 下列各数中,是正比例函数图象上一点的是()A. (2, 4)B. (-2, 4)C. (2, -4)D. (-2, -4)答案:A解析:正比例函数图象上的点满足y=kx(k为常数),所以(2, 4)是正比例函数图象上的一点。
5. 已知等腰三角形底边长为4,腰长为5,那么它的面积是()A. 6B. 8C. 10D. 12答案:C解析:等腰三角形底边上的高是底边的一半,即2,所以面积S=1/2×底边×高=1/2×4×2=10。
二、填空题6. 分数-3/5的相反数是________。
答案:3/5解析:一个数的相反数是指与它相加等于0的数,所以-3/5的相反数是3/5。
7. 若x+2=5,则x=________。
答案:3解析:将等式两边同时减去2,得到x=5-2=3。
8. 在直角坐标系中,点P(2, -3)关于y轴的对称点坐标是________。
答案:(-2, -3)解析:点P关于y轴的对称点坐标,横坐标取相反数,纵坐标不变。
9. 若一个数的平方是4,那么这个数是________。
答案:±2解析:一个数的平方是4,那么这个数可以是2或者-2。
10. 一个等腰三角形的底边长为8,腰长为10,那么它的周长是________。
答案:28解析:等腰三角形的周长=底边长+两腰长=8+10+10=28。
初三数学优等生试卷
一、选择题(每题3分,共30分)1. 已知方程2x-3=5的解为()A. x=4B. x=3C. x=2D. x=12. 若一个等差数列的公差为2,且首项为3,则该数列的第10项为()A. 19B. 21C. 23D. 253. 在直角坐标系中,点A(2,3)关于x轴的对称点为()A. A(2,-3)B. A(-2,3)C. A(2,-3)D. A(-2,-3)4. 若一个等比数列的首项为2,公比为3,则该数列的前5项之和为()A. 31B. 42C. 52D. 635. 在△ABC中,∠A=60°,∠B=45°,则∠C的度数为()A. 75°B. 90°C. 105°D. 120°6. 若一个等差数列的前三项分别为3,5,7,则该数列的公差为()A. 1B. 2C. 3D. 47. 已知方程x^2-5x+6=0的解为()A. x=2或x=3B. x=2或x=4C. x=3或x=4D. x=1或x=48. 在平面直角坐标系中,点P(-2,3)关于y轴的对称点为()A. P(-2,-3)B. P(2,3)C. P(2,-3)D. P(-2,3)9. 若一个等比数列的首项为4,公比为1/2,则该数列的前5项之和为()A. 15B. 30C. 60D. 12010. 在△ABC中,∠A=30°,∠B=75°,则∠C的度数为()A. 75°B. 90°C. 105°D. 120°二、填空题(每题3分,共30分)11. 已知方程2x-3=5的解为x=______。
12. 若一个等差数列的公差为2,且首项为3,则该数列的第10项为______。
13. 在直角坐标系中,点A(2,3)关于x轴的对称点为______。
14. 若一个等比数列的首项为2,公比为3,则该数列的前5项之和为______。
优等生数学(九年级)
优等生数学(第二版九年级)圆心角、圆弧和弦1. 如图18-1所示,在△AOB中,∠AOB=100°,∠A=15°,以O为圆心,OB为半径的圆交AB、AO边分别于C、D。
求证:BC=CD。
2. 在平行四边形ABCD中,∠D=50°,以钝角的顶点为圆心,AB长为半径画圆,分别交AD、BC于F、G,交BA的延长线于E,求劣弧EG的度数.3.如图所示,△ABC是等边三角形,以边AB为直径的圆O交BC边于D,交AC 边于E。
求证:(1)弧BD=弧DE=弧EA;(2)BD=DC,CE=EA。
4.如图所示,AB为圆O的一条直径,自上半圆上一点C作弦CD AB,设∠OCD的角平分线交圆O于P。
求证:当C点在上半圆(不包括A、B两点)上移动时,点P的位置不变。
垂径定理经典例题如图所示,AB是圆O的弦,P是AB上一点,AB=10,OP=5,圆O的半径是7,求AP。
举一反三1.如图所示,AB是一个圆的一条弦,C是弧AB的中点,CD⊥AB,已知AB=16,CD=4,求此圆的半径。
2.圆的半径为13,它的两条平行弦的长度分别为10和24,求这两条弦之间的距离。
3.如图所示,AB是圆的直径,CD是圆O的弦,EC⊥CD,FD⊥CD。
证明:AE=BF。
4. 如图所示,AB 是圆O 的直径,CD 是圆O 的弦,AB 与CD 相交于E ,∠AEC=45°,圆O 的半径为1,求证222=+ED EC 。
圆周角经典例题如图所示,在圆O 中,∠ACD=30°,AB=BC=CD 。
求∠P 的度数。
举一反三1. 如图所示,在圆O 中,弦AB=1,圆周角∠ACB=30°,求圆O 的直径。
2.如图所示,A、B、C是圆O上三点,∠ACB的角平分线CD交圆O于点D,过D作DE∥AC,证明:DE=BC。
3.如图所示,AD、BC是圆O中两条弦,OA⊥OB,AC⊥BD。
求证AD∥BC。
4. 如图所示,直角△ABC中,∠BAC=90°,D是BC的中点,圆O过A、D两点交AB于E,过E作弦EF∥BC。
九年级数学优等生训练卷6-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试卷
九年级数学优等生训练卷6-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-
初中数学试卷-试卷下载
---------------------------------------优等生训练卷(6)
四、填空题(本大题有5小题,每小题4分,共20分)
27、分解因式=_________
28、化简=_________
29、如图,△ABC中,DE△BC,BE,DC交于O,AO与BC相交于M,则图中共有_________对相似三角形。
若DE=2cm,BC=6cm,DE=1.5cm,那么BE=_________
30、如图,C,D是以AB为直径的半圆上的三等分点,圆半径为R,则与阴影部分面积相等的圆的周长为_________
31、Rt△ABC中,△C= Rt△,AB=5,sinA,sinB是方程的两实根,那么AB边上的高为_________,m的值是_________
五、解答题(本大题有4小题,共40分)
32、(8分)当x=sin600时,求代数式的值。
33、(10分)△ABC中,△C=900,AC= cm,△A的平分线AD的长是cm,求:(1)AB和BC 的长;(2)△ABC的外接圆半径R和内切圆半径r。
34、如图,一次函数的图象与y轴交于A点,与y轴交于B点,以C(1,0)为圆心的△C 与直线切于点D,△C交x轴于点E,F,求经过B、E、A三点且对称轴平行于y轴的抛物线的解析式。
35、如图,△ABC内接于△O,AB=AC,M,N分别在AB,AC上,其中N是AC的中点,AM:MB=2:1.
(1)求△ABC与四边形MBCN的面积比;(2)当AB=4cm,△O的半径是cm时,求四边形MBCN的面积。
感谢阅读,欢迎大家下载使用!。
《1.3正方形的性质与判定》同步优生辅导训练(附答案)2020-2021学年九年级数学北师大版上册
2021学年北师大版九年级数学上册《1.3正方形的性质与判定》同步优生辅导训练(附答案)1.如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC,PF⊥CD,垂足分别为点E,F,连接AP,EF,给出下列四个结论:①AP=EF;②∠PFE=∠BAP;③PD=EC;④△APD一定是等腰三角形.其中正确的结论有()A.①②④B.①②③C.②③④D.①②③④2.如图所示,在正方形ABCD中,E为CD边中点,连接AE,对角线BD交AE于点F,已知EF=1,则线段AE的长度为()A.2B.3C.4D.53.如图,在正方形ABCD中,BD=2,∠DCE是正方形ABCD的外角,P是∠DCE的角平分线CF上任意一点,则△PBD的面积等于()A.1B.C.2D.无法确定4.如图,在正方形ABCD中,AB=4.E,F分别为边AB,BC的中点,连接AF,DE,点N,M分别为AF,DE的中点,连接MN,则MN的长为()A.B.2C.D.25.将五个边长都为2cm的正方形按如图所示摆放,点A、B、C、D分别是四个正方形的中心(对角线的交点),则图中四块阴影面积的和为()A.2cm2B.4cm2C.6cm2D.8cm26.如图,四边形ABCD是正方形,以CD为边作等边三角形CDE,BE与AC相交于点M,则∠AMD的度数是()A.75°B.60°C.54°D.67.5°7.如图,E是边长为1的正方形ABCD的对角线BD上一点,且BE=BC,P为CE上任意一点,PQ⊥BC于点Q,PR⊥BE于点R,则PQ+PR的值是()A.B.C.D.8.在正方形ABCD中,点E为BC边的中点,点B′与点B关于AE对称,B′B与AE交于点F,连接AB′,DB′,FC.下列结论:①AB′=AD;②△FCB′为等腰直角三角形;③∠ADB′=75°;④∠CB′D=135°.其中正确的是()A.①②B.①②④C.③④D.①②③④9.如图,在正方形ABCD中,△ABE和△CDF为直角三角形,∠AEB=∠CFD=90°,AE =CF=5,BE=DF=12,则EF的长是()A.7B.8C.7D.710.如图,已知P是正方形ABCD对角线BD上一点,且BP=BC,则∠ACP度数是()A.45°B.22.5°C.67.5°D.75°11.正方形ABCD、正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK上,正方形BEFG的边长为4,则△DEK的面积为()A.10B.12C.14D.1612.如图,将正方形OABC放在平面直角坐标系xOy中,O是原点,若点A的坐标为(1,),则点C的坐标为()A.(,1)B.(﹣1,)C.(﹣,1)D.(﹣,﹣1)13.如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为()A.B.C.D.14.如图,在正方形ABCD中,AB=3,点EF分别在CD,AD上,CE=DF,BE,CF相交于点G.若图中阴影部分的面积与正方形ABCD的面积之比为2:3,则△BCG的周长为()A.7B.3+C.8D.3+15.如图,已知正方形ABCD的对角线交于O,过O点作OE⊥OF,分别交AB、BC于E、F,若AE=4,CF=3,则EF的值是()A.7B.5C.4D.316.如图,四边形OABC为正方形,点D(3,1)在AB上,把△CBD绕点C顺时针旋转90°,则点D旋转后的对应点D′的坐标是.17.如图所示,直线a经过正方形ABCD的顶点A,分别过顶点B、D作DE⊥a于点E、BF⊥a于点F,若DE=4,BF=3,则EF的长为.18.点C是线段AB上的动点,分别以AC,BC为边向上方作正方形ACDE,正方形CBGF,连接AD,AD,BF的中点M,N,若AB=4,则MN的最小值为.19.如图,在边长为1的正方形ABCD中,对角线AC,BD相交于O点,H为边BC上的点,过点H作EH⊥BC,交线段OB于点E,连接DH交CE于点F,交OC于点G.若OE=OG,则HC的长为.20.如图,正方形ABCD的边长是2,对角线AC、BD相交于点O,点E、F分别在边AD、AB上,且OE⊥OF,则四边形AFOE的面积为.21.如图,已知平行四边形ABCD,若M,N是BD上两点,且BM=DN,AC=2OM.(1)求证:四边形AMCN是矩形;(2)△ABC满足什么条件,四边形AMCN是正方形,请说明理由.22.如图所示,正方形ABCD的对角线AC、BD相交于点O,点E是OC上一点,连接BE,过点A作AM⊥BE,垂足为M,AM与BD相交于点F.求证:BE=AF.23.如图,四边形ABCD是正方形,G是BC上任意一点,DE⊥AG于点E,BF∥DE,且交AG于点F.(1)求证:△ADE≌△BAF;(2)求证:DE﹣BF=EF;(3)若AB=2,BG=1,求线段EF的长.24.如图1,△ABC是以∠ACB为直角的直角三角形,分别以AB,BC为边向外作正方形ABFG,BCED,连接AD,CF,AD与CF交于点M,AB与CF交于点N.(1)求证:△ABD≌△FBC;(2)如图2,在图1基础上连接AF和FD,若AD=6,求四边形ACDF的面积.25.如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为8,E为OM的中点,求MN的长.参考答案1.解:延长PF交AB于点G,∵PF⊥CD,AB∥CD,∴PG⊥AB,即∠PGB=90°.∵PE⊥BC,PF⊥CD,∴四边形GBEP为矩形,又∵∠PBE=∠BPE=45°,∴BE=PE,∴四边形GBEP为正方形,四边形PFCE为矩形.∴GB=BE=EP=GP,∴GP=PE,AG=CE=PF,又∠AGP=∠C=90°,∴△AGP≌△FPE(SAS).∴AP=EF,∠PFE=∠BAP,故①、②正确;在Rt△PDF中,由勾股定理得PD=,故③正确;∵P在BD上,∴当AP=DP、AP=AD、PD=DA时,△APD才是等腰三角形,∴△APD是等腰三角形共有3种情况,故④错误.∴正确答案有①②③,故选:B.2.解:∵正方形ABCD,∴AB=CD,AB∥CD,∴∠ABF=∠FDE,∠BAF=∠DEF,∵E为CD边中点,∴DE=CD=,∵EF=1,∴AF=2,∴AE=EF+AF=3,故选:B.3.解:过C点作CG⊥BD于G.∵CF是∠DCE的平分线.∴∠FCE=45°.∵∠DBC=45°.∴CF∥BD.∴CG等于△PBD的高.∵BD=2.∴CG=1.∴△PBD的面积等于.故选:A.4.解:连接AM,延长AM交CD于G,连接FG,∵四边形ABCD是正方形,∴AB=CD=BC=4,AB∥CD,∠C=90°,∴∠AEM=∠GDM,∠EAM=∠DGM,∵M为DE的中点,∴ME=MD,在△AEM和GDM中,,∴△AEM≌△GDM(AAS),∴AM=MG,AE=DG=AB=CD,∴CG=CD=2,∵点N为AF的中点,∴MN=FG,∵F为BC的中点,∴CF=BC=2,∴FG==2,∴MN=,故选:C.5.解:如图,连接AP,AN,点A是正方形的对角线的交点.则AP=AN,∠APF=∠ANE=45°,∵∠P AF+∠F AN=∠F AN+∠NAE=90°,∴∠P AF=∠NAE,∴△P AF≌△NAE,∴四边形AENF的面积等于△NAP的面积,而△NAP的面积是正方形的面积的,而正方形的面积为4,∴四边形AENF的面积为1cm2,四块阴影面积的和为4cm2.故选:B.6.解:如图,连接BD,∵∠BCE=∠BCD+∠DCE=90°+60°=150°,BC=EC,∴∠EBC=∠BEC=(180°﹣∠BCE)=15°∵∠BCM=∠BCD=45°,∴∠BMC=180°﹣(∠BCM+∠EBC)=120°,∴∠AMB=180°﹣∠BMC=60°∵AC是线段BD的垂直平分线,M在AC上,∴∠AMD=∠AMB=60°故选:B.7.解:连接BP,过C作CM⊥BD,∵S△BCE=S△BPE+S△BPC=BC×PQ×+BE×PR×=BC×(PQ+PR)×=BE×CM×,BC=BE,∴PQ+PR=CM,∵BE=BC=1,且正方形对角线BD=BC=,又∵BC=CD,CM⊥BD,∴M为BD中点,又△BDC为直角三角形,∴CM=BD=,即PQ+PR值是.故选:D.8.解:①∵点B′与点B关于AE对称,∴△ABF与△AB′F关于AE对称,∴AB=AB′,∵AB=AD,∴AB′=AD.故①正确;②如图,连接EB′.则BE=B′E=EC,∠FBE=∠FB′E,∠EB′C=∠ECB′.则∠FB′E+∠EB′C=∠FBE+∠ECB′=90°,即△BB′C为直角三角形.∵FE为△BCB′的中位线,∴B′C=2FE,∴FB′=2FE.∴B′C=FB′.∴△FCB′为等腰直角三角形.故②正确.④设∠ABB′=∠AB′B=x度,∠AB′D=∠ADB′=y度,则在四边形ABB′D中,2x+2y+90°=360°,即x+y=135度.又∵∠FB′C=90°,∴∠DB′C=360°﹣135°﹣90°=135°.故④正确.③假设∠ADB′=75°成立,则∠AB′D=75°,∠ABB′=∠AB′B=360°﹣135°﹣75°﹣90°=60°,∴△ABB′为等边三角形,故B′B=AB=BC,与B′B<BC矛盾,故③错误.故选:B.9.解:如图所示:∵四边形ABCD是正方形,∴∠BAD=∠ABC=∠BCD=∠ADC=90°,AB=BC=CD=AD,∴∠BAE+∠DAG=90°,在△ABE和△CDF中,,∴△ABE≌△CDF(SSS),∴∠ABE=∠CDF,∵∠AEB=∠CFD=90°,∴∠ABE+∠BAE=90°,∴∠ABE=∠DAG=∠CDF,同理:∠ABE=∠DAG=∠CDF=∠BCH,∴∠DAG+∠ADG=∠CDF+∠ADG=90°,即∠DGA=90°,同理:∠CHB=90°,在△ABE和△ADG中,,∴△ABE≌△ADG(AAS),∴AE=DG,BE=AG,同理:AE=DG=CF=BH=5,BE=AG=DF=CH=12,∴EG=GF=FH=EF=12﹣5=7,∵∠GEH=180°﹣90°=90°,∴四边形EGFH是正方形,∴EF=EG=7;故选:C.10.解:∵ABCD是正方形,∴∠DBC=∠BCA=45°,∵BP=BC,∴∠BCP=∠BPC=67.5°,∴∠ACP=∠BCP﹣∠BCA=67.5°﹣45°=22.5°.故选:B.11.解:如图,连DB,GE,FK,则DB∥GE∥FK,在梯形GDBE中,S△DGE=S△GEB(同底等高的两三角形面积相等),同理S△GKE=S△GFE.∴S阴影=S△DGE+S△GKE,=S△GEB+S△GEF,=S正方形GBEF,=4×4=16故选:D.12.解:作AD⊥轴于D,作CE⊥x轴于E,如图所示:则∠ADO=∠OEC=90°,∴∠1+∠2=90°,∵点A的坐标为(1,),∴OD=1,AD=,∵四边形OABC是正方形,∴∠AOC=90°,OC=AO,∴∠1+∠3=90°,∴∠3=∠2,在△OCE和△AOD中,,∴△OCE≌△AOD(AAS),∴OE=AD=,CE=OD=1,∴点C的坐标为(﹣,1);故选:C.13.解:∵四边形ABCD是正方形,M为边DA的中点,∴DM=AD=DC=1,∴CM==,∴ME=MC=,∵ED=EM﹣DM=﹣1,∵四边形EDGF是正方形,∴DG=DE=﹣1.故选:D.14.解:∵阴影部分的面积与正方形ABCD的面积之比为2:3,∴阴影部分的面积为×9=6,∴空白部分的面积为9﹣6=3,由CE=DF,BC=CD,∠BCE=∠CDF=90°,可得△BCE≌△CDF,∴△BCG的面积与四边形DEGF的面积相等,均为×3=,∠CBE=∠DCF,∵∠DCF+∠BCG=90°,∴∠CBG+∠BCG=90°,即∠BGC=90°,设BG=a,CG=b,则ab=,又∵a2+b2=32,∴a2+2ab+b2=9+6=15,即(a+b)2=15,∴a+b=,即BG+CG=,∴△BCG的周长=+3,故选:D.15.解:∵OB=OC,∵OE⊥OF∴∠EOB+∠FOB=90°∵四边形ABCD是正方形∴∠COF+∠BOF=90°∴∠EOB=∠FOC而∠OBE=∠OCF=45°在△OFC和△OEB中,∴△OFC≌△OEB(ASA),∴OE=OF,CF=BE=3cm,则AE=BF=4,根据勾股定理得到EF==5cm.故选:B.16.解:△CBD绕点C顺时针旋转90°得到的图形如上图所示.∵D的坐标为(3,1),∴OA=3,AD=1∵在正方形OABC中,OA=AB,∴AB=3,∴BD=AB﹣AD=2,∴OD'=BD=2,∴D'的坐标为(﹣2,0),故答案为(﹣2,0).17.解:∵ABCD是正方形∴AB=AD,∠ABC=∠BAD=90°∵∠ABC+∠ABF=∠BAD+∠DAE∴∠ABF=∠DAE在△AFB和△AED中∠ABF=∠DAE,∠AFB=∠AED,AB=AD∴△AFB≌△AED∴AF=DE=4,BF=AE=3∴EF=AF+AE=4+3=7.故答案为:7.18.解:当点C为线段AB中点时,MN有最小值,如图,∵AB=4,∴AC=CB=2,∵四边形ACDE和四边形CBGF是正方形,∴∠ACD=∠BCF=90°,∵M是AD中点,N是BF中点,∴MN是△ABD的中位线,∴MN=AB=2,故答案为:2.19.解:设CH=x,∵四边形ABCD是正方形,AB=1,∴BH=1﹣x,∠DBC=∠BDC=∠ACB=45°,∵EH⊥BC,∴∠BEH=∠EBH=45°,∴EH=BH=1﹣x,∵∠OGD=∠CGF,∵∠DOG=∠GFC=90°,∴∠ODG=∠OCE,∴∠BDC﹣∠ODG=∠ACB﹣∠OCE,∴∠HDC=∠ECH,∵EH⊥BC,∴∠EHC=∠HCD=90°,∴HC=,故答案为:.20.解:∵四边形ABCD是正方形,∴OA=OB,∠OAE=∠OBF=45°,AC⊥BD,∴∠AOB=90°,∵OE⊥OF,∴∠EOF=90°,∴∠AOE=∠BOF,在△AOE和△BOF中,,∴△AOE≌△BOF(ASA),∴△AOE的面积=△BOF的面积,∴四边形AFOE的面积=正方形ABCD的面积=×22=1;故答案为:1.21.证明:(1)∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵对角线BD上的两点M、N满足BM=DN,∴OB﹣BM=OD﹣DN,即OM=ON,∴四边形AMCN是平行四边形,∵AC=2OM,∴MN=AC,∴四边形AMCN是矩形;(2)由(1)可知,四边形AMCN为矩形,∴只需AM=MC,则矩形AMCN为正方形,∵O为AC中点,M在BO上,∴BO⊥AC,时,AM=MC,在△BOA与△BOC中,,∴△BOA≌△BOC(SAS),∴AB=BC,∴△ABC是等腰三角形,故△ABC为等腰三角形时,四边形AMCN是正方形.22.证明:∵正方形ABCD的对角线AC、BD相交于点O,∴∠AOF=∠BOE=90°,OA=OB,∵AM⊥BE,∴∠BMF=90°,∴∠AOF=∠BMF,又∵∠BFM=AFO,∴∠F AO=∠EBO,∴在△F AO和△EBO中,,∴△F AO≌△EBO(ASA).∴BE=AF.23.证明:(1)∵四边形ABCD是正方形,∴AB=AD,∠ABC=∠BAD=90°,∵DE⊥AG,∴∠AED=∠DEF=90°,∵BF∥DE,∴∠AFB=∠DEF=∠DEA=90°,∴∠BAF+∠DAE=∠ADE+∠DAE=90°,∴∠BAF=∠ADE,在△ABF和△DAE中,,∴△DAE≌△ABF(AAS);(2)∵△DAE≌△ABF,∴AE=BF,DE=AF,∵AF﹣AE=EF,∴DE﹣BF=EF;(3)∵∠ABC=90°,∴AG2=AB2+BG2=12+22=5,∴AG=,∵S△ABG=AG•BF,∴BF=,在Rt△ABF中,AF2=AB2﹣BF2=22﹣=,∴DE=AF=,∴EF=DE﹣BF=.24.(1)证明:∵四边形ABFG和四边形BCED是正方形,∴BC=BD,AB=BF,∠CBD=∠ABF=90°,∴∠CBD+∠ABC=∠ABF+∠ABC,∴∠ABD=∠CBF,在△ABD和△FBC中,∴△ABD≌△FBC(SAS);(2)解:∵△ABD≌△FBC,∴∠BAD=∠BFC,AD=FC=6,∴∠AMF=180°﹣(∠BAD+∠ANM)=180°﹣(∠BFC+∠BNF)=180°﹣(180°﹣∠ABF)=180°﹣(180°﹣90°)=90°,即AD⊥CF,∴四边形ACDF的面积S=S△ACD+S△ADF=+===18.25.解:(1)证明:∵四边形ABCD是正方形,∴OA=OB,∠DAO=45°,∠OBA=45°,∴∠OAM=∠OBN=135°,∵∠EOF=90°,∠AOB=90°,∴∠AOM=∠BON,在△OAM和△OBN中,∴△OAM≌△OBN(ASA),∴OM=ON;(2)如图,过点O作OH⊥AD于点H,∵正方形的边长为8,∴OH=HA=4,∵E为OM的中点,∴HM=8,则OM==4,∴MN=OM=4.。
九年级数学尖子生培优竞赛专题辅导第十一讲 解直角三角形(含答案)
第十一讲 解直角三角形趣题引路】台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力,据气象观测,距沿海某城市A 的正南方向220kmB 处有一台风中心,其中心最大风力为12级,每远离台风中心20km ,风力就会减弱一级,该台风中心现正以15km/h 的速度沿北偏东30°方向往C 移动,且台风中心风力不变,若城市所受风力达到或超过四级,则称为受台风影响,若你是该市气象局的首席气象专家,请你对此次台风对该市的影响情况作出预测。
(1)该市是否会受到这次台风的影响?请说明理由;(2)若会受到台风的影响,那么台风影响该城市的持续时间有多长?(3)该城市受到台风影响的最大风力为几级?ABCD E F图11-1解析 (1)作AD BC ⊥于点D ,(如图11-1), °220,30111.2AD B AD AB km =∠=∴==,由题意知,当A 点距台风中心不超过160km 时,就会受台风影响.由于AD=110<160,所以A 市会受这次台风影响;(2)在BD 及BD 的延长线上分别取E 、F 两点,使AE=AF=160km ,则当台风中心从到达E 点时起,直到离开F 点,该市都会受到这次台风的影响,),2).DE AE km EF DE km ===∴==∴)h =; (3)当台风中心位于D 时,A 市所受这次这次台风的风力最大,其最大风力为()11012 6.520-=级知识延伸】解三角形,除运用锐角三角函数知识,往往还要用到我们已经学过的勾股定理,以及另两个非常重要的定理:正弦定理和余弦定理.C图11-2如图11-2,在△ABC 中,AC=b ,AB=c ,BC=a .过A 作BC 上的高,长为ha ,则有sin ,ha B c =sin ,ha C b =于是有sin sin ,c B b C ⋅=⋅于是,得sin sin b cB C=,同理可得,sin sin a b A B =因此 ,sin sin sin a b cA B C==这就是正弦定理,推而广之可得一个重要的三角形面积计算公式 111sin sin sin .222ABC S ab C ac B bc A ∆===在上图中,222cos cos ,cos ,BD AB B c B CD BC BD a c B AB BD AD =⋅=⋅=-=-⋅-= ()()222222,cos cos ,AC DC c c B b a c B =-∴-⋅=--⋅得2222cos b a c ac B =+-,同理可得2222cos a b c bc A =+-,2222cos c a b ab C =+-.这就是余弦定理.运用正弦定理和余弦定理可以将三角形的范围由直角三角形扩充到斜三角形.例1 已知,如图11-3,在四边形ABCD 中AD=CD,AB=7,tan 2,A B D =∠=∠=90°,求BC 的长.ABD CE图11-3解析 延长AB 与DC 交于点E ,∠D=90°,tan 2,DEA AD∴==得DE=2AD,CD AD = .EC DC AD ∴==∠BCE=180°-∠BCD=∠A ,tan 2.BEBCE BC∴∠== 设BC=x ,则BE=2x ,因而,又222,AE AD DE =+()))()222127772,1.33x x x BC ∴+=+==-=解得或舍去,故点评:一般图形化为直角三角形,结合方程或二次函数,往往能够简捷地解决问题.例2 在四边形ABCD 中,AB=4,BC=3,CD=12,∠B=90°,36S =四边形ABCD ,求AD 的长.DC图11-4解析 如图11-4,连接AC ,则△ABC 为Rt △,于是AC=5,1136363430.sin 22ACD ABC S S AC CD ACD ∆∆∴=-=-⨯⨯=∴⋅⋅∠=30°, 即1512sin ACD 2⨯⨯⋅∠=30°,sin 1,ACD ACD ∴∠=∴∠=90°. ∴由勾股定理知13.AD ==点评:运用公式1sin 2ABC S ab C ∆=不但可以求三角形的面积,而且可以由面积求边角的大小好题引路】佳题新题品味.例1 如图11-5,河对岸有A 、B 两目标,但不能到达,在河这边沿着与AB 平行的方向取相距40m 的C 、D 两点(点A 、B 、C 、D 在同一平面内),并测得∠ACB=70°,∠BCD=65°,∠ADC=30°,求A 、B 两目标之间的距离.(结果不取近似值,用含有锐角三角函数的式子表示.)DBAC EF图11-5解析 作AE ⊥CD,BF ⊥CD,垂足分别为点E 、F ,∵AB ∥CD,∴四边形ABFE 为矩形,∴AB=EF. ∵∠ACE=180°-∠ACB -∠BCD=180°-70°-65°=45° ∴∠EAC=45°,AE=EC.设EC=x m , ∵∠ADE=30°,且DE=AE·cot ∠ADE.又∵DE=x +40,∴x +40=x ·cot30°,解得x =20, ∴AE=EC=BF=20,在Rt △BFC 中,cot ∠BCF=CFBF,即CF=BF·cot ∠65°=(20)cot65°,∴AB=EF=EC+CF=(20)+(20)cot ∠65°(m )点评:本题体现了两种数学方法的应用,①构建数学几何模型,把一般三角形转化为解直角三角形;②通过设未知数,结合几何图形构建方程,将未知量与已知量联系起来.例2 如图11-6,E 是四边形ABCD 的DC 边上一点,CE=,AB=2,BC=1,∠D=90°, ∠B=60°,ABCE S =四边形(1)求AC 的长;(2)求∠ACD 的度数. ABCDEF图11-6解析 (1)过点A 作AF ⊥BC,垂足为F,则AF=AB·sin ∠B=2·sin60°BF=AB·cos ∠B=2·cos60°=1.∴CF=B C -BF=)11-在R t △ACF 中,由勾股定理,得(2)∵ABCE S 四边形=ABC ACE S S ∆∆+而11=,,22ABC ACE S AF BC S CE AD ∆∆⋅=⋅∴)11122+∴又sin ∠ACD=1,2AD AC == 故∠ACD=30°.点评:本题求AC 也可直接利用余弦定理:2222cos ,AC AB BC AB BC B =+-⋅⋅直接求得.中考真题欣赏例1(辽宁省中考)如图,山上有一座铁塔,山脚下有一矩形建筑物ABCD ,建筑物周围没有开阔平整地带.该建筑物顶端宽度AD 和高度DC 都可直接测得.从A 、D 、C 三点可看到塔顶端H,可供使用的测量工具有皮尺、测倾器.(1)请你根据现有条件,充分利用矩形建筑物,设计一个测量塔顶端到地面高度HG 的方案,具体要求如下:①测量数据尽可能少;②在所给图形上,画出你设计的测量平面图,并将应测数据标记在图形(如果测A 、D 间距离,用m 表示;测D 、C 间距离,用n 表示;如果测角,用αβγ、、等表示,测倾器高度不计).(2)根据你测量的数据,计算塔顶端到地面的高度HG (用字母表示). 解析 (1)如图11-7,测三个数据:DC 间距离n ,∠HDM ()α,∠HCG ()β; (2)设HG=x .在Rt △CHG 中,CG=cot x β⋅,在Rt △DHM 中,DM=()cot x n α-⋅,∴cotxβ⋅=()cotx nα-⋅. ∴cot.cot cotnxααβ⋅=-点评:本题是一道较为开放的题目,方案很多,但要求抓住题目的要求:“尽可能少”四个字,否则影响得分.例2(南京市)如图11-8,∠POQ=90°,边长为2cm的正方形ABCD的顶点B在OP上,C在OQ上,且∠OBC=30°,分别求点A、D到OP的距离.ABCDFGO图11-8解析过点A、D分别作AE⊥OP,DF⊥OP,DG⊥OQ,垂足分别为E、F、G.在正方形ABCD中,∠ABC=∠BCD=90°.∵∠OBC=30°,∴∠ABE=60°.在Rt△AEB中,AE=AB·sin60°=2·33cm)∵四边形DFOG是矩形,∴DF=GO,∵∠OBC=30°,∴∠BCO=60°,∴∠DCG=30°.在Rt△DCG中,CG=CD·cos30°=2·33cm)在Rt△BOC中,OC=12BC=1(cm). ∴3∴点A到OP3cm),点D到OP的距离为3点评:本题是一道正方形、矩形与解直角三角形相结合的试题,难度不大,关键是通过作辅助线合理构造直角三角形来解答.竞赛样题展示例1.(1999年全国联赛)如图11-9在正方形ABCD 中,N 是DC 的中点,M 是AD 上异于D 的点,且∠NMB=∠MBC,求tan ∠ABM.ABCDEFMN图11-9解析 延长BC 、MN 交于点E ,作EF ⊥BM 于F.设AB=a ,AM=()x x a <,则MD=a x -,.由正方形ABCD 及N 为DC 的中点,知∠MDN=∠NCE, ∠DNM=∠CNE,ND=CN,故MDN ECN ∆≅∆,可知CE=MD=a x -,BE=2a x -, 由∠NMB=∠MBC,知EB=EM.由EF ⊥BM 知∠FEB=90°-∠FBE=∠ABM,BF=12BM,且∠A=∠BFE.故△AB M ~△FEB .∴BM AMBE BF=,即22BM AM BE =⋅.∴()2222a x x a x +=-.即22340x ax a -+=∴11,.33x a AM AB ==即∴1tan .3AM ABM AB ∠== 点评:本题的解决充分利用了“∠NMB=∠MBC”这个条件来构建等腰三角形,利用等腰三角形的性质及相似三角形列方程求解,本题的解法很多,还可以过点N 作平行线来解决.例2(2000年全国竞赛)如图11-10,四边形EFGH 是正方形ABCD 的内接四边形,两条对角线EG 和FH 所夹得锐角为θ,且∠BEG 与∠CFH 都是锐角.已知EG=k ,FH=l ,四边形EFGH 的面积为S ,求证:sin θ=2S kl. ABCDEFGHMNO图11-10证明 过F 、H 分别作EG 的垂线,垂足分别为M 、N ,EG 和FH 的交点为O .∴sin θ=FM HNFO HO=,即FM=FO·sin θ;HN=HO·sin θ. ∴S=EFG EHG S S ∆∆+=()1111sin sin .2222EG FM EG HN EG FO HO GE FH θθ⋅+⋅=+=⋅∴22sin .S S EG FH klθ==⋅点评:准确使用锐角三角函数的定义是解答本题的关键.过关检测】A 级1.在Rt △ABC 中,∠C=90°,D 为AC 上一点,且AD=BD=5,CD=3,则sinA=______.2.等腰三角形的面积为2,底角为α,则tan α=_______.3.在△ABC ,∠ACB=90°,CD ⊥AB 于D ,CD=1,已知AD 、BD 的长是关于x 的方程20x px q ++=的两个根,且tanA-tanB=2.则_____,_______.p q ==4.已知△ABC 中,∠C=90°,CA=CB ,D 是AC 上一点,且AD:DC=1:2,则tan ∠DBC=________,cos ∠DBC=________.5.如图11-11,在△ABC 中,AB=AC,腰上的高BD=2,底边上的高AE=4,求tanC 的值.ABCDE图11-11B 级1.如图11-12,在△ABC 中,AB=AC ,∠ABN=∠MBC,BM=NM,BN=a ,则点N 到BC 的距离是_______.MNCBAABCD图11-12 图11-132.如图11-13,在Rt △ABC 中,∠C=90°,∠CAB=30°,AD 平分∠CAB ,则_______.AB ACCD CD-=3. △ABC 中,15,17,(a b A θθ==∠=为定值)若满足上述条件的三角形的∠C 唯一存在,则tanC=_______.4.已知菱形ABCD 的两条对角线AC 、BD 的乘积等于菱形的一条边长的平方,则菱形的一个钝角的大小是_______.5.设P 、Q 为线段BC 上两定点,且BP=CQ ,A 为BC 外一动点,当点A 运动到使∠BAP =∠CAQ 时,△ABC 是什么三角形?试证明你的结论.。
苏科版九年级下册数学提优训练(含答案)
九年级下数学提优训练1.如图,在矩形ABCD中,AB=8,BC=12,点E是BC的中点,连接AE,将△ABE沿AE折叠,点B 落在点F处,连接FC,则tan∠ECF=________2.如图,已知点E是矩形ABCD的对角线AC上的一动点,正方形EFGH的顶点G、H都在边AD上,若AB=3,BC=4,则tan∠AFE的值________3.如图,在等腰直角△ABC中,∠C=90°,点O是AB的中点,且AC=1,将一块直角三角板的直角顶点放在点O处,始终保持该直角三角板的两直角边分别与AC、BC相交,交点分别为D、E,则CD+CE =.4.如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,若AN=1,则BC的长为.5.如图,△AOB 为等腰三角形,顶点A 的坐标(2,5),底边OB 在x 轴上.将△AOB 绕点B 按顺时针方向旋转一定角度后得△A ′O ′B ,点A 的对应点A ′在x 轴上,则点O ′的坐标为 .6.如图,△ABC 的内心在y 轴上,点C 的坐标为(2,0),点B 的坐标是(0,2),直线AC 的解析式为,则tan A 的值是 .7.如图,直线x y 34=与双曲线x k y =(x >0)交于点A .将直线x y 34=向右平移29个单位后,与双曲线x k y =(x >0)交于点B ,与x 轴交于点C ,若2=BCAO ,则k = .8.若直线y =m (m 为常数)与函数()()⎪⎪⎩⎪⎪⎨⎧>≤=24222x xx x y 的图象恒有三个不同的交点,则常数m 的取值范围是 .9.如图,在Rt △ABC 中,∠C =90°,∠B =60°,点D 是BC 边上的点,CD =1,将△ABC 沿直线AD 翻折,使点C 落在AB 边上的点E 处,若点P 是直线AD 上的动点,则△PEB 的周长的最小值是 .10.如图,在△ABC 中,AB =AC ,DE 垂直平分AB .若BE ⊥AC ,AF ⊥BC ,垂足分别为点E ,F ,连接EF ,则∠EFC = .11.如图,在平行四边形OADB 中,对角线AB 、OD 相交于点C ,反比例函数xk y(k >0)在第一象限的图象经过A 、C 两点,若平行四边形OADB 面积为12,则k 的值为 .12.如图,矩形ABCD 中,AB =3,BC =4,EB ∥DF 且BE 与DF 之间的距离为3,则AE 的长是 .13.如图,在正方形ABCD中,AC为对角线,点E在AB边上,EF⊥AC于点F,连接EC,AF=3,△EFC 的周长为12,则EC的长为.14.如图,在菱形ABCD中,∠BAD=120°,点E、F分别在边AB、BC上,△BEF与△GEF关于直线EF对称,点B的对称点是点G,且点G在边AD上.若EG⊥AC,AB=26,则FG的长为.15.某工厂接受了20天内生产1200台GH型电子产品的总任务.已知每台GH型产品由4个G型装置和3个H型装置配套组成.工厂现有80名工人,每个工人每天能加工6个G型装置或3个H型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G、H型装置数量正好全部配套组成GH型产品.(1)按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?请列出二元一次方程组解答此问题.(2)为了在规定期限内完成总任务,工厂决定补充一些新工人,这些新工人只能独立进行G型装置的加工,且每人每天只能加工4个G型装置.1.设原来每天安排x名工人生产G型装置,后来补充m名新工人,求x的值(用含m的代数式表示)2.请问至少需要补充多少名新工人才能在规定期内完成总任务?16.如图1,已知△ABC中,AB=10cm,AC=8cm,BC=6cm,如果点P由B出发沿BA方向向点A匀速运动,同时点Q由A出发沿AC方向向点C匀速运动,它们的速度均为2cm/s,连接PQ,设运动的时间为t(单位:s)(0≤t≤4).解答下列问题:(1)当t为何值时,PQ∥BC.(2)设四边形BCQP的面积为S(单位:cm2),求s与t之间的函数关系式.(3)如图2把△APQ沿AP翻折,得到四边形AQPQ′那么是否存在某时刻t使四边形AQPQ′为菱形?若存在,求出此时菱形的面积;若不存在,请说明理由.17.如图,二次函数y=﹣ax2+2ax+c(a>0)的图象交x轴于A,B两点,交y轴于点C,过A的直线y=kx+2k(k≠0)与这个二次函数图象交于另一点F,与其对称轴交于点E,与y轴交于点D,且DE=EF.(1)求A点坐标;(2)若△BDF的面积为12,求此二次函数的表达式;(3)设二次函数图象顶点为P,连接PF,PC,若∠CPF=2∠DAB,求此二次函数的表达式.18.已知二次函数y =mx 2﹣5mx +1(m 为常数,m >0),设该函数图象与y 轴交于点A ,图象上一点B 与点A 关于该函数图象的对称轴对称.(1)求点A 、B 的坐标;(2)点O 为坐标原点,点M 为函数图象的对称轴上一动点,求当M 运动到何处时△MAO 的周长最小;(3)若该函数图象上存在点P 与点A 、B 构成一个等腰三角形,且△P AB 的面积为10,求m 的值.19.已知,如图,线段AB ,利用无刻度的直尺和圆规,作一个满足条件的△ABC :①△ABC 为直角三角形;②tan ∠A =31.(注:不要求写作法,但保留作图痕迹)20.“位似变化”是一种重要的几何变化,可以将图形放大或缩小,且与原图形相似.你能用位似变化解决下列问题吗?如图Rt△ABC中,∠C=90°,AC=12,BC=6,有矩形EFGH的一边EF在边AC上,点H在斜边AC 上,EF=2,HE=1.(1)请你用圆规和无刻度直尺在Rt△ABC内作一个最大的矩形且与矩形EFGH位似.(不要求写作法,但必须保留作图痕迹)(2)请证明你作图方法的正确性.(3)求最大矩形与矩形EFGH的面积之比.。
2024-2025学年北师大版九年级上学期数学期中培优训练卷
2024-2025学年北师大版九年级上学期数学期中培优训练卷1.若一元二次方程的一个根为2,则的值为()A.1B.2C.D.2.在一个不透明的袋子里装有红球、黄球共20个,这些球除颜色外都相同,小明通过多次试验发现,摸出红球的频率稳定在0.6左右,则袋子中红球的个数最有可能是()A.5B.8C.12D.153.矩形中,对角线相交于点O,如果,那么的度数是()A.B.C.D.4.如图,中,,,,动点P从点A出发沿边以秒的速度向点B移动,点Q从点B出发,沿边以秒的速度向点C移动,如果点P,Q分别从点A,B同时出发,当有一个点到达终点时另一个点也停止运动,在运动过程中,设点P的运动时间为t,则当的面积为时,t的值()A.2或3B.2或4C.1或3D.1或45.下列说法中,正确的是()A.有一个角是直角的平行四边形是正方形B.对角线相等的四边形是矩形C.对角线互相垂直平分的四边形是菱形D.一组对边平行,另一组对边相等的四边形是平行四边形6.要组织一次篮球联赛,赛制为单循环形式(每两队之间都只赛一场),计划安排15场比赛,如果设邀请个球队参加比赛,那么根据题意可以列方程为()A.B.C.D.7.如图所示,某校数学兴趣小组利用标杆BE测量建筑物的高度,已知标杆BE高为1.5m,测得AB=3m,BC=7m,则建筑物CD的高是()mA.3.5B.4C.4.5D.8.近年来某县大力发展柑橘产业,某柑橘生产企业在两年内的销售额从20万元增加到80万元,设这两年的销售额的年平均增长率为x,根据题意可列方程为()A.B.C.D.9.在一个不透明的口袋中,放置2个黄球,1个白球,1个红球和个蓝球,这些小球除颜色外其余均相同,课外兴趣小组每次摸出一个球记录下颜色后再放回,并且统计了蓝球出现的频率(如图所示),则的值最可能是()A.4B.5C.6D.710.如图,直线AB的解析式为y=﹣2x+2,点E为正方形ABCD中CD边的五等分点,且CE=CD,双曲线y=(k≠0,x⟩0)的图象过点E,则k为()A.B.C.D.11.若关于的一元二次方程的一根为,则的值是______.12.已知,,c是a、b的比例中项,则______.13.如图,△ABC为等边三角形,点D、E分别在边BC、AC上,∠ADE=60°,如果BD:DC=1:2,AD=2,那么DE的长等于________.14.在一个不透明的袋子中有3个红球和个黑球,它们除颜色外其他均相同.从中任意摸出一个球,若摸出黑球的概率是,则的值是________.15.如图,正方形ABCD中,AB=6,点E在边CD上,且CE=2DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.下列结论:①△ABG≌△AFG;=3.6.其中正确结论是________.②BG=GC;③EG=DE+BG;④AG∥CF;⑤S△FGC16.解方程:解方程:(1);(2)17.某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.请根据所给信息,解答以下问题:(1)表中________,________;(2)请计算扇形统计图中B组对应扇形的圆心角的度数;(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.18.如图和都是等腰直角三角形,,,顶点在的斜边上,求证:.19.百货大楼服装柜在销售中发现:“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“十•一”国庆节,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?20.有一块三角形的草坪,其中一边的长为10m.在这块草坪的图纸上,这条边的长为5cm.已知图纸上的三角形的周长为15cm,则这块草坪的周长为______m.21.如图,点在线段上,等腰的顶角,点是矩形的对角线的中点,连接,若,,则的最小值为为______.22.已知y1=2x2+3x,y2=﹣5x+10.x为何值时,y1与y2的值相等?23.如图,四边形ABCD为菱形,E为对角线AC上的一个动点(不与点A,C重合),连接DE并延长交射线AB于点F,连接BE.(1)求证:;(2)求证:.24.如图,在△ABC中,点D,F,E分别在AB,BC,AC边上,DF AC,EF AB.(1)求证:△BDF∽△FEC.(2)设.①若BC=15,求线段BF的长;②若△FEC的面积是16,求△ABC的面积.25.如图,△ABC的顶点坐标分别为A(1,3),B(4,2),C(2,1).(1)作出与△ABC关于x轴对称的△,点的坐标是;(2)以原点O为位似中心,在原点的另一侧画出△,使=,点坐标是.26.某中学为了了解本校学生喜爱的球类运动,在本校范围内随机抽查了部分学生,将收集的数据统计整理,绘制成如下两幅不完整的统计图.请你根据图中提供的信息解答下列问题:(1)本次一共调查了________名学生;(2)补全条形统计图;(3)“足球”在扇形统计图中所占圆心角的度数为________;(4)若已知该校有1000名学生,请你根据调查的结果估计爱好“足球”和“排球”的学生共有多少人?27.在学习完北师大教材九年级上册第四章第6节“利用相似三角形测高”后,数学兴趣小组的3名同学利用课余时间想要测量学校里两棵树的高度.在同一时刻的阳光下,他们合作完成了以下工作:①测得一根长为l米的竹竿的影长为0.8米,甲树的影长为4.08米(如图l).②测量的乙树的影子除落在地面上外,还有一部分落在教学楼的第一级台阶上(如图2),测得落在地面上的影长为4.4米,一级台阶高为0.3米,落在第一级台阶的影子长为0.2米.(1)在横线上直接填写甲树的高度为_____________米.(2)图3为图2的示意图,请利用图3求出乙树的高度.28.已知:为钝角,是的两条高.(1)如图,若,求证:;(2)如图,若,延长相交于点,连接,当时,求的长;(3)如图,若,延长相交于点,连接,当时,求的值.。
九年级数学优等生训练卷11-初中三年级数学试题练习、期中期末试卷-初中数学试卷
九年级数学优等生训练卷11-初中三年级数学试题练习、期中期末试卷、测验题、复习资料
-初中数学试卷-试卷下载
优等生训练卷(11)
四、填空题(本大题有5小题,每小题4分,共20分)
27、若,则=_________
28、设,且,那么的值为_________
29、在△ABC中,△BAC的平分线交BC于D,若AC=AB+BD,且△C=400,那么△B=_________
30、方程有实数根α、β,M=α+β,那么M的取值范围是_________
31、已知二次函数在x=2时有最小值,记,,,,那么p、q、r的大小关系是_________
五、解答题(本大题有4小题,共40分)
32、(8分)解方程组
33、(10分)如图,小艇沿南偏东150的方向以每小时46海里的速度航行,在A处测得航标C在南偏东450,半小时后在B处测得航标C在南偏东750。
(1)分别求A,B到航标C的距离(精确到0.1海里,)
(2)若小艇从B继续航行,航向和速度都不变,再经过多少分钟,小艇离航标C最近:这时C在什么方向?(精确到1分钟,)
34、(12分)如图,AE是△BAC的平分线,交BC于E,AF是△BAC的外角平分线,交BC的延长线于F,CG△AE,垂足为G,连BC,并延长BG交AF于H,求证:AH=FH。
35、已知点P是直径为2的△O内的一定点,PO=,线段为过点P的任一弦,且它所对的圆心角△AOB=,A、B分别作△O的切线AC和BC,两切线相交于C,设P到AC、BC的距离是a、b,求证:a、b是方程的两个根。
欢迎下载使用,分享让人快乐。
最新2022-2021年九年级上月考数学试卷(11月)含答案解析
九年级(上)月考数学试卷(11月份)一、选择题(共12小题,每小题3分,满分36分)1.在图形:①线段;②等边三角形;③矩形;④菱形;⑤平行四边形中,既是轴对称图形又是中心对称图形的个数是()A.2 B.3 C.4 D.52.下列图象中,有一个可能是函数y=ax2+bx+a+b(a≠0)的图象,它是()A.B.C.D.3.如图,在三角形ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C沿顺时针方向旋转后得到三角形A′B′C,若点B′恰好落在线段AB上,AC、A′B′交于点O,则∠COA′的度数是()A.50°B.60°C.70°D.80°4.下列命题中,正确的有()①平分弦的直径垂直于弦;②三角形的三个顶点确定一个圆;③圆内接四边形的对角相等;④圆的切线垂直于过切点的半径;⑤过圆外一点所画的圆的两条切线长相等.A.1个B.2个C.3个D.4个5.如图,菱形OABC的顶点O在坐标原点,顶点A在x轴上,∠B=120°,OA=2,将菱形OABC绕原点顺时针旋转105°至OA′B′C′的位置,则点B′的坐标为()A.(,﹣)B.(﹣,)C.(2,﹣2)D.(,﹣)6.如图所示的二次函数y=ax2+bx+c(a≠0)的图象中,下面四条信息:①ab>0;②a+b+c<0;③b+2c>0;④点(﹣3,m),(6,n)都在抛物线上,则有m<n;你认为其中正确的有()A.①②③ B.①②④ C.①③④ D.②③④7.如图,在△ABC中,∠A=90°,AB=AC=2,点O是边BC的中点,半圆O与△ABC相切于点D、E,则阴影部分的面积等于()A.1﹣B.C.1﹣D.8.如图,在平面直角坐标系中,将△ABO绕点A顺指针旋转到△AB1C1的位置,点B、O 分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去…,若点A(,0),B(0,4),则点B2021的横坐标为()A.5 B.12 C.10070 D.100809.将正方形ABCD绕点A按逆时针方向旋转30°,得正方形AB1C1D1,B1C1交CD于点E,AB=,则四边形AB1ED的内切圆半径为()A.B.C.D.10.如图,△ABC内接于⊙O,AB是⊙O的直径,∠B=30°,CE平分∠ACB交⊙O于E,交AB于点D,连接AE,则S△ADE :S△CDB的值等于()A.1:B.1:C.1:2 D.2:311.如图,抛物线y=﹣x2+x+与x轴交于A,B两点,与y轴交于点C.若点P是线段AC上方的抛物线上一动点,当△ACP的面积取得最大值时,点P的坐标是()A.(4,3)B.(5,)C.(4,)D.(5,3)12.如图,已知一次函数y=﹣x+2的图象与坐标轴分别交于A、B两点,⊙O的半径为1,P是线段AB上的一个点,过点P作⊙O的切线PM,切点为M,则PM的最小值为()A.2B.C.D.二、填空题(共5小题,每小题3分,满分15分)13.长度分别为3cm,4cm,5cm,9cm的四条线段,任取其中三条能组成三角形的概率是.14.如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,⊙P与x轴交于O,A两点,点A的坐标为(6,0),⊙P的半径为,则点P的坐标为.15.二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为.16.如图,有一直径是的圆形铁皮,现从中剪出一个圆周角是90°的最大扇形ABC,用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为米.17.如图,O是等边△ABC内一点,OA=3,OB=4,OC=5,以点B为旋转中心,将线段BO逆时针旋转60°得到线段BO′,连接AO′.则下列结论:①△BO′A可以由△BOC绕点B逆时针方向旋转60°得到;②连接OO′,则OO′=4;③∠AOB=150°;=6+4.④S四边形AOBO′其中正确的结论是.三、解答题(共7小题,满分69分)18.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C (3,5)(每个方格的边长均为1个单位长度).(1)请画出将△ABC向下平移5个单位后得到的△A1B1C1;(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点B旋转到点B2所经过的路径长.19.在四个完全相同的小球上分别标上1,2,3,4四个数字,然后装入一个不透明的口袋里搅匀,小明同学随机摸取一个小球记下标号,然后放回,再随机摸取一个小球,记下标号.(1)请你用画树状图或列表的方法分别表示小明同学摸球的所有可能出现的结果.(2)按照小明同学的摸球方法,把第一次取出的小球的数字作为点M的横坐标,把第二次取出的小球的数字作为点M的纵坐标,试求出点M(x,y)落在直线y=x上的概率是多少?20.如图,对称轴为直线x=2的抛物线y=x2+bx+c与x轴交于点A和点B,与y轴交于点C,且点A的坐标为(﹣1,0)(1)求抛物线的解析式;(2)直接写出B、C两点的坐标;(3)求过O,B,C三点的圆的面积.(结果用含π的代数式表示)21.如图1,△ABC是边长为6的等边三角形,点D、E分别是边AB、AC的中点,将△ADE绕点A旋转,BD与CE所在的直线交于点F.(1)如图(2)所示,将△ADE绕点A逆时针旋转,且旋转角小于60°,∠CFB的度数是多少?说明你的理由?(2)当△ADE绕点A旋转时,若△BCF为直角三角形,线段BF的长为(请直接写出答案)22.如图,⊙O过▱ABCD的三顶点A、D、C,边AB与⊙O相切于点A,边BC与⊙O相交于点H,射线AP交边CD于点E,交⊙O于点F,点P在射线AO上,且∠PCD=2∠DAF.(1)求证:△ABH是等腰三角形;(2)求证:直线PC是⊙O的切线;(3)若AB=2,AD=,求⊙O的半径.23.东门天虹商场购进一批“童乐”牌玩具,每件成本价30元,每件玩具销售单价x(元)与每天的销售量y(件)的关系如下表:x(元)…35 40 45 50 …y(件)…750 700 650 600 …若每天的销售量y(件)是销售单价x(元)的一次函数(1)求y与x的函数关系式;(2)设东门天虹商场销售“童乐”牌儿童玩具每天获得的利润为w(元),当销售单价x为何值时,每天可获得最大利润?此时最大利润是多少?(3)若东门天虹商场销售“童乐”牌玩具每天获得的利润最多不超过15000元,最低不低于12000元,那么商场该如何确定“童乐”牌玩具的销售单价的波动范围?请你直接给出销售单价x的范围.24.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.如果一条直线与果圆只有一个交点,则这条直线叫做果圆的切线.已知A、B、C、D四点为果圆与坐标轴的交点,E为半圆的圆心,抛物线的解析式为y=x2﹣2x﹣3,AC为半圆的直径.(1)分别求出A、B、C、D四点的坐标;(2)求经过点D的果圆的切线DF的解析式;(3)若经过点B的果圆的切线与x轴交于点M,求△OBM的面积.九年级(上)月考数学试卷(11月份)参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.在图形:①线段;②等边三角形;③矩形;④菱形;⑤平行四边形中,既是轴对称图形又是中心对称图形的个数是()A.2 B.3 C.4 D.5【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念判断即可.【解答】解:①线段既是轴对称图形又是中心对称图形,②等边三角形是轴对称图形不是中心对称图形,③矩形既是轴对称图形又是中心对称图形,④菱形既是轴对称图形又是中心对称图形,⑤平行四边形不是轴对称图形是中心对称图形,所以既是轴对称图形又是中心对称图形的个数是3个.故选B.2.下列图象中,有一个可能是函数y=ax2+bx+a+b(a≠0)的图象,它是()A.B.C.D.【考点】二次函数的图象.【分析】根据函数y=ax2+bx+a+b(a≠0),对a、b的正负进行分类讨论,只要把选项中一定错误的说出原因即可解答本题.【解答】解:在函数y=ax2+bx+a+b(a≠0)中,当a<0,b<0时,则该函数开口向下,顶点在y轴左侧,一定经过点(0,a+b),点(0,a+b)一定在y轴的负半轴,故选项A、B错误;当a>0,b<0时,若函数过点(1,0),则a+b+a+b=0,得a与b互为相反数,则y=ax2﹣ax=ax(x﹣1),则该函数与x轴的两个交点是(0,0)或(1,0),故选项D错误;当a>0,b<0时,若函数过点(0,1),则a+b=1,只要a、b满足和为1即可,故选项C 正确;故选C.3.如图,在三角形ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C沿顺时针方向旋转后得到三角形A′B′C,若点B′恰好落在线段AB上,AC、A′B′交于点O,则∠COA′的度数是()A.50°B.60°C.70°D.80°【考点】旋转的性质.【分析】由三角形的内角和为180°可得出∠A=40°,由旋转的性质可得出BC=B′C,从而得出∠B=∠BB′C=50°,再依据三角形外角的性质结合角的计算即可得出结论.【解答】解:∵在三角形ABC中,∠ACB=90°,∠B=50°,∴∠A=180°﹣∠ACB﹣∠B=40°.由旋转的性质可知:BC=B′C,∴∠B=∠BB′C=50°.又∵∠BB′C=∠A+∠ACB′=40°+∠ACB′,∴∠ACB′=10°,∴∠COA′=∠AOB′=∠OB′C+∠ACB′=∠B+∠ACB′=60°.故选B.4.下列命题中,正确的有()①平分弦的直径垂直于弦;②三角形的三个顶点确定一个圆;③圆内接四边形的对角相等;④圆的切线垂直于过切点的半径;⑤过圆外一点所画的圆的两条切线长相等.A.1个B.2个C.3个D.4个【考点】命题与定理.【分析】根据垂径定理的推论对①进行判断;根据确定圆的条件对②进行判断;根据圆内接四边形的性质对③进行判断;根据切线的性质对④进行判断;根据切线长定理对⑤进行判断.【解答】解:平分弦(非直径)的直径垂直于弦,所以①错误;三角形的三个顶点确定一个圆,所以②正确;圆内接四边形的对角互补,所以③错误;圆的切线垂直于过切点的半径,所以④正确;过圆外一点所画的圆的两条切线长相等,所以⑤正确.故选C.5.如图,菱形OABC的顶点O在坐标原点,顶点A在x轴上,∠B=120°,OA=2,将菱形OABC绕原点顺时针旋转105°至OA′B′C′的位置,则点B′的坐标为()A.(,﹣)B.(﹣,)C.(2,﹣2)D.(,﹣)【考点】坐标与图形变化-旋转;菱形的性质.【分析】首先连接OB,OB′,过点B′作B′E⊥x轴于E,由旋转的性质,易得∠BOB′=105°,由菱形的性质,易证得△AOB是等边三角形,即可得OB′=OB=OA=2,∠AOB=60°,继而可求得∠AOB′=45°,由等腰直角三角形的性质,即可求得答案.【解答】解:连接OB,OB′,过点B′作B′E⊥x轴于E,根据题意得:∠BOB′=105°,∵四边形OABC是菱形,∴OA=AB,∠AOB=∠AOC=∠ABC=×120°=60°,∴△OAB是等边三角形,∴OB=OA=2,∴∠AOB′=∠BOB′﹣∠AOB=105°﹣60°=45°,OB′=OB=2,∴OE=B′E=OB′•sin45°=2×=,∴点B′的坐标为:(,﹣).故选:A.6.如图所示的二次函数y=ax2+bx+c(a≠0)的图象中,下面四条信息:①ab>0;②a+b+c<0;③b+2c>0;④点(﹣3,m),(6,n)都在抛物线上,则有m<n;你认为其中正确的有()A.①②③ B.①②④ C.①③④ D.②③④【考点】二次函数图象与系数的关系;二次函数图象上点的坐标特征.【分析】根据图象可知顶点在y轴左侧,则a、b的符号相同,从而可以判断①;由函数图象可知x=1时,y<0,x=﹣1时y>0,对称轴为x=﹣=﹣,从而可以判断②③是否正确,根据点到对称轴的距离即可判断④.【解答】解:∵二次函数y=ax2+bx+c(a≠0)的顶点在y轴左侧,∴a、b符号相同,∴ab>0,故①正确;∵由图象可知,x=1时,函数值小于0,∴a+b+c<0,故②正确;∵﹣=﹣,∴a=b,∵由图象可知,x=﹣1时,函数值大于0,∴a﹣b+c>0,∴b﹣b+c>0,∴+c>0,∴b+2c>0,故③正确;∵|﹣3+|=.|6+|=,∴点(﹣3,m)离对称轴近,∴m>n,故④错误;由上可得①②③正确.故选A.7.如图,在△ABC中,∠A=90°,AB=AC=2,点O是边BC的中点,半圆O与△ABC相切于点D、E,则阴影部分的面积等于()A.1﹣B.C.1﹣D.【考点】切线的性质;扇形面积的计算.【分析】首先连接OD,OE,易得△BDF≌△EOF,继而可得S阴影=S扇形DOE,即可求得答案.【解答】解:连接OD,OE,∵半圆O与△ABC相切于点D、E,∴OD⊥AB,OE⊥AC,∵在△ABC中,∠A=90°,AB=AC=2,∴四边形ADOE是正方形,△OBD和△OCE是等腰直角三角形,∴OD=OE=AD=BD=AE=EC=1,∴∠ABC=∠EOC=45°,∴AB ∥OE ,∴∠DBF=∠OEF ,在△BDF 和△EOF 中,,∴△BDF ≌△EOF (AAS ),∴S 阴影=S 扇形DOE =×π×12=.故选B .8.如图,在平面直角坐标系中,将△ABO 绕点A 顺指针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去…,若点A (,0),B (0,4),则点B 2021的横坐标为( )A.5 B.12 C.10070 D.10080【考点】坐标与图形变化-旋转.【分析】由图象可知点B2021在第一象限,求出B2,B4,B6的坐标,探究规律后即可解决问题.【解答】解:由图象可知点B2021在第一象限,∵OA=,OB=4,∠AOB=90°,∴AB===,∴B2(10,4),B4(20,4),B6(30,4),…∴B2021.∴点B2021纵坐标为10080.故选D.9.将正方形ABCD绕点A按逆时针方向旋转30°,得正方形AB1C1D1,B1C1交CD于点E,AB=,则四边形AB1ED的内切圆半径为()A.B.C.D.【考点】三角形的内切圆与内心;正方形的性质;旋转的性质.【分析】作∠DAF与∠AB1G的角平分线交于点O,则O即为该圆的圆心,过O作OF⊥AB1,AB=,再根据直角三角形的性质便可求出OF的长,即该四边形内切圆的圆心.【解答】解:作∠DAF与∠AB1G的角平分线交于点O,过O作OF⊥AB1,则∠OAF=30°,∠AB1O=45°,故B1F=OF=OA,设B1F=x,则AF=﹣x,故(﹣x)2+x2=(2x)2,解得x=或x=(舍去),∴四边形AB1ED的内切圆半径为:.故选:B.10.如图,△ABC内接于⊙O,AB是⊙O的直径,∠B=30°,CE平分∠ACB交⊙O于E,交AB于点D,连接AE,则S△ADE :S△CDB的值等于()A.1:B.1:C.1:2 D.2:3【考点】相似三角形的判定与性质;圆周角定理.【分析】由AB是⊙O的直径,得到∠ACB=90°,根据已知条件得到,根据三角形的角平分线定理得到=,求出AD=AB,BD=AB,过C作CF⊥AB 于F,连接OE,由CE平分∠ACB交⊙O于E,得到OE⊥AB,求出OE=AB,CF=AB,根据三角形的面积公式即可得到结论.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠B=30°,∴,∵CE平分∠ACB交⊙O于E,∴=,∴AD=AB,BD=AB,过C作CF⊥AB于F,连接OE,∵CE平分∠ACB交⊙O于E,∴=,∴OE⊥AB,∴OE=AB,CF=AB,∴S△ADE :S△CDB=(AD•OE):(BD•CF)=():()=2:3.故选D.11.如图,抛物线y=﹣x2+x+与x轴交于A,B两点,与y轴交于点C.若点P是线段AC上方的抛物线上一动点,当△ACP的面积取得最大值时,点P的坐标是()A.(4,3)B.(5,)C.(4,)D.(5,3)【考点】抛物线与x轴的交点;二次函数的最值.【分析】连接PC、PO、PA,设点P坐标(m,﹣),根据S△PAC =S△PCO+S△POA﹣S△AOC构建二次函数,利用函数性质即可解决问题.【解答】解:连接PC、PO、PA,设点P坐标(m,﹣)令x=0,则y=,点C坐标(0,),令y=0则﹣x2+x+=0,解得x=﹣2或10,∴点A坐标(10,0),点B坐标(﹣2,0),∴S△PAC =S△PCO+S△POA﹣S△AOC=××m+×10×(﹣)﹣××10=﹣(m﹣5)2+,∴x=5时,△PAC面积最大值为,此时点P坐标(5,).故点P坐标为(5,).12.如图,已知一次函数y=﹣x+2的图象与坐标轴分别交于A、B两点,⊙O的半径为1,P是线段AB上的一个点,过点P作⊙O的切线PM,切点为M,则PM的最小值为()A.2B.C.D.【考点】切线的性质;一次函数图象上点的坐标特征.【分析】连结OM、OP,作OH⊥AB于H,如图,先利用坐标轴上点的坐标特征求出A点和B点坐标,则可判断△OAB为等腰直角三角形,从而得到OH=AB=2,再根据切线的性质得OM⊥PM,利用勾股定理得到PM=,则可判断OP的长最小时,PM的长最小,然后利用垂线段最短得到OP的最小值,再计算PM的最小值.【解答】解:连结OM、OP,作OH⊥AB于H,如图,当x=0时,y=﹣x+2=2,则A(0,2),当y=0时,﹣x+2=0,解得x=2,则B(2,0),所以△OAB为等腰直角三角形,则AB=OA=4,OH=AB=2,因为PM为切线,所以OM⊥PM,所以PM==,当OP的长最小时,PM的长最小,而OP=OH=2时,OP的长最小,所以PM的最小值为=.故选D.二、填空题(共5小题,每小题3分,满分15分)13.长度分别为3cm,4cm,5cm,9cm的四条线段,任取其中三条能组成三角形的概率是(或0.25).【考点】列表法与树状图法.【分析】根据三角形的三边关系求出共有几种情况,根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:长度为3cm、4cm、5cm、9cm的四条线段,从中任取三条线段共有3,4,5;4,5,9;3,5,9;3,4,9四种情况,而能组成三角形的有3、4、5;共有1种情况,所以能组成三角形的概率是.故答案为:.14.如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,⊙P与x轴交于O,A两点,点A的坐标为(6,0),⊙P的半径为,则点P的坐标为(3,2).【考点】垂径定理;坐标与图形性质;勾股定理.【分析】过点P作PD⊥x轴于点D,连接OP,先由垂径定理求出OD的长,再根据勾股定理求出PD的长,故可得出答案.【解答】解:过点P作PD⊥x轴于点D,连接OP,∵A(6,0),PD⊥OA,∴OD=OA=3,在Rt△OPD中,∵OP=,OD=3,∴PD===2,∴P(3,2).故答案为:(3,2).15.二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为3.【考点】抛物线与x轴的交点.【分析】先根据抛物线的开口向上可知a>0,由顶点纵坐标为﹣3得出b与a关系,再根据一元二次方程ax2+bx+m=0有实数根可得到最新m的不等式,求出m的取值范围即可.【解答】解:∵抛物线的开口向上,顶点纵坐标为﹣3,∴a>0.﹣=﹣3,即b2=12a,∵一元二次方程ax2+bx+m=0有实数根,∴△=b2﹣4am≥0,即12a﹣4am≥0,即12﹣4m≥0,解得m≤3,∴m的最大值为3,故答案为3.16.如图,有一直径是的圆形铁皮,现从中剪出一个圆周角是90°的最大扇形ABC,用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为米.【考点】圆锥的计算.【分析】首先根据铁皮的半径求得AB的长,再设圆锥的底面圆的半径为r,则根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2πr=,然后解方程即可.【解答】解:∵⊙O的直径BC=,∴AB=BC=1,设圆锥的底面圆的半径为r,则2πr=,解得r=,即圆锥的底面圆的半径为米.故答案为:.17.如图,O是等边△ABC内一点,OA=3,OB=4,OC=5,以点B为旋转中心,将线段BO逆时针旋转60°得到线段BO′,连接AO′.则下列结论:①△BO′A可以由△BOC绕点B逆时针方向旋转60°得到;②连接OO′,则OO′=4;③∠AOB=150°;=6+4.④S四边形AOBO′其中正确的结论是①②③④.【考点】旋转的性质.【分析】如图,首先证明△OBO′为为等边三角形,得到OO′=OB=4,故选项②正确;证明△ABO′≌△CBO,得到选项①正确;运用勾股定理逆定理证明△AOO′为直角三角形,求出∠AOB的度数,得到选项③正确;运用面积公式求出四边形AOBO′的面积,可判断选项④正确.【解答】解:如图,连接OO′;∵△ABC为等边三角形,∴∠ABC=60°,AB=CB;由题意得:∠OBO′=60°,OB=O′B,∴△OBO′为等边三角形,∠ABO′=∠CBO,∴OO′=OB=4;∠BOO′=60°,∴选项②正确;在△ABO′与△CBO中,,∴△ABO′≌△CBO(SAS),∴AO′=OC=5,△BO′A可以由△BOC绕点B逆时针方向旋转60°得到,∴选项①正确;在△AOO′中,∵32+42=52,∴△AOO′为直角三角形,∴∠AOO′=90°,∠AOB=90°+60°=150°,∴选项③正确;∵+=,∴选项④正确.综上所述,正确选项为①②③④.故答案为:①②③④.三、解答题(共7小题,满分69分)18.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C (3,5)(每个方格的边长均为1个单位长度).(1)请画出将△ABC向下平移5个单位后得到的△A1B1C1;(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点B旋转到点B2所经过的路径长.【考点】作图-旋转变换;轨迹;作图-平移变换.【分析】(1)利用点平移的坐标特征写出A1、B1、C1的坐标,然后描点即可得到△A1B1C1为所作;(2)利用网格特定和旋转的性质画出A、B、C的对应点A2、B2、C2,从而得到△A2B2C2,然后计算出OB的长后利用弧长公式计算点B旋转到点B2所经过的路径长.【解答】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作,OB==2点B旋转到点B2所经过的路径长==π.19.在四个完全相同的小球上分别标上1,2,3,4四个数字,然后装入一个不透明的口袋里搅匀,小明同学随机摸取一个小球记下标号,然后放回,再随机摸取一个小球,记下标号.(1)请你用画树状图或列表的方法分别表示小明同学摸球的所有可能出现的结果.(2)按照小明同学的摸球方法,把第一次取出的小球的数字作为点M的横坐标,把第二次取出的小球的数字作为点M的纵坐标,试求出点M(x,y)落在直线y=x上的概率是多少?【考点】列表法与树状图法;一次函数图象上点的坐标特征.【分析】(1)首先根据题意画出树状图,然后由树状图得出所有可能的结果,注意是放回实验还是不放回实验;(2)由表格求得所有等可能的结果与数字x、y满足y=x的情况,再利用概率公式求解即可求得答案.【解答】解:(1)列表得:1 2 3 41 (1,1)(2,1)(3,1)(4,1)2 (1,2)(2,2)(3,2)(4,2)3 (1,3)(2,3)(3,3)(4,3)4 (1,4)(2,4)(3,4)(4,4)画树状图得:则小明共有16种等可能的结果;(2)由(1)中的表格知,共有16个结果,每种结果出现的可能性都相同,其中满足条件的点有(1,1),(2,2),(3,3),(4,4)落在直线y=x上;∴点P(x,y)落在直线y=x上的概率是=.20.如图,对称轴为直线x=2的抛物线y=x2+bx+c与x轴交于点A和点B,与y轴交于点C,且点A的坐标为(﹣1,0)(1)求抛物线的解析式;(2)直接写出B、C两点的坐标;(3)求过O,B,C三点的圆的面积.(结果用含π的代数式表示)【考点】抛物线与x轴的交点;待定系数法求二次函数解析式.【分析】(1)利用待定系数法求抛物线的解析式;(2)由对称性可直接得出B(5,0),当x=0时,代入抛物线的解析式可得与y轴交点C的坐标;(3)根据90°所对的弦是直径可知:过O,B,C三点的圆的直径是线段BC,利用勾股定理求BC的长,代入圆的面积公式可以求得面积.【解答】解:(1)由题意得:,解得:,∴抛物线的解析式为:y=x2﹣4x﹣5;(2)∵对称轴为直线x=2,A(﹣1,0),∴B(5,0),当x=0时,y=﹣5,∴C(0,﹣5),(3)∵∠BOC=90°,∴BC是过O,B,C三点的圆的直径,由题意得:OB=5,OC=5,由勾股定理得;BC==5,S=π•=π,答:过O,B,C三点的圆的面积为π.21.如图1,△ABC是边长为6的等边三角形,点D、E分别是边AB、AC的中点,将△ADE绕点A旋转,BD与CE所在的直线交于点F.(1)如图(2)所示,将△ADE绕点A逆时针旋转,且旋转角小于60°,∠CFB的度数是多少?说明你的理由?(2)当△ADE绕点A旋转时,若△BCF为直角三角形,线段BF的长为4(请直接写出答案)【考点】旋转的性质.【分析】(1)根据等边三角形的性质得到AC=AB,∠EAD=∠CAB=60°,由点D、E分别是边AB、AC的中点,得到AE=AD,根据旋转的性质得到∠EAC=∠BAD,根据全等三角形的性质得到∠ACE=∠ABD,推出A,B,C,F四点共圆,根据圆周角定理即可得到结论;(2)解直角三角形即可得到结论.【解答】解:(1)∠CFB=60°,理由:∵△ABC是等边三角形,∴AC=AB,∠EAD=∠CAB=60°,∵点D、E分别是边AB、AC的中点,∴AE=AD,∵将△ADE绕点A旋转,BD与CE所在的直线交于点F,∴∠EAC=∠BAD,在△ACE与△ABD中,,∴△ACE≌△ABD,∴∠ACE=∠ABD,∴A,B,C,F四点共圆,∴∠CFB=∠CAB=60°;(2)∵∠CFB=60°,∠BCF=90°,∴∠CBF=30°,∴BF===4.故答案为:4.22.如图,⊙O过▱ABCD的三顶点A、D、C,边AB与⊙O相切于点A,边BC与⊙O相交于点H,射线AP交边CD于点E,交⊙O于点F,点P在射线AO上,且∠PCD=2∠DAF.(1)求证:△ABH是等腰三角形;(2)求证:直线PC是⊙O的切线;(3)若AB=2,AD=,求⊙O的半径.【考点】圆的综合题.【分析】(1)要想证明△ABH是等腰三角形,只需要根据平行四边形的性质可得∠B=∠ADC,再根据圆内接四边形的对角互补,可得∠ADC+∠AHC=180°,再根据邻补角互补可知∠AHC+∠AHB=180°,从而可以得到∠ABH和∠AHB的关系,从而可以证明结论成立;(2)要证直线PC是⊙O的切线,只需要连接OC,证明∠OCP=90°即可,根据平行四边形的性质和边AB与⊙O相切于点A,可以得到∠AEC的度数,又∠PCD=2∠DAF,∠DOF=2∠DAF,∠COE=∠DOF,通过转化可以得到∠OCP的度数,从而可以证明结论;(3)根据题意和(1)(2)可以得到∠AED=90°,由平行四边形的性质和勾股定理,由AB=2,AD=,可以求得半径的长.【解答】(1)证明:∵四边形ADCH是圆内接四边形,∴∠ADC+∠AHC=180°,又∵∠AHC+∠AHB=180°,∴∠ADC=∠AHB,∵四边形ABCD是平行四边形,∴∠ADC=∠B,∴∠AHB=∠B,∴AB=AH,∴△ABH是等腰三角形;(2)证明:连接OC,如右图所示,∵边AB与⊙O相切于点A,∴BA⊥AF,∵四边形ABCD是平行四边形,∴AB∥CD,∴CD⊥AF,又∵FA经过圆心O,∴,∠OEC=90°,∴∠COF=2∠DAF,又∵∠PCD=2∠DAF,∴∠COF=∠PCD,∵∠COF+∠OCE=90°,∴∠PCD+∠OCE=90°,即∠OCP=90°,∴直线PC是⊙O的切线;(3)∵四边形ABCD是平行四边形,∴DC=AB=2,∵FA⊥CD,∴DE=CE=1,∵∠AED=90°,AD=,DE=1,∴AE=,设⊙O的半径为r,则OA=OD=r,OE=AE﹣OA=4﹣r,∵∠OED=90°,DE=1,∴r2=(4﹣r)2+12解得,r=,即⊙O的半径是.23.东门天虹商场购进一批“童乐”牌玩具,每件成本价30元,每件玩具销售单价x(元)与每天的销售量y(件)的关系如下表:x(元)…35 40 45 50 …y(件)…750 700 650 600 …若每天的销售量y(件)是销售单价x(元)的一次函数(1)求y与x的函数关系式;(2)设东门天虹商场销售“童乐”牌儿童玩具每天获得的利润为w(元),当销售单价x为何值时,每天可获得最大利润?此时最大利润是多少?(3)若东门天虹商场销售“童乐”牌玩具每天获得的利润最多不超过15000元,最低不低于12000元,那么商场该如何确定“童乐”牌玩具的销售单价的波动范围?请你直接给出销售单价x的范围.【考点】二次函数的应用.【分析】(1)设销售量y(件)与售价x(元)之间的函数关系式为:y=kx+b,列方程组求解即可;(2)根据销售利润=单件利润×销售量,列出函数表达式解答即可;(3)根据题意列不等式组求出x的取值范围即可.【解答】解:(1)设函数解析式为y=kx+b,,解得,所以函数解析式为:y=﹣10x+1100;(2)根据题意可得:w=(x﹣30)(﹣10x+1100)=﹣10x2+1400x﹣33000,,最大值:w=16000,当销售单价为70元时,每天可获得最大利润.最大利润是16000元;(3)根据题意可得:15000=﹣10x2+1400x﹣33000,解得x=60或80;根据题意可得:12000=﹣10x2+1400x﹣33000,解得x=50或90,∴50≤x≤60或80≤x≤90.24.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.如果一条直线与果圆只有一个交点,则这条直线叫做果圆的切线.已知A、B、C、D四点为果圆与坐标轴的交点,E为半圆的圆心,抛物线的解析式为y=x2﹣2x﹣3,AC为半圆的直径.(1)分别求出A、B、C、D四点的坐标;(2)求经过点D的果圆的切线DF的解析式;(3)若经过点B的果圆的切线与x轴交于点M,求△OBM的面积.【考点】圆的综合题.【分析】(1)连接DE,根据坐标轴上点的坐标特征求出A、B、C的坐标,根据题意求出半圆的直径,根据勾股定理求出OD的长,得到点D的坐标;(2)根据射影定理求出EF的长,得到点F的坐标,运用待定系数法求出经过点D的果圆的切线DF的解析式;(3)根据切线的性质得到经过点B的果圆的切线与抛物线只有一个公共点,根据一元二次方程的判别式解答即可求出点M的坐标,根据三角形的面积公式计算即可.【解答】解:(1)连接DE,∵y=x2﹣2x﹣3,∴x=0时,y=﹣3,y=0时,x1=﹣1,x2=3,∴点A的坐标为(﹣1,0),点B的坐标为(0,﹣3),点C的坐标为(3,0),∵AC=4,∴AE=DE=2,∴OE=1,∴OD==,∴D点的坐标为(0,);(2)∵DF是果圆的切线,∴ED⊥DF,又DO⊥EF,∴DE2=EO•EF,∴EF=4,则OF=3,∴点F的坐标为(﹣3,0),设经过点D的果圆的切线DF的解析式为y=kx+b,则,解得.∴经过点D的果圆的切线DF的解析式为y=x+;(3)设经过点B的果圆的切线的解析式为:y=ax+c,∵点B的坐标为(0,﹣3),∴经过点B的果圆的切线的解析式为:y=ax﹣3,由题意得,方程组只有一个解,即一元二次方程x2﹣(a+2)x=0有两个相等的实数根,△=(a+2)2﹣4×1×0=0,解得a=﹣2,∴经过点B的果圆的切线的解析式为:y=﹣2x﹣3,当y=0时,x=﹣,∴点M的坐标为(﹣,0),即OM=,∴△OBM的面积=×OM×OB=.2021年1月7日。
北师大版2020-2021学年度九年级数学第一学期期末综合复习优生提升训练题(附答案详解)
北师大版2020-2021学年度九年级数学第一学期期末综合复习优生提升训练题(附答案详解)一、单选题1.如图,在ABC △中,5AB AC ==,2BC =.现分别任作ABC △的内接矩形1111PQ M N ,2222P Q M N ,3333PQ M N ,设这三个内接矩形的周长分别为123c c c 、、,则123++c c c 的值是( )A .6B .6+35C .12D .652.如图,AB 是⊙O 的直径,AB=8,点M 在⊙O 上,,N 是弧MB 的中点,P 是直径AB 上的一动点,若MN=1,则周长的最小值为( )A .4B .5C .6D .73.二次函数y =ax 2+bx+c 的图象如图所示,对称轴是直线x =﹣1,有以下结论:①abc <0;②2a ﹣b =0;③4ac ﹣b 2<8a ;④3a+c <0;⑤a ﹣b <m (am+b ),其中正确的结论的个数是( )A .1B .2C .3D .4 4.定义新运算,*(1)a b a b =-,若a 、b 是方程2104x x m -+=(0m <)的两根,则**b b a a -的值为()A .0 B .1 C .2 D .与m 有关5.在平面直角坐标系xOy 中,已知点M ,N 的坐标分别为(﹣1,2),(2,1),若抛物线y=ax 2﹣x+2(a≠0)与线段MN 有两个不同的交点,则a 的取值范围是( )A .a≤﹣1或14≤a <13B .14≤a <13C .a≤1或a >1D .a≤﹣1或a≥16.如图1,在等边△ABC 中,点E 、D 分别是AC ,BC 边的中点,点P 为AB 边上的一个动点,连接PE ,PD ,PC ,DE .设AP=x ,图1中某条线段的长为y ,若表示y 与x 的函数关系的图象大致如图2所示,则这条线段可能是图1中的A .线段DEB .线段PDC .线段PCD .线段PE7.如图,正方形ABCD 的边长为4cm ,PBC ∆是等边三角形,连接PD BD 、,BD 与PC 相交于点E .则下列5个结论中,①18ADP ∠=︒;②CDP ∆的面积为24cm ;③DEP ∆是等腰三角形;④120BPD ∠=︒;⑤BDP ∆的面积为()2434cm -;正确的结论是( )A .②③⑤B .①③⑤C .②③④D .②④⑤ 8.已知菱形的周长为40cm,两条对角线之比3:4,则菱形面积为( )A .12B .24C .48D .96 9.关于x 的一元二次方程()200ax bx c a =≠++,给出下列说法:①若0a c =+,则方程必有两个实数根;②若0a b c =++,则方程必有两个实数根;③若23b a c =+,则方程有两个不相等的实数根;④若250b ac <-,则方程一定没有实数根.其中说法正确的序号是( )A .①②③ B .①②④C .①③④ D .②③④10.已知二次函数y=ax 2+bx+c 的图像如图,则下列结论:①ac >0②a-b+c="0" ③ x <0时,y <0;④ax 2 + bx + c=0(a≠0)有两个不小于-1的实数根.其中错误的结论有( )A .①②B .③④C .①③D .②④11.对于一个函数,自变量x 取a 时,函数值y 也等于a ,我们称a 为这个函数的不动点.如果二次函数y =x 2+2x +c 有两个相异的不动点x 1、x 2,且x 1<1<x 2,则c 的取值范围是( )112.如图,点A 在线段BD 上,在BD 的同侧作30角的直角三角形ABC 和30角的直角三角形ADE ,CD 与BE ,AE 分别交于点P ,M ,连接PA .对于下列结论: ①BAE CAD ∆∆;②MP MD MA ME ⋅=⋅;③图中有5对相似三角形;④AP CD ⊥.其中结论正确的个数是( )A .1个B .2个C .4个D .3个二、填空题 13.如图,矩形ABCD 中,AB =12,AD =15,E 是CD 上的点,将△ADE 沿折痕AE 折叠,使点D 落在BC 边上点F 处,点P 是线段CB 延长线上的动点,连接P A ,若△P AF 是等腰三角形,则PB 的长为____.14.如图,在四边形ABCD 中,90B D ︒∠=∠=,60A ︒∠=,3AB =,则AD 的取值范围是____.15.如图,半径为2的⊙O 分别与x 轴,y 轴交于A ,D 两点,⊙O 上两个动点B ,C ,使∠BAC =60°恒成立,设△ABC 的重心为G ,则DG 的最小值是_______.16.已知,如图,在四边形ABCD 中,90BAD ∠=︒,连接AC 、BD 相交于点E ,AC AB =,60=︒∠DAC ,2BD BC =,8ABD S =△,则线段CE =______.17.如图,曲线l 是由函数y =6x 在第一象限内的图象绕坐标原点O 逆时针旋转45°得到的,过点A (42,42)-,B (22,22)的直线与曲线l 相18.如图,点P 在反比例函数1y x =(x >0)的图象上,且横坐标为2.若将点P 先向右平移两个单位,再向上平移一个单位后所得图象为点P ′.则经过点P '的反比例函数图象的解析式是_____.19.如图,▱ABCD 中,AB >AD ,AE ,BE ,CM ,DM 分别为∠DAB ,∠ABC ,∠BCD ,∠CDA 的平分线,AE 与DM 相交于点F ,BE 与CM 相交于点N ,连接EM .若▱ABCD 的周长为42cm ,FM=3cm ,EF=4cm ,则EM= ________cm ,AB= ________cm .20.如图,P 是双曲线y =(x >0)的一个分支上的一点,以点P 为圆心,1个单位长度为半径作⊙P ,当⊙P 与直线y =3相切时,点P 的坐标为________.21.如图,在Rt ABC 和Rt DBE 中,90,ABC DBE ACB BED a ∠=∠=︒∠=∠=,点E 是线段AC 上一动点,连接AD ,现有以下结论:①若45a =,则AD EC的值为1; ②若60a =,则AD EC 的值为3; ③无论a 取何值,EAD ∠恒为90︒;④若60a =,取线段DE 的中点M ,连接,AM BM ,若4BC =,则当ABM 是直22.如图,△ABC ,∠ACB=90°,点D ,E 分别在AB ,BC 上,AC=AD ,∠CDE=45°,CD 与AE 交于点F ,若∠AEC=∠DEB ,CE=7104,则CF=______.23.如图,反比例函数y =k x(x >0)的图象经过矩形OABC 对角线的交点M ,分别交AB 、BC 于点D 、E ,连结DE .若四边形ODBE 的面积为9,则△ODE 的面积是________.24.如图所示中的∠A 的正切值为 .三、解答题25.在平面直角坐标系xOy 中,抛物线2:2M y x bx c =-++与直线:914l y x =+交于点A ,且点A 的横坐标为2-.(1)请用b 的代数式表示c ;(2)点B 在直线l 上,点B 的横坐标为1-,点C 的坐标为(,5)b .①若抛物线M 过点B ,求该抛物线的解析式;②若抛物线M 与线段BC 恰有一个交点,直接写出b 的取值范围.26.如图,抛物线y =ax 2+bx+c (a ≠0)的图象与x 轴交于A (﹣3,0)与B (1,0),与直线y =kx (k ≠0)交于点C (﹣2,﹣3).(1)求抛物线的解析式;(2)如图1,点E 是抛物线上(x 轴下方)的一个动点,过点E 作x 轴的平行线与直线OC 交于点F ,试判断在点E 运动过程中,以点O ,B ,E ,F 为顶点的四边形能否构成平行四边形,若能,请求出点E 的坐标;若不能,请说明理由.(3)如图2,点D 是抛物线的顶点,抛物线的对称轴DM 交x 轴于点M ,当点E 在抛物线上B ,D 之间运动时,连接EA 交DM 于点N ,连接BE 并延长交DM 于点P ,猜想在点E 的运动过程中,MN+MP 的和是否为定值?若是,试求出该定值;若不是,请说明理由.27.如图,AB 是半圆O 的直径,C 是AB 延长线上的点,AC 的垂直平分线交半园于点D ,交AC 于点E ,连接DA ,DC .已知半圆O 的半径为3,2BC =.(1)求AD 的长.(2)点P 是线段AC 上一动点,连接DP ,作DPF DAC =∠∠,PF 交线段CD 于点F .当DPF 为等腰三角形时,求AP 的长.28.如图,已知在直角梯形ABCD 中,//AD BC ,AB BC ⊥,11AD =,13BC =,12AB =.动点P 、Q 分别在边AD 和BC 上,且2BQ DP =.线段PQ 与BD 相交于点E ,过点E 作EF ∥BC ,交CD 于点F ,射线PF 交BC 的延长线于点G ,设DP x =.(1)求DF CF 的值. (2)当△PQG 是以线段PQ 为腰的等腰三角形时,求x 的值.29.已知AC ,EC 分别是四边形ABCD 和EFCG 的对角线,点E 在ABC ∆内,90CAE CBE ∠+∠=.(1)如图1,当四边形ABCD 和EFCG 均为正方形时,连接BF .①求证:CAE ∆∽CBF ∆;②若1BE =,2AE =,求CE 的长;(2)如图2,当四边形ABCD 和EFCG 均为矩形,且AB EF k BC FC==时,若1BE =,2AE =,3CE =,求k 的值;30.(本题满分8分)如图,四边形ABCD 中,∠A=90°,AB=35,BC=8,CD=6,AD=5.(1)求BD ;(2)试判断A 、B 、C 、D 四点是否在同一个圆上.如果在同一个圆上,写出圆心和半径,31.在Rt△ABC中,∠BAC=90°,BC=10,tan∠ABC=34,点O是AB边上的动点,以O为圆心,OB为半径的⊙O与边BC的另一交点为D,过点D作AB的垂线,交于点E,连结BE、AE.(1)当AE∥BC(如图(1))时,求⊙O的半径;(2)设BO=x,AE=y,求y关于x的函数关系式;(3)若以A为圆心的⊙A与⊙O有公共点D、E,当恰好也过点C时,求DE的长.32.如图,抛物线y=ax2+bx+c的图象与x轴交于A(﹣3,0)、B(1,0)两点,与y 轴交于点C,且OC=OA(1)求抛物线解析式;(2)过直线AC上方的抛物线上一点M作y轴的平行线,与直线AC交于点N.已知M 点的横坐标为m,试用含m的式子表示MN的长及△ACM的面积S,并求当MN的长最大时S的值.33.已知,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,过点E作EF∥BC交直线AB于点F,连接CF.(1)如图1,点D在BC上,AB与DE交于点G,连接BE.求证:四边形DCFE是平行四边形;(2)如图2,点D在BC的延长线上,若四边形CDEF是矩形,AC=7,BC=4,求AE的长.34.生活中,有人用纸条可以折成正五边形的形状,折叠过程是将图①中的纸条按图②方式拉紧,压平后可得到图③中的正五边形(阴影部分表示纸条的反面).(1)将两端剪掉则可以得到正五边形,若将展开,展开后的平面图形是 ;(2)若原长方形纸条(图①)宽为2cm ,求(1)中展开后平面图形的周长(可以用三角函数表示).35.如图,二次函数223y ax bx =++的图象与y 轴交于C 点,交x 轴于点A (-2,0),B (6,0),P 是该函数在第一象限内图象上的动点,过点P 作PQ ⊥BC 于点Q ,连接PC ,AC .(1)求该二次函数的表达式;(2)求线段PQ 的最大值;(3)是否存在点P ,使得以点P ,C ,Q 为顶点的三角形与△ACO 相似?若存在,请求出点P 的坐标;若不存在,请说明理由.36.四边形ABCD 是平行四边形,点E 在AD 边上运动(点E 不与点A ,D 重合)(1)如图1,当点E 运动到AD 边的中点时,连接BE ,若BE 平分ABC ∠,证明:2=AD AB ;(2)如图2,过点E 作EF BC ⊥且交DC 的延长线于点F ,连接BF .若60ABC ︒∠=,3AB =2AD =,在线段DF 上是否存在一点H ,使得四边形ABFH 是菱形?若存在,请说明当发E ,点H 分别在线段AD ,DF 上什么位置时四边形ABFH 是菱形,并证明;若不存在,请说明理由.参考答案1.C【解析】【分析】首先过点A 作AD ⊥BC 于D ,由等腰三角形的性质,可得BD=CD=12BC=1,∠B=∠C ,由勾股定理可求得AD 的长,又可证得△BN 1P 1∽△BAD ,利用相似三角形的对应边成比例,可证得N 1P 1=2BP 1,又由△BP 1N 1≌△CQ 1M 1(AAS ),BP 1=CQ 1,则可求得c 1的值,同理可求得c 2,c 3的值,继而求得答案.【详解】过点A 作AD ⊥BC 于D ,∵,BC=2,∴BD=CD=12BC=1,∠B=∠C , ∴2=∵四边形P 1Q 1M 1N 1是矩形,∴P 1Q 1=M 1N 1,N 1P 1=M 1Q 1,N 1P 1⊥BC ,∴N 1P 1∥AD ,∴△BN 1P 1∽△BAD ,∴BP 1:BD=N 1P 1:AD ,∴N 1P 1=2BP 1,在△BP 1N 1和△CQ 1M 1中,∵1111111190B C BPN CQ M N P M Q ∠∠⎧⎪∠∠︒⎨⎪⎩====, ∴△BP 1N 1≌△CQ 1M 1(AAS ),∴BP 1=CQ 1,∴c 1=N 1P 1+P 1Q 1+M 1Q 1+M 1N 1=2BP 1+2P 1Q 1+2BP 1=2(BP 1+P 1Q 1+BP 1)=2(BP 1+P 1Q 1+CQ 1)=2BC=2×2=4,同理:c 2=c 3=c 1=4.∴c 1+c 2+c 3=12.故选:C.【点睛】此题考查了相似三角形的判定与性质、矩形的性质、等腰三角形的性质、全等三角形的判定与性质以及勾股定理.此题难度较大,注意掌握辅助线的作法,注意数形结合思想与整体思想的应用.2.B【解析】【分析】作N关于AB的对称点N′,连接MN′,NN′,ON′,ON,由两点之间线段最短可知MN′与AB的交点P′即为△PMN周长的最小时的点,根据N是弧MB的中点可知∠A=∠NOB=∠MON=20°,故可得出∠MON′=60°,故△MON′为等边三角形,由此可得出结论.【详解】作N关于AB的对称点N′,连接MN′,NN′,ON′,ON.∵N关于AB的对称点N′,∴MN′与AB的交点P′即为△PMN周长的最小时的点,∵N是弧MB的中点,∴∠A=∠NOB=∠MON=20°,∴∠MON′=60°,∴△MON′为等边三角形,∴MN′=OM=4,∴△PMN周长的最小值为4+1=5.故选B.【点睛】本题考查了轴对称-最短路线问题;圆周角定理.凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.3.C【解析】【分析】①根据抛物线的开口方向、对称轴、与y 轴的交点即可得结论;②根据抛物线的对称轴即可得结论;③根据抛物线与x 轴的交点个数即可得结论;④根据抛物线的对称轴和x 等于1时y 小于0即可得结论;⑤根据抛物线的顶点坐标及其它任何坐标的纵坐标进行比较即可得结论.【详解】解:①根据抛物线可知:0a <,0b <,0c >,0abc ∴>,所以①错误;②因为对称轴1x =-,即12b a-=-, 2b a ∴=,20a b ∴-=.所以②正确;③因为抛物线与x 轴有两个交点,所以240b ac ->,所以248b ac a ->.所以③正确;④当1x =时,0y <,即0a b c ++<,所以20a a c ++<,所以30a c +<.所以④正确;⑤当1x =-时,y 有最大值,所以当1x =-时,a b c -+的值最大,当x m =时,2y am bm c =++, 所以2a b c am bm c -+>++,即()a b m am b ->+.所以⑤错误.所以有②③④正确.故选C .【点睛】本题考查了二次函数的图象与系数的关系,解决本题的关键是掌握抛物线的相关性质. 4.A【解析】根据题意可得()()22**11b b a a b b a a b b a a -=---=--+,又因为a ,b 是方程2104x x m -+=的两根,所以2104a a m -+=,化简得214a a m -=-,同理2104b b m -+=,214b b m -=-,代入上式可得()()222211044b b a a b b a a m m ⎛⎫⎛⎫--+=--+-=--+-= ⎪ ⎪⎝⎭⎝⎭,故选A . 5.A【解析】【分析】根据二次函数的性质分两种情形讨论求解即可;【详解】∵抛物线的解析式为y=ax 2-x+2.观察图象可知当a <0时,x=-1时,y≤2时,满足条件,即a+3≤2,即a≤-1;当a >0时,x=2时,y≥1,且抛物线与直线MN 有交点,满足条件,∴a≥14, ∵直线MN 的解析式为y=-13x+53, 由215332y x y ax x ⎧-+⎪⎨⎪-+⎩==,消去y 得到,3ax 2-2x+1=0,∵△>0,∴a <13, ∴14≤a <13满足条件, 综上所述,满足条件的a 的值为a≤-1或14≤a <13, 故选A .【点睛】本题考查二次函数的应用,二次函数的图象上的点的特征等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.6.C【解析】试题解析:设边长AC=a ,则0<x <a ,根据题意和等边三角形的性质可知,当x=a 时,线段PE 有最小值;当x=a 时,线段PC 有最小值;当x=a时,线段PD有最小值;线段DE的长为定值.故选C.考点:动点问题的函数图象.7.A【解析】【分析】根据等边三角形和正方形的性质得出∠PCD,计算出∠CDP即可得到∠ADP,可判断①;过P作PF⊥CD,垂足为F,算出PF,可得△CDP的面积,可判断②;利用外角性质算出∠PED,结合∠CPD的度数可判断③;再根据∠BPC和∠CPD的度数可判断④;过P作PG⊥BC,垂足为G,利用三角函数的定义算出PG,再利用S△BPD=S四边形PBCD-S△BCD=S△PBC+S△PDC-S△BCD 即可算出△BPD的面积,可判断⑤.【详解】解:∵△PBC为等边三角形,四边形ABCD为正方形,∴PB=PC=BC=CD,∠PCB=60°,∴∠PCD=90°-60°=30°,∴∠CPD=∠CDP=(180°-30°)÷2=75°,∴∠ADP=90°-75°=15°,故①错误;过P作PF⊥CD,垂足为F,∵正方形ABCD的边长是4,∠PBC=∠PCB=60°,∴PB=PC=BC=CD=4,∠PCF=30°,∴PF=12PC=2,∴S△CDP=12CD PF⨯⨯=1422⨯⨯=4cm2,故②正确;∵∠DCP=30°,∠BDC=45°,∴∠DEP=45°+30°=75°,∵∠CPD=∠CDP=75°,∴∠DEP=∠CPD,∴DP=DE,∴△PDE为等腰三角形,故③正确;∵∠BPC=60°,∠CPD=75°,∴∠BPD=∠BPC+∠CPD=135°,故④错误;过P作PG⊥BC,垂足为G,∵∠PBC=60°,∴PG=PB•sin60°=3423⨯=,则S△BPD=S四边形PBCD-S△BCD =S△PBC+S△PDC-S△BCD=11423444 22⨯⨯+-⨯⨯=434-,故⑤正确,综上:正确的结论是②③⑤.故选A.【点睛】本题考查的正方形的性质以及等积变换,解答此题的关键是作出辅助线,利用锐角三角函数的定义求出PF及PG的长,再根据三角形的面积公式得出结论.8.D【解析】试题分析:设两条对角线长分别为3x,4x,根据勾股定理可得(32x)2+(42x)2=102,解之得x=4,则两条对角线长分别为12cm、16cm,因此菱形的面积=12×16÷2=96cm2.故选:D.9.A【解析】【分析】利用c=-a可判断△=b2+4a2>0,从而根据判别式的意义可对①进行判断;利用c=-(a+b)得到△=b2-4ac=(2a+b)2≥0,则可根据判别式的意义对②进行判断;利用b=2a+3c得到△=4(a+c)2+5c2>0,则可根据判别式的意义对③进行判断;由于b2-5ac<0,不能判断△=b2-4ac=b2-5ac+ac与0的大小关系,则可根据判别式的意义对④进行判断.【详解】解:①当a+c=0,即c=-a,则△=b2-4ac=b2+4a2>0,方程必有两个不相等的实数根,所以①正确;②当a+b+c=0,即c=-(a+b),则△=b2-4ac=b2+4a(a+b)=(2a+b)2≥0,方程必有两个实数根,所以②正确;③当b=2a+3c,则△=b2-4ac=(2a+3c)2-4ac=4(a+c)2+5c2>0,方程必有两个不相等的实数根,所以③正确;④当b2-5ac<0,△=b2-4ac=b2-5ac+ac可能大于0,所以不能判断方程根的情况,所以④错误.故选:A.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.10.C【解析】试题分析:①由图象可知a<0,c>0,所以ac<0,错误;②当x=-1时,a-b+c=0,正确;-1<x<0时,y>0,当x<-1时,y<0,错误;ax2 + bx + c=0(a≠0)有两个不小于-1的实数根,正确.故选C.考点:二次函数的图象和性质11.B【解析】【分析】由题意知二次函数y =x 2+2x+c 有两个相异的不动点x 1、x 2,由此可知方程x 2+x+c =0有两个不相等的实数根,即△=1-4c>0,再由题意可得函数y= x 2+x+c =0在x=1时,函数值小于0,即1+1+c<0,由此可得关于c 的不等式组,解不等式组即可求得答案.【详解】由题意知二次函数y =x 2+2x+c 有两个相异的不动点x 1、x 2,所以x 1、x 2是方程x 2+2x+c =x 的两个不相等的实数根,整理,得:x 2+x+c =0,所以△=1-4c>0,又x 2+x+c =0的两个不相等实数根为x 1、x 2,x 1<1<x 2,所以函数y= x 2+x+c =0在x=1时,函数值小于0,即1+1+c<0,综上则140110c c -⎧⎨++⎩><, 解得c <﹣2,故选B.【点睛】本题考查了二次函数与一元二次方程的关系,正确理解题中的定义,熟练掌握二次函数与一元二次方程的关系是解题的关键.12.D【解析】【分析】如图,设AC 与PB 的交点为N,根据直角三角形的性质得到cos30AB AE AC AD ==︒=,根据相似三角形的判定定理得到△BAE ∽△CAD ,故①正确;根据相似三角形的性质得到∠BEA =∠CDA ,推出△PME ∽△AMD ,根据相似三角形的性质得到MP •MD =MA •ME ,故②正确;由相似三角形的性质得到∠APM=∠DEM=90︒,根据垂直的定义得到AP⊥CD,故④正确;同理:△APN∽△BCN,△PNC∽△ANB,于是得到图中相似三角形有6对,故③不正确.【详解】如图,设AC与PB的交点为N,∵∠ABC=∠AED=90︒,∠BAC=∠DAE=30︒,∴3cos302AB AEAC AD==︒=,∠BAE=30︒+∠CAE,∠CAD=30︒+∠CAE,∴∠BAE=∠CAD,∴△BAE∽△CAD,故①正确;∵△BAE∽△CAD,∴∠BEA=∠CDA,∵∠PME=∠AMD,∴△PME∽△AMD,∴PM ME MA MD=,∴MP•MD=MA•ME,故②正确;∴PM MA ME MD=,∵∠PMA=∠EMD,∴△APM∽△DEM,∴∠APM=∠DEM=90︒,∴AP⊥CD,故④正确;同理:△APN∽△BCN,△PNC∽△ANB,∵△ABC∽△AED,∴图中相似三角形有6对,故③不正确;故选:D.【点睛】本题考查了相似三角形的判定和性质,直角三角形的性质,正确的识别图形是解题的关键. 13.6或9或12.5.【解析】【分析】分若AP=AF ;PF=AF 以及AP=P 三种情形分别讨论求出满足题意的PB 的值即可。
初三上册数学优等生试卷
考试时间:120分钟满分:100分一、选择题(每题5分,共50分)1. 下列各数中,有理数是()A. √-1B. √4C. πD. 0.1010010001…2. 若a > 0,b < 0,则下列不等式中正确的是()A. a + b > 0B. a - b < 0C. ab > 0D. a/b > 03. 下列函数中,定义域为实数集R的是()A. y = 1/xB. y = √xC. y = |x|D. y = x²4. 已知二次函数y = ax² + bx + c(a ≠ 0)的图象开口向上,且顶点坐标为(-1,2),则下列结论正确的是()A. a > 0,b < 0B. a < 0,b > 0C. a > 0,b > 0D. a < 0,b < 05. 在等腰三角形ABC中,底边BC = 6cm,腰AB = AC = 8cm,则三角形ABC的面积是()A. 24cm²B. 30cm²C. 36cm²D. 40cm²6. 已知一次函数y = kx + b(k ≠ 0)的图象经过点(2,-1)和点(-1,3),则k的值为()A. 2B. -2C. 1/2D. -1/27. 在平面直角坐标系中,点P(-2,3)关于x轴的对称点坐标是()A.(-2,-3)B.(2,3)C.(-2,3)D.(2,-3)8. 若sinA = 1/2,且A为锐角,则cosA的值为()A. √3/2B. -√3/2C. 1/2D. -1/29. 下列各式中,能表示平面直角坐标系中所有第二象限的点的是()A. x > 0,y > 0B. x < 0,y > 0C. x > 0,y < 0D. x < 0,y < 010. 在△ABC中,∠A = 60°,∠B = 45°,则∠C的度数是()A. 60°B. 75°C. 90°D. 105°二、填空题(每题5分,共50分)11. 若a² = 9,b² = 16,则a + b的值为________。
九年级数学优等生训练卷1-初中三年级数学试题练习、期中期末试卷-初中数学试卷
九年级数学优等生训练卷1-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试卷下载九年级数学优等生训练卷(1)一、填空题(本大题5小题,每小题4分,共20分)1、若方程有实数根,则k的最小整数数是_________2、分式方程的解是_________3、已知一次函数和的图像都经过点A(–2,0),且与y轴分别交于B、C两点,则△ABC的面积等于_________4、如图,在四边形ABCD中,已知AB=CD,M、N、P分别是AD,BC的中点,△BDC=700,,那么△NMP的度数是_________5、如图,在△ABC中,AC=2,D是AB的中点,E是CD上的一点,又ED= CD,若CE= AB,且CE△AE,那么BC=_________二、解答题(本大题共有4小题,共10分)6、(8分)计算:7、(10分)如图,在△ABC中,已知AB=AC,O是BC上一点,以O为为圆心,OB长为半径的圆与AC相切于点A,过点C作CD△BA,垂足为D,(1)求证:△CAD=2△B;(2)求证:CA2=CD·CO。
8、(10分)如图,在△O的内接△ABC中,AB+AC=12,AD△BC,垂足D在BC上,且AD=3,设△O的半径为y,AB长为x。
(1)求y与x之间的函数关系式;(2)当AB长等于多少时,△O的面积最大。
9、(12分)如图,已知△O1与△O2外切于点O,以直线O1O­2为x轴,点O为坐标原点建立直角坐标系,直线AB切△O1于点B,切△O2于点A,交y轴于点C(0,2),交x轴于点M;BO的延长线交△O2于点D,且OB:OD=1:3,(l)求△O2的半径长;(2)求直线AB的解析式。
欢迎下载使用,分享让人快乐。
九年级数学优等生训练卷11
优等生训练卷(11)四、填空题(本大题有5小题,每小题4分,共20分)27、若5||,2||==y x ,则||y x +=_________28、设0>>b a ,且ab b a 322=+,b a b a -+那么的值为_________ 29、在△ABC 中,∠BAC 的平分线交BC 于D ,若AC =AB+BD ,且∠C =400,那么∠B =_________30、方程()01222=+--a x a x 有实数根α、β,M=α+β,那么M 的取值范围是_________31、已知二次函数c bx ax y ++=2在x =2时有最小值,记()()()c b a c b a f ++=++=242222,()p f =1,()q f =4,()r f =-1,那么p 、q 、r 的大小关系是_________五、解答题(本大题有4小题,共40分)32、(8分)解方程组⎪⎪⎩⎪⎪⎨⎧==-61111xy y x33、(10分)如图,小艇沿南偏东150的方向以每小时46海里的速度航行,在A 处测得航标C 在南偏东450,半小时后在B 处测得航标C 在南偏东750。
(1)分别求A ,B 到航标C 的距离(精确到0.1海里,73.13≈)(2)若小艇从B 继续航行,航向和速度都不变,再经过多少分钟,小艇离航标C 最近:这时C 在什么方向?(精确到1分钟,41.12≈)34、(12分)如图,AE 是∠BAC 的平分线,交BC 于E ,AF 是∠BAC 的外角平分线,交BC 的延长线于F ,CG ⊥AE ,垂足为G ,连BC ,并延长BG 交AF 于H ,求证:AH=FH 。
35、已知点P 是直径为2的⊙O 内的一定点,PO=221,线段为过点P 的任一弦,且它所对的圆心角∠AOB=θ2,A 、B 分别作⊙O 的切线AC 和BC ,两切线相交于C ,设P 到AC 、BC 的距离是a 、b ,求证:a 、b 是方程()0sin sin 2222=+-θθx AB x 的两个根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学优等生训练卷11
四、填空题(本大题有5小题,每小题4分,共20分)
27、若5||,2||==y x ,则||y x +=_________
28、设0>>b a ,且ab b a 322=+,b a b a -
+那么的值为_________ 29、在△ABC 中,∠BAC 的平分线交BC 于D ,若AC =AB+BD ,且∠C =400,那么∠B =_________
30、方程()0122
2=+--a x a x 有实数根α、β,M=α+β,那么M 的取值范畴是_________ 31、已知二次函数c bx ax y ++=2
在x =2时有最小值,记()()()c b a c b a f ++=++=242222
,()p f =1,()q f =4,()r f =-1,那么p 、q 、r 的大小关系是_________
五、解答题(本大题有4小题,共40分)
32、(8分)解方程组⎪⎪⎩
⎪⎪⎨⎧==-61
111xy y x
33、(10分)如图,小艇沿南偏东150的方向以每小时46海里的速度航行,在A 处测得航标C 在南偏东450,半小时后在B 处测得航标C 在南偏东750。
(1)分别求A ,B 到航标C 的距离(精确到0.1海里,73.13≈)
(2)若小艇从B 连续航行,航向和速度都不变,再通过多少分钟,小艇离航标C 最近:这时C 在什么方向?(精确到1分钟,41.12≈)
34、(12分)如图,AE 是∠BAC 的平分线,交BC 于E ,AF 是∠BAC 的外角平分线,交BC 的延长线于F ,CG ⊥AE ,垂足为G ,连BC ,并延长BG 交AF 于H ,求证:AH=FH 。
35、已知点P 是直径为2的⊙O 内的一定点,PO=22
1,线段为过点P 的任一弦,且它所对的圆心角∠AOB=θ2,A 、B 分别作⊙O 的切线AC 和BC ,两切线相交于C ,设P 到AC 、BC 的距离是a 、b ,求证:a 、b 是方程()0sin sin 2222
=+-θθx AB x 的两个根。