目标跟踪算法的分类

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目标跟踪算法的分类

主要基于两种思路:

a)不依赖于先验知识,直接从图像序列中检测到运动目标,并进行目标识别,最终跟踪感兴趣的运动目标;

b)依赖于目标的先验知识,首先为运动目标建模,然后在图像序列中实时找到相匹配的运动目标。

一.运动目标检测

对于不依赖先验知识的目标跟踪来讲,运动检测是实现跟踪的第一步。运动检测即为从序列图像中将变化区域从背景图像中提取出来。运动目标检测的算法依照目标与摄像机之间的关系可以分为静态背景下运动检测和动态背景下运动检测

(一)静态背景

1.背景差

2.帧差

3.GMM

4.光流

背景减算法可以对背景的光照变化、噪声干扰以及周期性运动等进行建模,在各种不同情况下它都可以准确地检测出运动目标。因此对于固定

个关键技术:

a)匹配法则,如最大相关、最小误差等

b)搜索方法,如三步搜索法、交叉搜索法等。

c) 块大小的确定,如分级、自适应等。

光流法

光流估计的方法都是基于以下假设:图像灰度分布的变化完全是目标或者场景的运动引起的,也就是说,目标与场景的灰度不随时间变化。这使得光流方法抗噪声能力较差,其应用范围一般局限于目标与场景的灰度保持不变这个假设条件下。另外,大多数的光流计算方法相当复杂,如果没有特别的硬件装置,其处理速度相当慢,达不到实时处理的要求。

二.目标跟踪

运动目标的跟踪,即通过目标的有效表达,在图像序列中寻找与目标模板最相似候选目标区位置的过程。简单说,就是在序列图像中为目标定位。运动目标的有效表达除了对运动目标建模外,目标跟踪中常用到的目标特性表达主要包括视觉特征 (图像边缘、轮廓、形状、纹理、区域)、统计特征 (直方图、各种矩特征)、变换系数特

征 (傅里叶描绘子、自回归模型)、代数特征 (图像矩阵的奇异值分解)等。除了使用单一特征外,也可通过融合多个特征来提高跟踪的可靠性.

相似性度量算法

对运动目标进行特性提取之后,需要采用一定的相似性度量算法与帧图像进行匹配,从而实现目标跟踪。图像处理与分析理论中,常见的相似性度量方法有欧氏距离、街区距离、棋盘距离、加权距离、巴特查理亚系数、Hausdorff距离等,其中应用最多和最简单的是欧氏距离。

搜索算法

目标跟踪过程中,直接对场景中的所有内容进行匹配计算,寻找最佳匹配位置,需要处理大量的冗余信息,这样运算量比较大,而且没有必要。采用一定的搜索算法对未来时刻目标的位置状态进行估计假设,缩小目标搜索范围便具有了非常重要的意义。其中一类比较常用的方法是预测运动体下一帧可能出现的位置,在其相关区域内寻找最优点。常见的预测算法有Kalman滤波、扩展的Kalman滤波及粒子滤波方法等。Kalman滤波器是一个对动态系统的状态序列进行线性最小方差估计的算法。它通过状态方程和

观测方程来描述一个动态系统,基于系统以前的状态序列对下一个状态作最优估计,预测时具有无偏、稳定和最优的特点,且具有计算量小、可实时计算的特点,可以准确地预测目标的位置和速度,但其只适合于线性且呈高斯分布的系统。相对于卡尔曼滤波算法,粒子滤波器特别适用于非线性、非高斯系统。粒子滤波算法是一种基于蒙特卡洛和贝叶斯估计理论的最优算法,它以递归的方式对测量数据进行序贯处理,因而无须对以前的测量数据进行存储和再处理,节省了大量的存储空间。在跟踪多形式的目标以及在非线性运动和测量模型中,粒子滤波器具有极好的鲁棒性。

另一类减小搜索范围的算法是优化搜索方向。均值漂移算法 (Meanshift算法 )、连续自适应均值漂移算法 (Camshift算法 )和置信区域算法都是利用无参估计的方法优化目标模板和候选目标距离的迭代收敛过程,以达到缩小搜索范围的目的。Meanshift算法是利用梯度优化方法实现快速目标定位,能够对非刚性目标实时跟踪,适合于非线性运动目标的跟踪,对目标的变形、旋转等运动有较好的适用性。但是 Meanshift

算法在目标跟踪过程中没有利用目标在空间中的运动方向和运动速度信息,当周围环境存在干扰时 (如光线、遮挡 ),容易丢失目标。Camshift 算法是在Meanshift算法的基础上,进行了一定的扩展,结合目标色彩信息形成的一种改进的均值漂移算法。由于目标图像的直方图记录的是颜色出现的概率,这种方法不受目标形状变化的影响,可以有效地解决目标变形和部分遮挡的问题,且运算效率较高,但该算法在开始前需要由人工指定跟踪目标。

目标跟踪分类

依据运动目标的表达和相似性度量,运动目标跟踪算法可以分为四类:基于主动轮廓的跟踪、基于特征的跟踪、基于区域的跟踪和基于模型的跟踪。跟踪算法的精度和鲁棒性很大程度上取决于对运动目标的表达和相似性度量的定义,跟踪算法的实时性取决于匹配搜索策略和滤波预测算法。

1、基于主动轮廓的跟踪

Kass等人提出的主动轮廓模型,即Snake模型,是在图像域内定义的可变形曲线,通过对其能量函数的最小化,动态轮廓逐步调整自身形状与目

标轮廓相一致,该可变形曲线又称为Snake曲线。Snake技术可以处理任意形状物体的任意形变,首先将分割得到的物体边界作为跟踪的初始模板然后确定表征物体真实边界的目标函数,并通过降低目标函数值,使初始轮廓逐渐向物体的真实边界移动。

基于主动轮廓跟踪的优点是不但考虑来自图像的灰度信息,而且考虑整体轮廓的几何信息,增强了跟踪的可靠性。由于跟踪过程实际上是解的寻优过程,带来的计算量比较大,而且由于Snake模型的盲目性,对于快速运动的物体或者形变较大的情况,跟踪效果不够理想。

2、基于特征的跟踪

基于特征匹配的跟踪方法不考虑运动目标的整体特征,只通过目标图像的一些显著特征来进行跟踪。假定运动目标可以由惟一的特征集合表达,搜索到该相应的特征集合就认为跟踪上了运动目标。除了用单一的特征来实现跟踪外,还可以采用多个特征信息融合在一起作为跟踪特征。基于特征的跟踪主要包括特征提取和特征匹配两个方面。

(1)特征提取

相关文档
最新文档