pkpm中要检查的参数

合集下载

PKPM参数设置

PKPM参数设置

PKPM参数设置PKPM(鹏凯测定物性分析与计算程序)是一种广泛应用于土木工程结构设计中的计算程序,它能够对结构进行受力分析、变形计算以及稳定性分析等,并可以根据需要进行参数设置。

下面将介绍一些常见的PKPM参数设置。

1.结构类型设置:PKPM能够分析各种类型的结构,包括梁、柱、板、桁架等。

在进行计算之前,需要选择结构类型,并设定相关参数,如结构的材料属性、截面形状和尺寸等。

2.受力边界条件设置:在进行结构分析时,需要设定结构的受力边界条件,包括支座类型、受力方向和受力大小等。

支座类型可以选择固定支座、弹性支座或自由支座。

受力方向和大小应根据具体情况进行设置,一般需要根据结构的受力与约束情况进行考虑。

3.材料属性设置:PKPM可以对多种材料进行分析,如钢材、混凝土和木材等。

在进行计算之前,需要设定材料的物理性质,如弹性模量、抗弯强度和抗压强度等。

这些参数可以根据实际情况选择合适的数值,以保证计算结果的准确性。

4.截面参数设置:对于梁、柱等结构,需要设定截面的几何形状和尺寸。

常见的截面形状包括矩形、圆形、T形等,而尺寸可以通过设定宽度、高度、厚度等参数来确定。

在设定截面参数时,需要根据结构的实际形态和受力情况进行选择,以保证计算的准确性。

5.荷载设置:在进行结构分析时,需要考虑结构所受到的外部荷载,如重力荷载、活荷载以及风荷载等。

在设定荷载参数时,需要根据结构的使用要求和设计规范进行选择。

可以根据实际情况设置荷载的种类、大小和分布等。

6.稳定性分析参数设置:在进行结构稳定性分析时,需要设定相关参数,如屈曲长度系数、曲率半径等。

这些参数可以根据结构的几何形状和受力情况进行选择,以保证计算结果的准确性。

总之,PKPM参数设置是进行结构分析与计算的重要环节,合理的参数设定可以保证计算结果的准确性和可靠性。

不同的结构类型和受力条件需要设置不同的参数,设计人员应根据实际情况选择适当的参数值,并遵循相关的设计规范和标准,以保证结构的安全可靠性。

PKPM参数设置教程

PKPM参数设置教程

PKPM参数设置教程PKPM是一款常用的结构分析和设计软件,它具有简单易用、功能强大的特点。

在进行结构分析和设计时,正确设置PKPM的参数是非常重要的,本教程将为大家详细介绍PKPM参数设置的步骤和注意事项。

一、模型参数设置1.材料参数:在PKPM中,材料参数包括混凝土、钢筋等材料的强度和弹性模量等属性。

在进行结构分析和设计之前,需要根据实际情况输入正确的材料参数。

2.截面参数:截面参数是指梁、柱、梁柱节点等构件的截面尺寸和形状等属性。

在进行结构分析和设计之前,需要根据实际情况输入正确的截面参数。

3.支座参数:支座参数是指结构的支座类型、支座刚度等属性。

在进行结构分析和设计之前,需要根据实际情况输入正确的支座参数。

二、荷载参数设置1.面积荷载:在PKPM中,面积荷载可以是均布荷载、集中荷载等。

在进行结构分析和设计之前,需要根据实际情况输入正确的面积荷载参数,包括荷载的大小和作用位置等。

2.点荷载:点荷载是指作用在结构上的集中力或集中力矩。

在进行结构分析和设计之前,需要根据实际情况输入正确的点荷载参数,包括荷载的大小和作用位置等。

3.温度荷载:温度荷载是指由于温度变化引起的结构变形。

在进行结构分析和设计之前,需要根据实际情况输入正确的温度荷载参数,包括温度变化范围和温度变化系数等。

三、分析参数设置1.分析类型:在PKPM中,分析类型包括静力分析、模态分析和动力时程分析等。

在进行结构分析和设计之前,需要根据实际情况选择合适的分析类型。

2.求解控制:在PKPM中,求解控制包括杆件分析控制和节点分析控制等。

在进行结构分析和设计之前,需要根据实际情况设置合适的求解控制参数。

3.分析选项:在PKPM中,分析选项包括荷载组合、组合类型等。

在进行结构分析和设计之前,需要根据实际情况选择适合的分析选项。

四、设计参数设置1.验算参数:在PKPM中,验算参数包括构件的抗弯强度、剪切强度等。

在进行结构设计之前,需要根据实际情况设置正确的验算参数。

PKPM参数设置(个人总结)

PKPM参数设置(个人总结)

一、PMCAD中设计参数度时不应再降低。

二、文本文件输出1、平均重度:建筑的总质量除以总面积,框架12~13,框剪14~15,剪力墙15左右。

4、刚重比:【高规5.4】中有详细的计算方法和规定。

8、有效质量系数:应大于90%。

9、各楼层地震剪力系数调整情况:不应大于1.三、SATWE参数设置一总信息1、水平力与整体坐标夹角(度:一般为默认。

若地震作用最大的方向大于15度则回填。

2、混凝土容重(KN/m3:砖混结构25KN/m3,框架结构26KN/m3。

3、钢材容重(KN/m3:一般情况下为78.0KN/m3(默认值。

4、裙房层数:程序不能自动识别裙房层数,需要人工指定。

应从结构最底层起算(包括地下室,例如:地下室3层,地上裙房4层时,裙房层数应填入7。

5、转换层所在层号:应按PMCAD楼层组装中的自然层号填写,例如:地下室3层,转换层位于地上2层时,转换层所在层号应填入5。

程序不能自动识别转换层,需要人工指定。

对于高位转换的判断,转换层位置以嵌固端起算,即以(转换层所在层号-嵌固端所在层号+1进行判断,是否为3层或3层以上转换。

6、嵌固端所在层号:无地下室时输入1,有地下室时输入(地下室层数+1。

7、地下室层数:根据实际情况输入。

8、墙元细分最大控制长度(m:一般为默认值1。

9、转换层指定为薄弱层:SATWE中转换层默认不作为薄弱层,需要人工指定。

如需将转换层指定为薄弱层,可将此项打勾,则程序自动将转换层号添加到薄弱层号中,如不打勾,则需要用户手动添加。

此项打勾与在“调整信息”页“指定薄弱层号”中直接填写转换层层号的效果是完全一致的。

10、所有楼层强制采用刚性楼板假定:一般仅在计算位移比和周期比时建议选择。

在进行结构内力分析和配筋计算时不选择。

11、地下室强制采用刚性楼板假定:一般情况不选取,按强制刚性板假定时保留弹性板面外刚度考虑。

特别是对于板柱结构定义了弹性板3、6情况。

但已选择对所有楼层墙肢采用刚性楼板假定的话此条无意义。

PKPM计算参数

PKPM计算参数

PKPM计算参数PKPM是建筑工程设计和施工的一种常用计算软件,全称为“工程结构分析和设计程序”。

PKPM主要用于进行建筑结构的力学分析和设计计算,是国内较早开发的结构计算软件之一在进行PKPM计算时,需要输入一些计算参数,以确保计算的准确性和可靠性。

下面是一些常见的PKPM计算参数:1.材料参数:包括混凝土的抗压强度、抗拉强度、弹性模量等;钢筋的屈服强度、弹性模量等。

这些参数是根据实验室试验结果或国家标准来确定的。

2.结构参数:包括构件的尺寸参数、支座的刚度参数等。

这些参数根据实际的工程结构设计来确定,包括梁、柱、板等构件的尺寸,以及支座的刚度参数。

3.荷载参数:包括静荷载和动荷载。

静荷载是指直接作用于建筑结构上的恒定荷载,如自重、楼层荷载等;动荷载是指作用于结构上的变化荷载,如风荷载、地震荷载等。

这些荷载参数需要根据实际工程情况和设计规范来确定。

4.边界条件:包括结构的支座条件、约束条件等。

这些条件是结构计算中的边界条件,用于确定结构的受力和变形情况。

例如,支座条件可以是固定支座、弹性支座或浮动支座等。

约束条件可以是禁止一些位移或转角,以模拟实际工程中的约束情况。

5.分析方法:PKPM可以进行静力分析、动力分析以及非线性分析等。

静力分析是指在稳态荷载下进行的结构分析,动力分析是指在动态荷载下进行的结构响应分析,非线性分析是指考虑构件变形和材料非线性等因素的分析。

不同的分析方法需要输入不同的计算参数。

在进行PKPM计算时,需要根据具体的工程情况和设计要求来确定这些计算参数。

在输入参数时,需要保证参数的准确性和合理性,确保计算结果的可靠性。

另外,还需要根据计算结果来进行适当的修改和调整,以满足工程实际需求。

需要注意的是,PKPM计算参数的输入应当遵循相应的设计规范和国家标准,以确保结构的安全性和可靠性。

此外,在使用PKPM进行计算时,还需要结合具体的结构计算原理和方法进行分析,以获得准确的计算结果。

pkpm七个重要参数

pkpm七个重要参数

一、轴压比:主要为限制结构的轴压比,保证结构的延性要求,规范对墙肢和柱均有相应限值要求,见抗规6.3.7和6.4.6,高规 6.4.2和7.2.14及相应的条文说明。

轴压比不满足要求,结构的延性要求无法保证;轴压比过小,则说明结构的经济技术指标较差,宜适当减少相应墙、柱的截面面积。

轴压比不满足时的调整方法:1、程序调整:SATWE程序不能实现。

2、人工调整:增大该墙、柱截面或提高该楼层墙、柱混凝土强度。

二、剪重比:主要为限制各楼层的最小水平地震剪力,确保周期较长的结构的安全,见抗规5.2.5,高规3.3.13及相应的条文说明。

这个要求如同最小配筋率的要求,算出来的水平地震剪力如果达不到规范的最低要求,就要人为提高,并按这个最低要求完成后续的计算。

剪重比不满足时的调整方法:1、程序调整:在SATWE的“调整信息”中勾选“按抗震规范5.2.5调整各楼层地震内力”后,SATWE按抗规5.2.5自动将楼层最小地震剪力系数直接乘以该层及以上重力荷载代表值之和,用以调整该楼层地震剪力,以满足剪重比要求。

2、人工调整:如果还需人工干预,可按下列三种情况进行调整:1)当地震剪力偏小而层间侧移角又偏大时,说明结构过柔,宜适当加大墙、柱截面,提高刚度。

2)当地震剪力偏大而层间侧移角又偏小时,说明结构过刚,宜适当减小墙、柱截面,降低刚度以取得合适的经济技术指标。

3)当地震剪力偏小而层间侧移角又恰当时,可在SATWE的“调整信息”中的“全楼地震作用放大系数”中输入大于1的系数增大地震作用,以满足剪重比要求。

三、刚度比:主要为限制结构竖向布置的不规则性,避免结构刚度沿竖向突变,形成薄弱层,见抗规3.4.2,高规4.4.2及相应的条文说明;对于形成的薄弱层则按高规5.1.14予以加强。

刚度比不满足时的调整方法:1、程序调整:如果某楼层刚度比的计算结果不满足要求,SATWE自动将该楼层定义为薄弱层,并按高规5.1.14将该楼层地震剪力放大1.15倍。

PKPM七大控制指标及调整方法

PKPM七大控制指标及调整方法

PKPM七大控制指标及调整方法PKPM是工程结构设计软件,其七大控制指标是指结构设计中需要关注的七个主要要素,包括构件强度、位移控制、设计可靠性、现场施工、效果评估、结构体系合理性和经济效益。

下面将详细介绍这七大控制指标及其调整方法。

一、构件强度控制构件强度是指构件在设计荷载下所能承受的最大应力。

为确保结构的安全性,必须对构件的强度进行控制。

调整方法有:1.增加构件的截面尺寸,增加其抗弯和抗剪的承载力;2.合理设置加劲筋,增加构件的抗弯刚度和强度;3.采用高强度材料,提高构件的抗弯和抗压强度;4.增加钢筋配筋率,提高构件的承载力。

二、位移控制位移控制是指在设计荷载作用下,结构产生的变形应满足规定的要求。

位移过大会影响结构的使用性能和安全性。

调整方法有:1.增加构件的刚度,减小其变形;2.采用预应力或钢筋混凝土组合结构,提高结构整体的刚度;3.增加支撑系统,限制结构的变形;4.优化结构参数,减小结构的变形。

三、设计可靠性设计可靠性是指在规定的荷载和极限状态下,结构满足强度、刚度和稳定性的概率。

提高设计可靠性可以增强结构的安全性。

调整方法有:1.采用可靠性设计方法,考虑荷载和材料参数的不确定性;2.对结构进行全过程监测,及时发现并修复结构缺陷;3.加强施工质量控制,确保结构的设计要求得到满足;4.增加荷载组合中荷载的安全系数,提高结构的抗荷能力。

四、现场施工控制现场施工控制是指在施工过程中,要保证结构能够按照设计要求进行安装和施工。

调整方法有:1.正确设置支撑体系,保证结构的稳定性;2.控制混凝土浇筑的施工工艺和质量,确保结构的强度和耐久性;3.严格控制施工过程中的各项关键工序,如配筋、板模安装等;4.不断加强施工现场的管理与监督,提高施工质量和安全性。

五、效果评估控制效果评估是指对已建成的结构进行性能评估和验收,以确保结构的设计目标得到实现。

调整方法有:1.设置监测系统,定期对结构的健康状况进行评估;2.进行结构的静力和动力试验,获得结构的力学性能参数;3.针对结构存在的问题,进行相应的技术改进和修复;4.加强结构的维护和管理,延长结构的使用寿命。

PKPM建模须查询输入的参数

PKPM建模须查询输入的参数

PKPM建模须查询输入的参数第一部分PMCAD1结构重要性系数:《砼规》3.3.2,《高规》3.8.1条规定。

安全等级为一级不小于1.1,安全等级为二级不小于1.0,《建筑结构设计统一标准》对安全等级的规定如下:2考虑使用年限的活荷载调整系数:高规5.6.1,50年取1,100年取1.13梁柱钢筋保护层厚度:《砼规》8.2.1条4框架梁端负弯矩调幅系数:《高规》5.2.3,现浇框架梁端可取0.8-0.9,装配整体式框架梁端负弯矩调幅系数可取为0.7-0.8,默认取0.855地震信息:南京、仪征、高邮、泰州地震烈度为7度0.1g,为第一组;扬州(维扬、广陵、邗江)、镇江(京口、润州)、江都地震烈度为7度0.15g为第一组场地类别:《抗规》4.1.6,据勘察报告。

抗震等级:据《抗规》表6.1.2确定丙类钢筋混凝土建筑的抗震等级,依据设防类别、烈度、结构类型和房屋高度采用不同的抗震等级。

甲乙类建筑据《高规》3.9.1,3.9.3,3.9.7确定其抗震等级。

抗震设防类别:丙类抗震构造措施的抗震等级:《高规》3.9.7,3.9.1和3.9.2确定。

计算振型个数:《抗规》5.2.2及说明,一般取3N,考虑耦联计算时振型数不小于9,不大于3倍层数6周期折减系数:《高规》4.3.17规定:强制条文结构基本自振周期的经验公式见《荷载规范》附录E墙体较多时取为0.7,一般公用建筑墙体较少时,取为0.75或0.8。

周期比多层结构可以比高规规定的大周期折减这个数值不仅对于结构设计整体配筋影响大,对位移角影响也很大。

不进行周期折减,致使结构计算时地震力偏小,偏于不安全7风荷载信息:基本风压:扬州取为0.4地面粗糙类别:《荷载规范》7.2条,B类(田野、乡村、丛林、丘陵、以及房屋比较稀疏的乡镇和城市郊区)第二部分SATWE SPACE ANALYSIS OF TALL-BUILDINGS WITH WALL-ELEMENTSATWE采用空间杆单元模拟梁、柱及支撑等杆件,用在壳元基础上凝聚而成的墙元模拟剪力墙。

PKPM参数选择

PKPM参数选择

PKPM参数选择PKPM(People's Republic of China National Design and Construction Standard for Building Structures)是中国建筑工程结构设计与施工标准,它是为规范建筑工程施工质量而制定的。

在进行工程结构设计和施工时,可以根据工程的具体要求选择合适的PKPM参数。

下面将介绍一些常用的PKPM参数以及选择的考虑因素。

1.承载力参数:PKPM中的承载力参数是指建筑结构在正常使用和极限状态下所能承受的最大荷载。

在选择承载力参数时,需要考虑结构的设计要求、建筑物的用途以及地震等自然灾害的风险等因素。

一般来说,对于住宅建筑,承载力参数可以按照国家标准进行选择;而对于特殊用途的建筑物,如高层建筑或桥梁等,可能需要更大的承载力参数。

2.抗震设计参数:PKPM中的抗震设计参数是为了确保建筑物在地震时能够具有足够的抗震能力。

在选择抗震设计参数时,需要考虑地震烈度、设计基本周期、地下室设防烈度等因素。

根据地震烈度等级,可以选择适当的抗震设防烈度,以确保建筑物在地震中的安全性。

3.构件尺寸参数:PKPM中的构件尺寸参数是指建筑结构构件的尺寸要求,包括板、梁、柱等构件的截面形状、尺寸和厚度等。

在选择构件尺寸参数时,需要根据结构的受力情况、荷载分布、材料的强度等因素进行综合考虑。

一般来说,构件的尺寸应满足强度和刚度要求,并符合相关的设计规范。

4.材料参数:PKPM中的材料参数是指建筑结构所使用的材料的性能要求,包括混凝土的强度等级、钢筋的强度等级等。

在选择材料参数时,需要考虑结构的设计要求、材料的可获得性以及成本等因素。

通常,材料的强度等级应根据结构的受力情况和设计要求进行选择,以确保结构的安全性和可靠性。

5.预应力参数:PKPM中的预应力参数是指建筑结构中预应力构件的设计要求,包括预应力钢筋的布置、张拉力、锚固长度等。

在选择预应力参数时,需要根据结构的受力情况、设计要求和预应力工艺的要求进行综合考虑。

PKPM结构设计参数精

PKPM结构设计参数精

PKPM结构设计参数精PKPM(破坏过程分析法)是一种结构设计方法,它基于结构的破坏过程进行分析,以确定结构的安全性和可靠性。

在进行PKPM结构设计时,需要考虑一些重要的参数,以确保结构的设计精确度和可靠性。

以下是一些PKPM结构设计参数的重要性及其影响因素的详细描述:1.结构材料的强度参数:结构材料的强度参数是PKPM结构设计中一个非常重要的考虑因素。

结构材料的强度参数包括抗拉强度、抗压强度、抗弯刚度等等。

这些参数的选择将直接影响到结构的承载能力和稳定性。

在选择结构材料的强度参数时,需要考虑到结构的使用环境和荷载条件,确保结构在正常使用条件下能够达到设计要求。

2.结构形状和尺寸参数:结构形状和尺寸参数是PKPM结构设计中另一个重要的考虑因素。

结构的形状和尺寸参数直接影响到结构的受力分布和破坏模式,因此在设计结构时需要合理选择结构的形状和尺寸参数。

通常情况下,结构的形状和尺寸参数应该与其受力状况配合,以确保结构能够承受外部荷载的作用。

3.荷载参数:荷载参数是PKPM结构设计中一个至关重要的考虑因素。

荷载参数包括静载荷、动载荷、地震荷等等。

这些荷载参数的大小和作用方式将直接影响到结构的稳定性和可靠性,因此需要仔细考虑和准确确定荷载参数。

在确定荷载参数的大小和作用方式时,需要综合考虑结构的使用环境、结构材料的性能以及结构的形状和尺寸等因素。

4.设计边界条件参数:设计边界条件参数是PKPM结构设计中一个重要的考虑因素。

设计边界条件参数包括结构的支撑方式、连接方式、约束条件等等。

这些设计边界条件参数将直接影响到结构的受力分布和破坏模式,因此需要合理选择和确定设计边界条件参数。

在确定设计边界条件参数时,需要考虑到结构的使用环境、荷载条件和结构的形状和尺寸等因素,确保结构能够达到设计要求。

5.安全系数参数:安全系数参数是PKPM结构设计中一个非常重要的考虑因素。

安全系数参数是结构设计中用来考虑不确定性和偏差的参数,它通常包括承载能力安全系数、荷载系数等等。

PKPM参数设置(个人总结)

PKPM参数设置(个人总结)

一、PMCAD中设计参数1、考虑结构设计使用年限的荷载调整系数,【高规5.6.1】设计使用年限为50年时取1.0,设计使用年限为100年时取1.1。

2、框架梁端负弯矩条幅系数,【高规5.2.3】在竖向荷载作用下,可考虑框架梁端塑性变形内力重分布对梁端负弯矩乘以调幅系数进行调幅,并应符合下列规定:装配整体式框架梁端负弯矩调幅系数可取为0.7~0.8,现浇框架梁端负弯矩调幅系数可取为0.8~0.9(一般取为0.85),且调幅后的跨中弯矩不应小于按简支计算的跨中弯矩的1/2。

3、保护层厚度,【砼规8.2.1】中有详细规定(新规范保护层厚度指以最外层钢筋的外边缘计算混凝土的保护层厚度)。

4、框架的抗震等级,【抗规6.1.2】中有详细规定(表6.1.2中确定的房屋的抗震等级为丙类建筑的抗震等级,甲、乙类建筑应提高一度查表6.1.2确定其抗震等级,但抗震设防烈度为9度时,乙类建筑的抗震等级应按特一级采用,甲类建筑应采取更有效的抗震措施,丁类建筑允许降低一度采取抗震措施,但已为6度时不应再降低)。

5、抗震构造措施和抗震等级,【抗规3.3.2】建筑场地为1类时,对甲、乙类建筑应允许仍按本地区抗震设防烈度的要求采取抗震构造措施,对丙类建筑应允许按本地区抗震设防烈度降低一度的要求采取抗震构造措施,但抗震设防烈度为6度时仍应按本地区抗震设防烈度的要求采取抗震构造措施。

(1类场地时,丁类建筑抗震构造措施也可降低一度同丙类;2类场地时,甲、乙类建筑应按本地区抗震设防烈度提高一度采取抗震构造措施,丙类建筑按本地区抗震设防烈度采取抗震构造措施,丁类建筑可按本地区抗震设防烈度降低一度采取抗震构造措施;3、4类场地时,甲乙类建筑应按本地区抗震设防烈度提高两个等级采取抗震构造措施,丙类建筑7度半和8度半分别按8度9度采取抗震构造措施,丁类建筑7度和8度分别按6度7度采取抗震构造措施)。

6、计算振型个数,【高规5.1.13】计算振型数应使各振型参与质量之和不小于总质量的90%(振型数应为3的倍数,与结构的自由度有关,所选振型数不应大于结构的自由度,当结构按侧刚模型分析时,每层的刚性楼板有三个自由度,总自由度为3n,当按总刚模型分析时,每个节点有两个自由度,总自由度为2mn)。

PKPM七大指标

PKPM七大指标

PKPM七大指标PKPM(简称:Prime Keat Pro Meter)是一种适用于建筑工程的设计软件,主要用于计算和评估建筑物的结构性能和安全性。

PKPM的设计指标可以帮助工程师在设计和施工过程中进行结构计算和分析。

下面将详细介绍PKPM的七大指标。

一、承载力指标承载力指标是PKPM中最基本的指标之一,它用于评估结构材料和构件的承载能力。

承载力指标主要包括强度和刚度两个方面。

在PKPM中,承载力指标可以通过计算结构材料的抗压、抗拉、抗弯等强度参数来确定。

二、稳定性指标稳定性指标用于评估结构体系在承受外部荷载或者其他外界因素作用下的稳定性能。

稳定性指标主要包括结构的整体稳定、局部稳定和构造稳定三个方面。

PKPM通过计算结构组件的刚度、弯曲承载力以及各个部位的变形极限等来评估结构的稳定性。

三、振动指标振动指标主要用于评估结构的抗震性能和减震效果,包括结构的自振频率、阻尼比、振型等参数。

PKPM通过计算结构材料的质量、刚度以及结构的支座刚度等来确定结构的振动特性。

四、疲劳指标疲劳指标用于评估结构在反复荷载下的疲劳性能,包括结构的疲劳寿命和安全系数等。

PKPM通过计算结构材料的疲劳强度、载荷作用频率以及结构的应力分布等来进行疲劳分析。

五、耐久指标耐久指标主要用于评估结构材料和构件在长期使用和环境作用下的耐久性能,包括结构的耐久寿命和耐久性等参数。

PKPM通过计算结构材料的抗裂性、抗腐蚀性以及结构的使用年限等来进行耐久性分析。

六、安全指标安全指标用于评估结构的安全性能和可靠性,包括结构的静态安全系数、动态安全系数、可修复性等参数。

PKPM通过计算结构的强度、刚度、稳定性以及荷载组合等来进行安全性分析。

七、经济指标经济指标主要用于评估结构设计的经济性和成本效益。

PKPM通过计算结构材料和构件的成本、施工周期以及施工难度等来进行经济性分析,帮助工程师在设计和施工过程中找到最经济、最合理的方案。

综上所述,PKPM的七大指标包括承载力指标、稳定性指标、振动指标、疲劳指标、耐久指标、安全指标和经济指标。

PKPM参数大全

PKPM参数大全

PKPM参数大全PKPM(简称Pohlke和Patoski方法)是结构设计常用的一种参数法。

该方法源于美国草原理工学院的Pohlke、Patoski教授。

PKPM方法适用于框架结构,能够方便快捷地计算结构的受力和刚度。

本文将介绍PKPM中常用的一些参数及其计算方法。

1.杆件长短比(L/r):杆件的长短比是指杆件长度与其截面半径的比值,用来反映杆件的细长程度。

细长杆件在受力时容易发生侧扭和屈曲,因此长短比超过一定值后,需要进行屈曲稳定分析。

一般情况下,屈曲稳定分析要求杆件的长短比不超过100。

2.一阶矩(M1)和二阶矩(M2):一阶矩是指结构中截面各杆件受到的外力与该杆件到结构重心的垂直距离的乘积之和。

二阶矩是指结构中截面各杆件受到的外力与该杆件到结构重心的垂直距离的平方乘积之和。

一阶矩和二阶矩的计算可以通过根据杆件的节点坐标和杆件上的荷载来求解。

3.弹性刚度(K):弹性刚度是指结构在受力下的刚度。

PKPM方法中通常将杆件的弹性刚度表示为杆件长度与截面的刚度比值。

刚度计算方法可以通过杆件的几何参数和材料力学性质来求解。

4.轴向力(N):轴向力是指杆件受到的沿杆件轴线方向的拉力或压力。

轴向力的计算可以通过杆件上的受力和几何参数来求解。

5.弯矩(M):弯矩是指杆件在受力时发生的弯曲变形引起的内力。

弯矩的计算可以通过受力和几何参数来求解。

6.剪力(V):剪力是指杆件在受力时发生的剪切形变引起的内力。

剪力的计算可以通过受力和几何参数来求解。

7. 屈曲载荷(Pcr):屈曲载荷是指杆件在受力时的临界载荷,即当杆件承受的载荷超过该临界值时,杆件将出现屈曲失稳现象。

屈曲载荷的计算可以通过杆件的几何参数和材料力学性质来求解。

8.挠度(Δ):挠度是指结构中杆件在受力下发生的弯曲变形引起的位移。

挠度的计算可以通过受力、几何参数和材料刚度来求解。

9.水平变位(Δh):水平变位是指结构中节点点在水平方向上的位移。

水平变位的计算可以通过节点受力和结构刚度来求解。

PKPM中6个参数的意义

PKPM中6个参数的意义

PKPM中6个参数的意义PKPM(抗震房屋结构设计与分析软件)中的6个参数分别是静力合成加速度、基础地震参数、地震影响系数、结构基础剪切变形比、敲击地震动系数和基础剪切变形比阈值。

1.静力合成加速度:静力合成加速度是指由风、地震等未知因素引起的模拟地震效果。

在自然环境中,地震力会引起建筑物的抖动和振动,将其转化为一个与地震相关的参数,以用于结构设计。

2.基础地震参数:基础地震参数是指在地震工程中用于计算地震动力响应的参数之一,包括地震力、地震位移和地震波等。

通过研究地震参数,可以评估建筑物在地震中的稳定性和安全性。

3.地震影响系数:地震影响系数指的是地震力作用于建筑物的影响程度。

建筑物在地震中受到的影响取决于多种因素,如结构类型、地质条件和地震参数等。

地震影响系数的确定有助于合理配置结构的抗震资源。

4.结构基础剪切变形比:结构基础剪切变形比是结构设计中的一个重要参数,用于评估结构在地震中的变形能力。

通过计算剪切变形比,可以预测和控制结构在地震中可能发生的破坏情况,从而保证结构的抗震安全性。

5.敲击地震动系数:敲击地震动系数是指结构受到敲击地震动力时的抗震能力的系数。

该系数的计算涉及结构的质量、刚度和地震动参数等因素。

通过研究敲击地震动系数,可以评估结构在地震中的抗震性能。

6.基础剪切变形比阈值:基础剪切变形比阈值是进行结构设计和评估时所使用的一个参考值。

该阈值是根据结构的类型、地震参数和抗震设计规范等因素确定的,在设计中起到控制和校核结构抗震能力的作用。

综上所述,PKPM软件中的这6个参数在抗震房屋结构设计中具有重要的意义。

它们通过提供与地震相关的参数和影响因素,帮助工程师评估结构的抗震性能并预测结构在地震中的响应情况,从而提高房屋的抗震安全性。

PKPM计算全参数

PKPM计算全参数

PKPM计算全参数PKPM(Physical Diagram Analysis Method)是一种针对钢结构进行结构分析和设计的计算方法。

它是根据物理图解分析的原理和方法,通过对结构的内力平衡条件和位移协调条件进行分析,来计算结构的受力状态和变形情况的一种理论计算方法。

在PKPM计算中,需要考虑的参数较多,下面将详细介绍PKPM计算的全参数。

1.结构材料参数:-弹性模量(E):钢结构的弹性模量是指单位面积受力后产生的应力与应变之比,是材料刚性和变形能力的量度。

根据每种钢材料的不同,其弹性模量的数值也会有差异。

-屈服强度(σy):钢材的屈服强度是指单位面积受力时,钢材开始发生塑性变形的应力值。

不同类型的钢材具有不同的屈服强度。

-破坏应变(εu):钢材的破坏应变是指材料发生破坏时的应变值。

不同类型的钢材在破坏时表现出不同的应变值。

2.截面参数:-截面面积(A):截面面积是指钢结构截面上各个部分的面积之和,是计算受力和弯曲等问题时的重要参数。

-惯性矩(I):惯性矩是指钢结构截面对于弯曲应力分布的阻力能力,是刚度和变形性能的一个重要指标。

3.荷载参数:-静载荷(G):静载荷是指所有稳定作用于结构上的自重和外部荷载的总和。

静载荷的大小直接影响结构的受力状态。

-活载荷(Q):活载荷是指结构在使用过程中受到的非永久性、可变化的荷载,如人员、货物等。

活载荷的大小会影响结构的变形和破坏。

4.边界条件:-支座刚度(k):支座刚度是指结构受力点的支座的刚度,是模拟结构与地基之间约束程度的参数。

支座刚度的大小会影响结构的位移和变形情况。

5.结构拆装参数:-焊接强度(τ):焊接强度是指焊接接头的承载能力和破坏程度的指标,是决定焊接接头在使用过程中是否安全可靠的参数。

-螺栓预紧力(N):螺栓预紧力是指通过对螺栓施加预紧力来使螺栓接头形成一定的摩擦力,从而使结构受力的一种方法。

螺栓预紧力的大小会影响结构的受力和变形情况。

6.安全系数:-安全系数(γ):安全系数是指结构或材料承受的荷载与其承载能力之间的比值,用于保证结构在使用过程中的安全性。

PKPM参数设置详解

PKPM参数设置详解

PKPM参数设置详解PKPM(Pushover Analysis & Performance-based Design Method)是一种使用有限元理论和性能设计理论结合的结构抗震分析与设计方法。

它可以考虑结构在地震中的非线性行为,提供更准确的地震响应预测和更安全的结构设计。

在进行PKPM分析和设计时,有一些参数需要进行设置。

下面将详细介绍PKPM参数设置的几个关键方面。

1.入力参数设置:PKPM分析首先需要输入地震波信息,包括地震波的震级、震中距、方位角等。

这些参数需要根据实际情况和当地地震活动性进行设置。

一般来说,震级和最大加速度是分析的关键参数,需要按照相关的规范或地震专家的建议进行设置。

2.建筑物基本参数设置:PKPM分析还需要设置建筑物的结构类型、几何参数和材料参数。

其中,结构类型包括框架、剪力墙、框剪结构等,几何参数包括楼层高度、柱、梁等截面尺寸,材料参数包括混凝土、钢材的材料性质等。

这些参数需要根据实际建筑物的结构特点和设计要求进行设置,可以参考相关的设计规范或经验数据。

3.材料非线性参数设置:PKPM分析中考虑的材料非线性行为包括混凝土的拉压损伤、钢材的屈服、铰状构件的屈曲等。

这些非线性行为需要通过设置相应的参数来进行模拟。

例如,混凝土的拉压损伤可以通过设置混凝土的强度、保存力和初始损伤等参数来实现。

钢材的屈服可以通过设置钢材的弹性模量、屈服强度等参数来实现。

铰状构件的屈曲可以通过设置铰的弹性刚度、屈曲强度等参数来实现。

这些参数需要结合具体材料的测试数据和设计要求进行设置。

4.非线性分析参数设置:PKPM分析中,还需要设置一些与非线性分析相关的参数,例如步长控制参数、计算时间步数等。

步长控制参数用于控制非线性分析的精度和稳定性,需要根据分析的具体要求进行设置。

计算时间步数用于确定分析的时间范围和时间间隔,需要根据分析的时程数据和结构的动力特性进行设置。

综上所述,PKPM参数设置是PKPM分析和设计中一项非常关键的工作。

PKPM相关参数汇总

PKPM相关参数汇总

PKPM相关参数汇总PKPM(建筑结构设计软件)是中国建筑企业中广泛使用的一款计算机辅助设计软件,它具有强大的功能和广泛的适用性。

在进行建筑结构设计时,PKPM可以帮助工程师进行各种计算和分析,如静力、动力、抗震、结构检验等,从而提高工程质量和效率。

下面是一些与PKPM相关的参数的汇总。

1.基本参数:-工程名称:记录工程的名称,便于识别和区分。

-工程地址:记录工程所在的地址信息。

-图纸编号:记录绘制的图纸编号。

-设计标准:选择适用的设计标准,如《建筑结构设计规范》等。

2.结构类型:-结构形式:选择适用的结构形式,如框架结构、剪力墙结构、桁架结构等。

-结构高度:记录建筑的整体高度。

-层数:记录建筑的总层数。

-柱网:记录主体结构的柱网。

-梁网:记录主体结构的梁网。

-工程等级:选择适用的工程等级,如一般等级、较高等级、特别重要等级等。

3.荷载参数:-建筑物自重:记录建筑物自身的重量。

-活载:记录建筑物使用过程中产生的活动荷载。

-雪载:记录建筑物承受的雪的荷载。

-风载:记录建筑物承受的风的荷载。

-地震作用:记录地震荷载的参数,如场地类别、设计地震分组等。

4.材料参数:-混凝土强度等级:选择适用的混凝土强度等级。

-钢筋强度等级:选择适用的钢筋强度等级。

-混凝土抗震设防等级:选择适用的混凝土抗震设防等级。

-钢材抗震设防等级:选择适用的钢材抗震设防等级。

5.分析参数:-槽形截面计算:用于槽形截面的设计和计算。

-T型截面计算:用于T型截面的设计和计算。

-等效框架计算:用于框架结构的等效框架计算。

-自动分析:用于自动进行结构的静力、动力和抗震分析。

-局部缺陷分析:用于分析结构的局部缺陷,如脆性破坏等。

6.设计结果:-抗震设防烈度:记录结构的抗震设防烈度。

-应力分析结果:记录结构各个部位的应力分析结果。

-位移分析结果:记录结构各个部位的变形和位移分析结果。

-稳定性分析结果:记录结构的稳定性分析结果。

以上只是一些与PKPM相关的参数的汇总,实际使用时可能还有其他参数和功能。

pkpm中要检查的参数

pkpm中要检查的参数

pkpm中要检查的参数高层建筑结构设计必须检查的计算结果输出信息1、轴压比:主要为控制结构的延性,规范对墙肢和柱均有相应限值要求,见抗规6.3.7和6.4.6。

2、剪重比:主要为控制各楼层最小地震剪力,确保结构安全性,参见《高规》的表3.3.13;地震规范的表5.2.5同。

程序对算出的“楼层最小地震剪力系数”如果不满足规范的要求,将给出是否调整地震剪力的选择。

根据规范组的解释,如果不满足,就应调整结构方案,直到达到规范的值为止,而不能简单的调大地震力。

(A级高度高层建筑的楼层层间抗侧力结构的受剪承载力不宜小于其上一层受剪承载力的80%,不应小于其上一层受剪承载力的65%,B级高度高层建筑的楼层层间抗侧力结构的受剪承载力不宜小于其上一层受剪承载力的75%。

注:楼层层间抗侧力结构受剪承载力是指在所考虑的水平地震作用方向上,该层全部柱及剪力墙的受剪承载力之和。

)见wmass.out3、刚度比:主要为控制结构竖向规则性,以免竖向刚度突变,形成薄弱层。

新抗震规范附录E2.1规定,转换层结构上下层的侧向刚度比不宜大于2。

新高规的4.4.3条规定,抗震设计的高层建筑结构,其楼层侧向刚度不宜小于相临上部楼层侧向刚度的70%或其上相临三层侧向刚度平均值的80%新高规的5.3.7条规定,高层建筑结构计算中,当地下室的顶板作为上部结构嵌固端时,地下室结构的楼层侧向刚度不应小于相邻上部结构楼层侧向刚度的2倍。

新高规的10.2.6条规定,底部大空间剪力墙结构,转换层上部结构与下部结构的侧向刚度,应符合高规附录D 的规定。

D.0.1:底部大空间为一层的部分框支剪力墙结构,可近似采用转换层上、下层结构等效刚度比γ表示转换层上、下层结构刚度的变化,非抗震设计时γ不应大于3,抗震设计时不应大于2D.0.2:底部为2-5层大空间的部分框支剪力墙结构,其转换层下部框架一剪力墙结构的等效侧向刚度与相同或相近高度的上部剪力墙结构的等效侧向刚度比γe宜接近1,非抗震设计时不应大于2,抗震设计时不应大于1.3。

pkpm计算的几个重要参数

pkpm计算的几个重要参数

pkpm计算的几个重要参数偶然偏心和双向地震作用的正确选用考虑偶然偏心:[是]或[否]偶然偏心的含义指的是:有偶然因素引起的结构质量分布的变化,会导致结构固有振动特性的变化,因而结构在相同地震作用下的反应也将发生变化。

考虑偶然偏心,也就是考虑由偶然偏心引起的可能最不利的地震作用。

详见《SATWE用户手册》125页10条。

根据《高规》12页第3.3.3条“计算单向地震作用时应考虑偶然偏心的影响”,故单向地震力计算时选[是],双向地震力计算时选[否],多层规则结构可不考虑。

考虑偶然偏心计算时,对结构的荷载(总重、风荷载)、周期、竖向位移、风荷载作用下的位移及结构的剪重比没有影响;而对结构的地震力和地震下的位移(最大位移、层间位移、位移角等)有较大区别,平均增大18.47%;对结构构件(梁、柱)的配筋平均增大2%~3%。

考虑双向地震作用:[是]或[否]根据《抗规》第26页第5.1.1条3款(强条):“质量和刚度分布明显不对称的结构,应计入双向地震作用下的扭转影响”。

一般情况下,均可在建筑结构的两个主轴方向分别计算水平地震作用,此时可不考虑上一条的[偶然偏心]用户可根据实际工程情况选择是否需要考虑。

实际,对于多层结构而言,如果比较规则,那么可通过《抗规》第5.2.5条(剪重比的要求)来考虑结构的扭转和偶然偏心;对于高层而言,如果结构比较规则,则应选用“考虑偶然偏心”项,而不必再选“考虑双向地震作用”。

对于不规则结构,不论多层还是高层均应选用“考虑双向地震作用”。

——摘自《框架结构(结构专业)施工图设计实例》梁峰张叙主编2007年版10 偶然质量偏心《高层建筑混凝土结构技术规程JGJ3-2002》3.3.3条规定,计算地震作用时,应考虑偶然偏心的影响,附加偏心距可取与地震作用方向垂直的建筑物边长的5%。

偶然偏心的含义指的是:由偶然因素引起的结构质量分布的变化,会导致结构固有振动特性的变化,因而结构在相同地震作用下的反应也将发生变化。

pkpm鉴定模块参数

pkpm鉴定模块参数

pkpm鉴定模块参数PKPM鉴定模块参数一、概述PKPM(Peking University Program for Multi-story Building Structure Design)是由北京大学研发的一款结构设计软件,广泛应用于建筑行业中。

其中的鉴定模块是PKPM中的重要功能之一,用于对建筑结构进行参数鉴定,从而确保结构的安全性和可靠性。

本文将介绍PKPM鉴定模块的参数及其作用。

二、荷载参数1. 自重荷载:指建筑结构自身的重量,包括墙体、梁柱、楼板等构件的重量。

在进行结构鉴定时,需要准确计算自重荷载,以确保结构的稳定性和承载能力。

2. 活荷载:指建筑结构在使用过程中产生的临时荷载,如人员、家具、设备等。

活荷载的大小和分布对结构的影响较大,需要根据实际使用情况进行合理估计和鉴定。

3. 风荷载:指建筑结构受到的风力作用所产生的荷载。

风荷载是结构设计中必须考虑的重要因素之一,需要根据建筑物的高度、形状、风速等参数进行鉴定,以确保结构的抗风能力。

三、材料参数1. 混凝土强度等级:混凝土是建筑结构中常用的材料之一,其强度等级直接影响结构的承载能力。

在PKPM鉴定模块中,可以设置混凝土的强度等级,以确保结构的安全性。

2. 钢筋强度等级:钢筋是混凝土结构中常用的加固材料,其强度等级也是影响结构承载能力的重要参数之一。

在PKPM鉴定模块中,可以设定钢筋的强度等级,以保证结构的抗震性能和承载能力。

3. 砌体强度等级:砌体是建筑结构中常用的墙体材料,其强度等级决定了墙体的承载能力和抗震性能。

在PKPM鉴定模块中,可以设置砌体的强度等级,以确保结构的稳定性和安全性。

四、连接参数1. 锚固长度:指连接件在混凝土结构中的嵌入长度。

锚固长度的大小直接影响连接件与混凝土之间的粘结强度,需要根据结构的设计要求和锚固件的特性进行鉴定。

2. 螺栓规格:螺栓是建筑结构中常用的连接件之一,其规格决定了连接件的承载能力和安全性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高层建筑结构设计必须检查的计算结果输出信息
1、轴压比:主要为控制结构的延性,规范对墙肢和柱均有相应限值要求,见抗规6.3.7和6.4.6。

2、剪重比:主要为控制各楼层最小地震剪力,确保结构安全性,参见《高规》的表3.3.13;地震规范的表5.2.5同。

程序对算出的“楼层最小地震剪力系数”如果不满足规范的要求,将给出是否调整地震剪力的选择。

根据规范组的解释,如果不满足,就应调整结构方案,直到达到规范的值为止,而不能简单的调大地震力。

(A级高度高层建筑的楼层层间抗侧力结构的受剪承载力不宜小于其上一层受剪承载力的80%,不应小于其上一层受剪承载力的65%,B级高度高层建筑的楼层层间抗侧力结构的受剪承载力不宜小于其上一层受剪承载力的75%。

注:楼层层间抗侧力结构受剪承载力是指在所考虑的水平地震作用方向上,该层全部柱及剪力墙的受剪承载力之和。

)见wmass.out
3、刚度比:主要为控制结构竖向规则性,以免竖向刚度突变,形成薄弱层。

新抗震规范附录E2.1规定,转换层结构上下层的侧向刚度比不宜大于2。

新高规的4.4.3条规定,抗震设计的高层建筑结构,其楼层侧向刚度不宜小于相临上部楼层侧向刚度的70%或其上相临三层侧向刚度平均值的80%
新高规的5.3.7条规定,高层建筑结构计算中,当地下室的顶板作为上部结构嵌固端时,地下室结构的楼层侧向刚度不应小于相邻上部结构楼层侧向刚度的2倍。

新高规的10.2.6条规定,底部大空间剪力墙结构,转换层上部结构与下部结构的侧向刚度,应符合高规附录D 的规定。

D.0.1:底部大空间为一层的部分框支剪力墙结构,可近似采用转换层上、下层结构等效刚度比γ表示转换层上、下层结构刚度的变化,非抗震设计时γ不应大于3,抗震设计时不应大于2
D.0.2:底部为2-5层大空间的部分框支剪力墙结构,其转换层下部框架一剪力墙结构的等效
侧向刚度与相同或相近高度的上部剪力墙结构的等效侧向刚度比γe宜接近1,非抗震设计时不应大于2,抗震设计时不应大于1.3。

上述所有这些刚度比的控制,都涉及到楼层刚度的计算方法。

目前,有三种方案可供选择:(1)高规附录E.0.1建议的方法——剪切刚度Ki=GiAi/Hi
(2)高规附录E.0.2建议的方法——剪弯刚度Ki=Vi /△i
(3)抗震规范3.4.2和3.4.3条文说明中建议的方法 Ki=Vi/△ui
选用方法如下:
(1)对于多层(砌体、砖混底框),宜采用刚度1;
(2)对于带斜撑的钢结构和底部大空间层数>1层的结构宜采用刚度2;
(3)多数结构宜采用刚度3。

(所有的结构均可用刚度3)
竖向刚度不规则结构的程序处理:
抗震规范3.4.3条规定,竖向不规则的建筑结构,其薄弱层的地震剪力应乘以1.15的增大系数;
新高规5.1.14条规定,楼层侧向刚度小于上层的70%或其上三层平均值的80%时,该楼层地震剪力应乘1.15增大系数;
新抗震规范3.4.3条规定,竖向不规则的建筑结构,竖向抗侧力构件不连续时,该构件传递给水平转换构件的地震内力应乘以1.25-1.5的增大系数。

1)针对这些条文,程序通过自动计算楼层刚度比, 来决定是否采用1.15的楼层剪力增大系数;并且允许用户强制指定薄弱层位置,对用户指定的薄弱层也采用1.15的楼层剪力增
大系数(参数补充输入)
2)通过用户指定转换梁、框支柱来实现转换构件的地震内力放大。

(特殊构件补充定义)4、位移比:取楼层最大杆件位移与平均杆件位移比值。

位移比是控制结构的扭转效应的参数。

主要为控制结构平面规则性,以免形成扭转,对结构产生不利影响。

见抗规3.4.3条高规4.3.5条规定。

注意: 1)验算位移比可以选择强制刚性楼板假定
2) 验算位移比需要考虑偶然偏心,验算层间位移角则不需要考虑偶然偏心
3)位移比超过1.2,需要考虑双向地震
构件设计与位移信息不是在同一条件下的结果(即构件设计可以采用弹性楼板计算,而位移计算必须在刚性楼板假设下获得),故可先采用刚性楼板算出位移用于送审,而后采用弹性楼板进行构件分析。

(楼层竖向构件的最大水平位移和层间位移角,A、B级高度高层建筑均不宜大于楼层平均值的1.2倍,且A级高度高层建筑均不应大于该楼层平均值的1.5倍,B级高度高层建筑、混合结构高层建筑及复杂高层建筑不应大于该楼层平均值的1.4倍。

)
5、周期比:主要为控制结构扭转效应,减小扭转对结构产生的不利影响,要求见高规4.3.5条。

一旦出现周期比不能满足要求的情况,一般只能通过调整平面布置来改善。

这种改善一般是整体性的,局部小调整往往收效甚微。

总的调整原则是要加强结构外圈,或者削弱内筒。

一句话,周期比控制的不是在要结构足够结实,而是在承载力布局合理性,限制结构抗扭刚度不能太弱。

(新高规的4.3.5条规定:结构扭转为主的第一周期Tt与平动为主的第一周期T1之比,A级高度高层建筑不应大于0.9,B级高度高层建筑、混合结构高层建筑及复杂高层建筑不应大于0.850。


6、刚重比:主要为控制结构的稳定性,以免结构产生滑移和倾覆。

条文:高规(5.4.2)条和混凝土规范(7.3.12)条都提到重力二阶效应问题。

概念:重力二阶效应一般称为P-DEL T效应,在建筑结构分析中指的是竖向荷载的侧移效应。

当结构发生水平位移时,竖向荷载就会出现垂直于变形后的结构竖向轴线的分量,这个分量将加大水平位移量,同时也会加大相应的内力,这在本质上是一种几何非线性效应。

高层建筑结构稳定性对刚重比的要求见高规5.4.4条
注意:考虑P-DEL T效应后,结构周期一般会变得稍长,这是符合实际情况的。

(高宽比不超过5的高层建筑结构,其整体稳定性是满足要求的,不必验算,当建筑物的高宽比小于5时,一般都能阿芒拿组抗倾覆验算,但当设防烈度为9度,则不一定。


7、参与振动质量比:即有效质量系数
例:一八层框架,有大量的越层结构和弹性结点,需许多的振型才能使有效质量系数满足求。

计算振型数剪重比有效质量系数
30 1.6 50%
60 3.2 90%
原因:振型整体性差,局部振动明显。

注:要密切关注有效质量系数是否达到了要求。

若不够,则地震作用计算也就失去了意义。

(粗略估计,振型数不应小于15,多塔结构的振型数不应小于塔楼数的9倍,采用刚性楼板假定,平动<=计算层数,藕连<=计算层数X3)
8、倾覆力距比
1)短肢剪力墙结构
《高规》7.1.2条:抗震设计时筒体和一般剪力墙承受的第一振型底部地震倾覆力距不宜小
于结构总底部地震倾覆力距的50%;一、二、三级短肢剪力墙轴压比不宜大于0.5、0.6、0.7,对一字形短肢剪力墙轴压比限值相应降低0.1。

2)框架-剪力墙结构
新抗震规范第6.1.3条、高规8.1.3条规定,框架-剪力墙结构,在基本振型地震作用下,若框架部分承担的地震倾覆力矩大于总地震倾覆力矩的百分比50%,其框架部分的抗震等级应按框架结构确定,柱轴压比限值宜按框架结构采用。

Wv02Q.out-框架倾覆力矩百分比。

9、楼层最大位移与层高比:(层间位移角限值)
1)弹性层间位移角限值:钢筋混凝土框架为1/550,框架-剪力墙,框架-核心筒,板柱剪力墙为1/800,筒中筒,剪力墙为1/1000。

详《抗震》表5.5.1
2)弹塑性层间位移角(结构薄弱层)限值:
框架结构为1/50,框架-剪力墙结构、框架-核心筒、板柱-剪力墙结构为1/100。

剪力墙结构和筒中筒结构、框支层为1/120详《抗震》表5.5.5
结构设计信息输出文件:Wmass.out
周期、地震力与振型输出文件:Wzq.out
结构位移输出文件:Wdisp.out
各层内力标准值输出文件:Wnl.out
底层柱、墙最大组合内力:Wdcnl.out
各层构件配筋与截面验算输出文件:Wpj.out
超筋超限信息:Wgpj.out
0.2Q调整信息输出文件:Wvozq.out
薄弱层验算输出文件:Sat-k.out。

相关文档
最新文档