最新 有理数单元测试卷附答案
第一章 有理数单元检测卷(解析版)
第1章《有理数》一、选择题(共36分)1.2023的相反数是( )A .12023B .2023-C .2023D .12023-【答案】B【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【详解】解:2023的相反数是2023-,故选:B .【点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.2.中国是最早采用正负数表示相反意义的量、并进行负数运算的国家.若收入500元记作500+元,则支出237元记作( )A .237+元B .237-元C .0元D .474-元【答案】B【分析】根据相反意义的量的意义解答即可.【详解】∵收入500元记作500+元,∴支出237元记作237-元,故选B .【点睛】本题考查了相反意义的量,正确理解定义是解题的关键.3.2022年河南省凭借6.13万亿元的经济总量占据全国各省份第五位,占全国的5.0%,将数据“6.13万亿”用科学记数法表示为( )A .86.1310´B .106.1310´C .126.1310´D .146.1310´【答案】C【分析】科学记数法的表示形式为10n a ´的形式,其110a £<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:将数据“6.13万亿”用科学记数法表示为126.1310´.故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ´的形式,其中110a £<,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.下列说法正确的是( )A .0既是正数又是负数B .0是最小的正数C .0既不是正数也不是负数D .0是最大的负数【答案】C【分析】根据有理数的分类判断即可.【详解】∵0既不是正数也不是负数,故选C.【点睛】本题考查了零的属性,熟练掌握0既不是正数也不是负数是解题的关键.5.点A 为数轴上表示3的点,将点A 向左移动9个单位长度到B ,点B 表示的数是( )A .2B .−6C .2或−6D .以上都不对【答案】B【分析】根据数轴上的平移规律即可解答【详解】解:∵点A 是数轴上表示3的点,将点A 向左移9个单位长度到B ,∴点B 表示的数是:396-=-,故选B .【点睛】本题主要考查了数轴及有理数减法法则,掌握数轴上的点左移减,右移加是解题关键.6.哈尔滨市2023年元旦的最高气温为2℃,最低气温为8-℃,那么这天的最高气温比最低气温高( )A .10-℃B .6-℃C .6℃D .10℃【答案】D【分析】用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可.【详解】解:根据题意,得:()282810--=+=,\这天的最高气温比最低气温高10℃,故选:D .【点睛】本题考查了有理数的减法的应用,是基础题,熟记减去一个数等于加上这个数的相反数是解题的关键.7.把()()()()8452--++---写成省略加号的形式是( )A .8452-+-+B .8452---+C .8452--++D .8452--+【答案】B 【分析】观察所给的式子,要写成省略加号的形式,即是将式子中的括号去掉即可.【详解】解:根据有理数的加减混合运算的符号省略法则化简,得,()()()()28452845---+---=--++.故选:B .【点睛】本题考查有理数的加减混合运算,熟练掌握去括号的法则:括号前是正号,去括号时,括号里面的各项都不改变符号;括号前是负号,去括号时,括号里面的各项都要改变符号是解题的关键.8.下列各对数中,不相等的一对数是( )A .()33-与33-B .33-与33C .()43-与43-D .()23-与23【答案】C【分析】根据有理数的乘方和绝对值的概念,逐一计算即可.【详解】解:()3327-=-,3327-=-,2727-=-,故A 不符合题意;3327-=,3327=,2727=,故B 不符合题意;()4381-=,4381-=-,8181¹-,故C 符合题意;()239-=,239=,99=,故D 不符合题意,故选:C .【点睛】本题考查了有理数的乘方和绝对值的概念,熟练掌握计算法则是解题的关键.9.用四舍五入法按要求对0.30628分别取近似值,其中错误的是( )A .0.3(精确到0.1)B .0.31(精确到0.01)C .0.307(精确到0.001)D .0.3063(精确到0.0001)【答案】C【分析】根据近似数的精确度对各选项进行判断即可.【详解】解:0.30628精确到0.1是0.3,A 选项正确,不符合题意;0.30628精确到0.01是0.31,B 选项正确,不符合题意;0.30628精确到0.001是0.306,C 选项错误,符合题意;0.30628精确到0.0001是0.3063,D 选项正确,不符合题意.【点睛】本题考查了近似数的精确度,熟练掌握四舍五入法及精确度的概念是解题的关键.10.若计算式子1(27)()3-W V 的结果为最大,则应分别在 ,△中填入下列选项中的( )A .+,-B .´,-C .¸,-D .-,¸【答案】D【分析】将四个选项中的运算符号分别代入式子中进行运算,通过比较结果即可得出结论.【详解】解:当选取A 选项的符号时,111(27)()99333+--=+=;当选取B 选项的符号时,111(27)()1414333´--=+=;当选取C 选项的符号时,12113(27)()37321¸--=+=;当选取D 选项的符号时,1(27)()5(3)153-¸-=-´-=,∵1113151493321>>>,当选取D 选项的符号时,计算式子1(27)(3-W V 的结果最大,故选:D .【点睛】本题主要考查了有理数的混合运算,熟练掌握有理数的混合运算法则是解题的关键.11.如图,点A 、B 均在数轴上,且点,A B 所对应的实数分别为a 、b ,若0a b +>,则下列结论一定正确的是( )A .0ab >B .0a b ->C .0a b >D .0b >【答案】B【分析】根据0a b +>,可知,a b 可能同号,也可能异号,而a b >恒成立,即可求解.【详解】∵0a b +>,∴a b >-,即在数轴上,b -在a 的左侧,∴0b b a <<-<或0b b a -<<<,∴,a b 可能同号,也可能异号,而a b >恒成立,∴0a b ->一定正确,【点睛】本题考查了数轴上点的位置及其大小关系,熟练掌握数轴上右边的数总比左边的数大是解题的关键.12.若a 、b 互为相反数,c 、d 互为倒数,m 的倒数是它本身,则232cd m a b m+++的值为A .5B .5或2C .5或1-D .不确定【答案】C 【分析】根据相反数,倒数的性质,可得0,1a b cd +== ,1m =± ,再代入,即可求解.【详解】解:∵a 、b 互为相反数,c 、d 互为倒数,∴0,1a b cd +== ,∵m 的倒数是它本身,∴1m =± ,∴21m = ,当1m = 时,2331221051cd m a b m ´+++=´++=,当1m =- 时,2331221011cd m a b m ´+++=´++=--,∴232cd m a b m+++的值为5或1-.故选:C【点睛】本题主要考查了相反数,倒数的性质,熟练掌握一对互为相反数的和等于0,互为倒数的两个数的乘积为1是解题的关键.二、填空题(共18分)13.6-等于_____.【答案】6【分析】根据绝对值的定义进行求解即可.【详解】解:66-=,故答案为:6.【点睛】本题主要考查了求一个数的绝对值,熟知正数和0的绝对值是它本身,负数的绝对值是它的相反数是解题的关键.14.某种试剂的说明书上标明保存温度是(102)±℃,请你写出一个适合该试剂保存的温度:___________℃.【答案】10(答案不唯一)【分析】根据正数和负数的定义即可解答.【详解】解:由题意,可知适合该试剂的保存温度为8~12℃,在此温度范围内均满足条件.故答案为10(答案不唯一).【点睛】本题考查正负数在实际生活中的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.15.把2.674精确到百分位约等于______.【答案】2.67【分析】把千分位上的数字进行四舍五入即可.【详解】解:2.674 2.67».故答案为:2.67.【点睛】本题主要考查了近似数,解题的关键是熟练掌握定义,经过四舍五入得到的数叫近似数.16.计算:()14877-¸´=_____________.【答案】4849-【分析】根据有理数的乘除运算法则,从左往右依次计算即可.【详解】解:()111484874877749-¸´=-´´=-,故答案为:4849-.【点睛】本题考查了有理数的乘除运算.解题的关键在于明确运算顺序.易错点是先计算乘法然后计算除法.17.已知实数m ,n 在数轴上的对应点的位置如图所示,则m _______n .(填“<”、“>”或“=”)【答案】<【分析】根据在数轴上右边的数据大于左边的数据即可得出答案.【详解】解: m Q 在n 的左边,m n \<,故答案为:<.【点睛】此题考查了实数与数轴,正确掌握数轴上数据大小关系是解题关键.18.若()2180x y ++-=,则x y -的值为______.【答案】9-【分析】利用非负数的性质得出x y ,的值,代入计算得出答案.【详解】解:()2180x y ++-=Q ,1080x y \+=-=,,解得:18x y =-=,,189x y \-=--=-,故答案为:9-.【点睛】本题考查了非负数的性质,掌握非负数的意义和性质是正确解答的关键.三、解答题(共66分)19.(6分)计算:(1)23(22)(21)+---;(2)(3)(2)16(8)-´-+¸-.【答案】(1)22(2)4【分析】(1)利用加法的运算律进行求解即可;(2)先计算乘除,再计算加减即可求解.【详解】(1)解:23(22)(21)+---232221=-+22=;(2)解:(3)(2)16(8)-´-+¸-()62=+-4=.【点睛】本题考查了有理数的混合运算,解题的关键是掌握相应的运算法则.20.(6分)将下列各数在数轴上表示出来,并用“<”连接.2153,|3|,2,0,,(222----+【答案】详见解析,25312()0|3|222-<-<-+<<<-【分析】由绝对值,相反数,有理数的乘方的概念,找到各数在数轴上对应点的位置即可.【详解】解:25312(0|3|222-<-<-+<<<-.【点睛】本题考查数轴的概念,相反数,绝对值,有理数的乘方的概念,关键是准确确定各数在数轴上对应点的位置.21.(6分)计算:()()21125|2|953--´--+-¸.【答案】26-【分析】原式先算乘方及绝对值,再算乘除,最后算加减即可得到结果.【详解】解:()()21125|2|953--´--+-¸41227=---26=-.【点睛】此题考查了有理数的混合运算,其运算顺序为:先乘方,再乘除,最后加减,有括号先算括号里边的,同级运算从左到右依次进行,熟练掌握运算法则是解题关键.22.(6分)数学老师布置了一道思考题:115626æöæö-¸-ç÷ç÷èøèø,小明仔细思考了一番,用了一种不同方法解决了这个问题,小明解法如下:原式的倒数为()151156226626æöæöæö-¸-=-´-=ç÷ç÷ç÷èøèøèø,所以11516262æöæö-¸-=ç÷ç÷èøèø.(1)请你判断小明的解答是否正确(2)请你运用小明的解法解答下面的问题计算:111112346æöæö-¸-+ç÷ç÷èøèø【答案】(1)小明的解答正确(2)13-【分析】(1)正确,利用倒数的定义判断即可;(2)求出原式的倒数,即可确定出原式的值.【详解】(1)解:小明的解答正确,理由为:一个数的倒数的倒数等于原数;(2)解:111134612æöæö-+¸-ç÷ç÷èøèø()11112346æö=-+´-ç÷èø()()()111121212346=´--´-+´-432=-+-3=-,∴11111123463æöæö-¸-+=-ç÷ç÷èøèø.【点睛】本题主要考查了有理数乘法和除法计算,熟练掌握相关计算法则是解题的关键.23.(6分)如果a ,b ,c 是非零有理数,求式子222||||||||a b c abc a b c abc -+++的所有可能的值.【答案】3±或5±【分析】根据绝对值的性质和有理数的除法法则分情况讨论即可.【详解】解:根据题意,当000a b c >>>,,时,22222215||||||||a b c abc a b c abc -+++=++-=;当000a b c >><,,时,22222213||||||||a b c abc a b c abc -+++=+-+=;当000a b c ><>,,时,22222213||||||||a b c abc a b c abc -+++=-++=;当000a b c <>>,,时,22222213||||||||a b c abc a b c abc -+++=-+++=;当000a b c <<>,,时,22222213||||||||a b c abc a b c abc -+++=--+-=-;当000a b c ><<,,时,22222213||||||||a b c abc a b c abc -+++=---=-;当000a b c <><,,时,22222213||||||||a b c abc a b c abc -+++=-+--=-;当000a b c <<<,,时,22222215||||||||a b c abc a b c abc -+++=---+=-;综上所述,式子222||||||||a b c abc a b c abc -+++的所有可能的值为3±或5±.【点睛】本题考查了有理数的乘法和绝对值的性质,熟练掌握绝对值的性质以及有理数的除法法则是解题的关键.24.(8分)某工厂一周内,计划每天生产自行车100辆,实际每天生产量如下表(以计划量为标准,增加的车辆记为正数,减少的车辆记为负数):星期周一周二周三周四周五周六周日增减(辆)1-+32-+4+75-10-(1)生产量最多的一天比最少的一天多生产多少辆?(2)本周一共生产了多少辆自行车?【答案】(1)17辆;(2)696辆.【分析】(1)由表可知,生产最多的一天为()1007+辆,最少的一天为()10010-,两者相减即可;(2)先用100乘以7,再将多生产或少生产的数量相加,两者相加即可.【详解】(1)()()10071001071017+--=+=(辆)∴生产量最多的一天比最少的一天多生产17辆;(2)()100713247510´+-+-++--7004=-696=(辆)∴本周一共生产了696辆自行车.【点睛】本题考查了正数和负数、有理数的四则运算在实际问题中的应用,根据表中数据正确列式,是解题的关键.25.(8分)如图,在数轴上有A、B、C三个点,请回答下列问题.(1)A、B两点间距离是,B、C两点间距离是,A、C两点间距离是.(2)若将点A向右移动5个单位到点D,B、C、D这三点所表示的数哪个最大?最大数比最小数大多少?【答案】(1)3 ;4;7(2)C点表示的数最大,最大数比最小数大4【分析】(1)根据数轴上两点之间的距离公式进行解答即可;(2)求出点D表示的数,然后再进行比较即可.【详解】(1)解:点A表示的数为4-,点B表示的数为1-,点C表示是数为3,则()AB=---=-+=,14143()31314BC=--=+=,()AC=--=+=,34347故答案为:3;4;7.-+=,点B表示的数为1-,点C表示(2)解:将点A向右移动5个单位到点D,则点D表示是数为451是数为3,>>-,∵311∴表示最大数的是点C,表示最小数的是点B()--=+=,31314∴最大数比最小数大4.【点睛】本题主要考查了用数轴上点表示有理数,数轴上两点之间的距离,解题的关键是数形结合找出点A、B、C在数轴上所表示的有理数.26.(10分)数学实验室:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离=-.AB a b利用数形结合思想回答下列问题:(1)数轴上表示2和6两点之间的距离是 ,数轴上表示1和4-的两点之间的距离是 .(2)数轴上表示x 和3-的两点之间的距离表示为 .数轴上表示x 和6的两点之间的距离表示为 .(3)若x 表示一个有理数,则14x x -++的最小值= .(4)若x 表示一个有理数,且134x x ++-=,则满足条件的所有整数x 的是 .(5)若x 表示一个有理数,当x 为 ,式子234x x x ++-+-有最小值为 .【答案】(1)4,5(2)3x +,6x -(3)5(4)1-或0或1或2或3(5)3,6【分析】(1)根据数轴上A 、B 两点之间的距离AB a b =-列式计算即可;(2)根据数轴上A 、B 两点之间的距离AB a b =-列式计算即可;(3)根据数轴上两点之间的距离的意义可知x 在4-与1之间时,14x x -++有最小值5;(4)根据数轴上两点之间的距离的意义可知当x 在1-与3之间时(包含1-和3),134x x ++-=,然后可得满足条件的所有整数x 的值;(5)根据数轴上两点之间的距离的意义可知当3x =时,234x x x ++-+-有最小值,最小值为2-到4的距离,然后可得答案.【详解】(1)解:数轴上表示2和6两点之间的距离是264-=,数轴上表示1和4-的两点之间的距离是()145--=,故答案为:4,5;(2)解:数轴上表示x 和3-的两点之间的距离表示为()33x x --=+,数轴上表示x 和6的两点之间的距离表示为6x -;故答案为:3x +,6x -;(3)解:根据数轴上两点之间的距离的意义可知:14x x -++可表示为点x 到1与4-两点距离之和,∴当x 在4-与1之间时,14x x -++有最小值5,故答案为:5;(4)解:根据数轴上两点之间的距离的意义可知:134x x ++-=表示为点x 到1-与3两点距离之和为4,∴当x 在1-与3之间时(包含1-和3),134x x ++-=,∴满足条件的所有整数x 的是1-或0或1或2或3;故答案为:1-或0或1或2或3;(5)解:根据数轴上两点之间的距离的意义可知:234x x x ++-+-可看作是数轴上表示x 的点到2-、3、4三点的距离之和,∴当3x =时,234x x x ++-+-有最小值,最小值为2-到4的距离,即246--=,故答案为:3,6.【点睛】本题考查了数轴上两点之间的距离公式,绝对值的几何意义,正确理解数轴上两点之间的距离以及绝对值的几何意义是解题的关键.27.(10分)【概念学习】规定:求若干个相同的有理数(均不等0)的除法运算叫做除方,如333¸¸,()()()()2222-¸-¸-¸-等.类比有理数的乘方,我们把333¸¸记作3③,读作“3的圈3次方”,()()()()2222-¸-¸-¸-记作()2-④,读作“2-的圈4次方”.一般地,把()0n aa a a a ¸¸¸××׸¹1442443个记作,读作“a 的圈n 次方”.【初步探究】(1)直接写出计算结果:4=③______,412æö-=ç÷èø______.【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(此处不用作答)(2)试一试:仿照上面的算式,将下列运算结果直接写成乘方幂的形式()3-=④______;5=⑥______;12æö=ç÷èø⑤______.(3)想一想:将一个非零有理数a 的圈n 次方写成乘方幂的形式等于______.(4)比较:()9-⑤______()3-⑦(填“>”“<”或“=”)【灵活应用】(5)算一算:211334æöæö-¸-´-ç÷ç÷èøèø⑤④.【答案】(1)14,4;(2)213æö-ç÷èø,415æöç÷èø,32;(3)21n a -æöç÷èø;(4)>;(5)163【分析】(1)根据题目给出的定义,进行计算即可;(2)将有理数除法转化为乘法,再写成幂的形式即可;(3)从(2)中总结归纳相关规律即可;(4)将两数变形,求出具体值,再比较大小即可;(5)先将除方转化为乘方,再运用有理数混合运算的方法进行计算即可.【详解】解:(1)144444=¸¸=③,411111422222æöæöæöæöæö-=-¸-¸-¸-=ç÷ç÷ç÷ç÷ç÷èøèøèøèøèø,故答案为:14,4;(2)()()()()()21333333æö--¸-¸-¸-=-è=ç÷ø④;4155555555æö=¸¸¸¸¸=ç÷èø⑥31111112222222æö=¸¸¸¸=ç÷èø⑤;故答案为:213æö-ç÷èø,415æöç÷èø,32;(3)a 的圈n 次方为:21...n n a a a a a a -æö¸¸¸¸=ç÷èø1442443个;(4)()31172999æö-=-=-ç÷èø⑤,()51124333æö-=-=-ç÷èø⑦,∵729243>,∴11729243->-,∴()9-⑤>()3-⑦,故答案为:>;(5)211334æöæö-¸-´-ç÷ç÷èøèø⑤④()232334=-¸-´()92716=-¸-´163=.【点睛】本题考查了有理数的除法运算,乘方运算,以及有理数混合运算,正确理解相关运算法则是解题的关键.。
人教版(2024)数学七年级上册第二章 有理数的运算 单元测试(含答案)
第二章 有理数的运算一、单选题1.徐州地铁1号线全长31900米,将31900用科学记数法表示为( )A .3.19×102B .0.319×103C .3.19×104D .0.319×1052.计算(−2)3+23等于( )A .0B .16C .32D .−323.武汉市某天凌晨的气温是−3℃,中午比凌晨上升了8℃,中午的气温是( )A .2℃B .3℃C .7℃D .5℃4.下列各对数中,数值相等的是( )A .−23与(−2)3B .−32与(−3)2C .(−1)2023与(−1)2024D .(−2)3与(−3)2 5.下列问题情境,不能用加法算式−2+8表示的是( )A .某日最低气温为−2℃,温差为8℃,该日最高气温B .用8元纸币购买2元文具后找回的零钱C .数轴上表示−2与8的两个点之间的距离D .水位先下降2cm ,再上升8cm 后的水位变化情况6.某粮店出售的三种品牌的面粉袋上分别标有质量为(50±0.2)kg ,(50±0.3)kg ,(50±0.4)kg 的字样,从中任意拿出两袋,则这两袋的质量最多相差与最少相差分别为( )A .0.8kg 和0.4kgB .0.6kg 和0.4kgC .0.8kg 和0kgD .0.8kg 和0.6kg 7.在简便运算时,把12×(−9991112)变形成最合适的形式是( ) A .12×(−1000+112)B .12×(−1000−112)C .12×(−999−1112)D .12×(−999+1112)8.在1,2,−2这三个数中,任意两数之商的最小值是( )A .12B .−12C .−1D .−29.规定a △b =a −2b ,则3△(−2)的值为( )A .7B .−5C .1D .−110.a ,b 两数在一条隐去原点的数轴上的位置如图所示,下列5个式子:℃a −b <0,℃a +b <0,℃ab <0,℃(a +1)(b +1)<0,℃(a −1)(b +1)<0中一定成立的有( )A.2个B.3个C.4个D.5个二、填空题11.将式子(−20)+(+3)−(−5)−(+7)省略括号和加号后变形正确的是.12.将13.549精确到十分位得.13.一潜艇所在的高度是−50m,一条鲨鱼在潜艇的上方20m处,那么鲨鱼所在的高度为m.14.在某地区,夏季高山上的温度从山脚起每升高100米平均降低0.8℃,已知山脚的温度是24℃,山顶的温度是4℃,试问这座山的高度是米.15.如果x、y都是不为0的有理数且xy<0,则代数式x|x|+|y|y的值是.16.如图所示是计算机某计算程序,若开始输入x=2,则最后输出的结果是.17.设非零数a是平方等于它本身的数,b是相反数等于它本身的数,c是绝对值最小的数,则a+b+c=.18.你喜欢吃拉面吗?拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多细的面条,如下面草图所示.这样捏合到第次后可拉出2048根细面条.三、解答题19.计算.(1)12−(−6)+(−5)−15;(2)−113÷(−3)×(−13);(3)(−23+58−16)×(−24);(4)−14+16÷(−2)3×|−3−1|.20.阅读下面的解题过程:计算:(−15)÷(13−112−3)×6.解:原式=(−15)÷(−256)×6(第一步)=(−15)÷(−25)(第二步)=−35(第三步)回答:(1)上面解题过程中有两个错误,两处错误分别是第______,______步.(2)请写出正确的计算过程.21.有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:(1)与标准重量比较,8筐白菜总计超过或不足多少千克?(2)若白菜每千克售价2元,则出售这8筐白菜可卖多少元?22.出租车司机小李某天上午的营运都是在一条东西走向的大道上,规定向东为正,向西为负,这天上午小李的行车路程(单位:千米)如下:+3,−2,+15,−1,+12,−3,−2,−23.(1)当小李将最后一名乘客送到目的地时,车距出发地的距离是多少千米?在什么方向?(2)若每千米的营运额为7元,则小李这天上午的总营运额为多少元?(3)在(2)的条件下,如果营运成本为1.5元/千米,那么这天上午小李盈利多少元?参考答案:1.C2.A3.D4.A5.C6.C7.A8.D9.A10.C11.−20+3+5−712.13.513.−3014.250015.016.1817.118.1119.(1)−2(2)−427(3)5(4)−920.(1)二,三(2)108521.(1)不足5.5千克(2)389元22.(1)车在出发地西1千米处(2)427元(3)335.5元。
有理数单元测试卷(含答案)
有理数单元测试卷(含答案)数学试卷(第一章有理数,时间90分,满分100分)班级姓名成绩一、填空题(每小题2分,共20分)题号 1 2 3 4 5 6得分答案 2.|-2| 2/5 向西走60m 2 ①-3/4-3/5 1题号 7 8 9 10得分答案 13 2.3.4.5 -14/15二、选择题(每小题3分,共24分)题号 11 12 13 14 15 16 17 18答案 A C B D B B D A三、解答题(76分)19.把下列各数填入它所属的集合内:(6分)15,-3/4,-5,0,5/6,-5.32,21)分数集合{ -3/4.5/6}2)整数集合{ -5.0.2}3)正数集合{ 5/6.2}20.比较大小:-(-0.3)和| - |(4分)0.3) = 0.3,| - | = 00.3.0,所以-(-0.3)。
| - |21.计算下列各题(24分)1) (-3) + (-9) = -122) (-4.7) + 3.9 = -0.83) (4) / (-2/3) = -65) (-2/3) / (3/4) = -8/96) (-1/2) * (-4/5) = 2/522.用简便方法计算下列各题(8分)1) 2/5 + 1/4 = (8 + 5) / 20 = 13/202) 5/6 - 1/3 = (5 - 2) / 6 = 3/6 = 1/223.在数轴上表示 -4,+2,-1.5,用"<"号连接它们。
24.某公司去年总的盈亏情况是:1-3月平均每月亏损1.5万元,4-6月平均每月盈利2万元,7-10月平均每月盈利1.7万元,11-12月平均每月亏损2.3万元。
25.若。
求的值。
26.某检修小组乘车沿公路检修线路,约定向东为正。
某天从A地出发到收工时行走记录为(单位:千米)+15,-2,+5,-1,+10,-3.1) 收工时检修小组在A地的西边,距A地距离为14千米。
有理数的单元测试题及答案
有理数的单元测试题及答案一、选择题(每题2分,共10分)1. 下列各数中,是正数的有()A. -3B. 0C. 3D. -3.52. 绝对值是5的数是()A. 5B. -5C. 5或-5D. 都不是3. 两个负数相加,和的符号是()A. 正B. 负C. 0D. 不确定4. 有理数的乘方运算中,-3的平方是()A. 9B. -9C. 3D. -35. 若a < 0,b > 0,且|a| > |b|,则a+b的值是()A. 正B. 负C. 0D. 不确定二、填空题(每题2分,共10分)1. 有理数包括整数和______。
2. 绝对值是数轴上表示该数的点到原点的距离,例如|-4|=______。
3. 两个有理数相除,如果被除数和除数同号,则商是______数。
4. 有理数的乘法运算中,-2乘以-3等于______。
5. 一个数的相反数是与它相加等于______的数。
三、计算题(每题5分,共20分)1. 计算下列各数的绝对值:|-7|,|0|,|5.5|。
2. 计算下列各数的和:-3 + 2 + (-1)。
3. 计算下列各数的乘积:(-4) × (-5)。
4. 计算下列各数的差:7 - (-2)。
四、解答题(每题10分,共20分)1. 某班有学生40人,其中20人喜欢数学,15人喜欢英语,5人既喜欢数学又喜欢英语。
请问喜欢数学或英语的学生有多少人?2. 某商店出售两种商品,商品A的进价是20元,售价是30元;商品B的进价是15元,售价是25元。
如果商店同时购进这两种商品各10件,商店的总利润是多少?五、应用题(每题15分,共30分)1. 某工厂有工人100名,其中60名工人每天能完成10个产品,剩余的工人每天能完成5个产品。
如果工厂每天需要生产800个产品,问工厂是否需要增加工人?2. 某公司计划在两个城市之间铺设一条铁路,已知城市A到城市B的距离是300公里。
如果铁路的铺设成本是每公里5万元,公司需要准备多少资金?答案:一、选择题1. C2. C3. B4. A5. B二、填空题1. 分数2. 43. 正4. 65. 0三、计算题1. 绝对值:7,0,5.52. 和:-23. 乘积:204. 差:9四、解答题1. 喜欢数学或英语的学生有35人。
有理数单元测试题及答案
有理数单元测试题及答案一、选择题(每题2分,共20分)1. 下列哪个数是有理数?A. πB. √2C. 0.33333(无限循环)D. 1/32. 有理数-3和5的和是多少?A. -8B. 2C. -2D. 83. 哪个是有理数的相反数?A. 3B. -3C. 0D. 1/24. 绝对值是5的有理数有几个?A. 1B. 2C. 3D. 45. 下列哪个表达式等于0?A. -3 + 3B. -3 - 5C. -3 × 0D. -3 ÷ 3二、填空题(每题2分,共20分)6. 有理数-7的绝对值是________。
7. 有理数-2和4的差是________。
8. 有理数-6和-3的乘积是________。
9. 有理数-4的倒数是________。
10. 若a是有理数,且a的相反数是-5,则a=________。
三、计算题(每题5分,共30分)11. 计算下列表达式的值:(-3) × (-2) + 4 ÷ (-2)。
12. 解下列方程:3x - 7 = 8。
13. 计算下列各数的绝对值:-12,0,5.5。
14. 求下列数的相反数:-9,3/4,0。
四、解答题(每题10分,共30分)15. 某商店在一天内卖出了价值为-500元的商品(亏损),同时又购入了价值为300元的商品。
请问这一天商店的净亏损是多少?16. 某工厂在一个月内生产了200件产品,每件产品的成本是5元,销售价格是10元。
请问工厂这个月的纯利润是多少?17. 某学生在一次数学测验中得了85分,第二次测验得了90分,第三次测验得了75分。
请问该学生这三次测验的平均分是多少?答案一、选择题1. D2. C3. B4. B5. A二、填空题6. 77. -68. 189. -1/410. 5三、计算题11. 412. x = 513. 12,0,5.514. 9,-3/4,0四、解答题15. 净亏损200元16. 纯利润1000元17. 平均分81.67分(保留两位小数)结束语本测试题旨在检验学生对有理数的基本概念、运算规则和实际应用的理解。
有理数单元测试题及答案
有理数单元测试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是有理数?A. πB. √2C. 1/3D. 0.33333(无限循环)答案:C2. 如果a和b都是有理数,且a > b,那么下列哪个选项是正确的?A. a + b > 0B. a - b > 0C. a × b > 0D. a ÷ b > 0答案:B3. 两个负有理数相加的结果是什么?A. 正数B. 负数C. 零D. 无法确定答案:B4. 下列哪个数是无理数?A. 0.5B. √3C. 1/7D. 3.1415答案:B5. 有理数a和b的绝对值相等,且a < b,那么a和b的和是多少?A. aB. bC. 0D. -2a答案:D二、填空题(每题2分,共10分)6. 如果一个有理数的绝对值是5,那么这个数可以是______或______。
答案:5,-57. 两个有理数相除,如果商是正数,那么这两个数的符号必须______。
答案:相同8. 如果一个有理数的平方是9,那么这个数可以是______或______。
答案:3,-39. 有理数的加法运算满足交换律,即a + b = ______ + a。
答案:b10. 有理数的乘法运算满足结合律,即(a × b) × c = a ×(______ × c)。
答案:b三、计算题(每题5分,共15分)11. 计算下列表达式的值:(-3) × 2 + 4 × (-2) - 6。
答案:原式 = -6 - 8 - 6 = -2012. 计算下列表达式的值:(-4)² - 3 × 2 - 5。
答案:原式 = 16 - 6 - 5 = 513. 计算下列表达式的值:(-2)³ + 3 × (-1/3) - 1。
答案:原式 = -8 - 1 - 1 = -10四、解答题(每题10分,共20分)14. 某商店在一天内卖出了10件商品,每件商品的售价为x元,成本为y元。
有理数单元检测题10套附答案
1有理数单元检测001有理数及其运算(综合)(测试5)一、境空题(每空2分,共28分)1、31-的倒数是____;321的相反数是____. 2、比–3小9的数是____;最小的正整数是____. 3、计算:._____59____;2123=--=+-4、在数轴上,点A 所表示的数为2,那么到点A 的距离等于3个单位长度 的点所表示的数是5、两个有理数的和为5,其中一个加数是–7,那么另一个加数是____.6、某旅游景点11月5日的最低气温为2-,最高气温为8℃,那么该景点 这天的温差是____.C7、计算:.______)1()1(101100=-+-8、平方得412的数是____;立方得–64的数是____. 9、用计算器计算:._________95=10、观察下面一列数的规律并填空:0,3,8,15,24,_______.二、选择题(每小题3分,共24分)11、–5的绝对值是( ) A 、5 B 、–5 C 、51 D 、51- 12、在–2,+3.5,0,32-,–0.7,11中.负分数有( ) A 、l 个 B 、2个 C 、3个 D 、4个 13、下列算式中,积为负数的是( )A 、)5(0-⨯B 、)10()5.0(4-⨯⨯C 、)2()5.1(-⨯D 、)32()51()2(-⨯-⨯-14、下列各组数中,相等的是( )A 、–1与(–4)+(–3)B 、3-与–(–3)C 、432与169 D 、2)4(-与–1615、小明近期几次数学测试成绩如下:第一次85分,第二次比第一次高8分,第三次比第二次低12分,第四次又比第三次高10分.那么小明第 四次测验的成绩是…………( )A 、90分B 、75分C 、91分D 、81分16、l 米长的小棒,第1次截止一半,第2次截去剩下的一半,如此下去, 第6次后剩下的小棒长为( )A 、121 B 、321C 、641D 、128117、不超过3)23(-的最大整数是( )A 、–4B –3C 、3D 、418、一家商店一月份把某种商品按进货价提高60%出售,到三月份再声称 以8折(80%)大拍卖,那么该商品三月份的价格比进货价( ) A 、高12.8% B 、低12.8% C 、高40% D 、高28% 三、解答题(共48分) 19、(4分)把下面的直线补充成一条数轴,然后在数轴上标出下列各数: –3,+l ,212,-l.5,6.20、七年级一班某次数学测验的平均成绩为80分,数学老师以平均成绩为基准,记作0,把小龙、小聪、小梅、小莉、小刚这五位同学的成绩简 记为+10,–15,0,+20,–2.问这五位同学的实际成绩分别是多少分?221、(8分)比较下列各对数的大小. (1)54-与43- (2)54+-与54+-(3)25与52 (4)232⨯与2)32(⨯ 22、(8分)计算.(1)15783--+- (2))6141(21--(3))4(2)3(623-⨯+-⨯- (4)61)3161(1⨯-÷ 23、(12分)计算. (l )51)2(423⨯-÷- (2)75.04.34353.075.053.1⨯-⨯+⨯-(3)[]2)4(231)5.01(-+⨯÷--(4))411()2(32)53()5(23-⨯-÷+-⨯-24、(4分)已知水结成冰的温度是0C ,酒精冻结的温度是–117℃。
第一章 有理数 单元练习(含答案) 人教版(2024)数学七年级上册
人教版(2024)数学七年级上册第一章有理数单元练习一、选择题1.在中国古代数学著作《九章算术》中记载了用算筹表示正负数的方法,即“正算赤,负算黑”.如果向东走30米记作“米”,那么向西走70米记作()A.米B.米C.米D.米2.在,1,0,这四个数中,是负数的是()A.B.1C.0D.3.的相反数是()A.B.C.D.4.如图,数轴上点P表示的数是()A.-1B.0C.1D.25.下列结论中正确的是()A.0既是正数,又是负数B.0是最小的正数C.0是最大的负数D.0既不是正数,也不是负数6.在,0,,和2024这五个有理数中,正数有()A.1个B.2个C.3个D.4个7.有理数,,0,中,绝对值最大的数是()A.B.C.0D.8.如图,数轴上点A所表示的数的相反数是()A.9B.C.D.二、填空题9.若月球表面的白天平均温度零上,记为,则月球表面的夜间平均温度零下记为.10.大于而小于的整数共有个;11.在数轴上,到原点的距离等于个单位长度的点所表示的有理数是.12.若a与互为相反数,则a的值为.13.如果|m|=4,且m<0,那么m=.三、解答题14.把下列各数填在相应的大括号里.,4,,,,,,,0,.(1)整数集合{…}(2)分数集合{…}(3)非负数集合{…}(4)正有理数集合{…}(5)负有理数集合{…}15.某汽车制造厂本周计划每天生产400辆家用轿车,由于每天上班人数和操作原因,每天实际生产量分别为405辆,393辆,397辆,410辆,391辆,385辆,405辆.用正、负数表示每日实际生产量和计划量的增减情况.16.数轴上A点表示的数为+4,B、C两点所表示的数互为相反数,且C到A的距离为2,点B和点C各表示什么数.17.把下列各数及它们的相反数在数轴上表示出来,并用“<”把所有数都连接起来.2,﹣1.5,0,﹣4.18.张师傅要从5个圆形机器零件中选取2个拿去使用,经过检验,把比规定直径长的数记为正数,比规定直径短的记为负数,记录如下(单位:毫米):,,,,.你认为张师傅会拿走哪2个零件?请你用绝对值的知识加以解释.参考答案1.C2.A3.A4.A5.D6.B7.A8.D9.10.611.12.13.﹣414.(1),4,,,0(2),,,(3)4,,,,,0,(4)4,,,,(5),,15.解:+5,-7,-3,+10,-9,-15,+5 16.解:∵A点表示的数为+4,C到A的距离为2,∴C点表示的数是2或6;又∵B、C两点所表示的数互为相反数∴B点所表示的数是-2,或-6.17.解:如图,﹣4<﹣2<﹣1.5<0<1.5<2<418.解:张师傅会拿走记录为和的2个零件.理由:利用数据的绝对值的判断零件的质量,绝对值越小的说明越接近规定标准.因为.所以张师傅会拿走记录为和的2个零件。
2024-2025学年七年级数学上册 第一章 有理数 单元测试题(含详解)
第1章 有理数(单元重点综合测试)考试范围:全章的内容; 考试时间:120分钟; 总分:120分一、选择题(本大题共10小题,每小题3分,共30分)1.−3的相反数是( )A .−3B .3C .−13D .132.如果把收入2024元记作+2024,那么支出2024元记作( )A .2024B .12024C .|2024|D .−20243.下列运算结果为负数的是( )A .|−3|B .|−(−3)|C .−(−3)D .−|−3|4.下列说法中,正确的是( )A .0既不是整数也不是分数B .绝对值等于本身的数是0和1C .不是所有有理数都可以在数轴上表示D .整数和分数统称为有理数5.在−π3,3.1415,0,−0.333…,−227,2.010010001…中,非负数的个数( )A .2个B .3个C .4个D .5个6.如图,数轴上被墨水遮盖的数的绝对值可能是( )A .−72B .−52C .72D .527.已知a =−|−3|,b =+(−0.5),c =−1,则a 、b 、c 的大小关系是( )A .b >c >aB .a >c >bC .a >b >cD .c >b >a8.凝固点是晶体物质凝固时的温度,标准大气压下,下列物质中凝固点最低的是( )物质钨水银煤油水凝固点3412℃−38.87℃−30℃0℃A .钨B .水银C .煤油D .水9.实数a ,b 在数轴上对应点的位置如图所示,下列结论正确的是( )A.a>−1B.b>1C.−a<b D.−b>a10.数轴上点A表示的数是−2,将点A沿数轴移动3单位长度得到点B,则点B表示的数是()A.−5B.1C.−1或5D.−5或1二、填空题(本大题共6小题,每小题3分,共18分)11.用“>”“<”“=”号填空:−76−6 7.12.化简:|−35|=;−|−1.5|=;|−(−2)|=.13.我国古代数学名著《九章算术》中已经用正负数来表示相反意义的量.如果节约50cm3的水记为+50cm3,那么浪费10cm3的水记为.14.如图,在数轴上有A、B两点,点A表示的数是−2024,点O为原点,若OA=OB,则点B表示的数是.15.若|x−1|+|y−5|=0,那么x=,y=.16.如图,在数轴上,点A表示的数是10,点B表示的数为50,点P是数轴上的动点.点P沿数轴的负方向运动,在运动过程中,当点P到点A的距离与点P到点B的距离比是2:3时,点P表示的数是.三、(本大题共4小题,每小题6分,共24分)17.某饮料公司的一种瓶装饮料外包装上有“500±30(mL)”字样,请问“500±30(mL)”是什么含义?质检局对该产品抽查5瓶,容量分别为503mL,511mL,489mL,473mL,527mL,问抽查产品的容量是否合格?18.下面是一个不完整的数轴,(1)请将数轴补充完整,并将下列各数表示在数轴上;(2)将下列各数按从小到大的顺序用“<”号连接起来:−3;3.5;−(−212);−|−1|.19.有理数a,b在数轴上的对应点的位置如图所示.(1)判断:−a_______1(填“>”,“<”或“=”);(2)用“<”将a,a+1,b,−b连接起来(直按写出结果)20.把下面各数填在相应的大括号里(将各数用逗号分开):−18,3.14,0,2024,−3,5 80%,π,−|−5|,−(−7).2负整数集合{……}整数集合{……}正分数集合{……}非负整数集合{……}有理数{……}四、(本大题共3小题,每小题8分,共24分)21.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动,他从A处出发去看望B、C、D处的其他甲虫,规定:向上向右走均为正,向下向左走均为负,如果从A到B记为A→B{1,4},从B到A记为:B→A{−1,−4},其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C{______,______},C→B{______,______}:(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的最短路程;(3)若图中另有两个格点M、N,且M→A{1−a,b−5},M→N{5−a,b−2},则A→N应记为什么?直接写出你的答案.22.数轴上表示有理数a,b,c,d的点的位置如图所示:(1)请将有理数a,b,c,d按从小到大的顺序用“<”连接起来:______;(2)如果|a|=4,表示数b的点到原点的距离为6,|c|=2,c与d距离原点的距离相等,则a= ______,b=______,c=______,d=______.23.有些含绝对值的方程,可以通过讨论去掉绝对值,转化成一元一次方程求解.例如:解方程x+2|x|=3,解:当x≥0时,方程可化为:x+2x=3,解得x=1,符合题意;当x<0时,方程可化为:x−2x=3,解得x=−3,符合题意.所以,原方程的解为x=1或x=−3.请根据上述解法,完成以下问题:解方程:x+2|x−1|=3;五、(本大题共2小题,每小题12分,共24分)24.点A、B、C、D、E在数轴上位置如图所示(1)点A、B、C、D、E所表示的有理数分别是______,用“<”把它们连接起来是______.(2)点F所对应的有理数是−5,请在数轴上标出点F的位置2(3)A、B之间的距离是多少?A、E之间的距离是多少?若数轴上有两点M、N,且它们对应的有理数分别是a和b,则M、N之间的距离是多少?(用含a,b的代数式表示)25.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a−b|.利用数形结合的思想回答下列问题:(1)数轴上表示2和10两点之间的距离是,数轴上表示2和−10的两点之间的距离是;(2)数轴上表示x和−2的两点之间的距离表示为;(3)若x表示一个有理数,|x−1|+|x+3|有最小值吗?若有,请求出最小值,若没有写出理由.(4)若x表示一个有理数,求|x+4|+|x−5|+|x+6|的最小值.参考答案:1.B【分析】本题考查了相反数的概念,掌握只有符号不同的两个数叫做互为相反数是解答此题的关键.根据符号不同,绝对值相同的两个数互为相反数即可求得答案.【详解】解:−3的相反数是3.故选:B2.D【分析】本题考查正数和负数,理解具有相反意义的量是解题的关键.正数和负数是一组具有相反意义的量,据此即可求得答案.【详解】解:收入2024元记作+2024,那么支出2024元记作−2024,故选:D3.D【分析】本题考查了有理数的绝对值、相反数等,解题的关键是正确理解有理数的绝对值以及相反数的意义.|−3|=3,结果为正数,故A错误;|−(−3)|=3,结果为正数,故B错误;−(−3)=3,结果为正数,故C错误;−|−3|=−3,结果为负数,故D正确.【详解】解:A、|−3|=3,结果为正数,故A错误;B.|−(−3)|=3,结果为正数,故B错误;C.−(−3)=3,结果为正数,故C错误;D.−|−3|=−3,结果为负数,故D正确.故选:D.4.D【分析】本题考查数轴,有理数,绝对值,关键是掌握有理数、整数的概念,由有理数和整数的概念,即可判断.【详解】解:A、0是整数,故A不符合题意;B、绝对值等于本身的数是0或正数(非负数),故B不符合题意,C、所有理数都可以在数轴上表示,故C不符合题意;D、整数和分数统称为有理数,正确,故D符合题意.故选:D.5.B【分析】本题考查了非负数的定义,解题的管计划司掌握非负数的定义.根据“零和整数统称为非负数”,即可求解.【详解】解:非负数有:3.1415,0,2.010010001…,共3个,故选:B.6.C【分析】本题主要考查了有理数与数轴,求一个数的绝对值.根据数轴确定该数的绝对值在3到4之间即可判断.【详解】解:由题意得,遮住的数在−4到−3之间,∴遮住的数的绝对值在3到4之间,∴四个选项中只有C选项符合题意,故选:C.7.A【分析】此题考查了绝对值,多重符号化简,有理数的大小比较,先化简个数,再根据有历史大小比较的方法比较即可.【详解】解:∵a=−|−3|=−3,b=+(−0.5)=−0.5,c=−1,∴−0.5>−1>3,∴b>c>a,故选:A.8.B【分析】本题考查了正负数,绝对值越大的负数反而越小,据此即可作答.【详解】解:∵|−38.87℃|=38.87℃,|−30℃|=30℃,38.87℃>30℃,∴−38.87℃<−30℃,∴下列物质中凝固点最低的是水银,故选:B.9.D【分析】本题考查的是数轴与实数的大小比较等相关内容,会利用数轴比较实数的大小是解决问题的关键.根据数轴上的点的特征即可判断.【详解】解:A:∵点a在−1的左边,∴a<−1,故该选项不符合题意;B:∵点b在1的左边,∴b<1,故该选项不符合题意;C:∵a<−1,∴−a>1,又∵b<1,∴−a>b,故该选项不符合题意;D :∵ b <1,∴ −b >−1,又∵ a <−1,∴ −b >a ,故该选项符合题意;故选:D .10.D【分析】本题考查数轴上点移动后数字表示,解题关键是移动规律左减右加.根据数轴上点的移动规律,左减右加计算即可.【详解】解:根据数轴上点的移动规律,左减右加,可得点A 向左移动时:−2−3=−5,可得点A 向右移动时:−2+3=1,综上可得点B 表示的数是−5或1,故选D .11.<【分析】本题考查了有理数的大小比较,解决本题的关键是掌握两个负数大小的比较,绝对值大的其值反而小.根据两个负数,绝对值大的其值反而小即可比较.【详解】解:∵ |−76|=76,|−67|=67,而76>67,∴ −76<−67.故答案为:<.12. 35 −1.5 2【分析】本题考查了绝对值:若a >0,则|a|=a ;若a =0,则|a|=0;若a <0,则|a|=−a .【详解】解:|−35|=35,−|−1.5|=−1.5,|−(−2)|=2,故答案为:35,−1.5,2.13.−10cm 3【分析】本题考查正数和负数,正数和负数是一组具有相反意义的量,据此即可求得答案,熟练掌握具有相反意义的量是解决此题的关键【详解】解:如果节约50cm 3的水记为+50cm 3,那么浪费10cm 3的水记为−10cm 3,故答案为:−10cm 3.14.2024【分析】本题考查了数轴上两点间的距离,相反数的意义.根据数轴上两点间的距离,即可求解.【详解】解:∵点A 表示的数是−2024,OA =OB ,∴点A 点B 表示的数互为相反数,∴点B 表示的数为:−(−2024)=2024,故答案为:2024.15. 1 5【分析】本题考查了绝对值的非负性和解一元一次方程,熟练掌握任何数的绝对值都是非负数是解题的关键,据此作答即可.【详解】∵|x−1|+|y−5|=0,|x−1|≥0,|y−5|≥0,∴x−1=0,y−5=0,解得x =1,y =5,故答案为:1,5.16.26或−70【分析】本题考查了数轴上的动点问题、数轴上两点间的距离.可分为“当点P 运动到点A 右侧时”和“当点P 运动到点A 左侧时”两种情况讨论,根据“点P 到点A 的距离与点P 到点B 的距离比是2:3”,列式计算即可,根据数轴得到两点间的距离是解题的关键.【详解】解:∵在点P 运动过程中,点P 到点A 的距离与点P 到点B 的距离比是2:3,∴PA:PB =2:3,当点P 运动到点A 右侧时,PA =23+2AB =25×(50−10)=16,∴此时点P 表示的数是10+16=26;当点P 运动到点A 左侧时,PA =23−2AB =2×(50−10)=80,∴此时点P 表示的数是10−80=−70,综上所述,点P 表示的数是26或−70.故答案为:26或−7017.合格,过程见详解【分析】本题考查用正负数表示变化的量,在用正负数表示变化的量时,先规定其中的一个为正(或负),则其相反意义的量就用负(或正)表示.理解500±30(mL )的意义,根据题意进行判断即可.【详解】解:“500±30(mL )”是500 mL 为标准容量,470~530(mL )是合格范围,故503mL,511mL,489mL,473mL,527mL,抽查产品的容量是合格的.18.(1)见解析(2)−3<−|−1|<−(−212)<3.5【分析】本题主要考查了用数轴表示有理数,根据数轴比较有理数的大小,化简绝对值和多重符号:(1)先规定向右为正方向,以及单位长度,再化简绝对值和多重符号,最后表示出各数即可;(2)根据数轴上左边的数小于右边的数用小于号将各数连接起来即可.【详解】(1)解:−(−212)=212,−|−1|=−1(2)解;由数轴可得,−3<−|−1|<−(−212)<3.5.19.(1)<(2)−b<a<a+1<b.【分析】(1)利用数轴和相反数的意义解答即可;(2)利用数轴和相反数的意义解答即可.【详解】(1)解:∵−1<a<0,∴0<−a<1.故答案为:<;(2)解:∵−1<a<0,b>1,∴0<a+1<1,−b<−1,如图,∴−b<a<a+1<b.20.见解析【分析】本题考查了正数,负数,整数,分数,有理数,以及无理数的概念,解题的关键是熟练掌握相关定义,要注意的是本题中的π2是无限不循环小数,为无理数.【详解】解:∵ −|−5|=−5,−(−7)=7,3.14=3750,80%=45,∴ 这些数可按如下分类,负整数集合{−18,−|−5|……}整数集合{−18,0,2024,−|−5|,−(−7)……}正分数集合{3.14,80%……}非负整数集合{0,2024,−(−7)……}有理数{−18,3.14,0,2024,−35,80%,−|−5|,−(−7)……}21.(1)3,4;−2,0(2)10(3)(4,3)【分析】本题考查了正负数在网格线中的运动路线问题,数形结合,明确运动规则,是解题的关键.(1)根据向上向右走均为正,向下向左走均为负,分别写出各点的坐标即可;(2)分别根据各点的坐标计算总长即可;(3)将M→A ,M→N 对应的横纵坐标相减即可得出答案.【详解】(1)解:图中A→C {3,4},C→B {−2,0}故答案为:3,4;−2,0.(2)解:由已知可得:A→B 表示为{1,4},B→C 记为{2,0},C→D 记为{1,−2},则该甲虫走过的路程为:1+4+2+1+2=10.(3)解:由M→A {1−a,b−5},M→N {5−a,b−2},可知:5−a−(1−a )=4,b−2−(b−5)=3,∴点A 向右走4个格点,向上走3个格点到点N ,∴A→N 应记为(4,3).22.(1)a <c <d <b(2)−4,6,−2,2【分析】此题主要考查了数轴以及绝对值的性质,正确利用数形结合得出答案是解题关键.(1)利用数轴上a,b,c,d的位置进而得出大小关系;(2)利用绝对值的意义以及结合数轴得出答案【详解】(1)由题意得:a<c<d<b,故答案为:a<c<d<b;(2)∵|a|=4,a<0,∴a=−4,∵数b的点到原点的距离为6,b>0,∴b=6,∵|c|=2,c<0,∴c=−2,∵c与d距离原点的距离相等,d>0,∴d=2.故答案为:−4,6,−2,2.23.x=−1或x=53【分析】本题考查了含绝对值符号的一元一次方程,分类讨论:x<1,x≥1,根据绝对值的意义,可化简绝对值,根据解方程,可得答案是解题关键,以防遗漏.【详解】当x<1时,方程可化为:x+2(1−x)=3,解得x=−1,符合题意;,符合题意;当x≥1时,方程可化为:x+2(x−1)=3,解得x=53.所以,原方程的解为:x=−1或x=5324.(1)−3,2,3.5,0,−1;−3<−1<0<2<3.5(2)见详解(3)5;2;|a−b|【分析】本题主要考查了数轴表示有理数、利用数轴比较大小和数轴上两点之间的距离.(1)根据数轴写出对应点的有理数,然后利用数轴比较有理数的大小即可.(2)根据有理数的大小在数轴上标出即可.(3)根据数轴上两点的距离公式求解即可.【详解】(1)解:如图,点A、B、C、D、E所对应的有理数分别是:−3,2,3.5,0,−1利用数轴从左到右依次增大,可得A<E<D<B<C.即−3<−1<0<2<3.5故答案为:−3,2,3.5,0,−1;−3<−1<0<2<3.5在−2和−3的正中间,标示如下:(2)−52(3)A、B之间的距离是:|2−(−3)|=5;A、E之间的距离是:|(−3)−(−1)|=|−2|=2,M、N之间的距离是|a−b|25.(1)8;12(2)|x+2|(3)|x−1|+|x+3|有最小值,最小值为4(4)11【分析】本题主要考查的是数轴、绝对值,理解绝对值的几何意义是解题的关键.(1)依据在数轴上A、B两点之间的距离AB=|a−b|求解即可;(2)依据在数轴上A、B两点之间的距离AB=|a−b|求解即可;(3)根据题意可得|x−1|+|x+3|表示数轴上x和1的两点之间与x和−3的两点之间距离和,即可;(4)根据题意可得|x+4|+|x−5|+|x+6|表示数轴上x和−4的两点之间,x和5的两点之间与x和−6的两点之间距离和,即可.【详解】(1)解:|10−2|=8;|2−(−10)|=12;故答案为:8;12.(2)数轴上表示x和−2的两点之间的距离表示为|x−(−2)|=|x+2|;故答案为:|x+2|.(3)解:|x−1|+|x+3|有最小值,根据题意得:|x−1|+|x+3|表示数轴上x和1的两点之间与x和−3的两点之间距离和,∵1−(−3)=4,∴|x−1|+|x+3|有最小值,最小值为4;(4)解:根据题意得:|x+4|+|x−5|+|x+6|表示数轴上x和−4的两点之间,x和5的两点之间与x和−6的两点之间距离和,∴当x=−4时,有最小值,最小值为5−(−4)+(−4)−(−6)=11.。
有理数单元测试题及答案大全
有理数单元测试题及答案大全一、选择题(每题2分,共20分)1. 下列哪个数是有理数?A. πB. √2C. 0.33333(无限循环)D. 1.1010010001...(无限不循环)答案:C2. 如果a是一个负有理数,那么-a是:A. 正数B. 负数C. 零D. 无理数答案:A3. 两个负有理数相加,结果为:A. 正数B. 负数C. 零D. 无理数答案:B4. 绝对值最小的有理数是:A. 1B. -1C. 0D. 2答案:C5. 下列哪个运算结果不是有理数?A. 2 + 3B. 4 - 5C. √4D. √9答案:C二、填空题(每题2分,共20分)6. 有理数包括_______和_______。
答案:整数,分数7. 一个数的相反数是它本身的数是_______。
答案:零8. 绝对值是它本身的数是_______。
答案:非负数9. 两个互为相反数的有理数相加的和是_______。
答案:零10. 一个数的绝对值是它到原点的距离,这个数是_______。
答案:实数三、计算题(每题5分,共30分)11. 计算:|-5| + (-2) + |-3| × 2答案:5 + (-2) + 6 = 912. 计算:(-3) × (-2) - 4 ÷ 2答案:6 - 2 = 413. 计算:(-1)^2 - 3 × 2 + 4答案:1 - 6 + 4 = -114. 计算:(-2)^3 + 3 × (-1) + 5答案:-8 - 3 + 5 = -6四、解答题(每题10分,共30分)15. 某班有40名学生,其中20名学生的数学成绩高于80分,10名学生的数学成绩低于60分,其余学生的数学成绩在60分到80分之间。
请计算这个班级的平均数学成绩。
答案:假设高于80分的学生平均成绩为85分,低于60分的学生平均成绩为55分,其余10名学生的平均成绩为70分。
则总成绩为:20 × 85 + 10 × 55 + 10 × 70 = 1700 + 550 + 700 = 2950。
人教版2024-2025学年七年级上册数学单元检测1(有理数的运算)含答案
人教版2024-2025学年七年级上册数学单元检测(有理数的运算)一、选择题:(本大题共10小题,每小题4分,共40分,给出的四个选项中,只有一项是符合题目要求的)1.若一个数的倒数是,则这个数是( )134-A. B. C. D.413413-134134-2.我国对“一带一路”沿线国家不断加大投资,目前已为有关国家创造了近1100000000美元税收,其中1100000000用科学记数法表示应为( )A. B. C. D.80.1110⨯101.110⨯91.110⨯81110⨯3.计算结果是( )(32)4(8)-÷⨯-A.1 B. C.64 D.1-64-4.下列各式中结果是负数的为( )A. B. C. D.()5--()25-25-5-5.下列各式运算错误的是( )A. B.()()236-⨯-=()11262⎛⎫-⨯-=- ⎪⎝⎭C. D.()()()52880-⨯-⨯-=-()()()32530-⨯-⨯-=-6.下列说法正确的是( )A.近似数3.6万精确到十分位B.近似数0.720精确到百分位C.近似数5.78精确到百分位D.近似数3000精确到千位7.甲、乙两人用简便方法进行计算的过程如下,下列判断正确的是( )甲.11(14)19(6)1119[(14)(6)]10+-+--=++-+-=乙.71171168588855⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫--++-=-+-+-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦A.甲、乙都正确B.甲、乙都不正确A. B. C.4 D.2-4-289.若,,则a 与b 的乘积不可能是( )||a a =||b b -=14.计算的结果是_____________.()22022515292⎛⎫-÷-⨯--- ⎪⎝⎭15.求值:_____.1(2)3(4)5(6)7(8)2021(2022)2023+-++-++-++-+⋯++-+=三、解答题(本大题共6小题,共计60分,解答题应写出演算步骤或证明过程)16.(8分)用四舍五入法,对下列各数按括号中的要求取近似数.(1)0.6328(精确到0.01);(2)7.9122(精确到个位);(3)130.96(精确到十分位);(4)46021(精确到百位).17.(8分)计算:(1);()()()()81021++-----(2).()()221310.5233⎡⎤---÷⨯--⎣⎦18.(10分)计算.32118(3)2⎛⎫-÷-⨯- ⎪⎝⎭莉莉的计算过程如下:解:原式.1111(18)9(18)8984=-÷⨯=-⨯⨯=-佳佳的计算过程如下:解:原式.198(18)9(18)(18)16889⎛⎫⎛⎫⎛⎫=-÷⨯-=-÷-=-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭请问莉莉和佳佳的计算过程正确吗?如果不正确,请写出正确的计算过程.19.(10分)某食品厂从生产的袋装食品中随机抽样检测每袋的质量是否符合标准质量,超过或不足的质量分别用正、负数表示,例如+2表示该袋食品超过标准质量2克.现记录如下:与标准质量的误差(单位:克)-5-60+1+3+6袋数533423(1)在抽取的样品中,最重的那袋食品的质量比最轻的那袋多多少克;(2)若标准质量为500克/袋,则这次抽样检测的总质量是多少克.20.(12分)某中学开展一分钟跳绳比赛,成绩以200次为标准数量,超过的次数记为正数,不足的次数记为负数,七年级某班8名同学组成代表队参赛,成绩(单位:次)记录如下:+8,0,-5.+12,-9,+1,+8,+15.(1)求该班参赛代表中最好成绩与最差成绩相差多少次?(2)求该班参赛代表队一共跳了多少次?(3)规定:每分钟跳绳次数为标准数量,不得分;超过标准数量,每多跳1次得2分;未达到标准数量,每少跳1次扣1分,若代表队跳绳总积分超过70分,便可得到学校的奖励,请通过计算说明该代表队能否得到学校奖励.21.(12分)观察下列等式:第1个等式:;11111323⎛⎫=⨯- ⎪⨯⎝⎭第2个等式:;111135235⎛⎫=⨯- ⎪⨯⎝⎭第3个等式:;111157257⎛⎫=⨯- ⎪⨯⎝⎭第4个等式.111179279⎛⎫=⨯- ⎪⨯⎝⎭(1)探寻上述等式规律,写出第5个等式:_________;(2)求的值.1111155991320172021++++⨯⨯⨯⨯答案以及解析1.答案:B解析:因为,,所以的倒数是.113344-=-1341413⎛⎫⎛⎫-⨯-= ⎪ ⎪⎝⎭⎝⎭134-413-2.答案:C解析:1100000000用科学记数法表示应为.91.110⨯故选:C.3.答案:C解析.()(32)4(8)=88=64-÷⨯--⨯-故选C.4.答案:C解析:A 、是正数,此项不符题意;(5)5--=B 、是正数,此项不符题意;2(5)25-=C 、是负数,此项符合题意;2525-=-D 、55-=是正数,此项不符题意;故选:C.5.答案:B解析:A 、,则此项正确,不符合题意;()()23236-⨯-=⨯=B 、,则此项错误,符合题意;()111212622⎛⎫-⨯-=⨯= ⎪⎝⎭C 、,则此项正确,不符合题意;()()()()52852880-⨯-⨯-=-⨯⨯=-D 、,则此项正确,不符合题意;()()()()32532530-⨯-⨯-=-⨯⨯=-故选:B.6.答案:C解析:A.近似数3.6万精确到千位,原说法错误;B.近似数0.720精确到千分位,原说法错误;C.近似数5.78精确到百分位,说法正确;D.近似数3000精确到个位,原说法错误;故选:C.7.答案:D解析:,甲不正确.11(14)19(6)1119[(14)6]30822+-+--=++-+=-=711711711858858885⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫--++-=-+-+-=-+-+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,乙正确.16(1)55⎛⎫=-+-=- ⎪⎝⎭8.答案:C解析:输入,则1x =21242420⨯-=-=-<输入,则,2-()22244-⨯-=所以输出y 的值为:4故选:C.9.答案:A解析:因为,,所以,,所以a 与b 的乘积不可能是负数,故a ||a a =||b b -=0a ≥0b ≥与b 的乘积不可能是.5-10.答案:A解析:由题知,,,,,,,,,,122=224=328=4216=8232=6264=72128=82256=⋯所以的末位数字按2,4,6,8循环出现,2n 又余2,20224505÷=所以的末位数字是4.20222,,,,,,,, 133=239=3327=4381=53243=63729=732187=836561=…,所以的末位数字按3,9,7,1循环出现,3n 又余3,20234505÷=所以的末位数字是7.20233的末位数字是3()20232202320202222(3)32=--+-故选:A.11.答案:千解析:,41.51015000⨯= 近似数精确到千位,∴41.510⨯故千.12.答案:8112019-+-解析:写成省略加号的和的形式是.8(11)(20)(19)-+--+-8112019-+-故答案为.8112019-+-13.答案:5解析:由题意可得:已知有理数中的负整数为,1-则,2(1)(4)1432-+-=-=-<-则有2(3)(4)9452-+-=-=>-,则输出的结果为5,故5.14.答案:3解析:()22022515292⎛⎫-÷-⨯--- ⎪⎝⎭212575⎛⎫=-⨯-⨯- ⎪⎝⎭107=-.3=15.答案:1012解析:1(2)3(4)5(6)7(8)2021(2022)2023+-++-++-++-+⋯++-+(12)(34)(56)(78)(20212022)2023=-+-+-+-+⋯+-+2022(1)20232=-⨯+.1012=故1012.16.答案:(1)0.63(2)8(3)131.0(4)44.6010⨯解析:(1)0.6328(精确到0.01).0.63≈(2)7.9122(精确到个位).8≈(3)130.96(精确到十分位).131.0≈(4)46021(精确到百位).44.6010≈⨯17.答案:(1)1(2)1.5解析:(1)()()()()81021++-----81021=-++;1=(2)2213(10.5)2(3)3⎡⎤---÷⨯--⎣⎦()19372=--⨯⨯-910.5=-+18.答案:见解析解析:莉莉和佳佳的计算过程都不正确.正确的计算过程:原式.111118918928884⎛⎫=-÷⨯-=÷⨯=⨯= ⎪⎝⎭19.答案:(1)12(2)9985解析:试题(1)根据题意及表格得:(克),()666612+--=+=最重的食品比最轻的重12克;(2)由表格得:()()()()()556303143263-⨯+-⨯+⨯++⨯++⨯++⨯()251804618=-+-++++2510=-+,15=-则(克).50020159985⨯-=这次抽样检测的总质量是9985克.20.答案:(1)24次(2)1630次(3)该班能得到学校奖励解析:(1)(次),15(9)15924+--=+=故该班参赛代表中最好成绩与最差成绩相差24次;(2)(次),2008(8)0(5)(12)(9)(1)(8)(15)1630⨯++++-+++-++++++=故该班参赛代表队一共跳了1630次;(3)(分),(8121815)2(59)174++++⨯-+⨯=,7470> 该班能得到学校奖励.∴21.答案:(1)11119112911⎛⎫=⨯- ⎪⨯⎝⎭(2)5052021解析:(1)观察所给的等式,可得第5个等式为.故答案为11119112911⎛⎫=⨯- ⎪⨯⎝⎭.11119112911⎛⎫=⨯- ⎪⨯⎝⎭(2)原式.111111120205051455920172021420212021⎛⎫=-+-++-=⨯= ⎪⎝⎭。
2024新人教版七年级上册数学《有理数》单元测试卷及答案
第一章有理数单元测试(提升卷)班级:___________________ 姓名:_________________ 得分:_______________ 注意事项:本试卷满分120分,试题共24题,其中选择10道、填空6道、解答8道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2024年广东省汕头市潮南区百校联考中考三模数学试题)2024−的相反数是( )A .2024B .2024−C .12024D .12024− 2.(2024年辽宁省大连市九年级中考二模数学试题)随着商业的发展和技术的进步,手机支付已经成为常见的支付方式,若手机钱包收入100元记作100+元,则15−元表示( )A .支出15元B .收入15元C .支出115元D .收入115元3.(2024年广西壮族自治区柳州柳南区九年级教学实验研究质量监测试三模数学试题)2024年2月8日,某地记录到四个时刻的气温(单位:℃)分别为5−,0,5,2−,其中最低的气温是( ) A .5− B .0 C .5 D .2−4.(2024年吉林省长春市中考一模数学试题)如图,数轴上表示数 1.5−的点所在的线段是( )A .AB B .BOC .OCD .CD5.(2024年湖北省大冶市五月中考模拟数学试题)若足球质量与标准质量相比,超出部分记作正数,不足部分记作负数,则在下面4个足球中,质量最接近标准的是( )A .0.9+B . 3.5−C .0.5−D . 2.5+6.(黑龙江省哈尔滨市第四十九中学校2023-2024学年六年级下学期期中数学试题(五四制))若a a =−,则a 一定是( )A .负数 B .正数 C .0 D .负数或07.(2024年黑龙江省大庆市让胡路区中考模拟数学试题)下列各数,与2024相等的是( ) A .(2024)−+ B .4()202+− C .2024−− D .(2024)−−8.(2024年云南省昆明市中考二模数学试题)九年级(1)班期末考试数学的平均成绩是80分,小亮得了90分,记作10+分,如果小明的成绩记作5−分,那么他得了( )A .95分B .90分C .85分D .75分9.在110,1,3,,0.1,2,24 −−−−−a (a 是任意数)这些数中,负数的个数是( ) A .1 B .2 C .3 D .410.数轴上点A 表示的数是2−,将点A 沿数轴移动3单位长度得到点B ,则点B 表示的数是( )A .5−B .1C .1−或5D .5−或1二、填空题(本大题共6小题,每小题3分,共18分)请把答案直接填写在横线上11. 2−,0,0.2,14,3中正数一共有 个. 12.(2024年甘肃省陇南市中考模拟联考数学(三)试题)如果把火箭发射后10秒记为“10+秒”,那么火箭发射前6秒应记为“ 秒”.13.化简:35−= ; 1.5−−= ;(− 14.(2024年甘肃省庆阳市中考二模数学试题)某品牌酸奶外包装上标明“净含量:1805mL ±”,现随机抽取四种口味的这种酸奶,它们的净含量如下表所示,其中,净含量不合格的是 口味的酸奶. 种类原味 草莓味 香草味 巧克力味 净含量/mL 175 180 190 18515.(2024年陕西省西安市阎良区中考三模数学试题)如图,点A 是数轴上的点,若点B 在数轴上点A 的左边,且4AB =,则点B 表示的数是 .16.(黑龙江省哈尔滨工业大学附中2023-2024学年六年级下学期期中数学试题)已知a 为有理数,则24a −+的最小值为 .17.(陕西省西安市第八十九中学2024年中考二模数学试题)如图,点A 、B 在数轴上,若8AB =,且A 、B 两点表示的数互为相反数,则点A 表示的数为 .18.如图,一条数轴上有点A 、B 、C ,其中点A 、B 表示的数分别是14−,30,现以点C 为折点,将数轴向右对折,若点A 落在射线CB 上且到点B 的距离为6,则C 点表示的数是___________三、解答题(本大题共7小题,共72分.解答时应写出文字说明、证明过程或演算步骤)19.(贵州省铜仁市江口县第二中学(民族中学)2023-2024学年七年级上学期9月月考数学试题)把下列各数分别填在表示它所在的集合里:5−,34−,0, 3.14−,227,2012,1.99,()6−−,12−− (1)正数集合:{_____________________};(2)负数集合:{__________________________};(3)整数集合:{__________________________};(4)分数集合:{__________________________}.(5)负有理数:{__________________________}.20.(安徽省阜阳市第一初级中学2023-2024学年七年级上学期第一次月考数学试题)若320a b −+−=,求a b +的值.21.比较下列各对数的大小:①1−与0.01−; ②2−−与0;③0.3−与13−; ④19 −− 与110−−.22.(湖南省衡阳市第三中学2023-2024学年七年级上学期期中数学试题)已知下列各有理数:2.5−,0,3−,()2--.(1)画出数轴,在数轴上标出这些数表示的点;(2)用“<”号把这些数连接起来.23.(重庆市忠县乌杨初级中学2023-2024学年七年级上学期数学第一学月定时作业试题)某中学九(1)班学生的平均身高是166cm .姓名A B C D E F 身高170 160 175 与平均身高的差值+4+7 8− +2(1)上表给出了该班6名同学的身高(单位:cm ),试完成上表;(2)谁最高?谁最矮?(3)最高与最矮的同学身高相差多少?24.(黑龙江省大庆市肇源县第五中学2023-2024学年七年级下学期第一次月考数学试题)如图,数轴上有点a b c ,,三点.(1)用“<”将a b c ,,连接起来.(2)b a − 1,1c a −+ 0(填“<”“>”,“=”)(3)求下列各式的最小值: ①13x x −+−的最小值为 ; ②x a x b −+−的最小值为 ;③当x = 时,x a x b x c −+−+−的最小值为 .第一章有理数单元测试(提升卷)班级:___________________ 姓名:_________________ 得分:_______________ 注意事项:本试卷满分120分,试题共24题,其中选择10道、填空6道、解答8道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2024年广东省汕头市潮南区百校联考中考三模数学试题)2024−的相反数是( )A .2024B .2024−C .12024D .12024− 【答案】A【分析】本题主要考查了求一个数的相反数,只有符号不同的两个数互为相反数,0的相反数是0,据此求解即可.【详解】解:有理数2024−的相反数是2024,故选:A .2.(2024年辽宁省大连市九年级中考二模数学试题)随着商业的发展和技术的进步,手机支付已经成为常见的支付方式,若手机钱包收入100元记作100+元,则15−元表示( )A .支出15元B .收入15元C .支出115元D .收入115元【答案】A【分析】本题考查了运用正数和负数表示两个相反意义的量,正确理解正、负数的意义是解题的关键.收入和支出相反,如果收入为正,那么负为支出,即可解决.【详解】∵收入100元记作100+元,∴15−元表示支出15元,故选:A .3.(2024年广西壮族自治区柳州柳南区九年级教学实验研究质量监测试三模数学试题)2024年2月8日,某地记录到四个时刻的气温(单位:℃)分别为5−,0,5,2−,其中最低的气温是( ) A .5−B .0C .5D .2− 【答案】A【分析】本题考查了有理数大小的比较的实际应用,有理数大小比较法则为:正数大于0,0大于负数,两个负数绝对值大的反而小;由此法则比较出两个负数的大小即可完成. 【详解】解:52−>− ,52∴−<−,即5−最小,故选:A .4.(2024年吉林省长春市中考一模数学试题)如图,数轴上表示数 1.5−的点所在的线段是( )A .ABB .BOC .OCD .CD 【答案】A【分析】本题主要考查了有理数与数轴,根据数轴上点的位置,结合2 1.51−<−<−即可得到答案.【详解】解:由数轴可知,数轴上表示数 1.5−的点所在的线段是AB ,故选:A .5.(2024年湖北省大冶市五月中考模拟数学试题)若足球质量与标准质量相比,超出部分记作正数,不足部分记作负数,则在下面4个足球中,质量最接近标准的是( )A .0.9+B .3.5−C .0.5−D . 2.5+【答案】C【分析】本题考查了绝对值和正数和负数的应用,主要考查学生的理解能力,题目具有一定的代表性,难度也不大.求出每个数的绝对值,根据绝对值的大小找出绝对值最小的数即可. 【详解】解:0.90.9, 3.5 3.5,0.50.5, 2.5 2.5+=−=−=+=,∵0.50.9 2.5 3.5<<<,∴从轻重的角度看,最接近标准的是0.5−,故选:C .6.(黑龙江省哈尔滨市第四十九中学校2023-2024学年六年级下学期期中数学试题(五四制))若a a =−,则a 一定是( )A .负数B .正数C .0D .负数或0 【答案】D【分析】本题考查绝对值,熟练掌握其性质是解题的关键.根据绝对值的性质即可求得答案. 【详解】解:∵a a =−,∴a 是非正数,即负数或0,故选:D7.(2024年黑龙江省大庆市让胡路区中考模拟数学试题)下列各数,与2024相等的是( ) A .(2024)−+ B .4()202+− C .2024−− D .(2024)−−【答案】D【分析】本题考查绝对值、化简多重符号.负数的绝对值等于它的相反数,化简多重符号时“正正得正,正负得负,负负得正”,由此逐项计算即可.【详解】解:A ,(2024)2024-+=-,与题干不符,不符合题意;B ,(2024)2024+-=-,与题干不符,不符合题意;C ,20242024−−=−,与题干不符,不符合题意;D ,(2024)2024−−=,与题干相符,符合题意.故选D .8.(2024年云南省昆明市中考二模数学试题)九年级(1)班期末考试数学的平均成绩是80分,小亮得了90分,记作10+分,如果小明的成绩记作5−分,那么他得了( )A .95分B .90分C .85分D .75分【答案】D【分析】本题考查了有理数的加法,整数和负数的定义,解题的关键是掌握正数和负数表示具有相反意义的量,以及有理数的加法法则.根据题意列出算式进行计算即可. 【详解】解:()80575+−=(分),故选:D .9.在110,1,3,,0.1,2,24 −−−−−a (a 是任意数)这些数中,负数的个数是( ) A .1B .2C .3D .4【答案】B【分析】本题主要考查了负数的定义,根据负数的定义进行判断即可.【详解】解:只有1−和0.1−是负数.124 −− 中124−是负数,故124 −− 不是负数,a −可以是正数或零或负数, ∴负数的个数是2个.故选:B .10.数轴上点A 表示的数是2−,将点A 沿数轴移动3单位长度得到点B ,则点B 表示的数是( )A .5−B .1C .1−或5D .5−或1【答案】D【分析】本题考查数轴上点移动后数字表示,解题关键是移动规律左减右加.根据数轴上点的移动规律,左减右加计算即可.【详解】解:根据数轴上点的移动规律,左减右加,可得点A 向左移动时:235−−=−,可得点A 向右移动时:231−+=, 综上可得点B 表示的数是5−或1,故选D .二、填空题(本大题共6小题,每小题3分,共18分)请把答案直接填写在横线上11. 2−,0,0.2,14,3中正数一共有 个. 【答案】3【分析】本题考查了有理数的分类.正确掌握有理数的分类是解答本题的关键.根据正数的定义解答即可.【详解】解:2−,0,0.2,14,3中正数有:0.2,14,3,一共有3个. 故答案为:3.12.(2024年甘肃省陇南市中考模拟联考数学(三)试题)如果把火箭发射后10秒记为“10+秒”,那么火箭发射前6秒应记为“ 秒”.【答案】6−【分析】本题考查正数和负数在实际生活中的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.根据正负数表示相反意义的量,点火后记为正,可得点火前用负表示.【详解】解:把火箭发射后10秒记为“10+秒”,那么火箭发射前6秒应记为“6−秒”;故答案为:6−.13.化简:35−= ; 1.5−−= ;(− 【答案】 35 1.5− 2 【分析】本题考查了绝对值:若0a >,则a a =;若0a =,则0a =;若0a <,则a a =−.【详解】解:33||55−=, 1.5 1.5−−=−,()22−−=, 故答案为:35, 1.5−,2. 14.(2024年甘肃省庆阳市中考二模数学试题)某品牌酸奶外包装上标明“净含量:1805mL ±”,现随机抽取四种口味的这种酸奶,它们的净含量如下表所示,其中,净含量不合格的是 口味的酸奶. 种类原味 草莓味 香草味 巧克力味 净含量/mL175 180 190 185【答案】香草味【分析】本题主要考查了正数和负数等知识点,根据正数和负数的实际意义求得合格酸奶的重量范围,据此进行判断即可,理解正数和负数的实际意义是解决此问题的关键. 【详解】由题意可得:合格酸奶净含量的最小值为:()1805175ml −=,合格酸奶净含量的最大值为:()1805185ml +=,∴合格酸奶的重量范围为175ml 185ml ~,则净含量不合格的是香草味,故答案为:香草味.15.(2024年陕西省西安市阎良区中考三模数学试题)如图,点A 是数轴上的点,若点B 在数轴上点A 的左边,且4AB =,则点B 表示的数是 .【答案】3−【分析】本题考查数轴上两点的距离,根据两点之间的距离公式a b −求解即可.【详解】解:由数轴,点A 表示的数为1,又点B 在数轴上点A 的左边,且4AB =,∴点B 表示的数是143−=−, 故答案为:3−.16.(黑龙江省哈尔滨工业大学附中2023-2024学年六年级下学期期中数学试题)已知a 为有理数,则24a −+的最小值为 .【答案】4【分析】本题考查了绝对值的非负性,解题的关键是掌握正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.根据绝对值的非负性即可解答.a−≥,【详解】解:∵20∴244a−+≥,∴24a−+的最小值为4,故答案为:4.17.(陕西省西安市第八十九中学2024年中考二模数学试题)如图,点A、B在数轴上,若8AB=,且A、B两点表示的数互为相反数,则点A表示的数为.【答案】4−【分析】此题考查了数轴上两点之间的距离,数轴上的点表示有理数,相反数的概念,÷=,然后根据点A在原点根据题意得到A,B两点到原点的距离相等,然后求出点A到原点的距离为824的左侧求解即可.【详解】解:∵数轴上A,B两点表示的数互为相反数,∴A,B两点到原点的距离相等,∵点A与点B之间的距离为8个单位长度,÷=,∴点A到原点的距离为824∵点A在原点的左侧,∴点A表示的数是4−.故答案为:4−.18.如图,一条数轴上有点A、B、C,其中点A、B表示的数分别是14−,30,现以点C为折点,将数轴向右对折,若点A落在射线CB上且到点B的距离为6,则C点表示的数是___________【答案】5/11【分析】本题考查了数轴,先根据两点间的距离公式求出点A落在对应点表示的数,在利用中点求出C点表示的数;能根据点A的位置不同进行分类讨论是解题的关键.【详解】解:设A ′是点A 的对应点,由题意可知点C 是A 和A ′的中点,当点A 在B 的右侧,6BA ′=,A ′表示的数为30636+=, 那么C 表示的数为:()1436211−+÷=;,当点A 在B 的左侧,6BA ′=,A ′表示的数为30624−=,那么C 表示的数为:(1424)25−+÷=, 故答案:5或11.三、解答题(本大题共8小题,共72分.解答时应写出文字说明、证明过程或演算步骤)19.(贵州省铜仁市江口县第二中学(民族中学)2023-2024学年七年级上学期9月月考数学试题)把下列各数分别填在表示它所在的集合里:5−,34−,0, 3.14−,227,2012,1.99,()6−−,12−− (1)正数集合:{________};(2)负数集合:{________};(3)整数集合:{________};(4)分数集合:{________}.(5)负有理数:{________}.【答案】(1)227,2012,1.99,()6−−, (2)5−,34−, 3.14−, 12−−, (3)5−,0, 2012, ()6−−,12−−, (4)34−, 3.14−,227, 1.99, (5)5−,34−, 3.14−, 12−−,【分析】本题考查的是化简双重符号,化简绝对值,有理数的分类,熟记有理数的分类是解本题的关键; (1)根据正数的定义填写即可;(2)根据负数的定义填写即可;(3)根据整数的定义填写即可;(4)根据分数的定义填写即可;(5)根据负有理数的定义填写即可;【详解】(1)解:∵()66−−=,1212−−=−, ∴正数集合:{227,2012,1.99,()6−−, }; (2)负数集合:{5−,34−, 3.14−, 12−−, }; (3)整数集合:{5−,0, 2012, ()6−−,12−−, };(4)分数集合:{34−, 3.14−,227, 1.99, }; (5)负有理数:{5−,34−, 3.14−, 12−−, }; 20.(安徽省阜阳市第一初级中学2023-2024学年七年级上学期第一次月考数学试题)若320a b −+−=,求a b +的值.【答案】5【分析】本题考查非负数的性质.根据非负数的性质,可得30a −=,20b −=,求出a 、b 的值,据此即可求解. 【详解】解:∵320a b −+−=, ∴30a −=,20b −=, ∴3a =,2b =,∴325a b +=+=.21.比较下列各对数的大小:①1−与0.01−;②2−−与0; ③0.3−与13−; ④19 −−与110−−. 【答案】①10.01−<−;②20−−<;③10.33−>−;④11910 −−>−− 【分析】本题主要考查有理数比较大小,绝对值的性质的运用,掌握有理数比较大小的方法是解题的关键.①两个负数比较大小,绝对值大的反而小,由此即可求解;②先化简绝对值,再根据负数小于零,即可求解;③两个负数比较大小,绝对值大的反而小,由此即可求解;④先化简,再根据负数小于零,即可求解.【详解】解:①∵11−=,0.010.01−=,10.01>, ∴10.01−<−;②22−−=−,因为负数小于0,所以20−−<; ③∵0.30.3−=,•110.333−==, 0.30.3•<, ∴10.33−>−; ④分别化简两数,得:1111991010 −−=−−=− ,, ∵正数大于负数, ∴11910 −−>−−. 22.(湖南省衡阳市第三中学2023-2024学年七年级上学期期中数学试题)已知下列各有理数:2.5−,0,3−,()2--.(1)画出数轴,在数轴上标出这些数表示的点;(2)用“<”号把这些数连接起来.【答案】(1)见解析 (2)()2.5023−<<−−<−【分析】本题考查了在数轴上表示数和有理数大小比较,能准确地在数轴上表示出所给的各个数是解题的关键. (1)在数轴上直接表示出各个数即可;(2)根据(1)中数轴上表示的数,结合数轴右边的数比左边的数大即可比较.【详解】(1)解:33−=,()22−−=, ∴在数轴上标出 2.5−,0,3−,()2−−,如图所示:(2)解:由(1)中数轴可得:()2.5023−<<−−<−.23.(重庆市忠县乌杨初级中学2023-2024学年七年级上学期数学第一学月定时作业试题)某中学九(1)班学生的平均身高是166cm .姓名A B C D E F 身高170 160 175 与平均身高的差值 +4 +7 8− +2(1)上表给出了该班6名同学的身高(单位:cm ),试完成上表;(2)谁最高?谁最矮?(3)最高与最矮的同学身高相差多少?【答案】(1)173,6−,158,168,9+(2)同学F 最高,同学D 最矮;(3)最高与最矮的同学身高相差17cm【分析】本题考查有理数加减法的实际应用、正负数的应用.读懂题意,正确的列出算式,是解题的关键. (1)利用身高减去平均身高进行计算即可;(2)由表格信息可确定最高和最矮的学生;(3)确定最高和最矮的学生,两者的身高作差即可.【详解】(1)解:∵某中学九(1)班学生的平均身高是166cm .∴完善表格如下:姓名 A B C D E F身高170 173 160 158 168 175 与平均身高的差值+4 +7 6− 8− +2 9+(2)同学F 身高175cm ,最高,同学D 身高158cm ,最矮;(3)∵()17515817cm −=, ∴最高与最矮的同学身高相差17cm .24.(黑龙江省大庆市肇源县第五中学2023-2024学年七年级下学期第一次月考数学试题)如图,数轴上有点a b c ,,三点.(1)用“<”将a b c ,,连接起来.(2)b a − 1,1c a −+ 0(填“<”“>”,“=”)(3)求下列各式的最小值: ①13x x −+−的最小值为 ; ②x a x b −+−的最小值为 ;③当x = 时,x a x b x c −+−+−的最小值为 .【答案】(1)c<a<b(2)<,<(3)①2;②b a −③a ,b c −【分析】本题考查了数轴、绝对值的意义、数轴上两点之间的距离、利用数轴判断式子的正负,熟练掌握以上知识点并灵活运用,采用数形结合的思想是解此题的关键.(1)根据数轴即可得出答案;(2)由数轴可得012c a b <<<<<,从而即可得出答案;(3)①由13x x −+−的意义即可得出最小值;②由x a x b −+−的意义,结合a b <即可得解;③由||x a x b x c −+−+−的意义,结合c<a<b 即可得解.【详解】(1)解:由数轴可得:c<a<b ;(2)解:由数轴可得:012c a b <<<<<,1b a ∴−<,10c a −+<,故答案为:<,<;(3)解:①13x x −+−的意义是数轴上表示数x 的点到表示数1,到表示数3的点的距离之和, 故13x x −+−的最小值为312−=, 故答案为:2; ②x a x b −+−的意义是数轴上表示数x 的点到表示数a ,到表示数b 的点的距离之和, a b < , 故x a x b −+−的最小值为b a −,故答案为:b a −; ③||x a x b x c −+−+−的意义是数轴上表示数x 的点到表示数a ,到表示数b ,到表示数c 的点的距离之和, c a b <<故当x a =时,||x a x b x c −+−+−的值最小,为b c −,故答案为:b c −.。
有理数单元测试题及答案
有理数单元测试题及答案一、选择题(每题2分,共20分)1. 下列各数中,不是有理数的是()。
A. -3.14B. √2C. 0D. π2. 若a是有理数,b是有理数,那么a+b一定是()。
A. 有理数B. 无理数C. 整数D. 分数3. 有理数-1.5和2.5的和是()。
A. 1B. 0C. -1D. 1.54. 下列哪个数是负数?()A. 5B. -5C. 0D. 3.145. 有理数的乘法中,负负得正,那么-3×(-2)等于()。
A. 6B. -6C. 3D. -3二、填空题(每题2分,共20分)1. 有理数-7和5的差是_________。
2. 若两个有理数的积为0,则这两个数中至少有一个是__________。
3. 有理数-4的绝对值是__________。
4. 若a是有理数,且a²=a,则a可以是__________或__________。
5. 有理数的除法中,0除以任何非零有理数都等于__________。
三、计算题(每题5分,共30分)1. 计算下列表达式的值:(-2)×(-3) + 4÷(-2) - 5。
2. 计算下列表达式的值:(-7)×3 - (-4)×2 + 6。
3. 计算下列表达式的值:(-1)^2 + √4 - 2×(-3)。
4. 计算下列表达式的值:(-3)×(-2)×(-4) - 2^3。
四、解答题(每题10分,共30分)1. 某商店在一天内销售了三种商品,分别获得了利润-150元、200元和-100元。
请问这家商店当天的总利润是多少?2. 已知有理数a、b、c,其中a=-2,b=3,c=-4,求a+b+c的值。
3. 一个数的平方等于它自身,这个数可以是哪些有理数?答案:一、选择题1. B2. A3. C4. B5. A二、填空题1. -122. 03. 44. 0,15. 0三、计算题1. -32. -53. 74. -24四、解答题1. 总利润=-150+200-100=-50元2. a+b+c=-2+3-4=-33. 这个数可以是0或1。
有理数单元测试题及答案
有理数单元测试题及答案一、选择题(每题 3 分,共 30 分)1、下列说法正确的是()A 整数就是正整数和负整数B 负整数的相反数就是非负整数C 有理数中不是负数就是正数D 零是自然数,但不是正整数答案:D解析:整数包括正整数、零和负整数,A 选项错误;负整数的相反数是正整数,不是非负整数,B 选项错误;有理数包括正数、零和负数,C 选项错误;零是自然数,但不是正整数,D 选项正确。
2、在有理数中,绝对值等于它本身的数有()A 1 个B 2 个C 3 个D 无数个答案:D解析:绝对值等于它本身的数是非负数,包括零和所有正数,有无数个。
3、下列计算正确的是()A (-3) =-3B |-3| =-3C (-3)²=-9D -3²= 9答案:B解析:(-3) = 3,A 选项错误;|-3| =-3,B 选项正确;(-3)²= 9,C 选项错误;-3²=-9,D 选项错误。
4、比-3 大 2 的数是()A -5B -1C 1D 5答案:B解析:-3 + 2 =-15、两个有理数的和为负数,那么这两个数一定()A 都是负数B 至少有一个负数C 有一个是 0D 绝对值相等答案:B解析:两个有理数的和为负数,那么这两个数至少有一个负数。
6、计算(-1)×(-2)的结果是()A 2B 1C -2D -1答案:A解析:(-1)×(-2) = 27、若 a < 0 , b > 0 ,且|a| >|b| ,则 a + b 的值()A 是正数B 是负数C 是零D 不能确定答案:B解析:因为 a < 0 , b > 0 ,且|a| >|b| ,所以 a + b 的值是负数。
8、下列说法正确的是()A 倒数等于它本身的数只有 1B 平方等于它本身的数只有 0C 立方等于它本身的数只有 0 和 1D 相反数等于它本身的数只有 0答案:D解析:倒数等于它本身的数有 1 和-1,A 选项错误;平方等于它本身的数有 0 和 1,B 选项错误;立方等于它本身的数有 0 、 1 和-1,C 选项错误;相反数等于它本身的数只有 0,D 选项正确。
有理数单元测试题及答案
第二章单元测试题1.填空题(1)一个数的相反数是它本身,这个数是 ;一个数的绝对值是它本身,这个数是 ;一个数的倒数是它本身,这个数是 。
(2)若a 、b 互为倒数,c 、d 互为相反数,则(c+d)2-ab= 。
(3)若│-a │=3,则a= ,若(-x)2=4,则x= 。
(4)一个负数b 与它的相反数之差的绝对值等于 。
(5)绝对值小于3的整数有 ,它们的积是 。
(6)有理数0.03497精确到百分位是 ,此时还有 个有效数字;3.47×103精确到百位数是 。
(7)若a 2+│b+2│=0,则a= ,b= 。
(8)用“<”或“>”填空:若a >0,b <0,且│a │>│b │,则a b ,若a <b <0,则│a │ │b │。
(9)若5.313=149.7,则( )3=-0.0001497;若2.4682=6.091,则246.82= 。
(10)绝对值小于4的整数是 ,其中 最小, 是非负数, 的绝对值最小。
(11)近似数2.5万是精确到 位,将1204060保留3个有效数字的科学记数法为 。
(12)-51的平方除以(-5)所得的商是 ,这个商是 的3次幂。
(13)a-b 的相反数是 ,如果a <5,那么│a-5│= 。
(14)若│-5│=4+m ,则m= ;若│x-21│+(2y+1)2=0,则x 2+y 3的值= 。
(15)若a 、b 、c 在数轴上的位置如下图,则│a │-│b-c │+│c │= 。
(16)若a <0,那么-a10;│a-1│=1-a ,则a 的取值范围是 。
(17)若aa --1|1|=1,则a= ,||a a = 。
(18)若x <-2,则│x+2│-│3-x │+│2x+1│= 。
(19)若│a 1│=2,│b1│=3,则a+b 的值为 。
2.判断题 (1)│a │与a 2都是非负数。
( ) (2)一个负数的倒数一定比这个数大。
2024新人教版七年级上册数学第一章《有理数》单元测试卷(含答案)
8.如图,点4在数轴上表示的数为1,将点A向左移动4个单位长度得到点6,则点3表示的数为
()
A ------------------------- --------------- A
01
A. -2
B. -3
C. -5
D. 5
9.在数轴上,到表示-1的点的距离等于6的点表示的数是( )
A. 5
B. -7
(2)负分数集合:{-5.15, _0 -5%,……}.
17. 0, 2.
18. 120.
故答案为:-5.15, -0. 4,- 5%; (3)非负数集合:{+5, ().06, O, π, 1.5, ........}. 故答案为:+5, 0.06, 0, m 1.5; (4)有理数集合:{-8, +5, 0.06, ∙5.15, 0, _0.
23. (8分)(1)如果同=5,以=2,且小6异号,求a、b的值. (2)若Ial=5, |" = 1,且求内力的值.
第3页共6页
24. (8分)如图,灰太狼和喜羊羊、美羊羊、沸羊羊、懒羊羊在5X5的方格(每个小方格的边长 表示10米距离)图上沿着网格线运动.灰太狼从点A处出发去寻找点& G O, E处的某只羊, 规定:向上、向右走为正,向下、向左走为负.例如从点A到点B记为Af3( + 1, +3),从点3 到点A记为B-A (-1, -3),其中第一个数表示左右方向的移动情况,第二个数表示上下方向
发,到收工时所走路程(单位:千米)分别为:+10, -3, +4, +2, -8, +13, -2, +12, +8,
+5.
(1)收工时在A地的
2024年七年级数学上册《有理数及其运算》单元测试及答案解析
第2章 有理数及其运算(单元培优卷 北师大版)考试时间:120分钟,满分:120分一、选择题:共10题,每题3分,共30分。
1.有理数2−的相反数是( ) A .2B .12C .2−D .12−2.13与14的和的倒数是( )A .7B .517C .17D .1433.32−的绝对值是( )A .23−B .32−C .23D .324.下列说法正确的个数为( ) ①有理数与无理数的差都是有理数; ②无限小数都是无理数; ③无理数都是无限小数;④两个无理数的和不一定是无理数; ⑤无理数分为正无理数、零、负无理数. A .2个B .3个C .4个D .5个5.亚洲、欧洲、非洲和南美洲的最低海拔如下表:大洲 亚洲欧洲 非洲南美洲最低海拔/m415− 28−156− 40−其中最低海拔最小的大洲是( ) A .亚洲B .欧洲C .非洲D .南美洲6.数轴上的点M 和点N 分别表示3−与4,如果把点N 向左移动6个单位长度,那么点N 现在表示的数比点M 表示的数( ) A .大2B .大1C .小2D .小17.如果把一个人先向东走5m 记作5m +,那么接下来这个人又走了6m −,此时他距离出发点有多远?下面选项中正确的是( ) A .6m −B .1m −C .1mD .6m8.在0.65,58,35,916这四个数中,最大的是()A .0.65B .58C .35D .9169.物理是上帝的游戏,而数学是上帝的游戏规则.不管多大或多小的数,都得靠数学来表示呢!来自2024年综合运输春运工作专班的数据显示,2月10日~17日(农历正月初一至初八),全社会跨区域人员流动量累计22.93亿人次.客流量大已成为2024年春运的最显著特征,铁路、公路、民航等客运频频刷新纪录.用科学记数法表示22.93亿,正确的是( ). A .822.9310×B .922.9310×C .82.29310×D .92.29310×10.一个天平配有重量分别为1,5,25,125,625克的砝码各5个,则为了准确称出重量为2024克的某物品(砝码只能放一侧),所需砝码数量的值为( )A .11B .12C .13D .14二、填空题:共6题,每题3分,共18分。
第一章 有理数 单元练习(含答案) 2024-2025年人教版数学七年级上册
2024-2025年人教版数学七年级上册第一章有理数单元练习一、选择题1.若零下2摄氏度记为,则零上2摄氏度记为()A.B.C.D.2.下列为负数的是()A.0B.2024C.D.3.已知下列各数-8, 2.1,,3,0,﹣2.5,10,-1中,其中非负数的个数是()A.2个B.3个C.4个D.5个4.用数轴上的点表示下列各数,其中与原点距离最近的是()A.B.1C.2D.35.若的相反数是,则的值为()A.B.C.D.20236.如图,在数轴上对应的数互为相反数的两个点是()A.点A 和点C B.点B 和点CC.点A 和点B D.点B 和点D7.下列各数中,绝对值最小的是()A.2B.C.D.8.一个数x 的相反数的绝对值为3,则这个数是()A.3B.C.D.二、填空题9.我国古代的《九章算术》,是世界数学史上首次引入负数的文献.若高于海平面100米记作+100米,则低于海平面75米可记作米.10.在-42,+0.01,π,0,120这5个数中,正有理数是.11.1220的相反数是.12.如图,点A 是数轴上的点,若点B 在数轴上点A 的左边,且,则点B 表示的数是.13.,则.三、解答题14.一种商品的标准价格是200元,但随着季节的变化,商品的价格可浮动±10%,想一想±10%的含义是什么?15.求,-2.35,0,的相反数和绝对值.16.把下列各数填入相应的大括号里:﹣7,﹣0.5,-,0,﹣98%,8.7,2018,﹣2003.负整数集合:{⋯⋯};非负数集合:{⋯⋯};正分数集合:{⋯⋯};负分数集合:{⋯⋯}.17.给出下面六个数2.5,1,,-2.5,0,,先画出数轴,再把表示上面各数的点在数轴上表示出来,18.把下列各数及它们的相反数在数轴上表示出来,并用“<”把所有数都连接起来.2,﹣1.5,0,﹣4.参考答案1.C2.D3.D4.B5.A6.A7.C8.D9.-7510.+0.01,12011.122012.13.14.+10%表示比标准高10%,-10%表示比标准价低10%15.解:相反数分別是:;绝对值分别是:.16.解:﹣7,﹣0.5,﹣,0,﹣98%,8.7,2018,﹣2003.负整数集合:{﹣7,﹣2003……};非负数集合:{0,8.7,2018,……};正分数集合:{8.7,……};负分数集合:{﹣0.5,﹣,﹣98%,……}.17.解:六个数的大小顺序为:-2.5<<0<1<2.5<,在数轴上表示如下:18.解:如图,﹣4<﹣2<﹣1.5<0<1.5<2<4。
有理数单元练习及参考答案
有理数单元练习一、选择题1.有理数3的相反数是()A.-3B.3C.13D.132.一个数和它的倒数相等,则这个数是()A.1B.-1C.±1D.±1或者03.下列说法正确的是()A.一个数的绝对值一定比0大B.一个数的相反数一定比它本身小C.绝对值等于它本身的数一定是正数D.最小的正整数是14.若x的相反数是1,|y|=2,则x+y的值为()A. 3B.-1C. -1或3D.-35.已知a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,那么a+b+c等于()A.-1B.0C.1D.26.已知|x|=3,|y|=5,且xy<0,那么x+y的值等于()A.8B.-2C.8或者-8D.2或者-27.质检员抽查零件的质量,超过尺寸的记为正数,不足的记为负数,抽查了四个零件,结果如下,质量最差的零件是()A.+0.01mmB.-0.05mmC. +0.1mmD.-0.11mm8.(-1)2023的计算结果是()A.-1B.1C.2023D.-20239.我国陆地面积约9600000 km²,用科学记数法表示为()A.9.6×105B. 9.6×106C. 9.6×107D. 9.6×10810.如图,四个有理数在数轴上的对应点M、P、N、Q,若点M、N表示的有理数互为相反数,则图中表示绝对值最小的数的点是()A.MB.PC.ND.Q二、填空题11.武汉长江二桥是世界上第一座弧线形钢塔斜拉桥,该桥全长168000000米,用科学计数法表示这个数__________12.若(x-2)2与|x+y |互为相反数,则y-x=__________ 13. 若规定a ▽b =a ba b-+,则﹣3▽4= . 14.观察表中按次序排列的一组数,则-2023在表中第 行第 列.15.如果a <0,b >0,a +b >0,那么四个数a 、-a 、b 、-b 之间的大小关系是_____________(请用“<”连接)16.数轴上有两点M 、N ,点M 到点E 的距离为2,点N 到点E 距离为6,则M 、N 之间的距离为__________. 三、解答题 17.计算:(1)11(8)(15)(3)-+--+--; (2)8199199⎛⎫÷- ⎪⎝⎭;(3)42112(3)6⎡⎤--⨯--⎣⎦; (4)4231151454⎡⎤-+-⨯+⨯⎢⎥⎣⎦(-4)(-)-|-(-2)|18.若(a+3)2+|b -5|=0,求2a +b 的值.1111|2||1|......(1)(1)(2)(2)(2021)(2021)ab b ab a b a b a b --++++++++++19.已知与互为相反数,求的值20. 有理数a.b.c 在数轴上位置如图,化简:|c-a|-|a-b|+|b-c|.21. 某检修小组,约定向东为正,乘一辆汽车从A 地出发到收工时,行走记录为(单位:千米):+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6 (1)收工时,该小组距离A 地多远?(2)若每行驶1千米汽车耗油3升,开工时储存180升汽油,问从出发到收工途中是否需要汽油?若需要,最少加多少升?若不需要,收工时还剩多少升? (3)若该小组从出发到回到A 地共花费6小时,求它的平均速度.有理数单元练习参考答案一、选择题1.有理数3的相反数是( A )A.-3B.3C.13D.132.一个数和它的倒数相等,则这个数是( C )B.1 B.-1C.±1D.±1或者03.下列说法正确的是( D )A.一个数的绝对值一定比0大B.一个数的相反数一定比它本身小C.绝对值等于它本身的数一定是正数D.最小的正整数是14.若x的相反数是1,|y|=2,则x+y的值为( C )A. 3B.-1C. -1或3D.-35.已知a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,那么a+b+c等于( B )A.-1B.0C.1D.26.已知|x|=3,|y|=5,且xy<0,那么x+y的值等于( D )A.8B.-2C.8或者-8D.2或者-27.质检员抽查零件的质量,超过尺寸的记为正数,不足的记为负数,抽查了四个零件,结果如下,质量最差的零件是( A )A.+0.01mmB.-0.05mmC. +0.1mmD.-0.11mm8.(-1)2023的计算结果是( A )A.-1B.1C.2023D.-20239.我国陆地面积约9600000 km²,用科学记数法表示为( B )A.9.6×105B. 9.6×106C. 9.6×107D. 9.6×10810.如图,四个有理数在数轴上的对应点M、P、N、Q,若点M、N表示的有理数互为相反数,则图中表示绝对值最小的数的点是( B )A.MB.PC.ND.Q二、填空题11.武汉长江二桥是世界上第一座弧线形钢塔斜拉桥,该桥全长168000000米,用科学计数法表示这个数1.68×10812.若(x -2)2与|x+y|互为相反数,则y-x = -4 13. 若规定a ▽b =a ba b-+,则﹣3▽4= -7 . 14.观察表中按次序排列的一组数,则-2023在表中第 675 行第 2 列.15.如果a <0,b >0,a +b >0,那么四个数a 、-a 、b 、-b 之间的大小关系是 -b <a <-a <b (请用“<”连接)16.数轴上有两点M 、N ,点M 到点E 的距离为2,点N 到点E 距离为6,则M 、N 之间的距离为 8或4 . 三、解答题 17.计算:(1)11(8)(15)(3)31-+--+--=-;(2)81899999910÷=(-1); (3)421112(3)66⎡⎤--⨯--=⎣⎦; (4)4231151714544⎡⎤-+-⨯+⨯⎢⎥⎣⎦(-4)(-)-|-(-2)|=- 18.若(a +3)2+|b -5|=0,求2a+b 的值. 解:a =-3,b =5,2a+b =-11111|2||1|......(1)(1)(2)(2)(2021)(2021)ab b ab a b a b a b --++++++++++19.已知与互为相反数,求的值解:b=1,a=21111......(1)(1)(2)(2)(2021)(2021)1111......2132432023202211111111 (223342022202311202320222023)ab a b a b a b ++++++++++=++++⨯⨯⨯⨯=-+-+-++-=-=20. 有理数a.b.c 在数轴上位置如图,化简:|c-a|-|a-b|+|b-c|.21. 某检修小组,约定向东为正,乘一辆汽车从A 地出发到收工时,行走记录为(单位:千米):+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6 (1)收工时,该小组距离A 地多远?(2)若每行驶1千米汽车耗油3升,开工时储存180升汽油,问从出发到收工途中是否需要汽油?若需要,最少加多少升?若不需要,收工时还剩多少升? (3)若该小组从出发到回到A 地共花费6小时,求它的平均速度. 解:(1)根据题意可得:向东为正,则向西为负,则收工的距离=(+15)+(﹣2)+(+5)+(﹣1)+(+10)+(﹣3)+(﹣2)+(+12)+(+4)+(﹣5)+(+6)=+35米, 故收工时该小组在A 地东39千米,(2)从A 地出发到收工一共走了|+15|+|﹣2|+|+5|+|﹣1|+|+10|+|﹣3|+|﹣2|+|+12|+|+4|+|﹣5|+|+6|=65千米, 共消耗油:65×3=195升,故需加油15升; (3)该小组从出发到A 地共走了65+39=104千米,000||||||()()2c a a b b c c a a b b c a c a b b c a c a b b c c ---∴---++=----+=--+--=-解:由图可得:<,>,<平均速度为:千米/小时=千米/小时;答:收工时该小组距离A地39千米,需加油15升,平均速度为千米/小时.。
有理数测试题及答案
有理数测试题及答案一、选择题(每题 3 分,共 30 分)1、下列各数中,是正有理数的是()A -3B 0C 1/2D -05答案:C解释:正有理数是指大于 0 的有理数,1/2 大于 0 ,A 选项-3 是负有理数,B 选项 0 既不是正数也不是负数,D 选项-05 是负有理数。
2、在数轴上,原点及原点左边的点表示的数是()A 正数B 负数C 非正数D 非负数答案:C解释:原点表示 0 ,原点左边的点表示负数,所以原点及原点左边的点表示的数是非正数。
3、下列说法正确的是()A 整数就是正整数和负整数B 分数包括正分数、负分数C 正有理数和负有理数组成全体有理数D 一个数不是正数就是负数解释:A 选项,整数包括正整数、0 和负整数;C 选项,有理数包括正有理数、0 和负有理数;D 选项,一个数不是正数,可能是 0 或者负数。
4、下列各数中,互为相反数的是()A (-2)和 2B +(-5)和(+5)C (-3)和|-3|D -4 和(+4)答案:C解释:A 选项,(-2)= 2 ,不是互为相反数;B 选项,+(-5)=-5 ,(+5)=-5 ,不是互为相反数;C 选项,(-3)=3 ,|-3| =-3 ,互为相反数;D 选项,(+4)=-4 ,不是互为相反数。
5、若|a| = 5 ,则 a 的值是()A 5B -5C ±5D 0 或 5答案:C解释:绝对值等于 5 的数有 5 和-5 。
6、比较-2 ,-1/2 , 0 , 002 的大小,正确的是()A -2 <-1/2 < 0 < 002B -2 <-1/2 < 002 < 0C -2 < 0 <-1/2 < 002D -1/2 <-2 < 0 < 002解释:负数小于 0 小于正数,两个负数比较大小,绝对值大的反而小。
|-2| = 2 ,|-1/2| = 1/2 ,2 > 1/2 ,所以-2 <-1/2 。
7、计算:(-2) + 5 =()A 3B -3C 7D -7答案:A解释:异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Q 相遇,则 P、Q 两点表示的数相等,由此可得关于 t 的方程,解方程即可求得答案; (2)分相遇前相距 3 个单位长度与相遇后相距 3 个单位长度两种情况分别求解即可得.
4.如图,已知数轴上点 A 表示的数为-3,B 是数轴上位于点 A 右侧一点,且 AB=12.动点 P 从点 A 出发,以每秒 2 个单位长度的速度沿数轴向点 B 方向匀速运动,设运动时间为 t 秒.
3.如图,在数轴上,点 A 表示﹣5,点 B 表示 10.动点 P 从点 A 出发,沿数轴正方向以每 秒 1 个单位的速度匀速运动;同时,动点 Q 从点 B 出发,沿数轴负方向以每秒 2 个单位的 速度匀速运动,设运动时间为 t 秒:
(1)当 t 为________秒时,P、Q 两点相遇,求出相遇点所对应的数________; (2)当 t 为何值时,P、Q 两点的距离为 3 个单位长度,并求出此时点 P 对应的数. 【答案】 (1)5;0 (2)解:若 P、Q 两点相遇前距离为 3,则有 t+2t+3=10-(-5), 解得:t=4, 此时 P 点对应的数为:-5+t=-5+4=-1; 若 P、Q 两点相遇后距离为 3,则有 t+2t-3=10-(-5), 解得:t=6, 此时 P 点对应的数为:-5+t=-5+6=1; 综上可知,当 t 为 4 或 6 时,P,Q 两点的距离为 3 个单位长度,此时点 P 对应的数分别为 -1 或 1. 【解析】【解答】(1)解:由题意可知运动 t 秒时 P 点表示的数为-5+t,Q 点表示的数为 10-2t; 若 P,Q 两点相遇,则有 -5+t=10-2t, 解得:t=5, -5+t=-5+5=0, 即相遇点所对应的数为 0, 故答案为 5;相遇点所对应的数为 0; 【分析】(1)由题意可知运动 t 秒时 P 点表示的数为-5+t,Q 点表示的数为 10-2t,若 P、
∴
∵
∴ ∵ 对应的数为
∴
①当
,
;
②当
,
,不符合实际情况,
∴
∴
答:点 对应的数为
【解析】【解答】解:(1)由图可知:
,
∵
,
∴
,
解得
,
则
;
【分析】(1)由 a、d 在数轴上的位置可得 d=a+8,代入已知的等式可求得 a 的值,再根
据数轴可确定原点的位置;
(2)根据相遇问题可求得相遇时间,然后结合题意可求解;
也向数轴的负方向运动,且始终保持
多少?
【答案】 (1)-6;-8
(的数是
,
,
,
点 运动到点 所花的时间为 , 设运动的时间为 秒,
则 对应的数为
,
对应的数为:
.
当 、 两点相遇时,
,
,
∴
.
答:这个点对应的数为 ;
(3)解:设运动的时间为 对应的数为: 对应的数为:
一、初一数学有理数解答题压轴题精选(难)
1.如图,在数轴上每相邻两点间的距离为一个单位长度,点 、 、 、 对应的数分别
是
,且
.
(1)那么 ________, ________: (2)点 以 个单位/秒的速度沿着数轴的正方向运动, 秒后点 以 个单位/秒的速度 也沿着数轴的正方向运动,当点 到达点 处立刻返回,与点 在数轴的某点处相遇,求 这个点对应的数; (3)如果 、 两点以(2)中的速度同时向数轴的负方向运动,点 从图上的位置出发
(3)根据 AB= AC 列方程,解含绝对值的方程可求解.
2.如图所示,一个点从数轴上的原点开始,先向右移动 3 个单位长度,再向左移动 5 个单 位长度,可以看到终点表示的数是﹣2,已知点 A、B 是数轴上的点,请参照图并思考,完 成下列各题.
(1)如果点 A 表示数﹣3,将点 A 向右移动 7 个单位长度,那么终点 B 表示的数是 ________,A、B 两点间的距离是________; (2)如果点 A 表示数 3,将 A 点向左移动 7 个单位长度,再向右移动 5 个单位长度,那么 终点 B 表示的数是________,A、B 两点间的距离为________; (3)如果点 A 表示数﹣4,将 A 点向右移动 16 个单位长度,再向左移动 25 个单位长度, 那么终点 B 表示的数是________,A、B 两点间的距离是________; (4)一般地,如果 A 点表示的数为 m , 将 A 点向右移动 n 个单位长度,再向左移动 p 个 单位长度,那么请你猜想终点 B 表示什么数?A、B 两点间的距离为多少? 【答案】 (1)4;7 (2)1;2 (3)﹣13;9 (4)解:一般地,如果 A 点表示的数为 m,将 A 点向右移动 n 个单位长度,再向左移动 p 个单位长度,那么请你猜想终点 B 表示 m+n﹣p,A、B 两点间的距离为|n﹣p|.
(1)数轴上点 B 表示的数为________;点 P 表示的数为________(用含 t 的代数式表示). (2)动点 Q 从点 B 出发,以每秒 1 个单位长度的速度沿数轴向点 A 方向匀速运动;点 P、点 Q 同时出发,当点 P 与点 Q 重合后,点 P 马上改变方向,与点 Q 继续向点 A 方向匀 速运动(点 P、点 Q 在运动过程中,速度始终保持不变);当点 P 到达 A 点时,P、Q 停止 运动.设运动时间为 t 秒. ①当点 P 与点 Q 重合时,求 t 的值,并求出此时点 P 表示的数. ②当点 P 是线段 AQ 的三等分点时,求 t 的值. 【答案】 (1)9;-3+2t (2)解:①根据题意,得:(1+2)t=12, 解得:t=4, ∴ -3+2t=-3+2×4=5, 答:当 t=4 时,点 P 与点 Q 重合,此时点 P 表示的数为 5; ②P 与 Q 重合前:
【解析】【解答】解:(1)如果点 A 表示数﹣3,将点 A 向右移动 7 个单位长度,那么终 点 B 表示的数是 4,A、B 两点间的距离是 7;(2)如果点 A 表示数 3,将 A 点向左移动 7 个单位长度,再向右移动 5 个单位长度,那么终点 B 表示的数是 1,A、B 两点间的距离为 2;(3)如果点 A 表示数﹣4,将 A 点向右移动 16 个单位长度,再向左移动 25 个单位长 度,那么终点 B 表示的数是﹣13,A、B 两点间的距离是 9; 【分析】(1)根据数轴上的点向右平移加,可得 B 点表示的数,根据数轴上两点间的距 离是大数减小数,可得答案;(2)根据数轴上的点向右平移加,向左平移减,可得 B 点 表示的数,根据数轴上两点间的距离是大数减小数,可得答案;(3)根据数轴上的点向右 平移加,向左平移减,可得 B 点表示的数,根据数轴上两点间的距离是大数减小数,可得 答案;(4)根据数轴上的点向右平移加,向左平移减,可得 B 点表示的数,根据数轴上 两点间的距离是大数减小数,可得答案;